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On Ruscheweyh derivatives of meromorphic functions

A. DERNEK

RIASSUNTO — Si denota con T la classe di funzioni f(z) =z 7' +ao+a1z+...,
analitiche nel disco unitario {z: 0 < |z] < 1}. Si denota con Ea la classe di funzioni
f € T che verificano la condizione

Dtif(z) n—1
= <l, n= 1,2 eve
Re Sa(f(2)) =Re Dif @) >— (Isl <1, yeor)

dove D™ f(z) = f(z) * 1(1 — (51)") ¢ * & la convoluzione di Hadsmard. Una fun-
zione f € T si dice che appartiene alla classe En(a, B) se Re{n(a, B)Sa(f(2)) —a(n+
1)Sns1(f(z))} > n— a — 1, dove &, sono numeri reali e n = 1,2,.... In questo la-
voro si dimostrerd che Zn(a, B) C En. Infine si studia una classe di operatort integrali
definiti in 3,

ABSTRACT — Let & denote the class of functions f(z) =z~ +ao+a1z+..., which
are analytic in the annulus {z: 0 < |z| < 1}. Let T denote the class of functions f €L
which satisfy the condition

D*lf(z) _n-—-1
= zl<l, n=1,2,...
ReSa(f(2) = Re 5r2ry” > — (] )
where D™ f(z) = f(z)+1(1~(3%;)") and * is the Hadamard convolution. A function f €
X is said to belong to the class Ea(a, B) if Re{n(a, B)Sa(f(2)) —a(n+1)Sn41(f(2))} >
n — o — 1, where o, B are real numbers and n = 1,2,.... In this paper we shall show
that Tn(a, B) C Bn. Finally we study a class of integral operators defined on .
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1 — Introduction

Let A be the class of functions f(z) = z+a222+... which are regular
in the unit disc E = {2: |z] < 1}. Let f(z) = 2 4+ ap+a12+ ... be
regular in E — {0}. Denote this class of functions by . The Hadamard
product or convolution of two functions f,g € ¥ is denoted by fx g. Let

(1.1) D"f(z) = f(z)* % (1 _ (z i l)n) ,
which implies that
(1-2) D" f(z) = E;—l_)%z“ﬂ"-”(z),

where n = 1,2,... and z € E. We shall refer to D" f as the n th order
Ruscheweyh derivative of a meromorphic function f.

In this paper we shall define two new classes which are ¥, and
T.(a, B). Let T, denote the class of functions f € T that satisfy

Dl f(2) SP= 1
Drf(z) n

(1.3) Re S.(f(2)) =Re

for 2 € E and n = 1,2... Note that S,(f(0)) =1 for all n. Also note
that X, = * and X, = Tk are class of functions that are known as the
meromorphic starlike and convex functions, respectively. We denote by
Z,.(a, B) the set of all functions f in ¥ such that

(1.4) ReM,(c, B3, f(2)) >n—a-1, (z € E},
where

(1.5)  Ma(o, B, f(2)) = n(a+ B)Sa(f(2)) — a(n + 1)Sni(f(2),

and o, (3 are real numbers and n = 1,2,.... For each n the class T, (a, 8)
reduces to the class of meromorphic functions: X,(0,1) = I, and
En(—l, 1) = 2,;.*.1.

In section 2 we shall show that £,(c, 8) C I,.. Substituting n =1
in the above relation it follows that L;{c,8) € I*. This result is a
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generalization of the result obtained by BAJPAJ and MEHROK in [1] when
v = 0. In section 3 we study Libera integral operator on the class X,,.
We show that this operator preserves the class X,,.

2 — The classes ¥, and Z,(a, )

THEOREM 1. Za(e,8) € By foralln = 1,2,...,a > 0 and
0<pB<1.

PROOF. It can easly be verifyed from (1.1) that
(2.1) 2(D"f(2)) = (n—1)D"f(z) - nD™*f(2)

for alln = 1,2,.... Let f € ,(a, 8). Let w(z) be a regular function in
FE defined by

_n+ (n - 2)w(2)
(2'2) Sn(f(z)) - n(l +w(z)) ’

Clearly w(0) = 0 and w(z) # —1. To complete the proof we need to show
that

ReS,,(f(z))>n—;—1, (2€E and n=1.2...).

To this end, it is sufficient to show |w(z)] < 1, z € E. Taking the
logarithmic derivative of both sides of (2.2) and using (2.1) we get

2zw'(2)
1+w(2))(n+(n—2)w(z))

(2:3) (n+1)Sni1(f(2)) = 1+nSa(f(2)) + (

Substituting from (2.2) and (2.3) in (1.4) we obtain

n+(n—2uw(z)
1+w(z)

M,(a,B,f(2)) =—a+B

2.4
24) 2w'(2)

1+ w(2))(n+ (n - 2uw(z))

—2a(
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We claim that |w(z)| < 1, z € E. For otherwise by the lemma of JAck
[4] there exists zy € E such that result to (2.4) we get

2ak(n — 1)
fn+ (n — 2)w(zo)|?

Re M,(a, B, f(z0))—(n—a—1)= —(n—-1)(1-8)- <0

which is a contradiction to our hypothesis that f € Z,(a, ). Hence
Jw(z)| < 1 and from (2.2) we conclude that f € Z,.

We shall need the following lemma ([2], p. 25).

LEMMA. Ifw(z) is regular in E and satisfies the conditions w(0) =
0, lw(2)| <1 for z € E, then

2 — lw(z)P?

@s) [l -w@]< IR <.

THEOREM 2. Let f€Z,,a>0and0<f<1. Then

2 Pl(r) for Ry <R,
2 Re Ma(c, 8, £(2) +2 2
an Py(r) for Ry 2> R,

where
(@+28)(n+(n—-2)r) (n—2)(1+7)
Py(r) = an(l+r) a+n-2)r"'
4 [(n—2)(a+B)(n—-(n—2)r?) i 2(n — (n—2)r?)
Pg(r)=; a(l ~ r2) - 1— 72

,_ afn—1)(n—(n—2)r?)
(o + A1~ 1)

R_n+(n—2)r
T n(l4r)

The ' result is sharp.
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PROOF. Since f € £, we can write

n+ (n — 2)w(z)
n(1+ w(2))

(2-6) Sa(f(2)) =

where w(z) is regular in E, w(0) = 0 and |w(2)| < 1. As in Theorem 1
we find that from (2.6) and (1.5)

Mo(@,6, £(2) +n =25 Lp(a) + a2
(2.7) 2w/ —wl2) |
™ (1+w(2)) (p(2)
where p(z) = "—"'((ffwgﬁ()ﬁ From (2.5) and (2.7) we have
= Re Ma( 5, 1(2)) +2 2 Re {21200+ 22+

_el’lp(z) - "'zl 1 P(Z)l
(1= 2l Ip(2)

An application of Lemma 1, KARUNAKARAN [§], with C =1+ %, D =
2=2 and B = 1 gives immediately the inequality stated in Theorem 2.

THEOREM 3. Let f€ X, andn=1,2,... Then f € Lpyy holds for
|2| < p(n), where

p(n)=n <n2 —2n+8+4y/(n?—2n+ 4)) —1/2

PROOF. For f € T, let p(z) be the regular function defined in E by

n—1+p(z)
—

(2.8) Sn(f(2)) =
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Here p(0) = 1 and Rep(z) > 0 in E. Logarithmic differentiation of (2.8)
and from (2.1) should yield

zp'(z)

(2.9) (n+ 1)Snn1(f(2)) =n+p(2) + n—1+p(z)°

The conclusion of the theorem follows immediately by Corollary 1 of
RUSCHEWEYH and SING [6] or Theorem 1 of YOSHIKAWA and YOSHIKAIL

[7).

COROLLARY. Takingn = i, it follows that if f € X* that f € B4
for |z] < 2~ /3.

3 — Integral operators
Let ¢ be a real number. We define h, by

1, < c i
hc(Z)_;+§mz ’ 0<|z|<1.

Let the operator L: £ — £ be defined by F = L(f), where

F(z) =cz*! ft‘f(t)dt, c>0.

Q

Then the function F' can be written in the form f(z) x h(z). We shall
refer to L as the Libera integral operator. We first give a condition of
f € T for which the function L(f) belongs to Z,.

THEOREM 4. S,(f(z)) is given by (1.3). Let f € T and satisfies
the condition

n-1 1
(3-1) Re Sn(£(2)) > n_ 2n(c+1)’

wherec >0, n=1,2,..., then the function F = L{f) € £, for F #0 in
E — {0}.
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PROOF. Since F(z) = f(z) * h.(z) it can be easily verified that
(3.2) 2(D"F(z)) = c¢D"f(2) — (c+ 1)D"F(z2).
Let w(z) be a regular function in E defined by

n+ (n - 2w(z)

(3.3) Sn(P() == o)

Here w(0) = 0 and w(2) # —1 in E. Logarithmic derivative (3.3) and
using (3.2) we obtain
n+ (n— 2)w(z)
1+w(z)
_ 2zw'(z) D1 F(2)
(n+ (n = 2w(z))(1 +w(z)) D"f(z) ~

cSal(f(2)) ==
(3.4)

We can write the identity (2.1) for F
(3.5) 2(D"F(2))' = (n — 1)D"F(z) — nD"*'F(z).
From (3.2) and (3.5), after a simple computation we get

cD"f(z) _c+(c+ 2w(z)

(36) DrF(z)  14w(z)

(3.4) in conjuktion with (3.6) gives

+ 2=24)(2) 2 zw'(2)
1+ w(z) n (1+ w(2))(c+ (c+ 2)w(2))

BT Sa(f(2) =

and the conclusion of the theorem follow from (3.7), as show in Theorem 1.
By Z*(y) we denote the class of functions f € T starlike in E — {0}
and satisfying in this region the condition

re{- e}
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COROLLARY. If we put n = ¢ = 1 in Theorem 4, we find that
L(z*(31) c =~

It is easy to show that if f € £,, then f satisfies the condition (3.1).
Thus it follows from Theorem 4 that L(%,) C £, .

More precisely we state the result in:

THEOREM 5. If f € B, then the function F = L(f) is again an
element of L,,.

COROLLARY. Substituting n =1 and n = 2 in the above theorem it
follows that if f € £* (or g), then L(f) € B* (or Bg).

THEOREM 6. Let FE€X, andc>0,n=1,2,... Let I be defined
as F' = L(f). Then f€ £, for0< |z} < /=35 The result is sharp.

PROOF. Since F € ,, we can write

1+ 2=2u(2)

$F@) = =00

(ZGE,n:l,Z,...).

where w(0) = 0, w(z) # ~1 and |w(z)] <1 in E. As in Theorem 4 we
find that

1-w(z) 22u/'(2)
1+w(e)  (+uw(E)c+ e+ 2wz’

nS,.(f(z)) ~n+1=

The conclusion of the theorem follows irnmediately as in Theorem 4 of
GOEL-SOH1 (3].
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