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Derivation of partial flocks of

quadratic cones

N.L. JOHNSON

RIASSUNTO - Il metodo di Bader, Lunardon e Thas per la costruzione di q flocks di
un cono quadratico in PG(3,q) a partire da un flock assegnato, é esteso alla costruzione
di t flocks parziali a partire da un flock parziale di t coni. Ai flock parziali con ¢ — 1
coniche sono associati ¢ — 1 piant di traslazioni, questa relazione consente di produrre
nuovi esempi di flock a partire da classi note.

ABSTRACT — In this paper, the method of Beder, Lunardon and Thas for the
construction of q flocks of a quadratic cone in PG(3,q), q odd, from a given flock is
extended to include the consiruction of t partial flocks from @ given partial flock of ¢
conics. For partial flocks with g— 1 conics, there are g— 1 associated translation planes.
Also, certain of the known classes of flocks are shown to produce new flocks using the
connections with translation planes.

KEY WORDS — Partial flock - Translation plane.
A.M.S. CLASSIFICATION: 51E

1 — Introduction

In (9], GEVAERT and JOHNSON discuss the interconnections between
flocks of quadratic cones in PG(3,q), generalized quadrangles of type
(¢%, q), and translation planes of order ¢*> and kernel containing a field
K isomorphic to GF(gq) whose spread is defined by the union of g reguli
in PG(3, K) that mutually share a line. Furthermore, the known flocks,
associated generalized quadrangles, and translation planes are listed. In-
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cluding the linear flock associated with the Desarguesian plane, there
are exactly eight infinite classes of flocks. (There are seven classes if the
even and odd order flocks arising from the derived Barriga/Cohen-Ganley
planes of even and odd order are considered to be within the same family.)

Recently, BADER, LUNARDON and THAS [2) have developed a proce-
dure which they call derivation for the construction of ¢ flocks of order ¢
from a given flock in PG(3,q). This is not to be confused with derivation
of an affine plane. In particular, the spreads of the associated translation
planes of order ¢ admit q reguli that share a line. The associated trans-
lation nets may be derived in this sense producing different translation
planes. However, intrinsic to the g reguli defining the spread is an elation
group of the translation plane whose component orbits union the axis
of the group define the reguli in the projective space. In these derived
translation planes obtained by the derivation of one of the reguli, the
elation group becomes a group which fixes a Baer subplane pointwise; a
Baer group.

For this reason, we shall make a point to distinguish between the
derivation of the flock of the cone which then produces a possibly new
translation plane from the original plane associated with the flock and
the derivation of a regulus of the spread of the original translation plane.

When referring to the translation plane obtained via a derivation of
the flock associated with it, we shall use the term s-inverted translation
plane (for a reason that will become clear).

1.1~ Derivation(s) of Flocks

In BADER, LUNARDON, and THAS [2], the derivation of a fAock is
determined as follows: Let g be odd and let £3 22 PG(3, ¢) and contained
in 4 = PG(4,9) in such a way so that there is a quadratic Q4 in T4
such that £3NQ, is a quadratic cone Q3 with vertex p,. Now let {C;|i =
1,2,...q} be a flock of Q3 in T3 which we further denote by Hp. Let m
denote the plane of Hy which contains the conic C; for ¢ = 1,2,...q. Let
1 denote the polarity of ¥, associated with Q4. Then 7} = po+p; (where
po denotes the 1-dimensional supspaces and + is vector addition) where
p; € Q4. Now form p} = H; fori=1,2,...q, so that H; is a 3-dimensional
projective space. Then, for each i = 1,2,...q,{H;N H;|j = 1,2,...q for
j #i}U{m} is a flock of the quadratic cone Q, N H; with vertex p; in H:
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(BADER, LUNARDON, THAS [2]). Thus, there are ¢ such flocks associated
with the original flock which are called derived flocks or derivations.

In this article, it is shown that the derivation process described above
is more generally valid for partial flocks of quadratic cones of odd order
and/or for a partial spread consisting of a set of reguli that share a line.
In particular, the derivation process applies to partial flocks in PG(3,q),q
odd, of ¢ — 1 mutually disjoint conics of a quadratic cone (deficiency one
partial flock).

In [14], the author shows how to relate partial flocks of deficiency one

of a quadratic cone in PG(3,q) with certain translation planes of order
2 A

q°.

THEOREM (JOHNSON [14] (Theorem C)).

(1) A translation plane nr of order g* and kernel K = GF(q) which ad-
mits a Baer collineation group B, of order q in its translation com-
plement is equivalent to a partial flock F of g—1 conics of a quadratic
cone in PG(3,q).

(2) The partial flock F is mazimal (cannot be extended to e flock) if and
only if the fized point subplane of Q, does not lie in a derivable net

of .

Actually, the above theorem may be stated in a more general manner
which we shall do in the course of this article.

Our main result for translation planes admitting Baer groups is a
corollary to the derivation of partial flocks of quadratic cones. In partic-
ular, we prove:

COROLLARY (see (2.10)(2)). Let w be a translation plane of odd order
q® and kernel GF(q) which admits a Baer collineation group B, in the
translation complement. Then there exist ¢ — 1 associated translation
planes (the s-inverted planes) also admitting a Baer group of order q.

One of the eight known classes of flocks of quadratic cones may be
constructed from the likeable translation planes of characteristic 5 of
Kantor (see e.g. the table in [10]). Bader, Lunardon, and Thas show
that there is a new infinite class of flocks which are derived from these
flocks.
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In [10], GEVAERT and JOHNSON show that two flocks are isomorphic
if and only if the associated translation planes are isomorphic. However,
even though there is an algebraic construction of generalized quadrangles
of type (g% q) from either the flock or the translation plane, there is
no isomorphism theorem relating generalized quadrangles and planes or
generalized quadrangles and flocks.

There are also the flocks originating from the translation planes of
Ganley of characteristic 3 and from the translation planes of Barriga/Co-
hen-Ganley of order g for ¢ = +2 mod 5.

The three translation planes mentioned above are more generally
examples of translation planes which are (i) likeable, (ii) semifield, and
(iii) translation planes that admit an autotopism group which fixes a
regulus and acts transitively on the components not in the fixed regulus.
In this article, we consider the s-inverted planes of these three general
classes. Our main results are as follows: In section 4, we consider the
family of ¢ + 1 translation planes associated with a given likeable plane
of order ¢* by derivation or s-inversion union the plane itself (this family
is called the skeleton of the plane) and we prove:

(4.3) THEOREM. Let m be a likeable plane of odd order q* which is not
Walker and such that the 0-inverted plane of the skeleton of w is isomor-
phic to a plane of the skeleton of one of the known families of flock planes.
Then w is the Kantor characteristic 5 likeable plane; a new likeable plane
produces a flock plane which is distinct from the known flock planes or
their s-inversions.

Note that we obtain the result of BADER-LUNARDON-THAS [2] on
the Kantor characteristic 5 planes as a corollary.

COROLLARY (BADER-LUNARDON-THAS [2]). Let m denote the Kantor
likeable plane of order 5%, for r > 1. Then the O—inversion is not iso-
morphic to any of the known flock planes or their inversions.

Note that a Kantor likeable plane of order 5% is Walker (see e.g.
GEVAERT and JOHNSON (10]).
In section 5, we consider semifield skeletons and prove:

(5.1) THEOREM. Let 7 denote a semifield plane of odd order ¢* and
kernel K = GF(q) which corresponds to o flock of a quadratic cone. If
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the autotopism group modulo the kernel homology group does not admit
a group of order divisible by (q*/® — 1)/2 then the 0-inversion of 7 is not
isomorphic to m (we are not assuming that ¢"/° is an integer).

From this result, we are also able to prove:

(5.4) COROLLARY. Let 7 denote the Ganley semifield plane of order 32
for > 4. Then the 0-inversion is not isomorphic to w. Furthermore, the
0-inversion is not isomorphic to any plane of the skeleton of any other
known flock plane.

In section 6, we consider translation planes with large autotopism
groups and prove:

THEOREM (see (6.1),(6.3),(6.4)). Let m denote a translation plane of
odd order g where if g = —1 mod 4 then q is not a Mersenne prime and if
g = 1mod 4 then (q+1)/2 is not a prime power, and kernel K = GF(q)
that admits a linear collineation group G which fizes a regulus Ry, fizes
at least two Baer subplanes of Ry incident with the zero vector and acts
transitively on the components not in Ry. Then

(1) there are constants in K(a, 8, k) such the spread for the transla-
tion plane may be represented in the following form:

u+ Otl+k, ﬁt1+2k

i 7
where z,y are 2-vectors over K .

a:=0,y=a:[ forallu,te K

And,
(2) If g — 1 > (1 + 2k)? then either
(i) = is a Walker plane,
(i) a Knuth semifield plane of flock type or
(ili) not all of the planes of the skeleton of 7 are isomorphic.
Using this result, we are able to show the following:

THEOREM (see (6.6)). If (¢ + 1)/2 is not a prime power then there is
a derivation of the flock of order q associated with the Barriga/Cohen-
Ganley plane of order ¢* (for ¢ = £2mod5) which is not isomorphic to
any known flock.
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In section 2, we extend the derivation construction of Bader, Lunar-
don, and Thas to include the partial flock situation. Also in section 2,
we show how to utilize the construction combined with an partial spread
extension procedure to construct a tremendous number of partial spreads
from a given partial spread and further prove (2.10) (2) listed above. In
section 3, we consider the connections between flocks and planes and give
some geometric propertities which will be used in the subsequent sections.

The ideas for many of the arguments in this paper were motivated
by the arguments of BADER, LUNARDON, and THAS [2].

2 — Partial derivation and growing in flocks

We recall the main result for partial flocks on quadratic cones from
(10]) and [14].

(2.1) THEOREM (GEVAERT and JOHNSON [10] and JOHNSON [15]).

(1) Let PS for 1 < t < q be a partial spread of cardinality gt + 1 in
PG(3, q) consisting of t reguli with share ezactly one line. Then either
P% is a mazimal partial spread or PL may be extended to a partial
spread of type PE!

(2) PL admits an elation group E of order q which fires the common
line of the t requli. Conversely, any partial spread which admits an
elation group of order g one of whose orbits union the azis of the
group is a regulus, is of type Pg for some integert.

(8) The partial spread P} is equivalent to a partial flock of a quadratic
cone in PG(3,q). Furthermore, the partial flock is mazimal if and
only if the partial spread Pg is mazimal.

We also consider a procedure of growing a partial spread from a
partial spread of type Pg.

2.1—- Growing in flocks

Let V; denote the 4-dimensional vector space associated with the
projective space in which the partial spread P§ is defined and let If
denote a field & GF(q). Consider the corresponding translation net Vg
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of degree 1+ qt. Let {Ti|i = 1,2,...q + 1} denote the set of 1-spaces
over K of the fixed point subspace of the elation group E (see (2.1)).
Let V4 — Vi denote the set of vectors of V; over K which do not lie on a
component of V.

THEOREM (see JOHNSON [14],[15]). Using the notation above,

(1) for each T; of FixE, there exist ezactly g E-orbits of 1-spaces of
Vi — Fix E such that the subspace generated is a 2-dimensional K-
space containing T;.

(2) There are ezactly g — t such orbits in V4 — Vg. For each T;,i =
1,2,...q+1, choose any such E-orbit of 1-spaces and denote the set
by D. Then (V£ —Fix E) U D = VE(D) is a translation net of degree
1+ qt+q =1+q(t+ 1) which contains FixE as a Baer subplane
and admits E as a Baer collineation group.

(2.3) DEFINITION AND NOTES.

(1) The net V(D) is said to be grown from V. Note that Vg(D) does
not contain Fix E as a component.

(2) Let PL(D) denote the partial spread corresponding to Vg(D). Then
PL(D) is mazimal if P*(E) is mazimal.

(3) The number of partial spreads grown from P} is (g — £)@+".

(4) In any translation net VT, let R denote one of the regulus nets and

let B denote the opposite regulus net. Then (VE— R)UR is a translation

net of the same cardinality as V& and the net is mazimal if and only if

the net Vi is mazimal.

PROOF. (2) Let L denote a line of PG(3, K) which is not in P(D)
and does not intersect any line of the partial spread. Since Fix E is a
Baer subplane of P5(D) then L does not intersect Fix E so that L does
not intersect any line of the partial spread P so that Pg is not maximal.

PROOF. (3) For each 1-space T of Fix E, there are (q — t) choices
of a 1-space such that the E-orbit of this 1-space generates a 2-space
containing T'.

The proof of (4) is straightforward and is left to the reader.
As an application of (2.3), we construct:
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2.2 - Some maximal partial spreads of cardinalities 4-8 4+ 1and 5-8 + 1 in
PG(3,49)

By GEVAERT and JOHNSON [10], the following is a maximal partial
spread:

Let K = GF(8) = GF(2)[6] where 6* + 6+ 1 = 0. Let V; denote
the vector space of rank 4 over K. Let Vi = {(zi, T2, ¥1,¥2)|Ti, ¥ €
K,i=1,2},x = (21,22),¥ = (%1,%2),0 = (0,0). Then V2 defined by the
following set of four reguli is a maximal partial spread of degree 4 - 8 +
1':z:=0y=:1:[u+t2 ta] fort=0,1 66Kandy=x[u+6 6]

) ’ t u ' 53 u
for all u € K.

(2.4) (1). There is a derived mazimal partial spread given as follows:

—ab-!, f—ab7lyg _ fu O
:z—-O,y—:c[ b1, b-lg ],y—z[o u]}for agllu € K and

wherey =z Z p is a component of P4.

Hence, the derived mazimal partial spread has the form

u+ )t B+ (u+ )t u 0
y=:z:[( t“) (,t"‘u) ]fort=1,6andy=z[0 u]’
65-3 653
y= z[(u +6§3)6 » O+ (1;:*;‘2 )8 ]for dlue K.
]

(2) There are 4° mazimal partial spreads V(D) constructed from Vg as
in (2.3).

PROOF. See JOHNSON [19] (section II, p.25) to see that the form of
the derived maximal partial spread may be taken as stated.

By (2.1) above, to construct partial flocks of quadratic cones, it suf-
fices to construct partial spreads to the type Vi or equivalently, transla-
tion nets in V; over K & GF(q) which admit an elation group of order
q one of whose component orbits union the axis is a regulus in PG(3, q).
Actually, we also may characterize the translation nets equivalent to par-
tial flocks in another way using Baer groups.
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(2.5) THEOREM. Let W denote a transiation net in a 4-dimensional
vector space V; over K & GF(q) which contains a Baer suplane mo. If B
is a collineation group of W of order q which fizes my pointwise then there
is a corresponding partial flock of a quadratic cone PW corresponding to
the set of orbits of B of length q union Fix B = ng. Conversely, a partial
flock of a quadratic cone gives rise to a translation net admitting a Baer
group of order q. If the partial flock is not a flock then the translation net
may be grown from the partial spread of type Vi obtained from the partial

flock.

PROOF. The reader is referred to the author’s articles [14] and [15]
to verify this. In particular, see section 2 of [14].

2.3 - s-Inversion

Let W be a translation net in V; over K = GF(q) of the type men-
tioned above in (2.5) admitting a Baer group B of order ¢. By the work
of FOULSER (8], we may let the Baer subplane pointwise fixed by B =

1 2 00
01 00
{(0,z2,0,y2)|z2,y2 € K} and the group B = 00 1 u lue K ;.
0001
And, the net of degree ¢+ 1 containing the Baer subplane may be repre-

sented by z=0,y==z g miu) for all u € K for some funciton m on

K (also see JHA-JOHNSON [12] for this set-up).
1000

Now change bases by g (1) é to transform the fixed point
0 00

lu€ K }. Now

S O

0 u
10
01

- O R O

0

0

1

space to £ = 0, and the group B into {

0 00

the translation net W — {the net containing Fix B} U (Fix B) admits B

as an elation net and the form of B insures that each component orbit

union Fix B is a regulus in PG(3, K) and thus corresonds to a partial
flock of a quadratic cone.
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Choose any two of the components of one of the orbits of B to be
represented as y = 0, and y = z. Then, it easily follows that the form of

the regulus R defined isy =z [1(; 2 (note that we are not trying to say

that the function m defined above is identically zero as this regulus net
is completely distinct from the original net containing Fix B as a Baer
subplane).

We now assert that (W — {R}) UR is a union of k reguli R, for
t € Q C K such that |2} = k which may be represented in the form:

RR={z=0y==z u+tg(t)’ fff)] for each fixed t € Q2 and for all

u € K}, where the regulus 'net R chosen above is R, and where g and f
are functions from Q to K such that the differences of the distinct pairs
of the indicated matrices are nonsingular.

PROOF. It is certainly clear that the partial spread may be repre-
sented in the form z =0,y = 0, and y = zM where M is a nonsingular
2 x 2 matrix over K and such that the differences of the matrices are all
nonsingular. Furthermore, as this net admits B in the form indicated and
since each component orbit union z = 0(Fix B) defines each of the regulus

nets, it follows that each net has the form {z = 0,y = z{ [zcz Z] + ulg}

for fixed constants a,b,¢,d € K and for all u € K}. Note that we may
choose a representative component for the regulus so that d = 0. Hence,
a and b are defined uniquely by ¢. Thus, it follows that no two regulus
nets have the same constant c in the (2,1)-entry. Since there are k regu-
lus nets, there is a subset (containing 0) 2 of K such that ¢ € 2 defines
the (2,1)-entry of the regulus net and hence the net. Clearly, there are
functions f,g: © — K such that g(c) = a, and f(c) = b. Note it also
follows that f is 1 — 1 into K.

(2.6) PROPOSITION. Assume q is odd. Then the differences of the
matrices defining the net (W — R) UR are nonsingular if and only if
(g(t) — g(s))2/4+ (t — 8)(f(t) — £(8)) is a nonsquare in K for all distinct
pairs t,s € Q.

PROOF. [ utglt) f l(f)] - [v + 3g (), f(s) is nonsingular unless
’ ) v
w=vandt=s. Ift = s then the nonsingularity implies that u = v. If t #

s then these differences are nonsingular if and only if w?+w(g(t)—g(s)) —
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(t—8)(f(t) — f(s) # O for all distinct pairs t,s € Q and for all w € K.
Since ¢ is odd this is equivalent to ((g(t) — g(s))? + 4(t — s)(f(t) — f(s))
is nonsquare in K for all distinct pairs ¢,5 € Q which is equivalent to
((g(t) — g(s))?/4 + (t — s)(f(t) — f(s)) is nonsquare for all distinct pairs
t,s.

(2.7) DEFINITION $-INVERTED PARTIAL SPREAD.

Let {z =0,y = :z:[u +tg(t), ft(f)]} denote a partial spread PE in

Vi over K 22 GF(q) of degrf;e 1+ gk where f,g are functions from a set
Q— K cz c2ardinalit kand0 € Q and forallu € K andt € Q. Let
t
M, = [g( t/ ’ —;((t) /2] be the matriz obtained by taking u = —g(t)/2.
The s-inverted partial spread (PE)™* is defined to be {z = 0,y =
z((M, — M,)™ 4+ ul;)} for allt € Q for fixed s € Q) and for all u € K
and where (M, — M,)™" is taken to be 0 by definition.

(2.8) Note: Consider the O-inverted structure (P£)~°. If this set is
a partial spread then the s-inverted structure (P%)~* is also a partial
spread for each s € Q.
L —g(s), —f(s)

ProOOF. Change bases by ¢ = [ —-S8, 0 J This basis
0. I

change commutes with B in the form given and the set of images (P)o
contains y = 0. Hence the set of images form a partial spread given by
matrices whose pairs of distinct differences are nonsingular. Thus, it is
clear that the s-inverted structures are partial spreads if and only if the
0-inverted structures are partial spreads. Also, note that the s-inverted
structures become O-inverted structures with new defining functions.

(2.9) THEOREM.

(1) The s-inverted structure (P§)~* is a partial spread for any s € .

(2) There are k associated partial flocks of a quadratic cone associated
with each partial spread of type P§.
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Proor. To prove (1), it suffices to prove this for s = 0 (see (2.8)).
(2) follows from (1) and (2.1)(3).

Thus, given the condition

(*) ((g() — g(r))*/4 + (t = 7)(f(t) — f(r)) is a nonsquare for each
distinct pair ¢, € €2, we must show that {z = 0,y = 2(M; ' + ulz)} for
all t € Q and for all u € K, is a partial spread.

Let 6, denote the determinant of M, which is —{g(¢))?/4 + tf(t)}
for t not 0 and is, by definition, say 1 if ¢ = 0. Then the above set
is a partial spread if and only if (M; ! + ul,) — (M} + vl;) is either
nonsingular or the zero matrix for all t,7 € Q and for all u,v € K. M{ =
[g(t)/26., f&)/é ] Now letting v = w + g(¢)/(26,), the asserted

t/6, —g(t)/26 s
partial spread has the form ¢z = 0,y = a:[ v +t‘(/]fst) [ f(ttz,/ t]} for
L

all t € § and for all w € K. That is, we have replaced the functions g(¢)
and f(t) by the functions g(t)/d; and f(t)/6; respectively.

Now the O-inverted structure is a partial spread if and only if we
obtain the condition

(**) (9(8)/be — g(r)/8:)2 /4 + (/6. — /6. ) (f()/6: — f(r)/5:) is & non-
square for all distinct pairs ¢, € Q.

First assume that » = 0. Then (**) is clearly valid using (*) multiplied
by (6,)2.

Assuming t and 7 are both nonzero, multiply the equation in (**) by
(6:6.)* = (—6,)(—6.)%. Recalling that § = —{(g(¢))?/4 + tf(t)}, so that
(—6.) is nonsquare, we obtain condition (***) equivalent to (**):

() (9(6)6 — 9(r)8)?/4 + (t6, — r6)(f(2)6. — F(£)6,) is nomsquare
for all distinct pairs ¢, € 2 both not zero.

However, (g(t)8,~9(7)8,)?/4+(t6,—16,) (f ()6, — f(7)6:) = (9(t))?/4+
tf(2)82+ ((g(r)? /44T f(r))6% = {g(t)g(r) /2 +rf(t) +tf(r)}6.6, which, in
turn, is equal to —6,62—6,62—{g(t)g(r)/2+r f(t)+tf(r)}6:6: = 6.6, {—b6-—
6. —g(t)g(r)/2—rf(t)—tf(r) = 6:6:{g(r))*/a+rf(r)+(9(t))*/4+1f(t) —
g(t)g(r)/2—rf(t) = tf(r)} = 6.6{(g(t) — g(r)?/4+ (t—T)(f (&) - f(r))}-
Since 8,8, = (—8&,)(—6,) is square, we obtain (***) using ().

Note that this argument is essentially the same as one given in
BADER, LUNARDON, and THAS (2] (section 1) but phrased in terms of a
partial spread instead of a flock of a quadratic cone.
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(2.10) COROLLARY.

(1) Let m be a translation plane of odd order ¢* and kernel K =
GF(q). If m admits a Baer collineation group B of order q in the trans-
lation complement then there are (g — 1) associated translation planes of
order g*> and kernel K which admit the Baer group B of order q as a
collineation group. These are the unique translation planes which may be
grown from the s-inverted partial spreeds (PFV)~* where P™" denotes
the partial spread consisting of the components of m which are not fized
by B union the Baer subplane Fix B pointwise fized by B.

(2) Corresponding to the translation plane w of (1) are (g — 1) par-
tial flocks of a quadratic cone. These partial flocks are the structures
corresponding to the s-inverted partial spreads. Furthermore, one of the
partial flocks may be completed to a flock if and only if the translation
plane groun from the corresponding s-inverted partial spread contains a
derivable net containing the Baer subplane pointwise fized by the Baer

group.

Note that there are no known partial flocks of deficiency one which
cannot be extended to flocks ore equivalently, there are no translation
planes of order ¢? and kernel GF(q) admitting a Baer group of order ¢
where the net defined by the Baer subplane pointwise fixed by the Baer
group is not derivable.

3 - Derived flocks and s-inverted translation planes

In this section, we consider the derivations of the known flocks or
equivalently the s-inversions of the corresponding translation planes. Mo-
re generally, we may apply the results of GEVAERT and JOHNSON (10} and
of section 2 to obtain algebraic relations fo the s-inversions and deriva-
tions of flocks.

We simply note

(3.1) THEOREM. The s-derivations or s-inversions produce flocks or
translation planes.

ProoF. Apply (2.10). In (2], BADER, LUNARDON and THAS study
the derivations of the eight classes of known flocks and prove the following
result:
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(3.2) THEOREM (Bader, Lunardon, Thas). The 0-derivation of the Kan-
tor likeable flock of characteristic is new.

The reader is referred to the table in GEVAERT and JOHNSON [9] de-
scribing the functions f(t), g(2) for the known flocks or translation planes
of the type under investigation (see (2.7) applied to spreads).

3.1 - Geometric properties

In order to discuss whether derivations or inversion are new, we shall
require some geometry as the new functions do not appear to lend them-
selves to easy calculation (see (2.7)).

In BADER, LUNARDON and THAS, the argument that the O-deriva-
tions of the Kantor flocks are new is based on the original geometric
construction mentioned in section 1.

In this section, we also study the s-derivations or s-inversions using
this geometry and for this, we shall require a few observations. For this
part, we utilize the construction and notation of section 1.

(3.3) NOTES ON THE CONSTRUCTIONS

It is not obvious that the s-inverted translation planes correspond
to the derivations of the associated flocks. To see that this is, in fact,
the case, the reader is referred to BADER, LUNARDON, THAS [2] (secton
1). In fact, the geometric construction also works for partial flocks and
the s-inverted partial spreads correspond to the partial flocks that can be
obtained via the construction using the 4-dimensional projective space.

To aid in working in the partial spreads and partial flocks, it is helpful
to list some of the connections.

When we are concerned with the partial spread P§ and the k corre-
sponding s-inverted partial spreads, we always consider one of the reguli

in standard form: z =0,y = x[g 2] for all u € GF(g). This does not

mean that we consider this regulus is contained in each partial spread but
merely that we are recoordinatizing so as to obtain this form. However,
we do consider that the axis z = 0 of the elation group £ is common to
all of the partial spreads. Now embedd into the 5-dimensional projective
space £s using the Klein correspondence and take the associated polar
structures which produce the corresponding partial flocks. We see that
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there is a common point on the Klein quadric of all of the partial ovoids
corresponding to the k+ 1 partial spreads which, in turn, implies that all
of the partial flocks are contained in a common 4-dimensional projective
space ;.

Note that the geometric construction of k partial spreads from a given
partial spread involves k points p; for ¢ = 1,2,... , k which, in turn, de-
fine, by the polar spaces with respect to ¥4, the associated 3-dimensional
spaces in which the partial focks are defined. If we use one 3-dimensional
space and the partial flock therein as a reference to construct the remain-
ing k partial flocks, there will be exactly one conic from the reference
partial flock in each of the other partial flocks. In the algebraic con-
struction of s-inversion, the conic in the reference partial flock appearing
in the constructed partial flock will appear within the associated partial
spread as the regulus in standard form.

(3.4) PROPOSITION. Let F be a flock of a quadratic cone and mr the
corresponding translation plane. Let F* and ;. denote the s-derivations
and s-inversions of F and g respectively. Then the set of §-derivations
or 5-inversions of F*, or ny. is {F, F|t # s}, {mp, wk|t # 8}.

PROOF. Consider the derivations of the flock F! which is a derivation
of F. Without loss of generality let H; denote the corresponding 3-
dimensional projective space in £4 (the use of the integer 1 is different
in F! and H;) then {H, N H;Ji # 1} U {m} is or defines the flock of the
quadratic cone Q3 N H, with vertex p;. The derivations of the flock F
come from the plane H; N H; as follows: (H, N H;)* = p; + p; (note that
H; = p so that p; C H}), then form p} for i # 1 and py = Ho. The
derivation of F! defined in either H; for i # 1 or in Hp is defined by
{H:NH;|j #4;5=1,2,...q} U((H1 N Hy) = m)}. Thus, F* reconstructs
F and all of the derivations of F' not equal to F*.

(3.5) DEFINITION AND NOTES.

(1) We shall call the set of flocks derived from a flock F union F the
skeleton S(F) of F. Similarly, the set of translation planes corresponding
to the skeleton of F is called the skeleton S(nr) of mg. So, if F € S(F)
then S(F) = S(F).
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(2) If two translation planes n,, 7, are isomorphic then each plane in
the skeleton of m, is isomorphic to a plane in the skeleton of ms.

PROOF. Under the present assumptions, an isomorphism f € I'L
(4, K). If we realize both spreads within the same projective 3-space
over K and use the connections with the flock of the cone in PG(3, g),
there is an induced element f in PT'L(4, q) acting on the projective space
Hy in which the flock is defined and without loss of generality, we may
assume that f leaves the cone invariant. Further, there is an extension to
PI'L(5, ¢) which leaves the quadric Q4 invariant and whose restriction to
Hp is f. Note that this assertion follows easily from BADER, LUNARDON,
and THAS {2] Theorem 2 p.13.

(3.6) THEOREM. Let F be a nonlinear flock of a quadratic cone of odd
order q and wr the corresponding translation plane. Let {po,p1,.-- » Pa}
denote the ¢ + 1 points in 4-dimensional projective space over GF(q)
that defines the skeleton of F. Then the full translation complement
of mp modulo the collineation group which fizes each of the g requli of
wr sharing a fized component is isomorphic to the stabilizer of po in

PI'L(S, Q){po.m.... Pe} Qe = G.

PROOF. This is almost immediate from Theorem 2 of BADER, LU-
NARDON, and THAS [2]. Note that a collineation of mr must permute the
reguli (GEVAERT, JOHNSON, THAs {10]).

Furthermore, by studying the construction of derivation in the pro-
jective 4-space, extending to the 5-space and using the Thas-Walker con-
struction via the Klein correspondence to produce the translation plane,
it follows that the points p; for i # O correspond to the reguli in wr (see
the remarks in (3.3)). And, the group acting on the reguli is permuta~
tion isomorphic to the group acting on the p;. Note that in the 3-space
H; = pi, the planes =; are such that n}* = po + p; and the m; correspond
to the opposite reguli in the translation plane 7¢. Suppose g € G and
maps p; onto p; so that m; maps onto m; and leaves Hg invariant. The
restriction to Hp, induces an element in the 5-dimensional space which
leaves the Klein quadric invariant (see the statement of Corollary 3 of
BADER, LUNARDON and THAS [2]). There is an induced group acting
on the polar planes of the m; with respect to the Klein quadric. But the
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polar planes correspond under the Klein correspondence to the reguli in
the translation plane.

(3.7) NOTATION. In (3.6), above, let 7;,5 = 0,1,2,...,q denote the
translation planes in the skeleton of mp = my and corresponding to the
points p; for j=0,1,2,...,q.

(3.8) THEOREM. Suppose that two translation planes of a given skeleton
both admit collineation groups that act transitively on the components not
equal to the common line of the reguli in each spread. Then all planes of
the skeleton are isomorphic and the corresponding group G in PTL(5,q)
acts doubly transitively on the points {po,p1,D2, ... sPq}-

Proor. Without loss of generality, let the two planes be denoted by
o and ;.

Gy, is tramsitive on the the points {p1,ps,...,p,} since the group
induced from translation plane m, must act transitively on the reguli.
Furthermore, G,, must act transitively on the points {po, ps,...p,} since
the skeleton of m, is the skeleton of my and thus there is but one corre-
sponding set of points in the associated projective 4-space.

Since, ¢ > 2, the orbit length of any point under the group (G,,, Gp,)
is g+ 1. Hence, G must act doubly transitively on the set of g+ 1 points.

(3.9) THEOREM. Let 7 be a non Desarguesian translation plane of odd
order q* that corresponds to a flock of a quadratic cone. If there exists a
linear collineation group which acts transitively on the q requli then 7 is
either likeable or a semifield plane.

PROOF. Clearly, there must admit a collineation p-group G for ¢ = p"
which acts transitively on the components of the plane not equal to the
common component and fixes this common component. Assume the order
of the group is strictly larger than q2. Then, since the group is linear,
there must be a Baer p-element. However, since there is an elation group
of order g acting transitively on the components not equal to the fixed
component of each regulus, we have a contradiction by FOULSER [7]. The
result now follows directly from the main results of FINK, JOHNSON and
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WILKE (2.11) [6] and JHA, JOHNSON, WILKE (corollary 2.3 of [13] - note
that desirable planes are likeable under our assumptions).

4 — Likeable skeletons

In this section, we utilize (3.9) to first consider likeable translation
planes and their s-inversions. Wefirst note:

(4.1) THEOREM. Let mr denote a likeable translation plane of odd order
q* which is not a Walker plane. Then the 0-inversion is not isomorphic
to mp.

PRroOF. Deny! By (3.9), there is a collineation group G which acts
doubly transitively on the set of points {po,p1,--. , P4}

By the classification theorem of simple groups, there is a minimal
normal subgroup N of G such that N is elementary Abelian or non-
Abelian simple.

g+ 1 is a prime power only if ¢ is a prime (since g2 — 1 does not
admit a p-primitive divisor for ¢ = p” (see KALLAHER [21] for this idea)).
However, in this case, any such likeable plane is Walker by JOHNSON and
WILKE [20] (7.1). .

Thus, we may assume that N is non-Abelian simple.

Since g is odd, we have the following posibilities for V (sse CAMERON
[3] pp. 8 and 9):

(i) Aq+11
(i) PSL(d,h) such that (h¢ —1)/(h—-1)=gq+1,
(ii) PSU(3,h) such that A*+1=g¢g+1, or
(iv) 2G2(h) (Ree) such that h® +1 =g+ 1,h = 3° for s an integer > 1.

Note that since N is a non-Abelian simple subgroup of PI'L
(5,9) (po.py....pa}.Q4> 15 follows that N is a subgroup of PGL(S, q).

Let F denote that linear collineation group of n{m) and M the sub-
group which fixes each regulus of . Then N,, is a subgroup of F/M .
Before we continue the proof, we shall require two lemmas on likeable
planes.
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Lemma 1. If 7 is likeable then M is the direct product of the elation
group of order g and the kernel homology group of order g — 1.

PROOF. Let g € M. Since M contains the elation group or order ¢
and M fixes each regulus, we may assume that g leavesz =0, and y =0
invariant. Now using FINK, JOHNSON and WILKE (6] (3.3), we may as-

sumeothag thgre is a collineation which fixes each regulus of the form
1

b
g 0 l?z (;)3 = A, for some b € K & GF(q) where the matrix repre-
00 0 b

_ a2 3
sentation of the spread is givenbyz =0,y =2 u—a, —(1/3)a’ + l(a)]

a, u
= M, . where [ is the corresponding likeable function. The reguli are de-

fined by z = 0 and the matrices with fixed a € K. A, maps y = zM;,

— 2 3 3
onto y = z ((::) ' (1/3)((1!2 +1(a)b ] Hence, if each (actually

two) regulus is left invariant by A, then b =1.

LEMMA 2. If  is likeable and (|[F/M|,p—1) > 2 for ¢ = p" then 7 is
Walker.

PrOOF. M = EH where F denotes the elation group of order g and
H denotes the kernel homology group of order g — 1.

Since (F/H)/(EH/H) = F/M, we have that (F/H,p~—1) > 2.
Hence, we may apply FINK, JOHNSON and WILKE [6] (theorem (4.2) and
JOHNSON, WILKE [20] (7.1) to obtain that the function / is identically
zero; 7 is Walker.

Case (i) N = Agy1. Then | Ny | = ¢! so that by Lemma 2, 7 is Walker.

Case (ii) N 2 PSL(d, k) such that 1 +h+hZ+...h* ' =g+ 1

Let h = n* for n a prime. Then n must divide g so that n must be p.
Therefore, (@2 —1,h% —1) > g+1. (¢*—1,h?—1) = (p* = 1,p* 1) =
p(2red) _ 1 so that it must be that (2r, sd) > r and hence (2r, sd) = 2r.
Hence, (h¢ — 1) = g2 — 1. Thus, (¢° — 1)/(h — 1) = ¢+ 1 implies that
h=gsothatd=2.

In this latter case, N,, & PSL(2,q) so that |Np| = g(q — 1)/2.
(g —1/2,p = 1) > 2 unless possibly p = 5(p # 3 by [20]). So case (ii)
cannot occur unless ¢ = 5",

By the lemmas 1 and 2 above, if |F/M] is divisible by (g —1)/2 then
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|F/H\ is also divisible by (g — 1)/2 so that there exists a collineation
group which leaves y = 0 (and = = 0) invairant and of order (g — 1)%2/2
(including the kernel homology group of order ¢~1). By FINK, JOHNSON
and WILKE [6] (3.3) there must be (g — 1)/2 elements A, for various
elements b € K. By the main result of JHA, JOHNSON and WILKE [13],
either w is Walker or there is an associated collineation cyclic group of
order (g — 1)/2 represented by A, for |b| = (¢ — 1)/2.

Furthermore, it follows easily that ¢®/(a) = l(ca) for all ¢ of order
divisible by (g — 1)/2 and for all a € K. If ¢ and 2c both have orders
divisible by (g — 1)/2 then since ! is additive, we have that 8c®l(a) =
I(2ca) = 2l(ca) = 2c31(a) for all @ € K so that [ must be identically
zero and thus Walker. Thus, if ¢ has order divisible by (¢ — 1)/2 then 2¢
and/or c¢/2 does not and conversely. So, in general [(t) = t31(a) if t has
order divisible by (g — 1)/2 and otherwise, I(t) = 1(2(¢/2)) = 2I(¢/2) =
2(t/2)%1(1) = t31(1)/4 = —13(1) since the characteristic is 5.

So, let ¢, d both have orders divisible by (g — 1/2) and assume so
does their sum ¢+ d. Then (c+ d)31(1) = (c3 + d3)I(1) so that if {(1) is
not zero then ¢ = —d.

Let c, d both have orders divisible by (g—1)/2 and ¢ # —d so that c+d
does not have order divisible by (g— 1)/2. Then l{c+d) = —(c+ d)3I(1).
Now assume that [(1) #0. Letc=1andd # 1. Thend®*—d*-d+1=0
for at least (¢ — 1)/2 — 1 elements d # —1 and since this is also true for
~1, it must be that (g — 1)/2 < 3 or rather that ¢ = 5. But, all likeable
planes of order 52 are Walker. Hence I(1) = 0. Since {(¢) = +£3I(1),! is
identically zero so that in all cases, w is Walker.

Case (iii) N = PSU(3,h) such that h% = q. [Ny, | = q(¢?/* — 1)/2 so
that (IF/Mlap -1) 2 ((q2/3 - 1)/2717 - 1) so that for ¢ = pas’ ((q2/3 -
1)/2,p~1) =2 (p — 1) > 2 unless p = 3. However, this characteristic
cannot occur in likeable planes.

Case (iv) N =2 G, (k) such that h® = g. In this case, [IVp,] is divisible
by ¢*/® — 1 so that again we must obtain a Walker plane in this situation
by lemma 2.

This proves {4.1).

(4.2) CoroLLARY (BADER, LUNARDON, THAS (2]). Let nr denote the
Kantor likeable plane of order 5°7, r > 1. Then the 0-inversion is not
isomorphic to ng.
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More generally, we may prove the following:

(4.3) THEOREM. Let 7 be a likeable plane which is not Walker and such
that the O-inverted plane of the skeleton of m is isomorphic to a plane
of the skeleton of one of the known families of flock planes. Then m is
the Kantor characteristic 5 likeable plane; a new likeable plane produces
e flock plane which is distinct from the known flock planes or their s-
inversions.

(4.4) CoROLLARY (BADER, LUNARDON, THAS [2]). The 0-inversion of
the Kantor characteristic § likeable plane or order > 25 is nonisomorphic
to any of the knouwn flock planes or their inversions.

PROOF. (4.3) Assume that = is not Kantor characteristic 5.

Lemma 1. The collineation group of the 0-inverted plane of a non-
Walker likeable plane is the subgroup of the likeable plane which fixes a
given regulus.

ProoF. This collineation group may be identified with the stabilizer
of a point say p; in {pg,p1,... ,pe}. If this stabilizer moves po then the
generated group is doubly transitive and the argument of (4.1) shows
that the plane is Walker. Hence, the stabilizer group must be a subgroup
of the collineation group of 7 and leave the regulus corresponding to p;
invariant. This proves the lemma.

Recall that the seven families of odd order flock planes are: (1)
Desarguesian, (2) Fisher, (3) Kantor characteristic 5 likeable (4) de-
rived Barriga/Cohen-Ganley, (5) Ganley semifield of characteristic 3, (6)
Walker, and (7) Knuth semifield (Kantor quadrangle).

By Lemma 1, the O-inverted plane cannot be in the skeleton of the
planes of types (1), (5), and cannot be in the skeletons of the planes of
type (7) or (8) since by assumption the plane itself is not either Walker
or Kantor characteristic 5 likeable.

By the result of Bader, Lunardon and Thas, the planes of the Fisher
skeleton are either Desarguesian or admit a collineation group which in-
duces a g-nest of reguli within the translation plane. EBERT has shown
that this type of plane is isomorphic to the plane of Fisher. Hence,
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(4.5) THEOREM. The s-inversions of the Fisher plane are either Fisher
or Desarguesian.

We shall show that no plane in the skeleton of the derived Barriga/
Cohen-Ganley plane can admit a collineation group of order ¢*>. Hence,
we cannot have situation (4) and we have the proof to our theorem (4.4).

5 — Semifield skeletons

(5.1) THEOREM. Let np denote a semifield translation plane of odd order
q® and kernel GF(g) which corresponds to a flock of a quadratic cone. If
the autotopism group modulo the kernel homology group does not admit a
group of order divisible by (¢*/® — 1)/2 then the 0-inversion of nr s not
isomorphic to mr (we are not assuming that q'/3 is an integer).

PROOF. We may used the proof of (4.1) to verify that the autotopism
group modulo the kernel has order divisible by (g—1)!, (¢—1)/2, (¢*/3—1),
or (¢'/3—1) in the four cases obtained in the proof. Each of these numbers
is formally divisible by (g'/® — 1)/2 so we have the proof to (5.1).

(5.2) THEOREM. The linear autotopism group of the- Ganley semifield
plane of order 37" for r > 4 and r odd has order 2(q—1) forr > 4 and T
even has order 4(q — 1) and includes the kernel homology group.

Proor. The Ganley planes are never Desarguesian so by GEVAERT,
JOHNSON and THAS [10], the full collineation group permutes the reguli.
Hence, the linear autotopism group must leave invariant the regulus con-

t t
taining v = 0. Represent the spread by z =0,y = a:[u +tg( ) f,‘(‘)]

where u,t € K = GF(q). The reguli are represented by the set of ma-~
trices with fixed values of ¢ and all u € K. Hence, a typical element of

v O
the linear autotopism group g must mapy = Z onto say y = T 0 v]

a b 0 O
and thus g must have the form ¢ d 0 0 where ad — be 7 0.
0 0 av b
T
o D,
gmapsy =z[g£t)’ f(()t)] onto y = m[u-’-t_g(_) p ] where
' ]
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(1) t=((—cg(t) + at)av — A f(t)v)/6 where 6 = ab — cd,
(2) 2 = ((—cg(t) + at)bv — cdvf(t))/6,
(3) @+ g(f) = ((dg(t) — bt)av + dcvf(t))/5,
(4) f®) = ((dg(t) — bt)bv + d*vf(t))/6. Notice that this calculation is
valid for any flock plane for different functions.
The functions representing the Ganley plane may be chosen as fol-
lows:
9(t) = —at®, f(t) = mt® + nyn2t where o® =nyn,.

Using (1) and (4) above and using the funcitons listed above, we obtain

the following

(5) (((cat® +at)av— *(n,t + ninat)v)/6)°n + (cat® + at)av — E(n 8 +
mnat)v)ning /6 = (—dat® — bt)av + d*(nyt® + ninat)v)/6 for all t €

K = GF(q).

Now assume that 3" > 3% so that 3* # t. Then we have two polyno-
mials in t of the form [, + Lot + 13t%" = m 8 + mat + mgt% so that
13,13, my, m, are all 0 and I, = m;. The coefficient of 3! is (—c2n2v/6)
so that ¢ = 0. The coefficient of t* is —dabav/§ so that dba = 0 but since
¢ =0, this forces b= 0.

(6) (a®vt/6)°n; + a®vtniny/6 = d¥(n,t? + nynat)v/6 for all t € K.

So, (a?v/6)°n, = d®n,v/6 and a?vnyny/6 = d*nynav/é.

With § = ad, it follows that a> = d% and so v° = v. Putting this
information into equations (1) and (3) above forces t = atv/d, % = 0 and
glatv/d) = vg(t) so that av?/d = 1. Also, f(t/v) = dvf(t)/a and since
v® = v, it follows that dv?/a = 1 which in turn shows that v* = 1 and

(a/d)? = 1. Thus, modulo the kernel, we obtain exactly the autotopism
1 0 0 O

2
group generated by (()) % 2 g such that v* = 1. This proves the
0 0 0 8

theorem.

(5.3) COROLLARY. If mr denotes the Ganley semifield plane of order 3%
for r > 4 and kernel GF(3") the 0-inversion is not isomorphic to mp.

PRrOOF. To apply (5.1), we must simply determine the linear auto-
topism group of the Ganley semifield planes. This is at most 4(modulo
the kernel homology group) so since 37/ ~ 1 > 4, we may apply (5.1)
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(note if g = 3% then there are only the cases where (3% —1)/2, or 3%/3 — 1
to consider and each of these numbers is strictly larger than 4).

Note that (5.3) is probably valid for » = 2,3. However, the auto-
topism group of the Ganley plane must be worked out in order to apply
our arguments. We shall not be concerned with this.

Finally, we consider the possibility that the 0-inversion of the Ganley
plane is isomorphic to another plane of a skeleton of a known plane.

(5.4) COROLLARY. If m denotes the Ganley semifield plane of order 3*”
forr > 4 then the 0-inversion is not isomorphic to any plane of a skeleton
of any of the other known flock planes.

PROOF. This is straightforward and based upon the fact that if the
0O-inversion is isomorphic to a plane of the skeleton of ; then the original
plane is also isomorphic to a plane of the skeleton of m;. We shall leave
the details to the reader.

6 — Translation planes with large autotopism groups

Although not phrased in this manner, the following is due to HI-
RAMINE [11). Actually, the same theorem for planes of prime square
order is due (previously) to COHEN and GANLEY/[4].

(6.1) THEOREM (HIRAMINE [11], GANLEY (4] for prime square order).
Let 7 be o translation plane of order g2 and kernel K = GF(q) which ad-
mits a linear autotopism group G which has a component orbit of length
g® — q. Then (1) The remaining set of ¢+ 1 components define a regu-
lus R in PG(3,K). (2) The matriz spread set for the translation plane
derived from w by deriving R may be represented in the form z = 0

1+k 142k

=z u+:xt ' B tu for some integer k and constants o, B in K
*

forallu,te K.

PROOF. HIRAMINE [11] determines the form of the plane derived
from 7 and that K is a central kernel in the associated quasifield. This
equivalent to the corresponding net being a regulus net (i.e. aregulus

PG(3, K)). By JOBNSON [19] (section III) if [: ;] for d # 0 represents
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_Cd—li f - Cd_lg
d-1, d-lg

the translation plane obtained by deriving the regulus net represented in

2 for all u € K. This procedure with the

a component in 7 then represents a component in

the fomz =0,y ==z 8

functions determined by Hiramine will produce the form for the spread
of the derived plane. The details are left to the reader.

(6.2) NOTES. In (6.1) above,

(1) ifk =1,a = -1, = -1/3 and ¢ = —1mod 3, the Walker-Betten
planes are obtained (see GEVAERT and JOHNSON (9] table),

(2) ifk = 2,a = —p,f = —y where p* = 5y, ¢ = p",p = +£2mod5,
the derived Barriga/Cohen-Ganley (also the planes of NARAYANA
RAO, SATYANARAYANA, VITHAL RAO [23] also see BADER [1]) are
obtained (see GEVAERT and JOHNSON [10] table).

(8) If a = 0 and k = (p* — 1)/2 where ¢ = p" then for B a nonsquare a
Knuth semifield plane is obtained which corresponds to the generalized
quadrangles of Kantor [22].

We shall simply call these planes Knuth semifield planes of flock type.

(6.3) THEOREM. Let 7 be a translation plane or order g* which is derived

from a translation plane of order ¢* and kernel K = GF(q) that admits o

linear autotopism group with a component orbit of length ¢*—q. Represent

the plane in the form of (6.1) for the constant triple (a, 8, k).

(1) Then the O-inverted plane n=° = m, is isomorphic to w. Further, the
s-inverted planes for s # 0 are all isomorphic.

(2) Assume that a # 0 and (g~ 1) > (1 + 2k)? then either

(i) the full linear collineation group modulo the kernel homology group is
of order q(q — 1), fizes one regulus and acts transitively on the ¢ — 1
remaining regult or

(i) = is either Walker or Knuth semifield of flock tupe.

(8) If a =0 then w is a Knuth semifield plane of flock type.

Proor. (1) L+k 142k—1 1k 1-2k
atltk/2  ppit2k- at~k /26, pt-1-2/§
Note that t, —at”"/2] [ £1/s, —at‘l"‘/26] whe-
re § = /4 + B. It is easy to verify from here that the O-inverted plane
is isomorphic to the original plane.
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The plane m admits a group which fixes one regulus Rp and acts
transitively on the components not in the fixed regulus. This group must
induce a group in PGL(5,9)(pyp,,..r,}.Q. 20d so permutes the planes of
the skeleton of 7 in orbits of lengths 2 and ¢ — 1. This proves (1).

PROOF. (2) The full collineation group of the plane must permute
the ¢ reguli. If Ry is moved then there must be a group which acts
transitively on the reguli by (1). But, by (3.9), the plane # must be
likeable or a semifield plane. If « is likeable then from JHA, JOHNSON,
WILKE [12], since there is a collineation group of order (g — 1) modulo
the kernel homologies, the plane must be Walker. If 7 is a semifield plane
then the functions g(t) = at!** and f(t) = Bt'*?* must be additive.
And, since f(t) is 1 — 1,8 # O so that t'*?* = ¢*° for ¢ = p". Assume
that @ # 0. Then ti+* = ¢*" implies that #2* = »-! for all ¢ so that
2p? — p* — 1 = 0 modulo p” — 1. We may assume that 0 < d < r. So,
1+ k = p?(mod(p” — 1) implies, by an easy calculation, that 1 + k = p“.
If 14 k = p" then 2k = Omod(p" — 1) so that it follows that the plane
must be Desarguesian in this case. So, assume thatd <7 and 14k = p°.
Since p is odd then 2p® — 1 < p". But, it follows that now 2p? — 1 = p°
so that d or s = 0. If d = 0 we have the situation as above and the plane
is Desarguesian. If s = 0 then 2p® — 1 = 1 implies d = 0. Thus, it must
be that a = 0.

With g(t) = 0, it is easy to check that the planes containing the conics
of the flock of the quadratic cone corresponding to n all contain a common
point. By a result of THAS [24], the flock must be of Kantor type (see
[9])) and the translation plane must be a Knuth semifield plane of flock
type. This proves that the situation described in part (ii) of (2) occurs
when the regulus Ry is moved by the collineation group. Furthermore,
note that this last remark also proves (3).

So, we may assume that the full collineation group of = leaves the
regulus R, invariant. We may use the argument in (5.2) agove for (t):he

a

0
: ¢cd 0 O
collineation g which fixes bothz =0, andy=0,9= |5 o 44 bv
0 0 cv dv

and use equations (1) thru (4). In particular, we obtain f(((—cg(%)
at)av — Ef(t)w)/6) = ((dg(t) — bt)bv + d?vf(t))/6 where § = ad — bc.
Using g(t) = at*t*, f(t) = Bt'*?**, we obtain:
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(5°) B(((—cat*** + at)av — 2Pt 1) /5)1+2% = ((dat'+* — bt)bv +
d*vpt*+*) /6 forall t € K .

We are assuming that (¢ — 1) > (1 + 2k)? so that the polynomial in
t given in (5*) indicates that ¢ = 0. But, then this, in turn, implies that
b = 0. Hence,

(6*) B(a*vt/ad)**?* = d*uypt'*? [ad. Hence, (av/d)'** = dv/a.

Putting this into the equations (1) thru (4) in (5.2) gives (av/d)* =
d/a. Now we may assume that a = 1 by appropriate multiplication of
a kernel homology. Let dv = c'*%* for some c (recall f(t) = Gt**%* is
1 —1) so that d = c*) and thus v = c!**/) for some A € K. Since
now d'+k = v* from above, it follows directly that A = 1. Thus, modulo

thf ke(;nel homology group, we obtain exactly the following collineations:
0 0

0 ¢& 0 0
0 0 & 0

0 0 0 clt2k
thus we have the proof to (6.3).

Note that in RAO et al [23], the full collineation group of the planes
of (6.2) (2) is obtained for all orders.

= 7, for any nonzero ¢ in K. This proves (2) and

(6.4) THEOREM. Let m denote a translation plane of odd order g* where
if ¢ = —1mod4 then q is not a Mersenne prime or if ¢ = 1mod 4 then
(g+1)/2 is not a prime power, and kernel K = GF(q) that is derived from
a translation plane admitting a linear autotopism group with a component
orbit of length g>—q. Let (a, 3, k) denote the constants defining the spread
of m. Assume that ¢ —1 > (1 + 2k)%. Then w corresponds to a flock of a
quadratic cone and if all of the planes of the skeleton of m are isomorphic
then 7 is either

(1) Walker,

(2) Knuth semifield plane of flock type.

Note: the hypothesis ¢ — 1 > (1 + 2k)? is probably unnecessary. We
use this so as to simplify the determination of the collineation group of
the plane.

PROOF. Assume the plane is neither Walker or Knuth semifield plane
of flock type.
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Consider the ¢ + 1 points {po,pi,...p,} and assume that O-inverted
plane of m corresponds to p;. Then by (6.3), the group induced on these
points by the collineation group of w has orbits {po}, {p:}, and {pz,...p,}.

Consider the partition of the ¢ + 1 points induced by the element 7_,
(listed above in the proof of (6.3)). Without loss of generality, assume
that 7_; mapsp; onto p;,, where the indices are taken modulo 2 relative
to the mapping. So, the partition is {{p;, pi1}|: =0,2,4,...¢—1}.

We assert that if the planes of the skeleton are all isomorphic and the
plane is not Walker or Knuth semifield plane of flock type then the full
collineation group acting on the g + 1 points and preserving the quadric
Q. induces a doubly transitive permutation group on the partition.

Pr: If all of the planes of the skeleton are isomorphic then the 1-
inverted plane admits a collineation group which fixes one regulus and
acts transitively on the remaining ¢ — 1. Since the skeleton of a plane
in the skeleton of m is identical to the skeleton of =, it follows that the
collineation group of the 1-inverted plane induces a group acting on the
g + 1 points {po,p1,-.. ,p} which has two orbits of length 1 and one
orbit of length g — 1. At least one the orbits of length 1 is neither po nor
p1. Suppose the stabilizer of say p, also leaves po invariant. Then the
group generated by the stabilizer of py and the stabilizer of p, must act
transitively on the ¢ points not equal to po so that the plane = is either
Walker or Knuth by previous results of this article. Since all of the planes
of the skeleton are isomorphic, the same argument works if the stabilizer
of p, also fixes p;.

Hence, the stabilizer of p, leaves invariant a unique point p, distinct
from po or p;. The exact same argument shows that the element A in
the stabilizer of pp which maps p, onto f, must map P2 onto p,. This
clearly implies that A is induced from 7_, in the collineation group of
x. Moreover, it is now clear that the group acting on the g + 1 points
acts transitively on the partition indicated. Further, since the stabilizer
of po must also act on the partition, if follows that the group acting
on the partition is doubly transitive. The element 7_; acts trivially on
the partition so that by (6.3)(2)(i), the collineation group of 7 induces a
group of order (g—1)/2 on the partition. Since the collineation group of =
induces the stabilizer of p, it follows that the full linear group induced on
the partition has order either (g+1)(g—1)/4 or (¢+1)(¢—1)/2 and acts
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doubly transitively on the (g + 1)/2 elements of the partition depending
on whether there is an element leaving @, invariant which interchanges
po and p; while moving some partition element.

By our assumption, (g + 1)/2 is not a prime power. Since we have a
group acting doubly transitively on (g + 1)/2 elements, we may use the
classification of finite simple groups to finish our analysis.

Notice that we have a doubly transitive group of order dividing (g +
1)(g—1)/2 acting on (g+1)/2 elements and which must contain a minimal
normal non-Abelian simple subgroup N.

We can have the following possibilities for N:

(i) N = Ag41y2, (i) N = PSL(d,h) such that h® —1/h—1 = (¢ +
1)/2, (iii) N = PSU(3, k) such that A% + 1 = (g + 1)/2, (iv) N = 2B,(h)
(Suzuki) such that h? + 1 = (g + 1)/2, (v) N = 2G,(h) (Ree) such that
h3+1 = (g+1)/2 or (vi) PS,(2d,2) such that s4-1(2¢ +1) = (¢ + 1)/2.

Since N are acts transitively on the (¢4 1)/2 elements and the stabi-
lizer of an element must have order dividing (¢—1), elementary arguments
on the orders of the groups and the fact that (¢ + 1)/2 is not a prime
power show that none of the possibilities can occur. We shall leave these
details to the reader.

Hence, not all of the planes of the skeleton of # can be isomorphic
unless the plane is Walker of Knuth semifield of flock type.

(6.5) COROLLARY. If m is a derived Barriga/Cohen-Ganley plane of
order ¢* and (g +1)/2 is not a prime power then not all of the planes of
the skeleton of m are isomorphic.

PRrROOF. These planes have k constant equal to 2 (see (6.2)(2)). To
apply (6.4), we must show that (g — 1) > (1 + 2k)? = 25. But, a quick
check shows that if (g + 1)/2 is not a prime power then g > 26.

(6.6) COROLLARY. Let 7 be a derived Barriga/Cohen-Ganley plane of
order q% where (q+1)/2 is not a prime power. Then the 1-inverted plane
in the skeleton of ™ is not isomorphic to any plane in the skeleton of any
other known plane corresponding to a flock of a qudratic cone.
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PROOF. If the 1-inverted plane m, is likeable or a semifield plane then
all of the planes of the skeleton must be isomorphic since the 2-inverted
plane is isomorphic to the 1-inverted plane. But, this would say the plane
itself is either likeable or a semifield plane. If m; is isomorphic to the 1-
derived plane of the Ganley semifield plane (assuming that ¢ = 3" in this
case) since each plane of the skeleton of #; is isomorphic to some plane
of the skeleton of the Ganley plane, and there are exactly two mutually
nonisomorphic planes within the skeleton of 7, then the original plane &
must be a Ganley semifield plane which, of course, cannot be the case.
Since the planes of the Fisher skeleton are either Fisher of Desarguesian
(see (4.5)) and since the order ¢? is such that for ¢ = p" the p = £2mod 5,
the plane cannot be in the Fisher skeleton nor the Kantor characteristic
5 skeleton.

ADDED IN PROOF: Recently, Payne and Thas (S. Payne and J.A.
Thas. Conical flocks, partial fiocks, derivation and generalized quadran-
gles. Preprint) have shown that every partial flock of a quadratic cone in
PG(3,q) with ¢ — 1 conics may be uniquely extended to a flock. Hence,
using [14] and (2.10)(2), we obtain the following consequence:

COROLLARY.

(i) Flocks of quadratic cones in PG(8,q) are equivalent to translation
planes of order ¢* and kernel GF(q) which admit a Baer collineation
group of order q.

(it) If m is a translation plane of odd order ¢* and kernel GF(q)
which admits a Baer collineation group of order g, then the net of degree
g + 1 containing the Baer azis corresponds to a regulus and there are
q corresponding flocks of quadratic cones in PG(3,q) obtained by first
deriving the regulus net in question and then using the Bader, Lunardon,
Thas construction.
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