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Conformal changes of almost cosymplectic manifolds
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RIASSUNTO — Si studiano varietd localmente conformemente quasi cosimplettiche.
Si danno alcuni esempi.

ABSTRACT — In this paper, conformal changes of metrics on almost cosymplectic
metric manifolds are studied and some examples are given.
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An almost Hermitian manifold M?" is called locally conformal Kéhler
(1.c.K) if its metric is conformally related to an Kéahler metric in some
neighbourhood of every point of M?". Such manifolds have been studied
by various authors (see, for instance, [11], [15], [16], 18], [7]). Examples of
l.c.K. manifolds are provided by the Hopf manifolds which have a locally
conformal kahler metric while it is known that they admit no Kéhler
metric (see [15]).

On the other hand, if M2+ is a differentiable manifold endowed with
an almost contact metric structure (i, £,7, 9), & conformal change of the
metric g leads to & metric which is no more compatible with the almost
contact structure (¢, &, 7). This can be corrected by a convenient change
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;)Sf g£1 vz::ldb;) Iv.rh\l;:;sl;nfie.s rather strong restrictions. S}Jch a definition
et Contast 1AN in [17].' Moreover, he characterize new types of
: : manifolds and discuss some examples. On the same line,
in [6] we introduce a tensor field 4 which is a conformal invariant for
a.lmo.st cont.a;ct metric manifolds. Then, if U is a class of aimost contact
metric ma—fllfOIdS, by using the tensor field y, we determine the class U’
of all ma.nffolds locally conformally related to manifolds in U.

The aum of this paper is to study the conformal changes on almost
cosymplegtxc manifolds. In section 1 we give some results on almost con-
tact metric manifolds. In section 2, we obtain characterizations for the
locally conformal almost cosymplectic and cosymplectic manifolds (see
theorem 2.1 and 2.2). Moreover, we prove that if (M,y,£,7,9) is 2 lo-
cally conformal almost cosymplectic manifold then the leaves of the foli-
ation 17 = 0 carry and induced locally conformal almost K&hler structure.
In section 3 we study semi-invariant submanifolds of a locally confor-
mal Kahler manifold and we prove, under certain conditions, that they
are locally conformal cosymplectic submanifolds with the induced almost
contact metric structure. Finally, in section 4 we give some examples of
locally conformal almost cosymplectic and cosymplectic manifolds. More-
over, we obtain an example of foliation locally conformal cosymplectic.

1 — Preliminaries

Let M be a C° an almost contac metric manifold with metric g and
almost contact structure (¢,£,7). Denote by X(M) the Lie algebra of
C* vector fields on M. Then we have,

pP?=—-I+nQ®¢ 7€) =1,
g(pX, oY) = g(X,Y) = n(X)n(Y),

for X,Y € X(M), where I denotes the identity transformation.

An almost contact structure (p,&,m) is said to be normal if the
almost complex structure J on M x R given by J(X,e%)= (tp'X -
at,n(X)%), where a is a O function on M x IR, is integrable, whx.:.h is
equivalent to the condition N,+2dn®¢§ = 0, where N, denotes the Nijen-
huis torsion of ¢, that is, N (X,Y) =X, Y]+ [0X, oY) - pleX, Y]~

wlX, oY)
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We put N(X,Y) = (N, + 2dn®£)(X,Y), and we also denote by the
same N the tensor field of type (0, 3) geometrically equivalent to N, i.e.,

(L1) N(X,Y,2) = g(X, N(Y,2)).
The fundamental 2-form ® of an almost contact metric manifold

(M, p,€,1,9) is defined by ®(X,Y) = g(X,9Y). If V is the Levi-Civita
connection of g and § is the coderivative operator, it is easy to prove that,

(1.2) (Vx®)(Y,2) = g(Y,(Vx9)Z) = —9((Vxp)Y, Z),

(1.3) 349(X,Y,2)= B (Vx2)(.2),
(1.4) 2dn(X,Y) = (Vxn)Y — (Vyn) X,
(L5) b1= =3 (V)X + (Voxn)o X,

i=1

(1.6) 5(X) = ‘Z": {(Vx.8)(X:, X)+
+ (VvX.-Q)(‘PXi,X)} - (qu))(f, X)

g(Nv(X: Y))Z) = (VXQ)(‘pYa Z) - (V\OYQ)(X¥ Z)+
+ (Vv,xq’)(Y, Z) - (Vy@)(gaX, Z)—

@ —2(D[(Vx D), 0Y) ~ (Tr ), 02|+
+0(X)(Vy®) (£, 92) —n(Y)(Vx ) (£ vZ),
for any X,Y, Z € X(M), where {X),... , Xn,X1,... ,9Xn, £} is a local

orthonormal ¢-basis on M.
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For an almost contact metri )
deﬁned by etric manifold (Mv " E’ ys g)’ the 1 form w

(1.8) w(X) = ~ 5B(pX) + g%n(x),

1
(2n—-1)

is called Lee form of M.

An almost contact metric structure (¢, &,m, g) is said to be Almost
quasi Sasakian if d® = 0; Almost cosymplectic if dy = d® = 0;
Cosymplectic if it is almost cosymplectic and normal; a-Kenmotsu
(see [9]) if it is normal and d® = 2an A ®,dn =0 (with a = const.).

The covariant derivative V® of the fundamental 2-form & is a covari-
ant tensor of degree 3 which has various symmetry properties. We denote
by C(V) the vector space of the tensors with the same symmetries that
V®,ie.,

C(V) ={a € @V/a(z,y,2) = —a(z, 2,3) = —a(z, ¢y, p2)+
+n(y)e(z, &, 2) + 1(2)a(z, 3,6) } -

Here, V denotes a real vector space of dimension 2n + 1 with an
almost contact structure (¢, &,7) and a compatible inner product <, >.

In [5] they have obtained a decomposition of C(V') into twelve com-
ponents C;(V) which are mutually orthogonal, irreducible and invariant
subspaces under the action of U(n) x 1. Then, it is possible to form 22
different invariant subspaces from these twelve, corresponding to each
invariant subspace a class of almost contact metric manifolds. For exam-
ple, {0} corresponds to the class of cosymplectic manifolds (C), Cs to the
class of a-Kenmotsu manifolds (being o a function), Cs to the class of a-
Sasakian manifolds, Co®C, to the class of almost cosymplectic manifolds,
Cs®C s to the class of trans-Sasakian manifolds, C3®C1DC;0CdCDCs
to the class of normal manifolds ... (for an extensive study of these man-

ifolds we refer to [5]).
We recall the explicit definition of three subspaces of this decompo-

sition,
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1

a € C(V)/a(z,y,2) = 2(T1—) [((Z: Y-

CuV) = { —n(@n())erza(z) ~ (2, 2) — n@)n(2) ) eraa(y) -

—(z, pyherzalpz) + (z, ‘PZ)Cma(‘Py)] , craa(€) =0

Co(V) ={e € CV)/al2,3,2) = 5- (& p2)n(y)enale)-
— (@ py)m(2)enal8)] }
Cia(V) = {a € C(V)/a(z,y,2) =

= n(@)n(y)a&, £, 2) + n(z)n(2)a(€, v, 6)}

where z,Y,2 € V: CIZQ(:E) = Ea(eiv eivx)y and é12a(€) = Z a(eiy pei, E)
for any arbitrary orthonormal basis {e;},i=1,...,2n+1.

2 — Locally conformal almost cosymplectic manifolds

Let (M, ¢, €, 7, g) be an almost contact metric manifold. A conformal
change of the almost contact metric structure on M is a change of the
form

=9, €=e7E, n=¢n, ¢=e

where ¢ is a differentiable function on M. It is clear that (¢, €',7',g’) is
also an almost contact metric structure on M. We said that (M, ¢, €, 1, 9)
is locally conformal (almost) cosymplectic (l.c.(A.)C.) if every point
z € M has an open neighbourhood U such that (U, ', &', 7', g') is (almost)
cosymplectic for suitable o. If U = M, then we said that (M, v, &,n, g) is
globally conformal (almost) cosymplectic. We note that if (¢, &, 7,
g) is L.c.A.C. then the pair (®,7) defines a locally conformal cosymplectic
structure (in the sense of the definition given in (13]) i.e., for each z € M
there is an open neighbourhood U such that

d(e’n) = d(e*®) =0,

for some function o: U — IR (see [13]). Note that in [12] LIBERMANN
defines a cosymplectic structure as a pair (®,7) where ® is a closed 2-
form and 7 is a closed 1-form satisfying, moreover, n A ®" # 0. Thus, if
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(M, p,&,7,g) is an almost contact metric manifold of class almost cosym-
Plectic then it is cosymplectic in the sense of (12].

Let (M,¢,£,7m,9) be an almost contact metric manifold with Lee
form w. By using theorem 1.1, chapter III, of [13] and the definition
of cosymplectic structure, the locally conformal (almost) cosymplectic
manifolds are characterized as follows (see also [17]),

THEOREM 2.1. (M, ¢,£,7,9) is a L.(g.)c.A.C. manifold iff w 15
closed (exact) and

d® = 20 Aw, dp=7nAw,

and (M, ,€,1,9) is l.(g.)c.C. iff, moreover, N, = 0 where N, is the
Nijenhuis tensor of p.

Next, we characterize the locally conformal cosymplectic manifolds
through Levi-Civita connection.

Let (M, p,£,7m,9) be a 1.c.C. manifold with Lee form w. Then, for
suitable functions o and open neighbourhoods U, {U,e*’ gy} is a family of
local metrics on M, wich are conformally related over each intersection
U NU’. If V denotes the Levi-Civita connection of g, we put

(2.1) VY = V¥ +w(X)Y +w(¥)X — g(X,Y)B,
for all X,Y € ¥(M), being B the vector field on M given by g(X,B) =
w(X). _

< is a torsionless linear connection and Vxg = —2w(X)g, for all

X € X(M). Then, using that locally w = do, it follows Vx(e*’g) = 0.
Thus, V is the Levi-Civita connection of the local metrics € gy.

Now, let (M, ¢,&,7m,9) be an almost contact metric manifold with

Lee form w. Then, we have

THEOREM 2.2. (M,¢,§:7, g) is a l.c.C. manifold iff w is closed and
Vxp =0 forall X € X(M).
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ProOOF. If (M,¢,£,m,9) is an almost contact metric manifold, the
covariant derivate of ¢ is given by (2],

29((Vxp)Y, 2) =3d®(X, oY, Z) — 348(X, Y, Z)+
(22) +9(N'(Y, 2),0X) + N*(Y, Z)n(X)+
+2dn (Y, Z)n(Z) — 2dn(pZ, X)n(Y)

where N! and N2 are the tensors defined by,
NY(X,Y) = No(X,Y)+2dn(X,Y) N*(X,Y) = (Loxn)Y = (Loym)X,

being L the Lie derivate operator.
We note that,

(2.3) N*(X,Y) =n(N*(¢X,Y)) - 20(X)dn(E, ¢Y)

for all X,Y € X(M).
We suppose that (M,¢,£,7,9) is L.c.C.. By using theorem 2.1, and
relations (2.2) and (2.3) we have

9((Vx)Y, Z) = —2(X, 9 )w(92) = B(pZ, X)w(p¥ )+
(2.4) +&(X,Y)w(Z) + (2, X)w(Y)-
—n(X)n(Z2)(eY) +n(X)n(Y J(#2)

for all XY, Z € X(M).
Now, from (2.1) it follows:

(Vxe)Y = (V)Y +w(@¥)X = w(Y)pX -

(25) —®(X,Y)B+g(X,Y)pB.

for all X,Y € X(M). .
Thus, from (2.4) and (2.5), we deduce that Vxp = 0 for all X €
X(M). .
Conversely, suppose that Vxy = 0. Then, by (1.2) and (2.5), we
have
(Vx@)(Y,2) = w(Y)®(X, Z) + w(¢¥)9(X, Z)-

- w(2)2(X,Y) - w(pZ)9(X,Y).
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Now, if we use (1.3), (1.4) and (1.7) we obtain:

(2.6) d®=-20Aw, dp=nAw, N,=0,

which shows that M is L.c.C.

REMARK. If n > 2, from (2.6) we deduce that
PAdw=0 and nAdw=0,

which implies that the Lee form w is closed. Thus, we can reformulate
the previous theorem as follows

THEOREM 2.2'. For dim M > 5, (M, ¢,£,7,9) is a Lc.C. manifold

iff Vxp=0foral X € X(M). Ifdim M = 3 one must add the condition
that w 1s closed.

If N is the tensor defined in (1.1), we obtain

PROPOSITION 2.1. On a lc.C. manifold

N(X,Y, Z) = n(X)n(Y)N(§,§, 2) + n(X)n(Z)N(§,Y,€),
for all XY, Z € X(M).

PRrROOF. From theorem 2.1, if M is 1.c.C., dy =nAw and N, = 0.
Thus,

N(X,Y, Z) = g(X, (N, +2dn ® €)(Y, 7)) =
= 9(X)n(Y)w(Z) — n(X)n(Z)w(Y)
whence N(£,€, Z) = w(Z) —n(Z)w(€) and N(£,Y,€) = n(Y)w(£) —-w(Y).

The result follows now from the above relations.

Next, let (M,p,£,7,9) be a l(g.)c.A.C. menifold. Since the pair
(®,7n) defines a locally (globally) conformal cosymplectic structure, using
proposition 1.2, chapter 111, of [13], the leaves of the foliation F, given by
n = 0, carry an induced locally (globally) conformal symplectic struc?ure
with fundamental 2-form induced by @ on the leaves. Thus, if we con51d¢?r
the almost Hermitian structure induced by the almost contact metric
structure of M on the leaves of F, we deduce
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PROPOSITION 2.2. Let (M,,€,7,9) be a l.(g.)c.(A.)C. manifold.
Then the leaves of F' carry an induced l.(g.)c.(A.)K. structure.

Finally, we suppose that M is a l.c.A.C. manifold with w # 0 at every
point of M and w(€) = 0. We define on the leaves of the foliation F” given
by n = w = 0 an almost contact metric structure (¢',&’,7/, g) by

pB  ,_woyp

w(pX) B
1B " T el

llwl?

X =pX - ——=>-B, §=

Then we obtain

PROPOSITION 2.3. The structure (¢',€',7, g) is almost quasi Sasa-
kian on the leaves of the foliation F'.

3 — Semi-invariant submanifolds of Locally conformal Kéhler
manifolds

Let M a submanifold immersed in an almost Hermitian manifold M
with almost Hermitian structure (J,3), and U a unit vector field on M
normal to M.

We say that M is a semi-invariant submanifold of M with respect to
Uif

JX =X —n(X)U €=JUpm € X(M)
where X is the tangential component to M of JX.

It is well known that any semi-invariant submanifold M of an almost
Hermitian manifold M with induced structure (p,§,7,9) is an almost
contact metric manifold, where g is the induced metric on M [4].

Hereafter, M is a 2(n + 1)-dimensional almost Hermitian manifold
and M is a (2r + 1)-dimensional semi-invariant submanifold of M.

Comparing the fundamental 2-forms ® and ® of the structures in M
and M, respectively, we have ®(X,Y) = ®(X,Y), for all X,Y € X(M).

Let L,V and V be denote the Lie differentiation and the Levi-Civita
connections of the metrics g and g, respectively. Then it is not difficult
to check the following:



858
D. CHINEA - J.C. MARRERO 10l

ProrposiT S —.
have, ION 3.1. For all X,Y,Z,€ X(M) and X,Y € X(M) we

(3.1) (Lyd)(X,Y) =2§(VxT,Y) = 2§(VyU, X)
(3.2) (Lg®)(X,Y) = (Lgg)(X, JY) + o(X, (L ))Y)

(VxB)(Y, 2) =(Vx@)(Y, Z) - 1/2(n(2)(L9)(X, Y)-

(3.3)
~n(Y)(Lg9)(X, 2))

(Vo®)U, X) =3 ( - Lod) T, 9X) - 3((Lad)T, X+
+3(T, (LgJ)X))

(3.4)

(6%)(X) =68(X) ~ > ((V=,B)(X;, X) + (Vz,) (7%, X))+
(3.5) 41
1 r
#3700 ( (L9 X X + +(Lga)(w Xe 0X0))

i=1
where _{7{‘%,... v Xn U, JX 1, , JX 0, €} is a local J-basis of M, being
X, =X, i=1,...,r and {Xs,... , Xr, 9X1,... , X, £} alocal p—basis
of M.

Now, we suppose that (M, J, g) is a l.c.K. manifold with Lee form &
and let B be the field vector given by @(X) = §(X,B) for all X € X(M).
We recall that a vector field X on M is analytic if LyJ = 0. Then we
have

ProposiTiON 3.2. If T is a vector field analytic and Killing or-
thogonal to B, then M is l.c. C. of class Cs.
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PROOF. We consider a J-basis on M obtained as in proposition 3.1.
Since M is a l.c.K manifold, we have,

(Vz,2)(X;, X) = (V,%,2)(JX;, X) = —(1/2n)6%(X),

for all X € ¥(M) and j =r+1,...,n. Thus, from (3.5) and since U is
analytic and Killing, it follows

(3.6) 5®B(X) = (n/r)6®(X).
On the other hand,

(VX‘E;)(J?, JX‘) = —_(V;xl.-‘l_))(Jﬁ, X,) =
=—(1/2n)6®(T), for i=1,...,r.

Thus,

r

bn=-) ((inﬂ)Xi + (V«axiﬂ)‘PXi) =

i=1

((in‘P)(e, ©X;) + ((vm ®)(¢, <p2X,-)) =

r
i=1

= -3 ((FxBT, IX) - (Vix BT, X)) = (r/m5ED),

i=1
that is
(3.7) b = (r/n)6®(T).
Also, from (3.4) and since M is a l.c.K. manifold, we obtain
0 = (V5®)(T, X) = ~(1/20) (88(X) + 3(U, IX)5E(&))
and thus

(3.8) §8(pX) =0, XeXM).
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Moreover, since 7 is orthogonal to B, and by (3.6), we deduce that
6®(£) = 0 and, consequently, .

(3.9) 68 =0.

Therefore, from (3.6), (3.7) and (3.9) and since M is a L.c.K. manifold
and U analytic and Killing, we obtain,

(Vx®)(Y, 2) = (6n/2r) (B(X, Z)n(¥) - (X, Y)n(2))

whence
d® = —2(én/2r)nA®, dn=0 and N,=0.

Moreover, using (3.7) and (3.8), @(X) = —(6n/2r)n(X), which im-
plies that (67/2r)7n is closed. Thus, from theorem 2.1, M is L.c.C. of class
Cs.

A l.c.K. manifold is said to be strongly no Kahler L.c.K. (s.n.l.c.K.)

if its Lee form w # 0 at every point [15].
Next, we shall study senﬂ'—inva.ria.nt submanifolds of s.n.l.c.K. mani-
folds with respect U, where U is in the direction of JB. First, one has

LEMMA 3.1. On a l.c.K. manifold we have:
(Llﬁg) (—X—a JY) = _g(_}_(—, (LJE‘])?) )
for all X,Y € X(M). In particular, JB is analytic iff it is Killing.

PROOF. Using L,5® = 0 and (3.2) it follows the assertion.

Let M be a s.n.l.c.K. manifold and M a semt-

pPOSITION 3.3.
ren (L,53)(X,Y) =0 for all

invariant submanifold with respect JB/\B\. If
X, Y € X(M), then M is lLc.C. of class Cs.
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PROOF. Since (L,53)(X,Y) = 0 and JB is orthogonal to M we have
(3-10) (LJE/“E".‘_])(Xx Y)=0,

for all X,Y € X(M).
From (3.3), (3.10) and since M is a l.c.K. manifold it follows

(1) (Vx®)(¥,2) =1/2(¥(X,Y)e(2) - B(X, Z)u(Y))

for all X,Y,Z € X(M).
Moreover, since 7 = —w/||w||, by using (3.11) we deduce that én/2r =
—|lw|l/2, which shows that M is L.c.C. of class Cs.

Now, we suppose that dimM > 6 and the 1-form @o J is completely
integrable. Then

PROPOSITION 3.4. Are equivalently:

i) The leaves of the foliation @Wo J = 0 are lc.C. semi-invariant
submanifolds of M.

i) (L,59)(X,Y) =0, for all X,Y orthogonals to JB.

iti) §((L,5J)JX,Y) =0, for all X, orthogonals to JB.

PROOF. (ii) = (iii) and (iii) = (i) they follows directly from
lemma 3.1 and proposition 3.3.

(i) = (ii) is proved as follows. Let M be a generic leaf of the
foliation w o J = 0 and X,Y, Z vector fields tangent to M. Since M is
l.c.C. it is of type C; ® Cs & C)2 (see theorem 2.1 of [6]). Moreover, since
M is a l.c.K. manifold, using (3.3) we have

(Vx@)(Y, 2) = (Ilwll/2) (2(X, Z)n(Y) — (X, Y)n(2)) +
+1/(2wl) (1(Z)(L,53)(X, Y) = n(Y)(L,59)(X, 2))

whence (Vx®)(Y, Z) =0, for all X, Y, Z tangents to M and orthogonal to

§ = —B/||B||. Thus, M is of type Cs & C)2. Moreover, since dim M 2> §,

by proposition 2.3 of [6], M is of type Cs.

On the other hand, from (3.1), (1.5) and (3.12), én = n|lw|. Then, using

again (3.12) we have that 7(Z)(L,59)(X,Y)—-n(Y (L ,53)(X, Z)= 0.
This shows that (i) = (ii).

(3.12)
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4 — Examples

N ;9 Let (M »J, k) be an almost Hermitian manifold, dim M = 2n(n > 2),
and 6 an arbitrary 1-form on M. In M xIR we consider the almost contact
metric structure (¢, ¢, 7, g) given by

o(X,ad/dt) = (JX,—t0(JX)d/dt), €= (0,d/dt),
(X, ad/dt) = t0(X) +a

9((X,ad/d), (¥, bd/dt)) =h(X,Y)+ab+t6(X)8(Y)+(6(X b+6(Y)a)t

where a and b are C* functions on M x R, X,Y € X(M). Then, if M is
locally conformal Kahler manifold, with Lee form w, put § = —w/2, the
above almost contact metric structure (p,£,7,g) is l.c.C.. Moreover, if
M is not globally conformal Kihler then M x IR is not globally conformal
cosymplectic.

- A more interesting example is that of the (2n + 1)-dimensional real
Hopf manifold IRH2"*! (see [19]), which is defined as follows. We consider
the transformation ,: R*** — {0} — R**! — {0} given by

F=xz', AeR, A>0, A#l1,

and denote by ¥, the infinite cyclic group generated by ¥,. Then
RH? = (R*"** — {0})/¥».
Using the diffeomorphism f of R**! — {0} on §?" x R given by

(z*) —(z'/liz|l,In |jzl|/ In X)

we obtain that IRH?"*! is diffeomorphic to $>* x S, which proves that
IRH?2"+! is a compact connected differentiable manifold.
Now, we consider in IR**** — {0} the metric

Z (dﬂ"')2
=1
9= 2031
3 iy
where (z!,... ,z2"*1) are the coordinates in R**** — {0}. The vector

fields
X; = (Z(x’)’) *a/0zt, i=1,...,2n+1,

i=1



[15]) Conformal changes of almost cosymplectic manifolds 863

form an orthonormal basis for the Riemannian manifold (R***! — {0}).
Let (p,£,7,9) be the almost contact metric structure on IR***! — {0}

given by
‘pXi=Xn+ia ¢Xn+i=—Xi i=19"'7n
dZ2"+l

(b))

The structure (¢, £,7,9) is g.c.C. of type C; & Cs @ Cy2, where the
Lee form w is given by

£=Xony1, N=

2n+1
Y zdxy

i=1

Then the tensors @, £,7 and g on R**** — {0} all descend to IRH?"+1,
We denote by (@, £, 7, §) the structure induced on IRH?**1. Thus, (3, £,7,
g) is 1.c.C. of class Cq @ Cs & C12. Now, by the definition of the diffeo-
morphism f, one gets w = —In Af*dt, and consequently, by descend to
IRH?"*+1 | the structure (@, &, 7, g) is not globally conformal cosymplectic.

REMARK. Since RH?**! &~ §2" x S! the Betti numbers of IRH2*+!

are
bo=by =by =bam1=1, b=0 2Li<2n-1,

and thus, IRH2"*! can have not cosymplectic structures for n > 2 (see

[3))-
- Let G(k) be the connected solvable non-nilpotent Lie group of di-
mension 3 consisting of real matrices of the form

|

>

*
OoOR OO
— N @ g

where z,y,z € IR and k is real number such that e* + e~* is an integer
different to 2. An standard calculation shows that

{dz — kzdz,dy + kydz,dz}
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is a basis for the right invariant
subgroup of G(k) such that

compact (see [1]). Hence th
to 1-forms o, 8,

1-forms on G(k). Let I'(k) be a discret
the quotient space M(k) = G(k) \ T'(k)

e 1-forms dz — kzdz,dy + kydz,dz descend
¥ on M (k). The manifold M(k) can be not cosymplectic

:tme:tures (see [10D. Indeed, this manifold can have not normal struc-
ur

Now, define

Pp=a®Z—-y®X,£=Y,n=F and g=a®a+8@B+77

where {X,Y, Z} is the dual basis of vector fields to {c, 3,7}

Then (¢, €&, 7, g) is an almost contact metric structure on M (k) l.c.C.
of class C); and it is not g.c.C.

- An example of l.c.A.C. manifold which is not globally is obtained
as follows. Let M be the product manifold IR*® x S!, where S* is the
1-dimensional sphere, and we consider the global basis of vector fields
given by:

X;=08/8z i=1,...2n Xopp =2) 2'0/0z'+T,

i=1

where (z1,... ,Z2n) are the usual coordinates in IR®> and T is the dual
vector field of the canonical 1-form (lenght element) 8 of S'. Define on
M a metric by

g= zn: ((—2:;"0 + dz') ® (—22°0 + dz*) + dTpri @ dx,,+,.) +0Q86.
i=1
Then {X;}i=1,...,2n+1 is 81 orthonormal frame with respect to 9 Now,
we consider in M the almost contact metric structure (@, &, 7, g) given by

‘PX;‘ = —Xontis QOXrH-i =X, i=1...,m £=X2n+b 7’=0

It is easy to check that (M, ¢y, £,1,9) islc.A.C wit}? Lee form 06 and
consequently it is not globally conformal. Moreover, since N, # 0, we

deduce that (M, ¢, £,7,9) is not l.c.C. '
u;?nally, ‘(ve obtain an example of foliation l.c.C. by using the propo-

gition 3.3.
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- Let Sy be the Inoue surfaces, i.e. Sy = H x C/G)s, where H is
the upper half of the complex plane C and G, is the group of analytic
automorphisms of IH x € constructed as follows. Let M € SL(3,Z)
be a unimodular matrix with a real eigenvalue oo > 1 and two complex
conjugate eigenvalues 3 # 5. We choose a real eigenvector (a;, a, as) and
an eigenvector (by,bs,b3) of M corresponding to a and 3, respectively.
Then the group Gy is defined as the group generated by

Yo' (w) Z) —b(aw,ﬂz),
it (w,2) —(w+ai,z+b), i=1,2,3.

The action of G on IH x € is properly discontinous and has not
fixed points. Hence Spy = H x €/Gjs is a compact complex surface
(Sy = Hx C/Gy is a fiber bundle over the circle S* with the 3-torus T2
as fiber). Moreover, the first Betti number of Sy is equal to 1. Therefore
S does not admit any Kahler metrics (for further details see (8], [14]).

We consider on IH x € the Hermitian metric g, the 1-form w and the
vector field B given by

=M+w2dz®d2, w:d_u)z., B=w2_a__.
(’ll.}g)2 W a‘U)z

where (w, z) are the coordinates in H x € and w, = Im(w) > 0.

Then g,w and B are invariant by G, hence they induce a metric g,
a 1-form @ and a vector field B on Su.

In [14], Tricerri has proved that (Sas, g) is an locally conformal Kéhler
manifold with Lee form @ and (X, B) = @(X), for X tangent to Sh,.

If we denote by J the complex structure on Sy, then it is easy to
check that WoJ is completely integrable and, moreover, (L755)(X,Y) =0
for all X,Y € ¥(Sx) and normals to JB. Thus, by using proposition
3.3, we conclude that the leaves of the foliation W o J = 0 are l.c.C. of
class Cs (more precisely, the leaves are Kenmotsu and consequently they
are not compact). Moreover it is not difficult to prove that the leaf of the
foliation through the origin is not g.c.C..
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