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Stability of solutions of Neumann problems with
singular potential

I. CAPUZZO DOLCETTA - N.A. TCHOU

RIASSUNTO ~ Si studia la stabilita variazionale della soluzione di un problema di
Neumann rispetto a perturbazioni del termine di potenziale che, nel modello considerato,
pud essere altamente singolare.

ABSTRACT — We study the variational stability of the solution of a Neumann prob-
lem with respect to perturbations of the potential term which, in the model considered,

can be highly singular.

KEY WORDS ~ Neumann problem - Variational stability - Singular potentials.

A.M.S. CLASSIFICATION: 35150

— Introduction

Let us consider the following Neumann problem

(N) ou

5 = 0 on 0Q2.

where p is a non negative Borel measure on §, a bounded open subset of
IRY with Lipschitz boundary 8 and outward normal v, playing the role
of a possibly singular potential, b and f are, respectively, a given vector
field and function on . The existence of a weak solution to (N) has been

{—Au+b-Du+uu=f inQ
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proved in [11] under some assumptions on the measure 4 (see §1 for the
precise statement).

In this paper we are interested in the behaviour of the solution of
(N) under suitable perturbations of the measure y. The motivation for
such a study relies on the fact that a unified formulation for a large class
of boundary value problems can be given in the form (N) for special
choice of . Let us mention here, as an example the limit problems in
the homogeneization of composite media with holes (see [4], [5]). Other

significant examples can be found in [7], (8].

1 - Preliminary facts and lemmas

Following [8], [9], let us denote by M, the set of all nonnegative
Borel measures on 2 which are absolutely continuous with respect to the
capacity (i.e. such that u(E) = 0 if cap(E) = 0), by L*(, u) the space
of measurable functions whose square is summable with respect to x on

Q and by V the Hilbert space H*(2) N L*(2, p).
A weak solution of (N) is a function u € V such that

(L1) Q/Du-pfpd.z +n/b-Du¢dx +n/u¢dp=h/f¢dz

for every ¢ € V. It has been proved in [11] that if b € L®(Q), u € M,,
u(2) # 0, then problem (N) has a unique weak solution for any right
hand side f € L*(Q).
We shall always assume in the sequel that f € L?(2) and b € L=(Q).
The resolvent operator R?: L?(Q2) — V, is well defined by R}(f) =

u, the unique weak solution of the following problem:

(D) on 90N.

u=0

{—Au+;m=f in Q

(See [8) |
According to [8] (see also [2]) a sequence {ux} € Mo is said to 7-
converge to g € My if R, (f) — R2(F) strongly in L*(2), for every

f € L*(2) and every open bounded 2 C RY.
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This definition is related to that of I'-convergence as introduced in
[10] (see also [6]). Let us consider now the perturbed problems:

N
(N») —aﬁ=0 on 652.

ov

A basic fact which will be useful later in expressed in the following:

{ —Aup+b-Dup+ppup=f inQ

LEMMA 1. Let u, be a weak solution of (N)n. If |un|| 2y < C then
[[DunllL2y < C', for constant C' independent on h.

Proor. The choice ¢ = u, in the weak formulation of (N), and the
nonnegativity of u, yield

1Dusl s+ [ (b Dun)unds < Ifllzzalunllzoey -
Q
This gives

1DualZacqy < lunll 2oy (11l 2oy + 16l 2oy | Dunll ey ) 5

by the Young inequality the assertion follows. 0

Let us associate to any Borel subset E of Q its u-capacity cap,(E, )
by setting:

cap,(E,Q) = min { / |Du|?dz + / [uldu: u—1¢€ H(}(Q)};
o E

it is proved in [11] that if ph—Lu, then
(1.2) hlimw cap,, (E, Q) = cap,(E, )

for every E € R, with E CC Q, where R, is a special subclass of the
Borel family (see [9]).

A Dbasic tool for the sequel is the following Poincaré’s type inequality
(see [11] for the proof):
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LEMMA 2. Letp € Mgy with

#() > 0. Th -
K = K() independent of i and ) en there exists a constant

a domain ', with Q CC V' such that

/ uw(z)dr < ——27 cap, (Q Q, { / | Dul?dz + / lulzdy}

]
for any u € HY(Q).
As a consequence of this we have:

LEmMMmA 3. Let us assume 2 € R,, w. € Mg where #k_')‘_w,
1i(R2) # 0 and gx € L*(R), g — g weakly in L¥(R).
Then the sequence {ux} of the weak solutions of

(13k) au,k

— =0 on O5).

{ —Aup + urpt =g 0 Q
ov

converges strongly in L%2(2) to a weak solution u of the problem:

(1.3) ou

—-— = on 09.

{—Au+uu=g in
ov

PROOF. Indeed in [9] it has been proved that the functionals

/uzd,u.;c + / |Duj?dz if u € H(Q)
Fi(u) = Q
+00 elsewhere in L*(1)

are [-convergent in L*(Q2) to

/ widp + / |Dul’de if u € H'(R)
F(u) = )
~+oc0 elsewhere in L*(Q)
If we call Gy = —2 [ grudz, applying the definition of I'-convergence it is

Q
easy to prove that Fj(u)+Gx(u) are I'-converging in L*(22) to F(u)+G(u)
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and that for every A € IR there exists a compact set Kx C L%(2) such
that:

{v € L*(Q): Fi(v) + Gi(v) < )\} C K, forevery helN.

Indeed, for any v € H'(2) such that Fi(v) + Gx(v) < A, applying
the preceeding lemma, and (1.2), we obtain

cap,(f2,€)
= 2ol llgelszen + ey / vdz <

cap,, (9, Q )
< =209l L2y llgell L2y + —2— [ vidz <
K@)

=2|[vll 2¢q) |9 ll L2 +/‘02dﬂk+/|DvlzdI <
Q e]

< /vzdpk +/|Dv|2dz - 2/gkvd:z; <.
7] N o]

And if we call |jv|| 2y = y, we obtain —Kiy + k2y® < A and then
lvllz2¢y < K. On the other hand, we have [|Dv|?dx < A+ 2 [ givdz <
Q

2)vll L2y llgkllL2cay and then, |lv||lg1q) < Iré By the Rellich theorem
we have the statement of the lemma because the weak solutions of the
problem (1.3), are the minimum points of (Fi + Gx)(u) and this implies
the convergence in L?(2) of the weak solutions u, of (1.3), to the weak
solution u of (1.3). a

2 — Stability results: the case u(Q) #0

We are now in position to state a stability result for problem (N)
under the main assumption that p(2) # 0; we want to recall that this
hypothesis implies that the problem (N) has a unique solution and this
will be the basic tool for the proof.

THEOREM 2.1. Let {us}, 4 be measures in Mo and  a domain in
R,. Let us assume that
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(A1) pa(2) # 0 for eve
™WheN
(7‘;2) {un}  y-converges to 4 o5 Zni'f (i?f >
, en, the weak solutions Up of (N), conv;:nqe weakly in H*
— +00 to the weak solution v of (1) v @) e
PROOF. Let us show first that
(2.1) "uh_”Lz(n) <C.

for some constant C independent of A.
It this where not the case, then

lunllz2(@) — 00 as k— 400

for a subsequence {us,} of {us}.
Observe now that ve = up, /||un, [|12¢n) is a weak solution of

—Avg 4+ b- Dy +uhkvk=—f— in

(2-2) ”uhk ”Lz(n)
3vk ’
5 = 0 on 6Q2.
and that
(2.3) lvellz2gey = 1-
The Lemma 1 implies that
el < €.

Let v be a weak subsequential limit in H*(£) of vs.
By Lemma 3, applied with gi = F/ N frll2y — b+ Doy, we can pass
to the limit in (2.2) to show that v is a solution of

v on 990.

.__:_-0

ov

Hence, by uniqueness, v = 0, contradicting (2.3).

{—Av+b-Dv+,uv=0 in O
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Therefore (2.1) is proved and lemma 1 again yields

!
”u""”m(n) =

At this point it is enough to apply Lemma 3 with g, = f — b Du,,, to
complete the proof. a

REMARK. The same result holds if we allow L*-perturbations of b
and weak L2-perturbations of f.

3 — Stability results: the case u(2) =0

In this section we shall establish results on the convergence of the
sequence of solutions of the problems (IV), when u, y-converge to . =0

as h — +o0.
‘We shall confine ourselves to measures u, € Mj having density with
respect to the Lebesgue measure L. We shall therefore assume that

(A3) tn = qnL

with g, a non negative Borel function on 2. In the general case, the basic
L? estimate in Theorems 3.1 and 3.2 below is an open question.
Let us recall that the Neumann problem

(No) ou

$=0 on 9N.

has a weak solutions u if and only if the right hand side f satisfies

{—Au+b-Du=f inQ

(Ad) fmdz =0
/

where m is the strictly positive solution of the adjoint problem:

—+bv=0 on 0.

{ —Am —div(bm) =0 in Q2
ov
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(see [1) and [3]).
THEOREM 3.1. Let us assume (A3), (A4) and
(A5) g» € L®(), 0< gn < K, [qn(z)dz > 0,
Q
(A6) [ gndz — 0, as h— 400,
)
(A7) f € L*(), where s> N, b€ L=(Q),
then there exists a subsequence {un,} of solutions of problems (N), con-
verging strongly in H' and uniformly to a solution of (N),.
PROOF. Let us prove first that
(3.1) llunllL2¢a) £ C,

for some constant C independent of h.
Let us assume by contradiction that

! Uhk [l 2 ()

for some subsequence {us, } of {u}-
Then arguing as in the proof of the Theorem 2.1 one finds that vy =

Uny satisfies

llen, Il L2y

—Avg + b Dy + UG Uk = 71— in
(3.2) ”uhk ”Lz(ﬂ)

% =0 on 9N.
Hence by Lemma 1,
(33) llvell ey < K.
If we set f

=—}b.D 1- ,
% = Tunll 0 Pt an)

then (3.2) reads as
{ —Avg+ve =g inQ

a‘Uk_
a—y—o on 90.

(3.4)
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By assumption (A7), a boot strap argument shows that [|gi|lze(a) < K,
so that {v;} has a limit, say v, in C(Q). Taking (A6) into account we
can pass to the limit in (3.4) to show that v is a weak solution of

(3.5) o

= 0 on 0N2.
By the maximum principle v is therefore a constant, say v = C. On
the other hand, the choice ¢ = m in the weak formulation of (3.2) and

condition (A4) give

{ —Av+b-Dy=0 inQ

/‘ukqhkmdz=0 for any k.
2

Since m(z) > 0 for any z € Q and f gn(z)dz > 0 it follows that f gnmndz >
0. Hence,
J(ve — C)gn mdzx
fqhkmdx
o

ICl = < vk = C)llzeoiy — 0,

which shows that v=C =0. _
We have then proved that v, — 0 converges strongly in C(?) to 0;
this is contradictory with [|ve||2() = 1 and therefore (3.1) is proved.
By Lemma 1, u, is uniformly bounded in H*(£2). At this point a
passage to the limit in (N), using Lemma 3 completes the proof. 0
REMARK. Theorems 3.1 covers the simple case g, = 3. The asymp-
totic behaviour of (N) in this case has been investigated for a large class
of elliptic operators in [3].

The following result holds under a different convergence assumption
on g.

THEOREM 3.2. Let N > 3. Assume that hypotheses (A3) and (A4)
are satisfied and that:

(A8) g = cathn, withc, € R, Yy € LP(Q), p> 2* = 2

(A9) ¥y >0, 9, — + weakly in LP(Q), f¢hd$ >0, f1/)dx >0,
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(A10) cp > 0 and ¢, — 0.
Then the sequence of solutions of (N), converges weakly in H*

some u and u 18 the solution of (N)o such that

(3.6) / uymdz =0.
a
PROOF. Let us prove first that

(3.7) "’uh”p(g) < C.

for some constant C independent of A.
Let us assume by contradiction that

"u"" ”z,z(n) —®

for some subsequence {us, } of {u,} and set

Up,
Y= —F—.
"“hk ||L2(n)
As in the proof of the Theorem 3.1 one obtains

Mol < K.

Then there exists v € H*(f2) such that

v, —v weaklyin H',
g, — v strongly in L* where s € [1,27),

at least for a subsequence {vy,} of {vi}.
Observe also that, if we call v; = vy, ¥; = t,, u; = Ung,s G = Gy,

then L/ satisfies (3-4) with g;i = f/"uj”[,z(m —b- D‘Uj + Uj(l - Q,).
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Since by (A8), (A9)

/‘Ujl/)j¢d$—-—b/‘l)¢¢d$ forany ¢€V,
!

Q

a passage to the limit in (3.4) shows that v is a weak solution of (3.5).
Hence v is a constant, say v = C. Taking (A4) into account we
obtain:

/v,-w,mda: =0 forany j
0
and therefore

/mpmdx=o.

0
On the other hand

n/mpmdx=cn/¢mdz.

By (A9), and the strict positivity of m we have [ y¥mdz > 0 and therefore
f

v = C = 0. This contradicts [[vkl{z2qy = 1 and (3.7) is proved. By
Lemma 1, u;, is uniformly bounded in H!(2). We can now pass to the
limit in (N),, taking into account the fact that {us,} converges strongly
in L* for any s € [1,2*), the limit function u satisfies (N), and

(3.8) / wymdz = 0.

Q

It is easy to check that if u, and u, are solutions of (N), satisfying (3.8)
then u; — u, is a solution of (3.5) and therefore u; — u; = C. Hence by
(3.8).

Cn/ddez:O

which implies C = 0. This proves that the whole sequence {us} converges
weakly in H! to u. 0
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