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Free G-spaces, principal G-fibrations and
maps between classifying spaces

P.I. BOOTH

RIASSUNTO — Sia G un gruppo topolagico, M uno spazio ed H (M) il monoide
di composizione delle auto equivalenze omotopicke di M. Si dimostra che se G ha lo
stesso tipo omotopico di un complesso CW, allora Pinsieme delle classi di equivalenza
G-omotopica di un qualunque G-spazio libero, che sia omotopicamente equivalente a M,
& classificato dall’insieme delle classi omotopiche libere [BG, Bu(am). Generalizzando
al caso in cui G & un monoide topologico provvisto di inverso omotopico libero, si
ottiene una classificazione simile per G-fibraziont principali. Sono esposti alcuni esempi
basilari.

ABSTRACT — Let G be a topological group, M be a given space and H(M) the
monoid under composition of self-homotopy equivalences of M. We show that if G has
the homotopy type of CW -complez then the set of G-homotopy equivalence classes of
free G-spaces that are homotopy equivalent to M is classified by the set of free homo-
topy classes [Bg, Bu(m))- Generulizing to the case where G is a topological monoid
with a free homotopy inverse, we obtain a similar classification result for principal
G-fibrations. Some basic ezamples are given.
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1 — Basic and background ideas

In this paper we refer to classification questions for both principal
G-bundles and principal G-fibrations. In the former case we assume that
G is a topological group, in the latter that it is & topological monoid with
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a free homotopy inverse, i.e. that there exists a map u: G — G with the
property that the map g — g.u(g) of G into G is freely homotopic to the
constant map that has value the identity of G.

(1.1) In either case there exists a classifying space Bg and a universal
object pg: E¢ — Bg, i.e. a principal G-bundle or principal G-fibration,
as the case may be, with the property that E¢ is contractible (see [7:thm.
7.5]and [15:p.333] respectively). We most frequently refer to the fibration
case; to avoid any confusion the bundle case construction {29] will be
denoted by pt.: E% — B%.

In classifying principal G-bundles or principal G-fibrations the usual
procedure is to fix G and the base space B. Then:

(1.2) pulling p% back over maps B — B, induces principal G-bun-
dles over B, thereby classifying principal G-bundles over B up to G-
isomorphism by means of the set [B, B&] (see (29] and [20:section 12
of ch.4]). Pulling pg back over maps B — Bs induces principal G-
fibrations over B, thereby classifying principal G-fibrations over B up
to G-fibre homotopy equivalence (=G — FHE, see {15:section 5) and also
[35] and [26:cor. 9.4]).

An alternative view, and the one adopted here, is to fix G and the
homotopy types of the G-spaces under consideration (= the total spaces
of the principal bundles or fibrations involved), but at the same time
allow B to vary. Recalling that a G-space X is free if the projecton
X — X/G can be given the structure of a principal G-bundle, we will
now make some elementary observations concerning this second view of
the classification question.

If G is a topological group and M is any given space then:

(1.3) there exists at least one free G-space homotopy equivalent to
M, and

(1.4) in general there will be more than one homotopy type of free
G-spaces homotopy equivalent to M.

The former statement can be verified by considering the principal
G-bundle p&, x 1)y: E x M — BE x M.

In the latter case we may consider any example where G is not con-
tractible and M is the underlying space of G. Then the free G-space
E® x G (with the usual action on E% and the trivial action on G) and G

(with the usual action) have the same homotopy type, yet cannot have
the same G-homotopy type. For if there were a G-homotopy equivalence
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from E% x G to G it would induce a homotopy equivalence between the
quotient spaces E2 x G/G and G/G, i.e. Bg x G and a singleton space.

Remarks similar to (1.3) and (1.4) apply to principal G-fibrations.

One paper in which this second approach has been followed is [9)].

Let V and W be simplicial sets on which a given simplicial group
G acts. A simplicial map V — W will be a called a G-weak homotopy
egquivalence if it is compatible with the action of G and is a weak homotopy
equivalence.

If M is a given simplicial set then part (i) of theorem 1.2 of [9]
classifies those G-weak homotopy equivalence classes of simplicial sets on
which G acts that are also weak homotopy equivalent to M. The object
that is used to model this set is a set of simplicial homotopy classes
between simplicial classifying complexes, i.e. [Wg, W,gau), where sgaM
denotes the simplicial group of automorphisms of M. Further it is stated
that each equivalence class of simplicial sets contains simplicial sets which
satisfy the extension condition and on which the G-action is free.

The reader can find basic definitions for the above simplicial concepts
in [25]. The result [9:thm.1.2(i)] is derived by restricting an equivalence
of simplicial homotopy theories [9:section 2], i.e. between G-equivariant
homotopy theory and that of fibrations over the corresponding classifying
complex W . The proof of this last result is rooted in the theory of model
categories of [11] and [32].

A somewhat analagous equivalence of homotopy theories is discussed
in [17] and [18]. In these cases the equivariant theory used is that of G-
spaces and G,-maps, the latter concept being as developed in [16]. The
related theory is that of the associated Borel fibrations over classifying
spaces for G.

A further equivalence of homotopy theories is described in [4], this
time between theories for fibrations with additional structure and for
Dold fibrations over the appropriate classifying spaces. Principal bundles
and principal fibrations are two of the examples discussed.

Let W denote the class of all space having the homotopy types of
CW-complexes. The classification results for free G-spaces and principal
G-fibrations that could be derived from this last equivalence of homotopy
theories, i.e. our theorems 4.8 and 3.6 respectively, refer to G-spaces that
have the homotopy type of a given space M and require G € W. The
classification is then by means of the sets [BY, By(ax) and [Bg, Bua)
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respectively.

These results of this paper, and their proofs, differ from thm.1.2(i)
of [9] in several ways.

(i) We work in a topological rather than a simplicial context, giving
separate results for the principal bundle and principal fibration cases.

(ii) No use in made of weak homotopy equivalences or G-weak ho-
motopy equivalences (as in [9)); we choose to give an expanded argument
(using definition 3.1 and proposition 3.2) that allows us to work with
appropriate types of homotopy equivalence.

(iii) We do not deduce our results as consequences of an equivalence
of homotopy theories, as this would present them as being dependent on
the relatively complex fibred mapping space machinery of [4]. Instead we
prefer to proceed in a simpler more direct fashion. Actually the proof
of the main theorem (2.1) of [4] is not complete as given; it quotes and
depends on a direct generalization of proposition 3.2 of this paper (num-
bered 1.9 in {4]).

In recent years there has been much interest in the topic of maps out
of classifying spaces, a notable result being MILLER’S proof [28] of the
Sullivan Conjecture {37: p. 5.118]. In particular there have been numer-
ous papers concerning maps between the classifying spaces of topological
groups [1],(2],(12),[13],[14],119, 21], 22],[23], 24}, [27).{30},[31},(43], [44] and
[45). We have thus clarified a link between a natural extension of this
last topic and that of the classification of principal bundles and fibrations.

We present our main line of argument (sections 2 and 3) in terms of
principal G-fibrations. The bundle version is given in section 4. Finally
some basic examples are discussed in section 5.

Our work is in the context of the category of compactly generated
spaces (=cg-spaces), i.e. spaces having the weak topology relative to all
incoming maps from compact Hausdorff spaces {40:example (ii) of section
5. Known results can, of course, be cg-ified by cg-ifying the spaces
involved (i.e. by giving them this weak topology).

If M is a space then H(M) will denote the space of self-homotopy
equivalences of M, equipped with the (cg-ification of the) compact-open
topology. It follows from the exponential law [40:thm. 3.6 that H(M),
with the binary operation of composition, is a topological monoid.
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2 — Principal G-fibrations

Let us assume, throughout this and the following section, that G is
a topological monoid with a free homotopy inverse.

DEFINITION 2.1. From [15:p.329]. A principal G-fibration consists
of a pair (q,a), q being a mapY — B anda: Y x G—Y being a right
action of G on Y such that:

(i) goa=gqomn, wherem: Y x G—Y denotes the projection, and

(ii) there ezists a numerable cover U of B such that for each U € U
qlg X (U): ¢} (U)— U is G — FHE to the projection G x U —U. In
the case of this projection, G is assumed to act on G x U from the right
in the obvious fashion.

DEFINITIONS 2.2. If ¢: Y — B is a principal G-fibration and
f: A— B is a map then f°Y will denote the fibred product or pullback
space with underlying set {(y,a) € Y x Alq(y) = f(a)},; then the projec-
tion f*q: f*Y — A is an induced principal G-fibration. The projection
Y — Y will be denoted by ¢° f.

LEMMA 2.3. IfGE€ W then Bg € W.

The following proof is a rephrased version of some comments that
were included in a 1981 letter from M. Fuchs to the author.

PRrROOF. Let BE2L denote the Dold-Lashof classifying space for G
[8:p.293]. Then B has the homotopy type of B2% [15:p.335] and BZ*
is constructed out of G by taking products (in the compactly generated
topology), mapping cylinders, mapping cones and direct limits. Further
the category of spaces having the homotopy type of a CW-complex is
closed under these operations so B2 € W and hence Bg € W.

DEFINITION 2.4. Ifp: X — A and q: Y — B are principal G-
fibrations then a G-pairwise map (f,g) from p to q consists of a G-map
f: X—Y and a map g: A— B such that go f = gop. We notice that
if A= B and g = lg then such an f is just a G-map over B.
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The (f, g) notation should be distinguished from the following more
or less standard notation that is also used later: if f: X—Y and
g: X — Z are G-maps then (f,g): X — Y x Z denotes the G-map
(f,9)(z) = (f(x), g(x)), where z € X.

In the following definitions it is assumed that I carries the trivial
G-structure.

DEFINITION 2.5. Let us assume that Y and B are G-spaces and
that g: Y — B is a G-map. If for all choices of a G-space W, a G-
map h: W —Y and a G-homotopy H: W x I — B such that gh(w) =
H(w,0) for all w € W, there exists a G-homotopy K: W x I —Y with
K(w,0) = h(w) for all w € W and such that go K = H, then q will be
said to satisfy the G-covering homotopy property (G — CHP).

If this property holds in the cases of all homotopies H that are sta-
tionary on [0, 3], i.e. such that H(w,t) = H(w,0), for all w € W and
t € 0,2], then g will be said to satisfy the G-weak covering homotopy
property (G — WCHP).

THEOREM 2.6. If q: Y — B is a principal G-fibration then it
satisfies the G — WCHP.

ProoF. Viewing B as a G-space under the trivial action we see that
g is a G-map. It follows from [7:prop.5.2 and thm.5.12] that if p: X — A
is locally fibre homotopy trivial, relative to a numerable cover of A, then
p satisfies the WCHP [7:p.238]. Applying the same argument to the
category of G-spaces and noticing that the spaces and maps that occur
in the proofs of the G-analogues of the above results are G-spaces and
G-maps respectively, we obtain the required resuit.

REMARK 2.7. A G-covering homotopy theorem for principal G-
bundles is proved in [7:thm.7.8]. This depends on knowing that if p:
X — A and q: Y — B are principal G-bundles and f: A— B a map
then a functional bundle (p, g, f) is a Hurewicz fibration. There is a corre-
sponding proof of a version of our 2.6 using a functional fibration (pf*q),
in the (pg) notation of (3:section 1] and [5:def.7.2), using [7:thm. 5.12] to
prove that this satisfies the WCHP. However that argument requires B
to be weak Hausdorff, which then complicates the use of such a version of
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2.6 in the proof of our proposition 3.2 and lemma 3.4 and hence in that
for theorem 3.6, and thereby seems to force an extra assumption in that
last result (e.g. M € W).

3 — Classifying principal G-fibrations

DEFINITION 3.1. If (fo,90) and (f1, o) are G-pairwise maps from
p: X — A to q: Y — B then a G-pairwise homotopy from (fy, go) to
(f1,91) is a G-pairwise map from p x 1;: X x I — A x I to q that re-
stricts to {fo,go) and (fi,q1) in the expected fashion. The concept of
G-pairwise homotopy equivalence (G — PHE) can now be defined in the
obvious manner. The reader will notice that taking A = B and consid-
ering only the identity map from B to B, we retrieve the concepts of
G-homotopy over B and G — FHE.

PROPOSITION 3.2. If q: Y — B is a principal G-fibration and
f: A— B is a homotopy equivalence then the principal G-fibration f*q:
'Y — A is G— PHE toq.

Our proof requires a preliminary definition and lemma.

DEFINITION 3.3. Ifp: X — AxI andq: Y — A X I are principal
G-fibrations and f;: p~'(A x {i}) — ¢~1(A x {i}) are G-maps over A x
{i}, for i = both 0 and 1, then a G-map F: X —Y over A x I that
restricts to fo and f, will be called a G-translation of fo inte fi, from X
to Y, and denoted by fo ~ f.

It will be convenient, in figure 3, to represent such a deformation in
the following fashion.

P~ (A x {0}) — g'(A x {0})

0

X F Y

P (Ax {1} —f——* g (Ax{1})

Fig. 1
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LEMMA 3.4. Let q: Y — B be a principal G-fibration.

(i) f L: A x I— B is a homotopy from u to v then there are G-
maps a: u'Y — u'Y, B: v*'Y — 'Y and : v*Y — v*Y, all over A,
and G-translations:

(a) @y: lysy ~ o, from (u*Y) x I to (v*Y) x I,

(b) ®;: a~ S, from L*Y to (u*Y) x I,

(c) &;: 8~ 7, from (v*Y) x I to L*Y, and

(d) D4: ¥ ~ 1oy, from (v*'Y) x I to (v'Y) x I.

(ii) Given a second homotopy M: A x I — B, from u to v, such
that L ~ M relative to their common end points u and v, then there
are G-maps \: u*'Y —u'Y and u: v*'Y —v'Y, both over A4, and G-
translations:

(a) ¥y: lyey ~ A, from (u*Y) x I to (u*'Y) x I,

(b) ¥o: A ~ u, from L*Y to M*Y, and

(c) ¥a: p~ lyey, from (v°Y) x I to (v*Y) x I.

PROOF. (i) We define L:AxIx I— B by f,(a, s,t) = L(a, s) for
t<i =La,s+1-2t) for 3 <t< 3(s+1),and L(a,0) t > 1(s+1),
with a € A and s,t € I. Identifying (L'Y) x {0} with L*Y we have
go(g"L) = L o ((L*q) x 1;)[(L*Y) x {0}) and the G —~ WCHP allows
us to obtain L’: (L*Y) x I — Y such that (L’ Lyisa G-pairwise map
from (L*q) x 1 to ¢ extending (¢*L, L). Pulling g back over L, L' deter-
mines a G-map L”: L'Y X I—+(f,)‘Y over Ax I xIbyL'(y,a,s,t) =
(L'(y,a, 8, t), @, s, t), where (y,a,8) € L'Y(CY x AxI)and t € I; re-
stricting L” to the subspaces of {L*Y) x I that are the inverse images
under (L*g) x I of the subspaces A x {(0, D} Ax{(1,1)}, Ax{(1,1)},
A x {0} x I and A x I x {1} yields the maps e, B and v and the transla-
tions @, and ®,, respectively. The restrictions of L” over A x {1} x 3,1
and A x {1} x {0, 3], modified using the identifications, [3,1] —[0, 1] by
t — 2t —1 and [0, 3] —[0,1] by t — 2t, yield the G-translations ®,; and
®, respectively.

(i) This follows by a similar argument, using the relative homotopy
L ~ M in place of L.

In proving the above proposition we use a homotopy inverse g: B— A
of f; the reader may wish to refer to the pullback diagram of figure 2.
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f‘g-ch ——— Y — Y — Y
(¢ fa)f (f*9)g af
f‘g‘f‘ql g‘f‘ql f'ql ‘11
f 9
Fig. 2

The canonical identifications (1)*Y =Y, (1g)°q =q, ¢*(15) = 1y,
(fog)Y =g"fY,(fog)a=g"f"q a¢*(fog) = (¢"f) o ((fq)*q) and
(f*9)*(go f) =((f'9)*9) o ((9°f*q)* f) will be made in the course of the
proof.

PROOF OF 3.2. Let H: fog~1gand K: go f ~ 1,4 be homotopies
chosen in such a way that there is a homotopy W: fo K ~ Ho (f x 1;)
relative to their end points fogo f and f (see [41]).

Defining 8 = B(H): Y — g*f*'Y as in 34 (i) and w = ((f*q)*g) ©
B(H): Y — f*Y we will show that the G-pairwise map {w, g): ¢g— f*¢
is a G-pairwise homotopy inverse to {(¢*f, f): f'g—gq.

First we notice that:

(a°f, f) o (w,g) =((g"f) o ((f°9)°9) o B(H)), f o 9)
=(((¢"f) o ((f*9)°9)) o B(H), fo g) = ((¢"(f o 9) o B(H), f o g)
~~ (using the G-homotopy (¢"H) o $s(H))
~1y (via the G-homotopy ®,(H)).

The proof that (w, g) o (g*f, f) = (14.v, 14) requires a more compli-
cated G-pairwise homotopy, as illustrated in figure 3. The idea behind
this method of illustration is to allow the reader to picture the way the
various G-translation “pieces” fit together in a jigsaw puzzle type fash-
ion. The conventions to be followed in interpreting this diagram are as
follows:

(i) when maps (including translations) are adjacent, one to the left of
the other, they should be undestood as being composed, e.g. the eighth
line of figure 3 refers to the homotopy

((F°@)"K,m1) 0 s(f 0 K): (f°Y) x I —(f*Y) x I,



[10]

P.I. BOOTH

910

€ 3y
A L A ! A
Ix(X.0) XD px (&) (Mo f)@ I x (XS
1 Ofeo )L
Af Ad Ao
1% (&) (7e*3.0.0) Ad oA 010 )88 1 % (X.5)
5,(6.0) 1 1.(8.5.9) . 1 Oro g
&o\ — \ﬂc.\oﬁ — \ﬂo\oﬁ \ﬂo%oﬁo\ — Nl\o&o\ \ﬂo.\

XA X (6.0.0) 1% (K5.6)

5,6.5) ()

. \ \oﬂvo.\ oﬁv AgvK
\ﬁo\ — &0\ QQ —— \ﬁo\ £

\ﬂ.\oﬁo\ —

IXADUX (.0.N) 1% (Kof8) (B AH (TXDuBH) AHo1X ) )%

6,06.1) H)g i.b (m)
A — Ad0 .P A — Auf ——
IXQURNUX (.00 I% (RSO (H)Y  IXA 1% (/.5)

6,06./) () PR
\ﬂo\ A — \ﬁo_\nﬁ — A

Ix (L) (M)
1

-_— \ﬂo\ —

AJ B4
AN
A
I1%(X.0)

Ad

(H)Y® 1 % (RS B) 1 % (£(BoS28)) I X (Kof oBuh) (M)A I X (Ko B.5) U (O 0 NI I X (KoF)

W10 f)g

Ad

10 £)s@ 1 < (KJ)
1o/

AJ

Oro '@ 1 x (&)

.|~|| \ﬂo\



(11} Free G-spaces, principal G-fibrations and etc. 911

where 7;: K*f*Y — I is the projection and so ((f*¢)* K, 7r,) K*f*Y
—(f'Y) x I;

(ii) when homotopies or translations are adjacent, one above the
other, it should be understood that they are added, i.e. that the “end”
of one homotopy or translation is to be considered as being attached to
the “beginning” of the other; and

(iii) the compound homotopy illustrated, composed with the projec-
tion into f*Y, determines the required homotopy

fYxI—fY.

(3.5) If M is a given space then there exists a Hurewicz fibrations
Poo: Eoo — By, with fibres homotopy equivalent to M, that is uni-
versal in the following sense.

If B € W then pulling p., back over maps B — By(ar) determines
a bijection:

[B, BH(M)] 4 FHE(M B),

where FHE(M : B) denotes the set of fibre homotopy equivalence (=
FHE) classes of Hurewicz fibrations over B with fibres homotopy equiv-
alent to M (see [26:cor,9.5] or {33.thm.2]). We mention that in the liter-
ature By pr is frequently denoted by Bo,.

THEOREM 3.6. Let G € W be a topological monoid with a free
homotopy inverse, M be a given space and PHE(G: M) denote the set
of G — PHE classes of principal G-fibrations g: Y — B, where B ranges
over the class of all (of course cg-) spaces, but Y is required to be homo-
topy equivalent to M.

(i) Then there are bijections @, and Q::

[BG:BH(M)] T FHE(M. BG) PHE(G. M),

1 2
where Q) is as described in 3.5 and @; defined as follows. Let p: X — Bg
denote a Hurewicz fibration with fibres homotopy equivalent to M and [p]
denote the FHE class of p. Then we define Qz([p]) to be the G — PHE
class of the principal G-fibration p*(p¢).
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(i) Combining these steps the bijection
Q(=Q:20Qy): [Bs, Byan] — PHE(G: M)

is defined by the following procedure. Any map f: Bg — By enables
us to construct a double pullback diagram as illustrated in figure 4.

p*(Eg) [(Ex) Ey
 p(oe) PL(f)
Eg T B¢ ; Bu
Fig. 4

Thus f induces the Hurewicz fibration p = f*(p) and this, in turn,
induces the principal G-fibration p*(pg): p*(Ec) — f*(Ex). Then Q is
the rule that takes the homotopy class of f to the G — PHE class of
P*(pc)-

ProoF. We just have to verify that Q, is a bijection. Taking p: X
— Bg to be a Hurewicz fibration with fibres of the homotopy type of M,
then the fibration (pg)*p: p*(Ec) — Eg has fibres homotopy equivalent
to M and a contractible base space (1.1), so p*(E¢) has the homotopy
type of M {39:thm.1.3].

Further if g: Y — Bg is a Hurewicz fibration and there is an FHE
h: X —Y then p = qoh and p*(pg) = (go h)*(pc) = h*q"(pe) which is
G — PHE (3.2) to ¢"(pc). Hence we have shown that Q; is well defined.

Given a principal G-fibration 7: Z — B with Z homotopy equivalent
to M, let g: B — Bg be a map such that 7 is G — FHE to g*(pg) (see
1.2). Factoring g as the composite of a homotopy equivalence B — B and
a fibration §: B — Bg [34:2.8.9] it follows from 3.2 that 7 is G — PHE
to §*(pc). Hence we know that M,Z and g*(Ecg) all have the same
homotopy type. Now the fibres of § have the homotopy types of the fibres
of (pg)*g and, since (pg)*g: " (Eg) — Eg is a fibration with contractible
base space (1.1), the homotopy type of §*(E¢) and of M. Hence Q2([g]) =
[r] € PHE(G: M) and so Q is surjective.

Let us assume that we are given Hurewicz fibrations p: X — Bg and
q: Y — Bg; further we will suppose that there is a G- PHE (u,v) from



[13] Free G-spaces, principal G-fibrations and etc. 913

P*(pe) to ¢*(ps). Using the universal property of pullbacks we see that
u factors through v*¢*(Eg), giving the commutative diagram of figure 5.

p*(Eg) - - q'(Eg)
(u.p%, (q/(m))“v
?*(pc) v*q*(Eg) q*(pc)
/ q"(pc) J
X y
v
Fig. 5

Now u and (¢*(pg))*v are G-homotopy equivalences, by the data and
3.2 respectively, hence (u,p*(pg)): p*(Ec) — v*¢*(Eg) is a G-homotopy
equivalence. It follows from the G-version of [7:thm.6.1] that this last
map is a G — FHE from p*(pg) to v°¢"(pg) = (g o v)*(ps)- Hence
P =~ gov (see 1.2). Now g has the covering homotopy property so there
is a map w: X — Y that is homotopic to the homotopy equivalence v
with p = g o w; hence w is a homotopy equivalence and, by [7:thm.6.1], a
FHE between p and ¢q. Hence Q; is injective.

4 — Classifying principal G-bundles

An argument similar to that of section 2 and 3 produces a classifi-
cation theorem for (of course numerable) principal G-bundles and hence
for free G-spaces. The modifications to the principal fibration argument
are as described below.

(4.1) We assume that G is a topological group.

(4.2) The universal principal bundle pl;: E% — BY, will be used in
place of pg: Eg —» Bg (see (1.1) and (1.2)).

LEMMA 4.3. IfG€ W then B, € W.



914 P.1. BOOTH [1 4]

PROOF. It follows from [6:thm.3.2 and example 3] that pk: E% —
B}, is universal amongst principal G-fibrations (as well as amongst prin-
cipal G-bundles) in the sense of 1.2.

Thus pe and pf both posses the same universal property relative to
principal G-fibrations. Let f: Bg — B and g: Bt — Bg be represen-
tatives of the homotopy classes of maps that induce pg and p% to within
G — FHE, from p% and pg respectively. Then fog and go f induce pf,
and pg from p% and pg respectively, again to within G- FHE. It follows
from 1.2 that f o g and g o f are homotopic to the appropriate identity
maps. Hence BY is homotopy equivalent to Bg and, by 2.3, B%eWw,

(4.4) If M is a given space then Fr(G: M) will denote the set of all
G-homotopy types of free G-spaces that have the homotopy type of M.

(4.5) The G — CHP theorem that is proved for principal G-bundles
in [7], i.e. theorem 7.8, can take the place of our theorem 2.6.

(4.6) The various G-pairwise concepts simplify in the bundle case.
If p: X — A and ¢g: Y — B are principal G-bundles and f: X —Y
is a G-map then there is a function g: A — B determined by the rule
g(a) = gf(z), wherea € Aand z € {g*(a)}. Now gq is an identification
so it follows that g is continuous and we have the following result.

LEMMA 4.7. If X aendY are free G-spaces then there are bijective

correspondences between:

(i) the set of G-maps f: X — Y and the set of G-pairwise maps
(f,9), from p: X — X/G, p(z) = zG where z € X, to ¢: Y —Y/G,
q(y) =yG, y € Y; and also between:

(i) the set of G-homotopies F': X xI—Y and the set of G-pairwise
homotopies (F, H) fromp x l; to q.

Further (iii) X andY are G-homotopy equivalent if and only if p and

g are G-pairwise homotopy equivalent.
() Fr(G: M) = Pws(G: M).

Repeating the argument of section 3, but for principal G-bundles and
with 4.1...4.7 incorporated, we obtain the following result.

THEOREM 4.8. Let G be a topological group in W and M be a given
space. Then there are bijections:

[BE, Brm)

FHE(M: B'c’,)———Ra——»Fr(G: M).

1
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In particular the bijection
R = Ry0 Ry: [Bg, Bup)] — Fr(G: M)

is defined, for any choice of a map f: B& — By, by taking R((f]) to
be the G-homotopy class of p*(E%) (in the notation of figure 4).

5 — Examples

(5.1) Let G in W be a path-connected topological monoid with a
free homotopy inverse and M be the Eilenberg-McLane space K(m,m),
for some positive integer m and Abelian group . The path-connectivity
of G ensures that Bg is simply connected (see 1.1), so it is standard
that FHE(K(m,m): Bg) is in bijective correspondence with the set of
orbits of H™*+!(Bg, ) under the obvious left action of the group of au-
tomorphisms aut w. This follows, for example, from the equivalence of
conditions (a) and (d) on p.335 of [3], and from [7;thm.6.3]. Then 3.6
implies that:

PHE(G: K(r,m)) = H™*Y(Bg,n)/aut 7.
Of course if G is a path connected topological group in W then by (4.8):
Fr(G: K(m,m)) = H™*Y(Bg,n)/ aut .

(5.2) If A is a path-connected pointed space then PA will denote the
space of Moore paths in A, i.e. maps of the interval [0,es] into A with
f(0) = % and e; a non-negative real number. The space of Moore loops in
A, denoted by QA, consists of maps f: [0,e;] — A which start and end
at *, i.e. f(0) = f(es) = *. Clearly 4 is a grouplike topological monoid
under the operation of attaching loops. The path fibration g4: PA— A
that evaluates at the end of paths, i.e. ga(f) = f(es) where f € PA,isa
universal principal Q1A-fibration, the distinguished fibre being 2A. Thus
Baa = A. In particular if A is K (7, m) then QK (mw,m) = K(w,m —1).

(5.3) Considering now the special cases of 5.1 with G = M =
K(Z,, m) and with p a prime, then by 5.1 we have:

PHE(K(Z,,m): K(Z,,m)) = H™Y(K(Z,,m +1),Z,)/ aut Z, =
= Hom(Z,,Z,;)/ aut Z,,
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a set with cardinality 2.

The following are examples of such K(Z,, m)-fibrations:

(a) K(Zp, m) — %, and

(b) gm X 1: PK(Z,,m+1) x K(Z,,m) — K(Zp,m+1) x K(Z,,m),
where ¢, : PK(Z,,m + 1) — K(Z,,m + 1) denotes the universal path
fibration over K(Z,,m + 1) and 1 is the identity on K(Z,,m). Now
the base spaces * and K(Z,, m + 1) x K(2,, m) have different homotopy
types so these two principal fibrations do not have the same K(Z,, m)-
pairwise homotopy type. Thus we have exhibited members of each of the
K(Z,,m) — PHE classes of such principal K(Z,, m)-fibrations.

(5.4) It is well known that the isomorphism classes of those fibre bun-
dles over S™ that have a given fibre and given group G may be classified
be means of the orbit set of mn-1(G) that is obtained from an action
70(G) X Tn_1(G) — Tn-1(G) (see [36:thm.18.5) or {20:thm.7.8.2]). We
will show that there is a similar result classifying Hurewicz fibrations.

If X and Y are based spaces then [X,Y]. will denote the set of
based homotopy classes of based maps from X to Y. If X has a non-
degenerate base point there is an action m(Y) x [X,Y]. —{X,Y]. [42,
II1 1.10] and if Y is also path-connected then [X, Y] is in bijective corre-
spondence with the orbit set (X, Y]./m(Y) (42, IIT 1.11]. 1t follows from
3.5 that FHE(M: S™) is in bijective correspondence with the orbit set
70 (Brmy) /M (Bu)- Recalling that if n > 0 it is a consequence of 1.1
that 7, (Buay) = Ta_1(H(M)); we sece that there is a bijection:

FHE(M: S*) = na(H(M))/7o(H(M))

We are now in a position, via 3.6 to classify principal Q.5™-fibrations
(n > 0) with total spaces homotopy equivalent to M. We have:

PHE(QS™: M) = a1 (H(M))/mo(H(M)).

(5.5) Let G be Q5™ and M = K(w,m), with m and n both > 0: we
are therefore considering the intersection of examples 5.1 and 5.4. In the
latter case we have Bg = S", in the former that the path-component of
H(K(r,m)) that contains the identity is a K (7, m) [38:p.31]. We recal)
that H™+(S" m) =0if m+1#nbutisrif m+1=n

Hence (a) if m + 1 # n then PHE(QS": K(m,m)) =0, i.e. all prin.
cipal 2S™-fibrations with total spaces of the homotopy type of K(x,m)
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are 2S™ — PHE to the principal 25™-fibration:
gn X 1: PS* x K(wr,m)— S" x K(7,m).

(b) If m+1 = n then PHE(QS™: K(m,m)) is in bijective correspon-
dence with the orbit set w/aut 7 (determined by the evaluation action
(autm) x * — ).
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