On Ruscheweyh derivatives of meromorphic functions

A. DERNEK

RIASSUNTO – Si denota con Σ la classe di funzioni $f(z) = z^{-1} + a_0 + a_1 z + \ldots$, analitiche nel disco unitario $\{z: 0 < |z| < 1\}$. Si denota con Σ_n la classe di funzioni $f \in \Sigma$ che verificano la condizione

$$\operatorname{Re} S_n(f(z)) = \operatorname{Re} \frac{D^{n+1}f(z)}{D^nf(z)} > \frac{n-1}{n} \quad (|z| < 1, \ n = 1, 2, ...)$$

dove $D^nf(z)=f(z)*\frac{1}{z}(1-(\frac{z}{z-1})^n)$ e * è la convoluzione di Hadamard. Una funzione $f\in \Sigma$ si dice che appartiene alla classe $\Sigma_n(\alpha,\beta)$ se $\mathrm{Re}\{n(\alpha,\beta)S_n(f(z))-\alpha(n+1)S_{n+1}(f(z))\}>n-\alpha-1$, dove α,β sono numeri reali e $n=1,2,\ldots$ In questo lavoro si dimostrerà che $\Sigma_n(\alpha,\beta)\subset \Sigma_n$. Infine si studia una classe di operatori integrali definiti in Σ_n .

ABSTRACT – Let Σ denote the class of functions $f(z)=z^{-1}+a_0+a_1z+\ldots$, which are analytic in the annulus $\{z\colon 0<|z|<1\}$. Let Σ_n denote the class of functions $f\in\Sigma$ which satisfy the condition

$$\operatorname{Re} S_n(f(z)) = \operatorname{Re} \frac{D^{n+1}f(z)}{D^nf(z)} > \frac{n-1}{n} \quad (|z| < 1, \ n = 1, 2, ...)$$

where $D^n f(z) = f(z) * \frac{1}{z} (1 - (\frac{z}{z-1})^n)$ and * is the Hadamard convolution. A function $f \in \Sigma$ is said to belong to the class $\Sigma_n(\alpha, \beta)$ if $\operatorname{Re}\{n(\alpha, \beta)S_n(f(z)) - \alpha(n+1)S_{n+1}(f(z))\} > n - \alpha - 1$, where α, β are real numbers and $n = 1, 2, \ldots$ In this paper we shall show that $\Sigma_n(\alpha, \beta) \subset \Sigma_n$. Finally we study a class of integral operators defined on Σ_n .

KEY WORDS - Univalent meromorphic functions - Convolution - Radius of convexity - Starlike functions - Convex functions.

A.M.S. CLASSIFICATION: 30C45

1 - Introduction

Let A be the class of functions $f(z) = z + a_2 z^2 + \dots$ which are regular in the unit disc $E = \{z : |z| < 1\}$. Let $f(z) = z^{-1} + a_0 + a_1 z + \dots$ be regular in $E - \{0\}$. Denote this class of functions by Σ . The Hadamard product or convolution of two functions $f, g \in \Sigma$ is denoted by $f \star g$. Let

$$(1.1) D^n f(z) = f(z) \star \frac{1}{z} \left(1 - \left(\frac{z}{z-1} \right)^n \right),$$

which implies that

(1.2)
$$D^{n}f(z) = \frac{(-1)^{n-1}}{(n-1)!}z^{n-1}f^{(n-1)}(z),$$

where n = 1, 2, ... and $z \in E$. We shall refer to $D^n f$ as the n th order Ruscheweyh derivative of a meromorphic function f.

In this paper we shall define two new classes which are Σ_n and $\Sigma_n(\alpha, \beta)$. Let Σ_n denote the class of functions $f \in \Sigma$ that satisfy

(1.3)
$$\operatorname{Re} S_n(f(z)) = \operatorname{Re} \frac{D^{n+1}f(z)}{D^n f(z)} > \frac{n-1}{n}$$

for $z \in E$ and n = 1, 2... Note that $S_n(f(0)) = 1$ for all n. Also note that $\Sigma_1 = \Sigma^*$ and $\Sigma_2 \equiv \Sigma_K$ are class of functions that are known as the meromorphic starlike and convex functions, respectively. We denote by $\Sigma_n(\alpha, \beta)$ the set of all functions f in Σ such that

(1.4)
$$\operatorname{Re} M_n(\alpha, \beta, f(z)) > n - \alpha - 1, \quad (z \in E),$$

where

$$(1.5) M_n(\alpha,\beta,f(z)) = n(\alpha+\beta)S_n(f(z)) - \alpha(n+1)S_{n+1}(f(z)),$$

and α, β are real numbers and $n = 1, 2, \ldots$ For each n the class $\Sigma_n(\alpha, \beta)$ reduces to the class of meromorphic functions: $\Sigma_n(0, 1) \equiv \Sigma_n$ and $\Sigma_n(-1, 1) \equiv \Sigma_{n+1}$.

In section 2 we shall show that $\Sigma_n(\alpha,\beta) \subset \Sigma_n$. Substituting n=1 in the above relation it follows that $\Sigma_1(\alpha,\beta) \subset \Sigma^*$. This result is a

generalization of the result obtained by BAJPAJ and MEHROK in [1] when $\gamma = 0$. In section 3 we study Libera integral operator on the class Σ_n . We show that this operator preserves the class Σ_n .

2 – The classes Σ_n and $\Sigma_n(\alpha, \beta)$

THEOREM 1. $\Sigma_n(\alpha,\beta) \subset \Sigma_n$ for all $n=1,2,\ldots,\alpha>0$ and $0<\beta<1$.

PROOF. It can easly be verifyed from (1.1) that

(2.1)
$$z(D^n f(z))' = (n-1)D^n f(z) - nD^{n+1} f(z)$$

for all n = 1, 2, ... Let $f \in \Sigma_n(\alpha, \beta)$. Let $\omega(z)$ be a regular function in E defined by

$$(2.2) S_n(f(z)) = \frac{n+(n-2)\omega(z)}{n(1+\omega(z))}.$$

Clearly $\omega(0) = 0$ and $\omega(z) \neq -1$. To complete the proof we need to show that

$$\operatorname{Re} S_n(f(z)) > \frac{n-1}{n}, \quad (z \in E \text{ and } n = 1, 2, ...).$$

To this end, it is sufficient to show $|\omega(z)| < 1$, $z \in E$. Taking the logarithmic derivative of both sides of (2.2) and using (2.1) we get

$$(2.3) (n+1)S_{n+1}(f(z)) = 1 + nS_n(f(z)) + \frac{2z\omega'(z)}{(1+\omega(z))(n+(n-2)\omega(z))}.$$

Substituting from (2.2) and (2.3) in (1.4) we obtain

(2.4)
$$M_n(\alpha, \beta, f(z)) = -\alpha + \beta \frac{n + (n-2)\omega(z)}{1 + \omega(z)} + \frac{z\omega'(z)}{(1 + \omega(z))(n + (n-2)\omega(z))}.$$

We claim that $|\omega(z)| < 1$, $z \in E$. For otherwise by the lemma of JACK [4] there exists $z_0 \in E$ such that result to (2.4) we get

$$\operatorname{Re} M_n(\alpha,\beta,f(z_0)) - (n-\alpha-1) = -(n-1)(1-\beta) - \frac{2\alpha k(n-1)}{|n+(n-2)\omega(z_0)|^2} < 0$$

which is a contradiction to our hypothesis that $f \in \Sigma_n(\alpha, \beta)$. Hence $|\omega(z)| < 1$ and from (2.2) we conclude that $f \in \Sigma_n$.

We shall need the following lemma ([2], p. 25).

LEMMA. If $\omega(z)$ is regular in E and satisfies the conditions $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in E$, then

$$(2.5) |z\omega'(z) - \omega(z)| \le \frac{|z|^2 - |\omega(z)|^2}{1 - |z|^2}, (|z| < 1).$$

THEOREM 2. Let $f \in \Sigma_n$, $\alpha > 0$ and $0 < \beta < 1$. Then

$$\frac{2}{\alpha n} \operatorname{Re} M_n(\alpha, \beta, f(z)) + 2 \ge \begin{cases} P_1(r) & \text{for} \quad R_0 \le R_1 \\ P_2(r) & \text{for} \quad R_0 \ge R_1 \end{cases}$$

where

$$\begin{split} P_1(r) &= \frac{(\alpha + 2\beta)(n + (n-2)r)}{\alpha n(1+r)} + \frac{(n-2)(1+r)}{n + (n-2)r}, \\ P_2(r) &= \frac{4}{n} \left[\frac{(n-2)(\alpha + \beta)(n - (n-2)r^2)}{\alpha(1-r^2)} \right]^{1/2} - \frac{2(n - (n-2)r^2)}{1-r^2} \\ R_0^2 &= \frac{\alpha(n-1)(n - (n-2)r^2)}{n^2(\alpha + \beta)(1-r^2)} \\ R_1 &= \frac{n + (n-2)r}{n(1+r)}. \end{split}$$

The result is sharp.

PROOF. Since $f \in \Sigma_n$ we can write

(2.6)
$$S_n(f(z)) = \frac{n + (n-2)\omega(z)}{n(1+\omega(z))},$$

where $\omega(z)$ is regular in E, $\omega(0) = 0$ and $|\omega(z)| < 1$. As in Theorem 1 we find that from (2.6) and (1.5)

(2.7)
$$M_n(\alpha, \beta, f(z)) + n = n \frac{\alpha + 2\beta}{2} p(z) + \alpha \frac{n-2}{2} \frac{1}{p(z)} + \frac{2}{n} \frac{z\omega'(z) - \omega(z)}{(1 + \omega(z))^2 (p(z))},$$

where $p(z) = \frac{n + (n-2)\omega(z)}{n(1+\omega(z))}$. From (2.5) and (2.7) we have

$$\frac{2}{\alpha n} \operatorname{Re} M_n(\alpha, \beta, f(z)) + 2 \ge \operatorname{Re} \left\{ \frac{\alpha + 2\beta}{\alpha} p(z) + \frac{n-2}{np(z)} \right\} +$$

$$- \frac{|z|^2 |p(z) - \frac{n-2}{n}|^2 - |1 - p(z)|^2}{(1 - |z|^2)|p(z)|}.$$

An application of Lemma 1, Karunakaran [5], with $C=1+\frac{2\beta}{\alpha}$, $D=\frac{n-2}{n}$ and B=1 gives immediately the inequality stated in Theorem 2.

THEOREM 3. Let $f \in \Sigma_n$ and n = 1, 2, ... Then $f \in \Sigma_{n+1}$ holds for $|z| < \rho(n)$, where

$$\rho(n) = n \left(n^2 - 2n + 8 + 4\sqrt{(n^2 - 2n + 4)} \right)^{-1/2}$$

PROOF. For $f \in \Sigma_n$ let p(z) be the regular function defined in E by

(2.8)
$$S_n(f(z)) = \frac{n-1+p(z)}{n}.$$

Here p(0) = 1 and Re p(z) > 0 in E. Logarithmic differentiation of (2.8) and from (2.1) should yield

(2.9)
$$(n+1)S_{n+1}(f(z)) = n + p(z) + \frac{zp'(z)}{n-1+p(z)}.$$

The conclusion of the theorem follows immediately by Corollary 1 of RUSCHEWEYH and SING [6] or Theorem 1 of YOSHIKAWA and YOSHIKAI [7].

COROLLARY. Taking n = 1, it follows that if $f \in \Sigma^*$ that $f \in \Sigma_K$ for $|z| < 2 - \sqrt{3}$.

3 - Integral operators

Let c be a real number. We define h_c by

$$h_c(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \frac{c}{c+k+1} z^k, \quad 0 < |z| < 1.$$

Let the operator $L \colon \Sigma \to \Sigma$ be defined by F = L(f), where

$$F(z)=cz^{-c-1}\int_0^z t^c f(t)dt, \qquad c>0.$$

Then the function F can be written in the form $f(z) \star h_c(z)$. We shall refer to L as the Libera integral operator. We first give a condition of $f \in \Sigma$ for which the function L(f) belongs to Σ_n .

THEOREM 4. $S_n(f(z))$ is given by (1.3). Let $f \in \Sigma$ and satisfies the condition

(3.1)
$$\operatorname{Re} S_n(f(z)) > \frac{n-1}{n} - \frac{1}{2n(c+1)},$$

where c > 0, n = 1, 2, ..., then the function $F = L(f) \in \Sigma_n$ for $F \neq 0$ in $E - \{0\}$.

PROOF. Since $F(z) = f(z) * h_c(z)$ it can be easily verified that

(3.2)
$$z(D^n F(z))' = cD^n f(z) - (c+1)D^n F(z).$$

Let $\omega(z)$ be a regular function in E defined by

$$(3.3) S_n(F(z)) = \frac{n + (n-2)\omega(z)}{n(1+\omega(z))}.$$

Here $\omega(0) = 0$ and $\omega(z) \neq -1$ in E. Logarithmic derivative (3.3) and using (3.2) we obtain

(3.4)
$$cS_n(f(z)) = \frac{c}{n} \frac{n + (n-2)\omega(z)}{1 + \omega(z)} + \frac{2z\omega'(z)}{(n + (n-2)\omega(z))(1 + \omega(z))} \frac{D^{n+1}F(z)}{D^nf(z)}.$$

We can write the identity (2.1) for F

(3.5)
$$z(D^n F(z))' = (n-1)D^n F(z) - nD^{n+1} F(z).$$

From (3.2) and (3.5), after a simple computation we get

(3.6)
$$c\frac{D^n f(z)}{D^n F(z)} = \frac{c + (c+2)\omega(z)}{1 + \omega(z)}.$$

(3.4) in conjuktion with (3.6) gives

(3.7)
$$S_n(f(z)) = \frac{1 + \frac{n-2}{n}\omega(z)}{1 + \omega(z)} - \frac{2}{n} \frac{z\omega'(z)}{(1 + \omega(z))(c + (c+2)\omega(z))}$$

and the conclusion of the theorem follow from (3.7), as show in Theorem 1. By $\Sigma^*(\gamma)$ we denote the class of functions $f \in \Sigma$ starlike in $E - \{0\}$ and satisfying in this region the condition

$$\operatorname{Re}\left\{-\frac{zf'(z)}{f(z)}\right\} > \gamma.$$

COROLLARY. If we put n=c=1 in Theorem 4, we find that $L\left(\Sigma^\star(\frac{-1}{4})\right)\subset \Sigma^\star.$

It is easy to show that if $f \in \Sigma_n$, then f satisfies the condition (3.1). Thus it follows from Theorem 4 that $L(\Sigma_n) \subset \Sigma_n$.

More precisely we state the result in:

THEOREM 5. If $f \in \Sigma_n$ then the function F = L(f) is again an element of Σ_n .

COROLLARY. Substituting n = 1 and n = 2 in the above theorem it follows that if $f \in \Sigma^*$ (or Σ_K), then $L(f) \in \Sigma^*$ (or Σ_K).

THEOREM 6. Let $F \in \Sigma_n$ and c > 0, n = 1, 2, ... Let f be defined as F = L(f). Then $f \in \Sigma_n$ for $0 < |z| < \sqrt{\frac{c}{c+2}}$. The result is sharp.

PROOF. Since $F \in \Sigma_n$ we can write

$$S_n(F(z)) = \frac{1 + \frac{n-2}{n}\omega(z)}{1 + \omega(z)}, \qquad (z \in E, n = 1, 2, ...).$$

where $\omega(0) = 0$, $\omega(z) \neq -1$ and $|\omega(z)| < 1$ in E. As in Theorem 4 we find that

$$nS_n(f(z))-n+1=\frac{1-\omega(z)}{1+\omega(z)}-\frac{2z\omega'(z)}{(1+\omega(z))(c+(c+2)\omega(z))}.$$

The conclusion of the theorem follows immediately as in Theorem 4 of GOEL-SOHI [3].

REFERENCES

- S.K. BAJPAJ T.J.S. MEHROK: A note on the class of meromorphic functions 1, Ann. Pol. Math. XXXI (1975), 43-46.
- [2] P. DUREN: Subordination, Lecture Notes in Math. Springer Verlag, 599 (1977).
- [3] R.M. GOEL N.S. SOHI: On a class of meromorphic functions, Glásnik Math., vol. 17 (37) (1981), 19-28.
- [4] I.S. JACK: Functions starlike and convex of order α, J.Lon. Math. Soc. (20 3 (1971), 469-474.
- [5] V. KARUNAKARAN: Certain classes of regular univalent functions, Pasific J. Math. Vol. 61, No. 1 (1980), 173-182.
- [6] S. RUSCHEWEYH V. SINGH: On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61(1976), 329-334.
- [7] H. YOSHIKAWA T. YOSHIKAI: Some notes on Bazilevic functions, J. Lon. Math. Soc. (2) 20 (1979), 79-85.

Lavoro pervenuto alla redazione il 16 novembre 1991 ed accettato per la pubblicazione il 14 gennaio 1992 su parere favorevole di A. Ossicini e di S. Owa