Stability of solutions of Neumann problems with singular potential

I. CAPUZZO DOLCETTA - N.A. TCHOU

RIASSUNTO – Si studia la stabilità variazionale della soluzione di un problema di Neumann rispetto a perturbazioni del termine di potenziale che, nel modello considerato, può essere altamente singolare.

ABSTRACT – We study the variational stability of the solution of a Neumann problem with respect to perturbations of the potential term which, in the model considered, can be highly singular.

KEY WORDS - Neumann problem - Variational stability - Singular potentials.

A.M.S. CLASSIFICATION: 35J50

- Introduction

Let us consider the following Neumann problem

(N)
$$\begin{cases} -\Delta u + b \cdot Du + \mu u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \,. \end{cases}$$

where μ is a non negative Borel measure on Ω , a bounded open subset of \mathbb{R}^N with Lipschitz boundary $\partial\Omega$ and outward normal ν , playing the role of a possibly singular potential, b and f are, respectively, a given vector field and function on Ω . The existence of a weak solution to (N) has been

proved in [11] under some assumptions on the measure μ (see §1 for the precise statement).

In this paper we are interested in the behaviour of the solution of (N) under suitable perturbations of the measure μ . The motivation for such a study relies on the fact that a unified formulation for a large class of boundary value problems can be given in the form (N) for special choice of μ . Let us mention here, as an example the limit problems in the homogeneization of composite media with holes (see [4], [5]). Other significant examples can be found in [7], [8].

1 - Preliminary facts and lemmas

Following [8], [9], let us denote by \mathcal{M}_0 the set of all nonnegative Borel measures on Ω which are absolutely continuous with respect to the capacity (i.e. such that $\mu(E) = 0$ if $\operatorname{cap}(E) = 0$), by $L^2(\Omega, \mu)$ the space of measurable functions whose square is summable with respect to μ on Ω and by V the Hilbert space $H^1(\Omega) \cap L^2(\Omega, \mu)$.

A weak solution of (N) is a function $u \in V$ such that

(1.1)
$$\int_{\Omega} Du \cdot D\phi dx + \int_{\Omega} b \cdot Du\phi dx + \int_{\Omega} u\phi d\mu = \int_{\Omega} f\phi dx$$

for every $\phi \in V$. It has been proved in [11] that if $b \in L^{\infty}(\Omega)$, $\mu \in \mathcal{M}_0$, $\mu(\Omega) \neq 0$, then problem (N) has a unique weak solution for any right hand side $f \in L^2(\Omega)$.

We shall always assume in the sequel that $f \in L^2(\Omega)$ and $b \in L^{\infty}(\Omega)$. The resolvent operator $R^{\Omega}_{\mu} \colon L^2(\Omega) \longrightarrow V$, is well defined by $R^{\Omega}_{\mu}(f) = u$, the unique weak solution of the following problem:

(D)
$$\begin{cases} -\Delta u + \mu u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

(See [8])

According to [8] (see also [2]) a sequence $\{\mu_h\} \in \mathcal{M}_0$ is said to γ -converge to $\mu \in \mathcal{M}_0$ if $R^{\Omega}_{\mu_h}(f) \longrightarrow R^{\Omega}_{\mu}(F)$ strongly in $L^2(\Omega)$, for every $f \in L^2(\Omega)$ and every open bounded $\Omega \subset \mathbb{R}^N$.

П

This definition is related to that of Γ -convergence as introduced in [10] (see also [6]). Let us consider now the perturbed problems:

$$\begin{cases}
-\Delta u_h + b \cdot Du_h + \mu_h u_h = f & \text{in } \Omega \\
\frac{\partial u_h}{\partial \nu} = 0 & \text{on } \partial\Omega.
\end{cases}$$

A basic fact which will be useful later in expressed in the following:

LEMMA 1. Let u_h be a weak solution of $(N)_h$. If $||u_h||_{L^2(\Omega)} \leq C$ then $||Du_h||_{L^2(\Omega)} \leq C'$, for constant C' independent on h.

PROOF. The choice $\phi = u_h$ in the weak formulation of $(N)_h$ and the nonnegativity of μ_h yield

$$||Du_h||_{L^2(\Omega)}^2 + \int\limits_{\Omega} (b \cdot Du_h) u_h dx \le ||f||_{L^2(\Omega)} ||u_h||_{L^2(\Omega)}.$$

This gives

$$||Du_h||_{L^2(\Omega)}^2 \le ||u_h||_{L^2(\Omega)} \Big(||f||_{L^2(\Omega)} + ||b||_{L^2(\Omega)} ||Du_h||_{L^2(\Omega)} \Big);$$

by the Young inequality the assertion follows.

Let us associate to any Borel subset E of Ω its μ -capacity $\operatorname{cap}_{\mu}(E,\Omega)$ by setting:

$$\operatorname{cap}_{\mu}(E,\Omega) = \min \left\{ \int\limits_{\Omega} |Du|^2 dx + \int\limits_{E} |u|^2 d\mu \colon u - 1 \in H^1_0(\Omega) \right\};$$

it is proved in [11] that if $\mu_h \xrightarrow{\gamma} \mu$, then

(1.2)
$$\lim_{h \to \infty} \operatorname{cap}_{\mu_h}(E, \Omega) = \operatorname{cap}_{\mu}(E, \Omega)$$

for every $E \in R_{\mu}$ with $E \subset\subset \Omega$, where R_{μ} is a special subclass of the Borel family (see [9]).

A basic tool for the sequel is the following Poincaré's type inequality (see [11] for the proof):

LEMMA 2. Let $\mu \in \mathcal{M}_0$ with $\mu(\Omega) > 0$. Then there exists a constant $K = K(\Omega)$ independent of μ and a domain Ω' , with $\Omega \subset\subset \Omega'$ such that

$$\int\limits_{\Omega}u^2(x)\,dx\leq \frac{K(\Omega)}{\operatorname{cap}_{\mu}(\Omega,\Omega')}\bigg\{\int\limits_{\Omega}|Du|^2dx+\int\limits_{\Omega}|u|^2d\mu\bigg\}$$

for any $u \in H^1(\Omega)$.

As a consequence of this we have:

LEMMA 3. Let us assume $\Omega \in R_{\mu}$, $\mu_k \in \mathcal{M}_0$ where $\mu_k \xrightarrow{\gamma} \mu_k$, $\mu_k(\Omega) \neq 0$ and $g_k \in L^2(\Omega)$, $g_k \longrightarrow g$ weakly in $L^2(\Omega)$.

Then the sequence $\{u_k\}$ of the weak solutions of

(1.3_k)
$$\begin{cases} -\Delta u_k + u_k \mu_k = g_k & \text{in } \Omega \\ \frac{\partial u_k}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

converges strongly in $L^2(\Omega)$ to a weak solution u of the problem:

(1.3)
$$\begin{cases} -\Delta u + u\mu = g & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega. \end{cases}$$

PROOF. Indeed in [9] it has been proved that the functionals

$$F_k(u) = \left\{ egin{array}{ll} \int\limits_{\Omega} u^2 d\mu_k + \int\limits_{\Omega} |Du|^2 dx & ext{if } u \in H^1(\Omega) \ +\infty & ext{elsewhere in } L^2(\Omega) \end{array}
ight.$$

are Γ -convergent in $L^2(\Omega)$ to

$$F(u) = \left\{ egin{array}{ll} \int\limits_{\Omega} u^2 d\mu + \int\limits_{\Omega} |Du|^2 dx & ext{if } u \in H^1(\Omega) \ +\infty & ext{elsewhere in } L^2(\Omega) \end{array}
ight.$$

If we call $G_k=-2\int\limits_\Omega g_kudx$, applying the definition of Γ -convergence it is easy to prove that $F_k(u)+G_k(u)$ are Γ -converging in $L^2(\Omega)$ to F(u)+G(u)

and that for every $\lambda \in \mathbb{R}$ there exists a compact set $K_{\lambda} \subset L^{2}(\Omega)$ such that:

$$\left\{v\in L^2(\Omega)\colon F_k(v)+G_k(v)\leq \lambda\right\}\subset K_\lambda\quad\text{for every}\quad h\in {\rm I\!N}\,.$$

Indeed, for any $v \in H^1(\Omega)$ such that $F_k(v) + G_k(v) \leq \lambda$, applying the preceding lemma, and (1.2), we obtain

$$\begin{split} &-2\|v\|_{L^{2}(\Omega)}\|g_{k}\|_{L^{2}(\Omega)} + \frac{\operatorname{cap}_{\mu}(\Omega,\Omega')}{K(\Omega)} \int_{\Omega} v^{2} dx \leq \\ &\leq -2\|v\|_{L^{2}(\Omega)}\|g_{k}\|_{L^{2}(\Omega)} + \frac{\operatorname{cap}_{\mu_{k}}(\Omega,\Omega')}{K'(\Omega)} \int_{\Omega} v^{2} dx \leq \\ &\leq -2\|v\|_{L^{2}(\Omega)}\|g_{k}\|_{L^{2}(\Omega)} + \int_{\Omega} v^{2} d\mu_{k} + \int_{\Omega} |Dv|^{2} dx \leq \\ &\leq \int_{\Omega} v^{2} d\mu_{k} + \int_{\Omega} |Dv|^{2} dx - 2 \int_{\Omega} g_{k} v dx \leq \lambda \,. \end{split}$$

And if we call $||v||_{L^2(\Omega)} = y$, we obtain $-K_1y + k_2y^2 \le \lambda$ and then $||v||_{L^2(\Omega)} \le K$. On the other hand, we have $\int\limits_{\Omega} |Dv|^2 dx \le \lambda + 2 \int\limits_{\Omega} g_k v dx \le 2||v||_{L^2(\Omega)}||g_k||_{L^2(\Omega)}$ and then, $||v||_{H^1(\Omega)} \le K$. By the Rellich theorem we have the statement of the lemma because the weak solutions of the problem $(1.3)_k$ are the minimum points of $(F_k + G_k)(u)$ and this implies the convergence in $L^2(\Omega)$ of the weak solutions u_k of $(1.3)_k$ to the weak solution u of (1.3).

2 – Stability results: the case $\mu(\Omega) \neq 0$

We are now in position to state a stability result for problem (N) under the main assumption that $\mu(\Omega) \neq 0$; we want to recall that this hypothesis implies that the problem (N) has a unique solution and this will be the basic tool for the proof.

THEOREM 2.1. Let $\{\mu_h\}$, μ be measures in \mathcal{M}_0 and Ω a domain in R_{μ} . Let us assume that

(A1) $\mu_h(\Omega) \neq 0$ for every $h \in N$ and $\mu(\Omega) \neq 0$.

(A2) $\{\mu_h\}$ γ -converges to μ , as $h \longrightarrow +\infty$.

Then, the weak solutions u_h of $(N)_h$ converge weakly in $H^1(\Omega)$ as $h \longrightarrow +\infty$ to the weak solution u of (1).

PROOF. Let us show first that

$$||u_h||_{L^2(\Omega)} \leq C.$$

for some constant C independent of h.

It this where not the case, then

$$||u_{h_k}||_{L^2(\Omega)} \longrightarrow \infty$$
 as $k \longrightarrow +\infty$

for a subsequence $\{u_{h_k}\}$ of $\{u_h\}$.

Observe now that $v_k = u_{h_k}/\|u_{h_k}\|_{L^2(\Omega)}$ is a weak solution of

(2.2)
$$\begin{cases} -\Delta v_k + b \cdot D v_k + \mu_{h_k} v_k = \frac{f}{\|u_{h_k}\|_{L^2(\Omega)}} & \text{in } \Omega \\ \frac{\partial v_k}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

and that

(2.3)
$$||v_k||_{L^2(\Omega)} = 1.$$

The Lemma 1 implies that

$$||v_k||_{H^1(\Omega)} \leq C.$$

Let v be a weak subsequential limit in $H^1(\Omega)$ of v_k .

By Lemma 3, applied with $g_k = f/\|f_{h_k}\|_{L^2(\Omega)} - b \cdot Dv_k$, we can pass to the limit in (2.2) to show that v is a solution of

$$\left\{ \begin{array}{ll} -\Delta v + b \cdot Dv + \mu v = 0 & \text{in } \Omega \\ \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial \Omega \, . \end{array} \right.$$

Hence, by uniqueness, v = 0, contradicting (2.3).

Therefore (2.1) is proved and lemma 1 again yields

$$\left\|u_{h_k}\right\|_{H^1(\Omega)} \leq C'.$$

At this point it is enough to apply Lemma 3 with $g_k = f - b \cdot Du_{h_k}$, to complete the proof.

REMARK. The same result holds if we allow L^{∞} -perturbations of b and weak L^2 -perturbations of f.

3 – Stability results: the case $\mu(\Omega) = 0$

In this section we shall establish results on the convergence of the sequence of solutions of the problems $(N)_h$ when μ_h γ -converge to $\mu = 0$ as $h \longrightarrow +\infty$.

We shall confine ourselves to measures $\mu_h \in \mathcal{M}_0$ having density with respect to the Lebesgue measure L. We shall therefore assume that

with q_h a non negative Borel function on Ω . In the general case, the basic L^2 estimate in Theorems 3.1 and 3.2 below is an open question.

Let us recall that the Neumann problem

$$\begin{cases} -\Delta u + b \cdot Du = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \,. \end{cases}$$

has a weak solutions u if and only if the right hand side f satisfies

$$(A4) \qquad \qquad \int_{\Omega} fm \, dx = 0$$

where m is the strictly positive solution of the adjoint problem:

$$\left\{ \begin{array}{ll} -\Delta m - \operatorname{div}(bm) = 0 & \text{in } \Omega \\ \frac{\partial m}{\partial \nu} + b \cdot \nu = 0 & \text{on } \partial \Omega \, . \end{array} \right.$$

(see [1] and [3]).

THEOREM 3.1. Let us assume (A3), (A4) and

(A5)
$$q_h \in L^{\infty}(\Omega), \ 0 \le q_h \le K, \int_{\Omega} q_h(x) dx > 0,$$

(A6)
$$\int_{\Omega} q_h dx \longrightarrow 0$$
, as $h \longrightarrow +\infty$,
(A7) $f \in L^s(\Omega)$, where $s > N$, $b \in L^{\infty}(\Omega)$,

(A7)
$$f \in L^s(\Omega)$$
, where $s > N$, $b \in L^{\infty}(\Omega)$

then there exists a subsequence $\{u_{h_k}\}$ of solutions of problems $(N)_h$ converging strongly in H^1 and uniformly to a solution of $(N)_0$.

PROOF. Let us prove first that

$$||u_h||_{L^2(\Omega)} \leq C,$$

for some constant C independent of h.

Let us assume by contradiction that

$$\left\|u_{h_k}\right\|_{L^2(\Omega)} \longrightarrow \infty$$

for some subsequence $\{u_{h_k}\}$ of $\{u_k\}$.

Then arguing as in the proof of the Theorem 2.1 one finds that $v_k =$ $\frac{u_{h_k}}{\|u_{h_k}\|_{L^2(\Omega)}}$ satisfies

(3.2)
$$\begin{cases} -\Delta v_k + b \cdot D v_k + v_k q_{h_k} v_k = \frac{f}{\|u_{h_k}\|_{L^2(\Omega)}} & \text{in } \Omega \\ \frac{\partial v_k}{\partial v_k} = 0 & \text{on } \partial\Omega . \end{cases}$$

Hence by Lemma 1,

$$||v_k||_{H^1(\Omega)} \le K.$$

If we set

$$g_k = \frac{f}{\|u_{h_k}\|_{L^2(\Omega)}} - b \cdot Dv_k + v_k(1 - q_{h_k}),$$

then (3.2) reads as

(3.4)
$$\begin{cases} -\Delta v_k + v_k = g_k & \text{in } \Omega \\ \frac{\partial v_k}{\partial \nu} = 0 & \text{on } \partial \Omega . \end{cases}$$

By assumption (A7), a boot strap argument shows that $||g_k||_{L^{\bullet}(\Omega)} \leq K$, so that $\{v_k\}$ has a limit, say v, in $C(\overline{\Omega})$. Taking (A6) into account we can pass to the limit in (3.4) to show that v is a weak solution of

(3.5)
$$\begin{cases} -\Delta v + b \cdot Dv = 0 & \text{in } \Omega \\ \frac{\partial v}{\partial v} = 0 & \text{on } \partial\Omega. \end{cases}$$

By the maximum principle v is therefore a constant, say v=C. On the other hand, the choice $\phi=m$ in the weak formulation of (3.2) and condition (A4) give

$$\int\limits_{\Omega} v_k q_{h_k} m \, dx = 0 \quad \text{for any} \quad k \, .$$

Since m(x) > 0 for any $x \in \Omega$ and $\int_{\Omega} q_h(x)dx > 0$ it follows that $\int_{\Omega} q_h m dx > 0$. Hence,

$$|C| = \left| \frac{\int_{\Omega}^{\int (v_k - C) q_{h_k} m \, dx}}{\int_{\Omega}^{\int q_{h_k} m \, dx}} \right| \leq \|(v_k - C)\|_{L^{\infty}(\Omega)} \longrightarrow 0,$$

which shows that v = C = 0.

We have then proved that $v_k \longrightarrow 0$ converges strongly in $C(\overline{\Omega})$ to 0; this is contradictory with $||v_k||_{L^2(\Omega)} = 1$ and therefore (3.1) is proved.

By Lemma 1, u_h is uniformly bounded in $H^1(\Omega)$. At this point a passage to the limit in $(N)_h$ using Lemma 3 completes the proof.

REMARK. Theorems 3.1 covers the simple case $q_h = \frac{1}{h}$. The asymptotic behaviour of (N) in this case has been investigated for a large class of elliptic operators in [3].

The following result holds under a different convergence assumption on q_h .

THEOREM 3.2. Let $N \geq 3$. Assume that hypotheses (A3) and (A4) are satisfied and that:

(A8)
$$q_h = c_h \psi_h$$
, with $c_h \in \mathbb{R}$, $\psi_h \in L^p(\Omega)$, $p > 2^* = \frac{2N}{N-2}$
(A9) $\psi_h \ge 0$, $\psi_h \longrightarrow \psi$ weakly in $L^p(\Omega)$, $\int_{\Omega} \psi_h dx > 0$, $\int_{\Omega} \psi dx > 0$,

(A10)
$$c_h > 0$$
 and $c_h \longrightarrow 0$.

Then the sequence of solutions of $(N)_h$ converges weakly in H^1 some u and u is the solution of $(N)_0$ such that

(3.6)
$$\int_{\Omega} u\psi m \, dx = 0.$$

PROOF. Let us prove first that

$$||u_h||_{L^2(\Omega)} \leq C.$$

for some constant C independent of h. Let us assume by contradiction that

$$\|u_{h_k}\|_{L^2(\Omega)} \longrightarrow \infty$$

for some subsequence $\{u_{h_k}\}$ of $\{u_h\}$ and set

$$v_k = \frac{u_{h_k}}{\|u_{h_k}\|_{L^2(\Omega)}}$$
.

As in the proof of the Theorem 3.1 one obtains

$$||v_k||_{H^1(\Omega)} \leq K.$$

Then there exists $v \in H^1(\Omega)$ such that

$$egin{aligned} v_{k_j} &\longrightarrow v & \text{weakly in} & H^1\,, \\ v_{k_j} &\longrightarrow v & \text{strongly in} & L^s & \text{where} & s \in [1,2^*), \end{aligned}$$

at least for a subsequence $\{v_{k_i}\}$ of $\{v_k\}$.

Observe also that, if we call $v_j = v_{k_j}$, $\psi_j = \psi_{k_j}$, $u_j = u_{h_{k_j}}$, $q_j = q_{k_j}$, then v_j satisfies (3.4) with $g_j = f/\|u_j\|_{L^2(\Omega)} - b \cdot Dv_j + v_j(1 - q_j)$.

Since by (A8), (A9)

$$\int\limits_{\Omega} v_j \psi_j \phi \, dx \longrightarrow \int\limits_{\Omega} v \psi \phi \, dx \quad ext{for any} \quad \phi \in V$$
 ,

a passage to the limit in (3.4) shows that v is a weak solution of (3.5).

Hence v is a constant, say v = C. Taking (A4) into account we obtain:

$$\int_{\Omega} v_j \psi_j m \, dx = 0 \quad \text{for any} \quad j$$

and therefore

$$\int\limits_{\Omega} v\psi m\,dx=0.$$

On the other hand

$$\int\limits_{\Omega} v\psi m\,dx = C\int\limits_{\Omega} \psi m\,dx\,.$$

By (A9), and the strict positivity of m we have $\int_{\Omega} \psi m dx > 0$ and therefore v = C = 0. This contradicts $\|v_k\|_{L^2(\Omega)} = 1$ and (3.7) is proved. By Lemma 1, u_h is uniformly bounded in $H^1(\Omega)$. We can now pass to the limit in (N)_h, taking into account the fact that $\{u_{h_k}\}$ converges strongly in L^s for any $s \in [1, 2^*)$, the limit function u satisfies (N)₀ and

$$\int_{\Omega} u\psi m\,dx=0.$$

It is easy to check that if u_1 and u_2 are solutions of $(N)_0$ satisfying (3.8) then $u_1 - u_2$ is a solution of (3.5) and therefore $u_1 - u_2 = C$. Hence by (3.8).

$$C\int_{\Sigma}\psi m\,dx=0$$

which implies C = 0. This proves that the whole sequence $\{u_h\}$ converges weakly in H^1 to u.

REFERENCES

- [1] A. BENSOUSSAN J.L. LIONS: On the asymptotic behavior of the solution of variational inequalities, Summer School on the Theory of Nonlinear Operators. Academic Verlag Berlin, (1978), 25-40.
- [2] G. BUTTAZZO G. DAL MASO: Shape Optimazation for Dirichlet Problems: Relaxed Formulation and Optimality Conditions, Ref. S.I.S.S.A. 124 M (1989).
- [3] I. CAPUZZO DOLCETTA M.G. GARRONI: Oblique derivative problems and invariant measures, Ann. Scuola Norm. Sup. Pisa Cl Sci (4). 13.4., (1986), 689-720.
- [4] D. CIORANESCU F. MURAT: Un terme etrange venu d'ailleurs. Non linear Partial Differential Equations and their Applications, Collège de France Semin.,
 (2) 60 (1981), 98-138, (3) 70 (1981), 154-178. Research Notes in Mathematics, Pitman, London.
- [5] C. CONCA P. DONATO: Non-homogeneous Neumann's problems in domains with small holes, Modélisation Mathématique et Analyse Numérique, 22 (4) (1988), 561-608.
- [6] G. DAL MASO P. LONGO: Γ-limits of obstacles, Ann. Mat. Pura Appl. 4, 128 (1980), 1-50.
- [7] G. DAL MASO U. MOSCO: The Wiener modulus of a radial measure, IMA Preprint Series, 194, 1-26, Minneapolis. (To appear in Houston J. Math.).
- [8] G. DAL MASO U. MOSCO: Wiener criteria and energy decay for relaxed Dirichlet problems, Archives for Rational Mechanics and Analysis., 95, (4) (1986), 345-387.
- [9] G. Dal Maso U. Mosco: Wiener criterion and Γ-convergence, Applied Mathematics and Optimazation. 15 (1987), 15-63.
- [10] E. DE GIORGI T. FRANZONI: Su un tipo di convergenza variazionale, Atti Accademia Nazionale dei Lincei Rend. C1 Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. Rend. Sem. Mat. Brescia 3 (1979), 63-101.
- [11] N.A. TCHOU: A Neumann Problem, Boll. Umi, (7), 4-B (1990), 127-141.

Lavoro pervenuto alla redazione il 21 dicembre 1990 ed accettato per la pubblicazione il 14 luglio 1992 su parere favorevole di L. Boccardo e di G. Dal Maso

INDIRIZZO DEGLI AUTORI:

I.Capuzzo Dolcetta - Dipartimento di Matematica - Università di Roma "La Sapienza" - Piazzale Aldo Moro, 5 - 00185 Roma - Italia

N.A. Tchou - Dipartimento di Matematica pura e Applicata - Università dell'Aquila - L'Aquila - Italia