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Variational inequality for a viscous drum
vibrating in the presence of an obstacle

J. JARUSEK - J. MALEK - J. NECAS - V. SVERAK

RIASSUNTO — Si prova l’esistenza della soluzione debole, globale nel tempo, della
disequazione variazionale per un tamburo viscoso che vibra in presenza di un ostacolo.
Sono prese in esame condizioni al contorno omogenee del tipo di Neumann e del tipo
di Dirichlet.

ABSTRACT — The exzistence of global in time weak solution of the variational ine-
quality for a viscous drum vibrating in the presence of an obstacle is proved. Both
homogeneous Neumann and homogeneous Dirichlet boundary conditions are conside-
red. Some regularity results are obtained.
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1 — Introduction

Let 2 be a bounded domain in R" with the lipschitz-like continuous
boundary 8Q. Let T > 0, I = (0,T), t € (0,T) and Q, = Q x (0, ).
The model describing vibrations with a unilateral constraint u(z,t) > 0
is governed in the points from Qr, where u(z,t) > 0, by the equation

6%u
1 h —Au=0.
(1.1) ot2 0
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(2

2
In the sequel, we will denote i = ?_zi’ i = ?—%

. ot
We will study the classical mixed boundary value problem

(1.2) u(z,0) = up(z), z €N
(1.3) u(z,0) =wy(z),z€N

and Neumann boundary condition

(1.4) -(,";—Z —0 on 80x(0,T).

The problem (1.1)-(1.4) can be formally written in the form
(1.5) i-Au=f

with (1.2)—(1.4) and with

(1.6) vu=0,f20,uf=0inQr,

where f has the meaning of a reaction force.

From the mid-seventies, the problems of the vibrating string equation
with unilateral constraints in one space dimension were intensively stud-
ied by a group of Italian and French mathematicians, namely L. Amerio,
C.Citrini, C. Marchionna, H. Cabannes, A. Bachelot-Motet. A survey
of their results concerning mostly the classical solution can be found in
the Proceedings [2]. The global existence of the weak solution is proved
by A. ARTJUSHIN (1]. In several space dimensions , the existence of the

weak solution remains open.

The aim of this paper is to solve the problem for a "viscous drum” ,

i.e. to solve the equation in the form

(L.7) i— Au—Au=f.

Let us note that this formulation includes the elastic impact law.
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2 — Definition of the problem and penalty method

If k is a positive integer, 1 < p < 0o, we denote by W*?(Q) the
usual Sobolev spaces of LP(§2) functions with LP(§2) derivatives up to the
order k. As usually, we denote by D(2) the set of infinitely differentiable
functions with the compact support in Q. By Wg?(2), p < 0o, we denote
the closure of D(2) in W*?(Q).

If E is a Banach space, then L?(I; E), 1 < p < o0, denotes the usual
Bochner space. B(I; E) is a space of bounded functions from [ into E
with the sup-norm.

Let us suppose g € L3(R), up € W?3(Q) and u, € W2(Q)M). We
say that

u € B(I; W'(Q)),
(2.1) w € B(I; L*(Q)) n L¥(I; W(Q)),
u > 0 in Qr almost everywhere

is a generalized solution to the problem

(2.2)
i—Au—Au—g=finQr,
(2.3)
uZOinQTWfZOinQT)fu:(]inQT)
(2.4)
%+%20,u20, (-Z—Z+%)u=00naﬂxl,
(2.5)

‘U(',O) =up 20, (1.1.(',0) _ul) 20, (11(',0) - ul)uo =0,
if for every v € K, we have

f / (VaV(v — u) + VaV(v — u) - g(v — u)) dzdt—

26 9 N
- (v — (v —u)dr — [ u(v— >0.
5/1,/ (v — u)dzdt +0{ (v —u) ([u (v — 1)

()The last condition can be slightly weakened.
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Here
(2.7) K= {veL*; W'*Q)),o € L*(I; L*(Q));v 20 ae. in Qr}.

Of course u(0,-) = ug in the sense of traces. If we suppose the
solution to the problem (2.1), (2.6), is smooth enough, we get in a formal
way (2.2)-(2.5).

We consider a convex penalty function F : R* — IR® such that

(2.8) F(€) =0 <= £>0in Q.
For simplicity, we suppose that
(2.9) —c§ S F'(§) L0,

where c is some positive constant.
We can take for example

(2.10) F(&) = ().
Let u. be a solution to the penalty problem (in a formal setting)
i, — Au, — A, — g+ -:_—F'(u,) =0inQr,

(2.11) ?9“‘ —0ondRxI,

n
uc(+,0) = uo, (', 0) =u.

By the standard Galerkin method we get & unique solution %, to (2.11)
(see for example [4] or the appendix) such that
u. € L=(I; Wh3(Q)),
(2.12) @e € L=(I; L2() N LA(I; Wwh3(Q)),
i, € L*(I; L*(2))
and for almost all t € (0,T), we have

1
(2.13) / (ﬁgv + Vu, Vv + Vi, Vv -gv + EF’(u,)v) dxr =0
h!

for every v € W2(Q2).



[5} Variational inequality for a viscous drum etc. 947

3 — A priori estimates and the limit process for ¢ — 0

LEMMA 3.1. There exists a positive constant c, independent of e,
such that for any t € (0,T), we have

%/|1’4¢|2dx+%/[Vu,l’dz+//|vaclzdrd:c+
2 Q Qe

(3.1)
+§/F(u,)d$ <ec,
1

where Q, = {(z,t); z € Q}.

PROOF. We take v = #, as the test function in (2.13). 0

We come actually to an easy, but fundamental estimate for the next.

LeMmMmA 3.2.

: 1
(3.2) = | |F(u))dzdt < c,

where ¢ does not depend of ¢.

PROOF. By assumptions we have —1F'(§) 2 0. From (2.13) with
v =1, we get

—//lF'(u,)d:cdt=—//gdxdt+/11¢dz—
Qe € Qr Qr

—/ulszC.
a 0

(3.3)

Let us choose actually a sequence £, — 0 such that u,, — u in
L3(I; W'2(Q2)) and 4., — © in L2(I; W*2(Q)).
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Let 2k > N. We have, by the imbedding theorem, see for example [7]
(3.4) Wt e ().
It follows from (3.1), (3.2) and (3.4) that
(3.5) il,, are bounded in L* (I; (W*2(2))")
and because
(3.6) ., are bounded in L*(I; W'?(Q)),

we can use the following generalization of Aubin's Theorem (see for ex-
ample the survey paper [11}]):

THEOREM 3.1. Let By —<— B < B, be Banach spaces, the first
reflexive and separable. Let 1 <p < o0, 1 < g <co. Then the space

W = {v;v € L?(I; By), v € L%(I; B,)} —— LP(I; B).
Let us remark that the theorem holds also, if B, is a Hausdorff locally
convex space, see [10].
PROOF. Let v, be a bounded sequence from W. Because the space
L*(I; By) is reflexive ( see for example {4] ), we can suppose v, — v in

LP(I; By) and without loss of the generality v = 0. First, by the well
known lemma, see [8], Ve > 03n = n(e) such that

3.7) llulls < eliullg, +n(e)llulls, »

so it is enough to prove that

T
(3.8) f lon()}, dt — 0.
0

%
Let us look at [ l|v,(){|%,. For 0 < s < 7 and every t € (0, ), we have
0o
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(3.9) va(t) = % / va(t+7) dr + / (€ = 1)in(t+7)dr.
0 0

Let us look first at the second member in (3.9). We have

£,
I [ (= 1)in(t +7)dr|%, dt <
e ,

.
(3.10) < [1f@=Dline+)ls, dr]’ de =

t+s

¥
= [ &t( [ @+ =) lin(@)ln, do-
0 t
If we put

A
- - A<0,
(3.11) () = 1+3 for —s< AL
0 elsewhere,

then the last integral can be rewritten as

¥
(3.12) [ ([ wtt =@z, do)”-

-—00

Let us put 9,(0) =0 for o ¢ (0,T). We have

oo . %+§ 4
[ vt = Non(@)l5” do| <
(3.13) o

0o p-1
< (/ In(@)l do) [ Bt = lsa@)do;
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hence
¥ ?
[t [ wit=o)lintoa, da) <
([iconss) Jo]
< llin (o) ,dd) dt [ Pi(t—o)lm(o)lls, do <
oy S\ o]

s( uan(a)ualdo) [ l6@la do [ 42t~ o)at <

s ( on(@)la, da) :

oo
So let € > 0; because [ ||9n(0)|ls, do < A, we can choose s < 5%;_ For
s fixed Hm lf'v,;(t+'r)cl'r — 0 in By, hence lim -’-f‘vn(t-y--r)d-r -
0 m 31 because of the imbedding By «—— B On the other hand,

I f vp(t + 1) drlls, < f [lun{7)|| 5, d7, s0 by Lebesgue’s Dominated Con-
vergence Theorem we get

(3.15) / i / vt +7) drlf%, dt — 0. ]

THEOREM 3.2. Let g € L*(Qr), 1 and u; in W¥3(Q). Then there
ezists a solution u satisfying (2.1)-(2.5) in the sense of (2.6).

PRrOOF. We consider {u,,}. We have as mentioned
Ue,, — u in L*(I; W"{(Q)),
i, — % in L2(1; WH(Q)),

and the condition (3.5) holds. So with p = 2, ¢ = 1, By = W12(Q),
B = L*()) and B; = (W*2%(Q))", we can use Theorem 3.1 to get

(3.16)

(3.17) 1., — 4 in L3(I; L3()).
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Let us emphasize that this strong convergence, based on the occurence
of the viscosity, is essential for the following limit process. .From this we
also have

(3.18) e, () — u(t) in L*(§Y) for t € (0,T).

Let us integrate (2.13) in the time ¢ with the test function v - %,,,
where v € K. We get

(3.19) —-Ei /F’(u,")(v —u,)dz > 0;
hence
// Vu,, V(v —u.,)+ Vi, V(v —u,) — 9(v—t,)dzdt—
(3.20) ~— / / i, (6 — 2, ) da dt + / e, (v — ug,) dz—
- / us (0(0,-) — uo(-)) dz > 0.
Q
Further,

(321)  limsup~ [ Vu, Vur, drdt < - [[ v dzar
Qr

n—oo

and
im sup — / / Vi, Vu,, dzdt =
n—00
(3.22) —hmsup——/lvue,,l’dzdw /|Vuo|’d:c<

Qr
s——/lv Pdz + - /quol"’ =—//VuVudxdt
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so the limit in (3.20) because of (3.17), (3.18), (3.21), (3.22) can be ac-
complished. We have from (3.1)

(3.23) / F(u,, ) dzdr < cép;
Qr
hence
(3.24) f f F(u)dzdr < liminf f _[ Flue,)dzdr = 0;
Qr Qr
sou 20 a.e in Q. 0

REMARK 3.1. Analogously as before, we are able to prove the exis-
tence of the weak solution of the Dirichlet problem, where we consider

(3.25) u(z,t) =0 omn N x(0,T)

instead of the Neumann boundary condition (1.4). Of course, now we use
the Sobolev spaces W2, We?, respectively and we get, for w € D+ (),

(3.26) % / f |F'(ue)|wdz dt < ¢
Q¢

instead of the estimate (3.2). So, ., are bounded in L(I; (W}2)).
Again , we can use Aubin’s Theorem to get the strong convergence of
{2, }-

REMARK 3.2 We can obtain the crucial strong convergence of
{t,} in L?*(Qr) by an alternative approach. Via the technique of the
local straightening of the boundary and a sufficiently smooth partition of
the unity (denoted by R) on Q (see for example (3]) and with the help
of an appropriate extension technique {see [9]), we can extend u,, from
Q x (0,T) to R" x (0,T) such that all the a priori estimates (3.1) and
(3.5) remain valid independently of &,, maybe with a different constant.
The extension technique applied to the time variable and the
imbedding (3.4) give us finelly that the sequence {,} is bounded
in H-3-" (IR.‘; H"q""(IRN)) for every n > 0. Here H*(IR*) denotes
We2(IR*) and for the definition of fractional order derivatives see [9].
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Denoting by ¢, the Fourier transform of 1.,, we can find a constant
¢; such that for arbitrarily small > 0
(3.27)
T2 1
L+ 7i4n (14 |g2) ¥+

+ (1 + Iﬂz)) Iﬁon(Ev T)|2d€ dr < ¢ ,neIN.

RN+l

An appropriate use of the Hélder inequality yields easily for a € (0, 743)
and n € IN

(3.28) / 722 (€, T)PdEdr < ¢y .
RN+1

The strong convergence is then a direct consequence of the compact
imbedding theorem (see [9]).

The above described approach, slightly modified, can be suitable for
the Dirichlet problem, too. For the sake of simplicity, we restrict ourselves
to its homogeneous case. By the above mentioned method, we obtain the
strong convergence for pil,, , where p is an arbitrary C'-smooth function
with the support in Q. As (3.2) implies that for a given ¥ > 0 there is

- T
2 C Q such that Q\Qy C Q and [ [ 42 drdt < ¥, n € N, we can
0 Ny

arrive easily at the desired strong convergence of ..

The localization technique gives us also some better spatial regularity
of u, naturally for more regular u,. Let Q is of class C'and let uo €
W?22(Q). We consider the variational inequality (3.15) on (0,¢), t < T.
We take a partition of unity R on Q and suppose that every p € R is Ct~
smooth function. For v, we put u+p (u_p —u), where the index h denotes
a shift in argument in a direction k. If supp p C §2, we take an arbitrary
small h. If supp p N 9N # @, we suppose that IQ is locally straightened
and we take only the vectors of this part of 89 (for technical details see (3],
[5]). Then we shift the whole inequality in the direction h (satisfying the
above described conditions) and put v_p = u_p + p(u — u_s).

We summarize both inequalities and divide the sum by [h|V+28, 8 €
(0, 1) in the first case or by |h|N=2+2% in the second case. We integrate
the result in h over RY, R"~!, respectively. Putting U = pu, we can
see that, for the proof of regularity, we must estimate the following most
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important terms

- / 1 f (U_n ~ UYU-p - U)(z, t)dz dh+

(3.29) ‘7 /
+ [ |p™% [ (U_» - U)*z,t)dzdtdh,m=Nor N —1
R™ Q'e/ "

on the right hand side of the inequality. The second term, however, can
be easily estimated for 8 € (0, 1) by means of (3.1). For the first term, we
use the Holder inequality and (3.1) yields the result directly for 8 € (0, %)
But on the left hand side, we have estimated

(3.30) S‘lé?n[ |h|-m-28 ‘[ IV(U-n, — U)(z, t) dz dh

which gives us U = pu € C%(I; HE-¢(Q)), ¢ > 0 for p with the support in
Q (for p with the support crossing the boundary, we obtain the tangential
regularity only). Due to this result we can proceed with an iterative
procedure which gives us (together with a suitable renormation technique
— see [5]) that pu € C°(I; H*~*(f2)), € > 0 arbitrarily small, inside Q
(along 89, such a regularity is proved in the tangential directions only).
Multiplying (2.11) by Au,, integrating it in z and ¢ over Qr, using the
Green formula to the appropriate terms and (3.1) we derive finally

(3.31) / Vu . Vu, + AuAu, + %VF’(u.,)V‘uedzdt <c Ve>0.
Qr

For suitable F' (e.g. F: y+— (y~)?) (3.31) easily yields that {Aw,; ¢ > 0}
is bounded in L?(Qr) and in L*(I; L*(?)), where L* can be changed for
the space B of bounded weakly continuous functions. The limit procedure
implies that Au € L*(Qr) N B(I; L*(R)), hence the “normal regularity”
of u along the boundary must be of the same degree as that one in
the tangential direction. Using (3.1), the above derived results and the
imbedding theorem, we prove the following proposition:

THEOREM 3.3. Let 89 be of the class C'* and uo € H*(Q). Under
suppositions of Theorem 3.2 the solution u of (2.6) (or of its modification
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corresponding to (3.25)) belongs to C°(I; H3~"(2)) for every n > 0 and
Au € B(I; L*3(Q)). Therefore for N = 2 u is (1 — n)—Hélder continuous
in the space variables and (3 — n)-Holder continuous in time on Qr, the
closure of Qr, for each n > 0. For N = 3 the Holder exponent for the
space variables and time on Qr is % —n, % — 7, respectively, forn > 0
arbitrary.

4 — Appendix

LEMMA a.l. Let g € L*(), uo € W?() and uy € L*(R). Then
for each € > O there ezists a unique weak solution u = u, of the problem
(2.11) such that

(2.2) u € L=(I; W3(Q)),
(a.3) 2 € L=(I; LH(Q)) N L*(I; W*(Q)),
(2.4) i € L¥I; L}(Q))

and for almost every t € (0,T), the weak formulation

1
(a.5) / ('iiv + VuVv + ViVv —gv + EF’(u)v) dz=0
2

is satisfied for every v € W13(Q).
REMARK A.1 It follows from (a.2)—(a.4) that
ue CHI; WH(Q)) and
e CY(I; L}(Q)) .

So, the initial conditions have a good sense.

SKETCH OF THE PROOF (%) Unicity. Let u,;, up be two solutions
satisfying (2.2)—(a.5) and let u = u; — u;. Then u(0) =0, @(0) = 0 and
for every v € W2(Q),

(a.6) / (ifv + VuVv + VaVo) dz = é f (F'(uy) — F'(u)) vdz.
Q [1]
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Taking v = %(t) as a test function in (a.6), we get

2 -z 2 2 _
2dt/| I dz+2dt./lvul d‘”/wu' de =

(a.7)
== n/ (F'(wy) — F(wy)) v dz.

Because of (2.9)

(2-8) [ F'(§1) — F'(&) | < c max(l&:l, 1€s) -

After integrating (a.7) in time from 0 to ¢, we have
(2.9) /|'124x<——//|u|=dm,
¢

where M = [[ (max(|u.}, |ug|))2 dz. Using the Gronwall lemma, we ob-
Q:

tain
(a.10) / lif?dz =0 for almost every ¢ € (0,T).
(ii) The existence is solved by the Galerkin method Let {w;}, is

an orthogonal dense set in W 2(9) Put u™(i,z) = Y01, cf (t)w,(m) As
usual, the system (j = 1,2,...,m) of ordinary differential equations

(a.11) .
/ (ii.mw,- + Vu,Vw; + Vi, Vw; — gw; + EF’(u,,.)w,-) dz =0,

(a-12)
'u.m(O) = Uom U = Um »

has a solution u,, defined on (0,T). Note that uom (u1m respectively) is
the projection in W2(Q) onto the space spanned by {wy,wa,..., wp}.
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Multiplying the j-th equation in (a.11) first by ¢*(t) and then by
€7 (t), summing for j = 1,2,...,m and integrating over (0,t), we get the
following a priori estimates:

(a.13) /lﬁmr"dz+/|Vum|2dz+// Vi [2drdz < const.,
173 Q Q¢

(a.14) / / fia |2 dez dr + / |Viim|?dz < const..
Qe "

So, there exists a subsequence, still denoted u,,, and u, such that

Um — u  *-weakly in L®(I; W3(Q)),
(a.15) G — @ *-weakly in L*(I; W"3(2)),
it — @ weakly in L*(I; L*(Q)).

Then passing to the limit in (a.11), we see that u will be a solution of
(a.2)—(a.6), if

(a.16) /F’(u,,,) w; dz — /F’(u) w; dz.
0 2

However, this follows from Lebesgue’s Dominated Convergence Theorem,
because |F'(um)| < ¢|tum|- |
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