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Some results of integral geometry for
density of linear subspaces of C"
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RIASSUNTO — Usando tecniche di Geometria Integrale, si analizzano le densitd di
certi sottospazi lineari di C".

ABSTRACT — Using techniques of Integral Geometry we analyse the densities of
some linear subspaces of the complez space C™.
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— Introduction

It is not very abundant the literature about the integral geometry
of complex spaces. A classical article is that of L.A. SANTALO, [1] in
which he computes, among other things, the density and the volume of
the unitary group and the complex grassmannian. In (3], Shifrin finds the
proof of the kinematic formula for algebraic submanifolds of the complex
projective space CP". In this paper, using the same technics of integral
geometry that were used to determine the densities and properties of
the integral geometry of subspaces of IR", we generalize some of these
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properties to linear subspaces of C*. Here we work always with a real
basis over which the group of unitary motions acts in a natural way.

In §1 we recall some well known results; in particular, for its useful
and repeated applications, the theorem that allows to define a density on
a homogeneous space ([2] p.166). In §2 and §3 we study some properties of
the densities for linear spaces in €. We consider, in particular, the case
of the subspaces with a fixed degree of holomorphy, both with its natural
density and its “holomorphic” density. These two types of densities seem
to be useful for other works in “Complex Integral Geometry”. Finally in
§4 we generalize to holomophic spaces a formula by Blaschke, which could
be useful to obtain Crofton-type formulas in complex integral geometry.

We would like to thank F.J. Carreras for some useful comments.

1 — Some general results

Let €" be the standard n-dimensional complex vector space, with its
usual topology. If J denotes the standard complex structure, we say that
a basis {e1,..- , e2n} of the underlying 2n-dimensional real vector space
is J-basis provided that e;;n = €;» = Je;, for alli,1 <i<n.

DEFINITION 1.
i) A subspace w of C" of real dimension 2r s said to be holomorphic

if Jr=m.

We can write m = /r\ (e: A e;), via the standard identification of

=1

subspaces and multivectors.
ii) A subspace ' of C" of real dimension ¢ is said to be antiholomor-

phic or totally real provided that (Ja’,7") = 0 and n' not contain any

holomorphic subspace.
In this case, we can write

¥ =e A...ANe Wwith (elA.../\eg,elo/\...Aep):O

We will express every subspace Lyy: 8 Larye = T A 7, where 7 is a 2r-
dimensional holomorphic subspace and 7’ is a t-dimensional totally real
subspace. We will say that the subspace La,4.: has a degree of holomorphy
r.
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The unitary group U(n) acts on C" in a natural way. Therefore we
can consider the unitary motions

' =az+baeU(n),beC"
Following the general method of (2], and considering the real repre-

sentation of U(n), the group of unitary motions can be represented by
the matrices of the form

A B b
0 0 1

The structure equations with respect to & moving complex frame
(P, e;, e;+) are given by, (3]

(1 1) ( dw;;  dwi;e )=_( Wik Wik~ )/\( Wrj Wiy )
: —dw; ;e dwi.j. —Wike  Wisge —Wgje  Weeje

and

(1.2) (dw‘ ) = _( Wik Wik~ ) A (wk )
dwl" —Wike Wieke Wi
whence
dwij = — Wik A Wej — Wik A Wiej
(1.3) dw;je = —Wik A Wije — Wiks A Wiejo
dwi = — Wik A Wg — Wik N Whie
dwi' = Wik /\ wk — Wik A qu-
where
wl'j = (de" . eJ) = —(e‘- . deJ) —_— wl"j‘
(1-4) w"j- = —(e‘ . de’..) = (de' . 3,‘) = '—wioJ

w;=dP.e¢; ; wi-=dP-¢. , PeC"

We remark that equations (1.2) could be equally expressed in terms
of the moving frames (P, ¢;), a complex frame of C".
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A calculation of the volume of the unitary group can be found in
along with the proof that its density is given by

(1.5) dUmn) = A (w,,,/\w,,,.)/\(/\w.,)

1<j<k<n
Once the integration is accomplished the volume is,

(27r)"
1 (=

(1.6) f dU(n) = H

U(n)

Therefore, the volume element of the unitary group of motions is
given by

(1.7) dMU(n)) = ( /\ (wie A 'ka')) ( (wJ A wje) ) A (Awii‘)

i<k

Let G be a Lie group of dimension n and let H be a closed subgroup
of G of dimension n — m. Then, G/H is a differentiable manifold of
dimension m.

DEFINITION 2. A density on G/H is a G-invarient m-form on
G/H.

The integral manifolds of the distribution b, (h being the Lie algebra
of H), are given by the completely integrable Pfaffian system

(1.8) wy =0,... ,Wp=0

We know that d(G/H) = wy A ... A wn, is invariant under G and, up
to a constant factor, it is the unique m-form with this property.

PROPOSITION 1, [2]. A necessary and sufficient condition for the
m-form d(G/H) to be a density for G/H 1is that its exterior differential
vanishes; that is,

(1.9) d(d(G/H)) =0
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This is a very useful condition, because it is very manageable.

2 —- Some properties of densities in linear subspaces of C"

2.1 - Densities in holomorphic linear subspaces of C"

Let LS = L%™ be a holomorphic subspace through the point P
with a basis {e,, e,-}. We denote by HF the closed subgroup of unitary
motions MU (n) that leave a fixed subspace L2® invariant. Evidently,
a bijective correspondence exists between the set of the holomorphic r-
subspaces and the elements of the homogeneous spaces MU (n)/ ue- I,
L is generated by a moving frame (p, €5, €s+), from (1.4) and (1.8), we
have

Wo = Wos = Waq = Waa+ =0 1<a<r<asgn.

This way we have
PROPOSITION 2.

d(MU(n)/HE) =dLE = ( \(wa A var ) A ANwaa A Waa+))

1<a<r<asgn.

(2.1.1)

Using the structure equations (1.3), it follows immediately that (2.1.1) s
a density.

Now we can give the density of linear holomorphic spaces that contain
a fixed holomorphic space; that is, LY is fixed and L7 variable with
LT > LE. With the same hypothesis, one has the following

PRrorosITION 3.

(2.1.2) dLSy = /\ (wea A wear) = AL "5

ax

whered+1<ag,...<r<aq,...<n.
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The p.r?of that (2.1.2) IS a density is immediate from (1.3) and that
o.f Proposition 1. ’Therefore it is now possible to obtain the densities for
linear holomorphic spaces through the origin; these are the densities of
the complex grassmannians GC

rn—r:

PROPOSITION 4.

(2.1.3) dLSg = \ (Waa A wear)

The volume of the complex grassmannian has been obtained in {1]
and it is given by

C oUm)
(2.1.4) ¥(Grar) = v(U(r)) x v({U(n—r))

where v(U(%)),% = r,n — r,n are given in (1.6).

COROLLARY 1.

(2.1.5) [ dz8q=v(CEun-r)
Pl

rn—r

PROPOSITION 5. With the same notations we have
(2.1.6) dLE" A dLS = dLEy AdLY

To prove that (2.1.6) is satisfied it is necessary to write the expression
of the factors using (2.1.2) and (2.1.3)

COROLLARY 2.

(2.1.7) dL%y A dLSg = dLiy A dLy)
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2.2 - Densities for totally real linear subspaces L, C C".
Now we consider a totally real subspace L, C C". Let (Pe,),1 <

a < r, be a moving frame. Using the same methods that in 2.1, we have

PROPOSITION 6. Let L, be a totally real 7-subspace of C*. In this
case, the density is given by

d(Le) = (A werr)) A (Alwn Araar)) A (A ) A (Alwa A )

a<d
(2.2.1)
i1<a,b,...<r

The proof that d(d(L,)) = 0 follows immediately from the properties
of the exterior differential and from (1.3) and (1.4)

COROLLARY 3. Let L, be a totally real r-space through the origin;
then, the density is given by

(2.2.2) d(Lr) = ( Nwas)) A ( \(Wao A Waa))

ab aa

Now, as a generalization of (2.1.1) and (2.1.7), we can give the density
for the subspaces Lj,... In fact, we have the following

PROPOSITION 7. The density of the (2r + t)-subspaces is given by

d(Larye) =(A(wau A wau‘)) A (/\(waa A waa‘)) A ( /\ (’wuu-))/\

u<v

(2.2.3)
/\(/\(w.m A wm,.)) A (/\w..-) A (/\('w,,l /\wa.))

with l1<a<<r<u<r+t<asln
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Once again Proposition 1 follows from the properties of the exterior
differential (1.3) and (1.4). Evidently the density of the totally real
subspaces coincide with that of the (2(n — r) + r)-subspaces Lan-rytrs
since the complement of L, in € is Ly(n-ry4r.

If in the subspace Lzr4+: We consider the holomorphic subspace LE
L., then it is possible to define another density d"L,,,, for that sub-
space, which we call holomorphic density.

PROPOSITION 8. The holomorphic density d*L, ., is given by

dh(L2r+t) Z(A(wau A wau‘)) A (/\(waa A Waq- )) A ( /\ (Wi ))/\

ugly

(2.2.4) AN\ Waa Awaar)) A (Alwe Aw)) A (A\(wa A vee)

The proof that (2.2.4) is a density follows by differentiation in (2.2.4)
and using (1.3)

COROLLARY 4. Let L, be a totally real r-space contained in C*,
Then its holomorphic density is given by

d* (L) =( N\ @as)) A ( A(Waa A waar))A
/\(/\(wa-)) A (/\(w,,, A w,.))

(2.2.5)

2.3 Densities for linear spaces that leave a holomorphic subspace fixed

This problem could be established in a more general form; that is,
to define the dinsities of the (2r + t)-spaces that leave a (2r' + t')-space
fixed. But, if a (2r’ + t’)-space is left fixed, having in mind that J is an
automorphism, the 2(r’ + t')-space will be also fixed, and if t # 0 the
(2r + t)-space would have a degree of holomorphy greater than r. So, we
may consider only motions of type La[2] and Lo, 4e[2e)-

So, we have only the cases Lz ;) which was studied in Proposition
3 and Lz, 42.) studied in the next proposition
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PROPOSITION 9.

d(Lgr.H[g,J]) =(b/\(‘wba A Wpae )) A (b/\(‘wbu A Wpye ))/\

(2.3.3
) /\( /<\ (w,w.)) A (/\(w.,a A w,m.))

wherer' +1<b<r.
The proof is analogous of those of the previous propositions.

COROLLARY 5. The deinsity of the (2r+t)-spaces through the origin
is given by

A(Lzye0) =( N(wea A w,,a-)) A ( b/\(w,,., A wbu.)) A ( A (wu,,.))/\
bia u

u<Lv

(2.3.4) A( A\ (wua A wua'))

where1<b<r.

The set of the Ly, is & differentiable manifold which can be iden-
tified with the mixed grassmannian.

. : U(n)
(2.3.5) G§r+t,2(n—r—t)+‘ - U(r) X U(n -Tr—= t) X O(t)

To determine the volume of this compact and oriented manifold, we
can apply a standard method that is used to calculate the volume of the
real grassmannian manifold or equivalently we can consider U(n) as the
total space of a fibre bundle whose fibre has type U(r) x U(n —r — t) x
0(t) x 0(¢). So

dLarsio) = 9(CPrsanrtrse) =

(2.3.6) Gg:+t.2(n—r—t)+t
_ v(U(n))
v(U(r)) x v(U(n —r = t)) x v(0(t))
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2.4 — Some relations between densities for spaces in C"

If Lyrye € LY, we have
ProprosITION 10.

(2.4.1) dL3!,, ANdL§ =dLar e AdL§, .

PROOF. The result follows easily using (2.1.1), (2.1.2) and (2.1.9).

COROLLARY 6. With the same notations, we have

(2.4.2) dL%t +ei0) N dLgo) = dLzr4¢0) A dLgN-t]

PRrROPOSITION 11.
(2.4.3) AL}V AdLE_, = dL3™D A dLylph

The proof follows from (2.1.9) and (2.3.3)

COROLLARY 7. With the same hypothesis,

(2.4.4) AL AdLZ_yo) = L350 A dLeinleay

If one considers holomorphic densities of spaces with a fixed degree
of holomorphy, we have the following

PROPOSITION 12.

(2.4.5 dLP®9 AdLE = dL%, ., AdLG, .,
+ + [r+t)
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The proof follows immediately from (2.1.1) (2.1.2) and (2.2.4).
Now let LT, and L, be two holomorphic orthogonal subspaces thro-
ugh the origin. We suppose that r + s > n. Then

PROPOSITION 13. With the same hypothesis,
(2.4.6) dL,“."[‘,] A de[,,_,] = dL,ﬁo] AdLrin—y) -
PROOF. Without loss of generality we can assume that r > 5,8 <

n—3. Thenr >n—s,s >n—r,and n~ 8 > n—r. That is, the indices
vary in the following diagram

3
|
-
o
=3
«
N J
S

Using (2.1.1) and (2.1.2), the result follows easily. The proofs of
the remaining cases are similar. Next, we give a generalization to the
case of holomorphic spaces of a well known formula of densities for the

intersection of subspaces, ([2] p. 206).

ProOPOSITION 14. Also with the same notations, we have
dL® AdLY = A"*“"“dL,‘?[, +s—n] N dei, +o-n) A dLg_,_"

where A is a determinant whose components are inner products of vectors
of a complex adapted basis.

The proof follows from (2.1.1), (2.1.2) and from the construction of
the adapted complex bases.
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3 — Another form of density for r-spaces in ¢

a) Holomorphic spaces.

(2.1.1) gives dL? in terms of a point P and 2r vectors of & J-basis
contained in LC. It is often useful to introduce the elements of the holo-
morphic space L orthogonal to LE through a fixed point 0.

With this purpose, let dL7_., be the (n — r)-holomorphic space
orthogonal to L7 through 0 and let P be the intersection point. Let p
be the distance from 0 to P. We choose orthonormal frames (P, e;, €!) so
that (P,e;,... €, €10,... ,€r) are in LT and e, is in the direction of
OP. The I-forms wryn = dP.e,1p,w};,, = dP.e},, represent the element
of an arc LY . in P in the directions e,.4, €},

Therefore

(3.1) Wegr A AW AW A Awge = dol

n—r

represents the volume element of LC

n~r(0}*

From (2.1.3) and (3.1) it follows that

(3.2) LY =doy  AdLY_
Note that (3.2) is the corresponding formula in the holomorphic case
to that given by SANTALO ([2] p. 204).

b) Case of the Ly, spaces with degree of holomorphy 7.

(2.1.9) gives Lo,y in terms of 2r +t orthonormal vectors that form 5
basis of Ls,,¢ and the motions of the point P in 2(n—~7 —t) +t directions.
Now we introduce the elements of the (2(n—r—t)-+t)-space orthogonal to
Lyy4: and containing the origin 0. With this object, let Latnr g4 be
the Ly(n—r—t)+t[}-SPace orthogonal to La . through the origin and let P ¢
Lorse N Logn—r—e)42[0)- Let p be the distance OP. We choose an orthonor-
mal frame (P, €;, ei') so that (Py €lyees 3€ryC1ry-ee 3 Crey Crypy...s aer-H) are
in Lry¢ and €},,,...,€;,, are in the normal direction. The l-forms
Weyn = dP.eryn, €., = dP.e},,, are the arc elements of Lynr g4, in
P in the direction of e, and e}, ,, respectively. Therefore wy4; A... A
Wrpt A Wrgtars A oo AWy AWrprprs A ... A Wye is the volume element of
doa(n—r—t)+: In P. Therefore

(3-3) dLzvye = da2(n—r—t)+t A dL2r+t[0] = do 2(n~r—t)+i A sz(n—r—t)+¢[0]
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c) (2.2.4) gives dL,,,, in terms of 2r + ¢ unitary vectors that form a
basis of L., and the motion of the point P in 2(n — r — t) directions.
Now, proceeding analogously to the case b), we have also

(34) dhL2r+t = da2(n—r) A sz(n—r—t)+¢[0]

4 — A generalization of a Blaschke’s formula to linear holomor-
phic subspaces

Let P, P,,... , P, be 2r +1 points of LC. An adapted moving frame
to LT is given by (p,€q,€q). Then

,
(4'1) Pa -P= Z Aajej + Agj-ej-

=1

By differentiation in (4.1) we have

(4.2) dP, — dP = (dAaje; + Aajde; + dhajeje + Aaj-de;-)

i=1

Multiplying (4.2) by €q, €4+ We have

r

(dP.,ea) — (dP'ea) = Z(Aaiwid - ’\ﬂ.i‘wia°)

j=1

(dP‘oea.) -_ (dP.ea-) = Z(/\ajoa- + Aaj-w.-,'a-)

i=1

(4.3)

The exterior multiplication of the equations in (4.3) and by wa A Wae
gives

(dP.es) — (dP.eqs) A ( A\ (dPs-ea) A (dPs.ear)) =
(4.4) °

=Aw, A Wae A (A(wja A w;a))

where A is a determinant that depends only on Aaj, Agjs-
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By exterior multiplication of (4.4) by o and using (2.1.1), we have

(45) (A\(dP.ea) A (dPeea)) A ( A(dPa.ta) A (dPstoe)) = A™"dLE

The volume element of € in P, can be written

dPa(Cn) = /\(dPa.e;.) A (dP,,.e;,-)

and the volume element LT in P, is

dPo(LY) = \(dP..¢;) A (dP,.c;.)

Therefore the exterior multiplication of (4.5) by

[ /h\(dP.e,,) A (dP.ex)] | 4\‘(dP,-.e,-) A(dPiesr)] (Rii=1,...,7)

yields

dP(C™) AdP((C) A ... AdPy(C™) =

(4.6) =A""dP(LE) A dP,(LE) A ... A dP;(LC) A dL®

which is a generalization of a well known formula by BLASCHKE ([2) p-201)
to the case of holomorphic linear subspaces.

PARTICULAR CASES
a) r = 1. Let P and P, be two points of the complex line € with co-

ordinates (a, a.) and (a1, a:-) respectively with respect to a basis (el,e, )
of €. Then

dP{C) =daAda. ; dP,(C) = da; Ada;.
8 = |(a1 - @) + i(ar — .
Therefore
dP(C™")AdP(C") =

(4.7) n=l
= [(al b a)2 + (0,1- - a.)2] 2 da A da-. /\daq Adaln ,\de
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We think that (4.7) could be a very useful expression to obtain
Crofton-type formulas in C", as those found by SHIFRIN [3].

b)r=n—-1.IfP,PF,...,P,_, are independent points of the hyper-
plane LE_,. we have

n-—1?

dP(C") AdP,(C*)A...AdP,1(C") =

4.8
(4.8) =(n — )IAdP(LE_)A... AdPa_1(LE_ ) AdLE_,

It seems that it is not possible to generalize (4.8) to spaces that contain
a non-zero totally real linear subspace.
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