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On Plücker transformations of generalized

elliptic spaces

H. HAVLICEK

Riassunto: Si riconosce che le trasformazioni Plückeriane degli spazi ellittici ge-
neralizzati, esclusi quelli tridimensionali, sono indotte da collineazioni che preservano
l’ortogonalità. Si descrivono tutte le trasformazioni Plückeriane degli spazi ellittici tri-
dimensionali appartenenti ad una certa classe, che comprende gli spazi reali.

Abstract: Plücker transformations of generalized elliptic spaces with dimensions
other than three are induced by orthogonality-preserving collineations. For certain three-
dimensional elliptic spaces (including real spaces) all Plücker transformations will be
described.

1 – Introduction

If we are given a linear space with point set P, line set L and an or-

thogonality relation on its set of lines then call two lines related if they are

concurrent and orthogonal or if they are identical. A bijection of L that

preserves this relation in both directions is called Plücker transformation.

Plücker transformations of Euclidean spaces are under discussion in

[1], [2], [5]. Cf. also the survey in [14]. The crucial result, due to W.

Benz and E.M. Schröder, is that 3-dimensional spaces are very ex-
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ceptional, since only here Plücker transformations are intimately con-

nected with derivations of the ground field. For higher dimensions all

Plücker transformations arise from orthogonality-preserving collineations,

whereas Plücker transformations of Euclidean planes cannot deserve in-

terest.

In this paper we discuss Plücker transformations of generalized el-

liptic spaces, i.e. (not necessarily finite dimensional) projective spaces

with orthogonality based upon an elliptic absolute quasipolarity. For

dimensions 2, 4, 5, 6, . . . there are no Plücker transformations other

than those arising from orthogonality-preserving collineations. In every

3-dimensional generalized elliptic space there exist Plücker transforma-

tions that cannot be induced by collineations or dualities; under certain

restrictions (projective absolute polarity, Fano’s postulate, existence of

Clifford parallel lines) all Plücker transformations will be described via

the ambient space of the associated Klein quadric.

2 – Basic concepts and first results

Let (P,L) be a projective space 2 ≤ dim(P, L) ≤ ∞. Assume that π

is an elliptic quasipolarity [12], [13]. Thus π assigns to every point X of

P a hyperplane Xπ such that X /∈ Xπ. We define a mapping from the

lattice of subspaces of (P,L) into itself by setting

J :→
⋂ (

Xπ|X ∈ J )
for all subspaces J *= ∅ and ∅ :→ P .

This mapping is again written as π and is also called a quasipolarity.

Hence (P, L, π) is a generalized elliptic space with absolute quasipolarity

π [12], [13]. Every subspace J of (P,L) is skew to J π. If J is finite-

dimensional then J π is even a complement of J and putting X :→ X π ∩J
for all subspaces X of J yields an elliptic polarity of J .

We are going to define three binary relations on L. Given a, b ∈ L
then put

a ⊥ b : ⇐⇒ a ∩ bπ *= ∅
a ≈ b : ⇐⇒ a ⊥ b and a ∩ b *= ∅
a ∼ b : ⇐⇒ a ≈ b or a = b

(orthogonal lines),

(orthogonally intersecting lines),

(related lines).
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These three relations are symmetric. This follows from an axiomatic

description of the relation ≈ in [13, p. 370ff]; cf. also [12, p. 58ff].

Given lines a, b ∈ L then there is always a finite sequence

(1) a ∼ a1 ∼ . . . ∼ an ∼ b .

This is trivial when a = b. If a and b meet at a unique point X,

say, then Xπ ∩ (a ∨ b) =: a1 is a line satisfying a ∼ a1 ∼ b. If a and

b are skew then there exists a common transversal line of a and b, say

c, whence repeating the previous construction for a, c and c, b gives the

required sequence. Thus (L,∼) is a Plücker space [1, p. 199].

If µ is a collineation of (P,L) commuting with π then µ is preserving

orthogonality of lines in both directions. A Plücker transformation is a

bijective mapping ϕ : L → L preserving the relation ∼ (or, equivalently,

the relation ≈) in both directions.

Lemma 1. Let µ : P → P be a collineation such that a ∼ b implies

aµ ∼ bµ for all a, b ∈ L. Then πµ = µπ, whence µ yields a Plücker

transformation by its action on the set L.

Proof. Choose any line a ∈ L. A point X ∈ P \ a is in aπ if, and

only if, there are two distinct lines through X that are related to a. Hence

aπµ ⊂ aµπ for all lines a ∈ L. But aπµ as well as aµπ is a co-line, so that

actually aπµ = aµπ and therefore πµ = µπ. Now the last assertion is

obviously true.

If dim(P,L) = 3 then there are dualities that induce Plücker trans-

formations, e.g., the absolute polarity π. However, there are also Plücker

transformations which are by no means induced by collineations or dual-

ities. Let L1 be any subset of L such that x ∈ L1 implies xπ ∈ L1. Then

define

(2) δ : L → L ,

{
x :→ x if x ∈ L \ L1 ,

x :→ xπ if x ∈ L1 .

Such a bijection δ will be called partial π-transformation (with re-

spect to L1); it is a Plücker transformation of (L,∼), since

a ≈ b ⇐⇒ a ≈ bπ ⇐⇒ aπ ≈ b ⇐⇒ aπ ≈ bπ for all a, b ∈ L .
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The identity on L and the restriction of π to L are partial π-trans-

formations, as follows when setting L1 := ∅ and L1 := L, respectively.

For every other choice of L1 (e.g., L1 := {a, aπ}) it is easily seen that

there exist two non-orthogonal concurrent lines x ∈ L \ L1, y ∈ L1.

Then xδ = x and yδ = yπ are skew lines, whence δ cannot arise from a

collineation or duality.

In contrast to these examples we establish

Theorem 1. Let dim(P,L) = 2 or 4 ≤ dim(P, L) ≤ ∞. Then

every bijection ϕ : L → L such that a ∼ b implies aϕ ∼ bϕ for all a, b ∈ L
is induced by a collineation µ of (P,L) such that πµ = µπ. Hence ϕ is

already a Plücker transformation.

Proof. (a) Let dim(P, L) = 2. Given a point X and a line a then

X ∈ a is equivalent to Xπ ≈ a. Hence

µ : P → P , X :→ Xπϕπ ,

is a collinearity preserving bijection and therefore a collineation. By

construction aµ = aϕ for all a ∈ L and, by Lemma 1, πµ = µπ.

(b) Let dim(P, L) ≥ 4. We claim that ϕ is mapping concurrent lines

to concurrent lines. Assume, to the contrary, that there exist two distinct

concurrent lines a, b ∈ L such that aϕ, bϕ are skew. By dim(P,L) ≥ 4

there exist two π-conjugate points C1, C2 ∈ (a ∨ b)π, i.e. C1 ∈ Cπ
2 so that

also C2 ∈ Cπ
1 .

Let cj := Cj ∨ (a ∩ b)
(
j ∈ {1, 2})

. Therefore c1 ≈ c2 and a ≈ cj ≈ b(
j ∈ {1, 2})

. Since aϕ and bϕ are skew, cϕ
1 and cϕ

2 are common transversal

lines of aϕ and bϕ. But cϕ
1 ≈ cϕ

2 , so that the point cϕ
1 ∩ cϕ

2 is either on aϕ

or on bϕ; say cϕ
1 ∩cϕ

2 ∈ aϕ. There exists a line b1 ⊂ (a∨b) such that b ⊥ b1

and b ∩ b1 = a ∩ b. Therefore {b, b1, c1, c2} is a set of mutually related

lines. However, {bϕ, cϕ
1 , cϕ

2 } is already a maximal set of mutually related

lines, since these three lines are coplanar and not concurrent. Hence

b1 ∈ {b, c1, c2}, a contradiction.

By dim(P,L) ≥ 4 and [4, p. 328-329], every bijection of L that takes

intersecting lines to intersecting lines is induced by a mapping µ : P −→ P
as follows:

(A ∨ B) :−→ Aµ ∨ Bµ for all A, B ∈ P, A *= B .
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Moreover, this µ is injective and is preserving collinearity and non-

collinearity of points. (In [4] it is stated that µ is also surjective and hence

a collineation. There is, however, a gap in the proof of surjectivity.)

We are applying this result on the given bijection ϕ in order to show

that ϕ is mapping skew lines to skew lines: Assume, to the contrary, that

there exist skew lines a, b ∈ L with aϕ ∨bϕ =: E being a plane. Each point

X ∈ a ∨ b is on some line x intersecting a and b at distinct points. Thus

Xµ ∈ xϕ ⊂ E , since xϕ is meeting aϕ and bϕ at distinct points, too. We

read off from this that (a ∨ b)µ ⊂ E . By dim(P, L) ≥ 4, there exist four

concurrent lines c1, . . . , c4 such that ci ≈ cj (i *= j) with c1, c2, c3 ⊂ a ∨ b.

But cϕ
1 , cϕ

2 , cϕ
3 are coplanar, mutually related and distinct, so that they

form a trilateral. This contradicts the existence of cϕ
4 ≈ cϕ

i (i = 1, 2, 3).

Next we establish that µ is surjective: Since ϕ is surjective, for each

point Y of P there exist lines a, b ∈ L such that Y = aϕ ∩ bϕ. But then

a and b are not skew, so that Y = (a ∩ b)µ. Thus µ is a collineation.

Finally, by Lemma 1, πµ = µπ.

3 – Orthogonal transversal lines in elliptic 3-spaces

In discussing 3-dimensional spaces we shall assume that (P,L) is a

Pappian projective space satisfying Fano’s postulate and that its absolute

polarity π is projective(1). It will be convenient to let (P, L) be a projec-

tive space on a 4-dimensional vector space V over a commutative field F .

We shall emphasize this by writing P(V ) and L(V ) rather than P and

L, respectively. The absolute polarity π is induced by a non-degenerate

symmetric bilinear form β : V × V → F satisfying (a, a)β *= 0 for all

a ∈ V \ {0}. But β is determined by π only up to a non-zero factor in

F , so we may assume that (b0, b0)
β = 1 for some b0 ∈ V . There exists an

ordered basis (b0, b1, b2, b3) of V such that

(3)
(
(bi, bj)

β
)

= diag(1, e1, e2, e3) ∈ GL(4, F ) .

We observe that
(P(V ),L(V ), π

)
fits into the concept of an elliptic

spaces as defined in [17] via a metric vector space(2). The group of all

(1)Cf., however, Remark 3 at the end of this section.
(2)Elliptic spaces on metric vector spaces over fields of characteristic 2 are not within
our discussion, since their orthogonality is symplectic (possibly even degenerate).
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collineations of (P, L) commuting with π will be written as PΓO(P, π).

Denote by V ∧V the 2-fold wedge product of V with itself and write

P(V ∧ V ) for the (5-dimensional) projective space on V ∧ V . The well

known Klein mapping

γ : L(V ) → P(V ∧ V ) , Fa ∨ Fb :→ F (a ∧ b)

is injective and L(V )γ =: Γ is the Klein quadric. The quadratic form

q : V ∧ V → F ,
∑

i<j

xijbi ∧ bj :→ x01x23 − x02x13 + x03x12 (xij ∈ F )

determines the Klein quadric(3). The polarity associated to the Klein

quadric will be denoted by κ. The absolute polarity π of (P,L) yields a

projective collineation α of P(V ∧ V ) characterized by aγα = aπγ for all

a ∈ L(V ). We shall refer to α as the antipodal collineation(4). No point

of Γ is α-invariant and α is an involution.

Given lines a, b ∈ L(V ) then define

O(a, b) :=
{
x ∈ L | a ≈ x and b ≈ x

}
.

The set O(a, b) is formed by all common transversal lines of a, b, aπ, bπ

so that O(a, b) = O(b, a) = O(a, bπ). It is easily seen that #O(a, b) ≥ 3

holds if, and only if, either a, aπ, b, bπ are four distinct lines of a regulus

or b ∈ {a, aπ}.

Lemma 2. Given two lines a ∈ L(V ) and b ∈ L(V ) \ {a, aπ} then

#O(a, b) ≥ 3 holds if, and only if, aγ ∨ bγ carries an α-invariant point.

Proof. (a) Suppose that #O(a, b) ≥ 3. As a, aπ, b, bπ are four dis-

tinct lines of a regulus, {aγ , aπγ , bγ , bπγ} is plane quadrangle and

I := (aγ ∨ bγ) ∩ (aπγ ∨ bπγ)

turns out to be an α-invariant point.

(3)See, e.g., [1], [7], [8] or [16] for results on the Klein quadric that will be used without

further references.
(4)See footnote 7 for a motivation of this name.
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(b) Let I ∈ aγ ∨bγ be an α-invariant point. We deduce (aγ ∨bγ)∩Γ =

{aγ , bγ} from I /∈ Γ. Thus, by b /∈ {a, aπ}, the line aγ ∨ bγ cannot be α-

invariant. Hence {aγ , aγα, bγ , bγα} is a plane quadrangle with I being one

of its diagonal points. The intersection of the Klein quadric Γ with the

plane aγ ∨ aγα ∨ bγ cannot be a cross of lines, since no point of Γ is fixed

under α; thus {aγ , aγα, bγ , bγα} is part of a regular conic on the Klein

quadric. This in turn shows that a, aπ, b, bπ are in one regulus, whence

#O(a, b) ≥ 3, as required.

The antipodal collineation α is induced by an f ∈ GL(V ∧ V ) such

that
b0 ∧ b1 :→ e1b2 ∧ b3 ,

b0 ∧ b2 :→ −e2b1 ∧ b3 ,

b0 ∧ b3 :→ e3b1 ∧ b2 ,

b2 ∧ b3 :→ e2e3b0 ∧ b1 ,

b1 ∧ b3 :→ −e1e3b0 ∧ b2 ,

b1 ∧ b2 :→ e1e2b0 ∧ b3 .

The characteristic polynomial of f is (X2−e1e2e3)
3 ∈ F [X]. Hence α

has an invariant point if, and only if, e1e2e3 ∈ F (2), i.e. the set of squares

in F .

Up to Remark 2 at the end of this section it is assumed that there

exists a square root
√

e1e2e3 ∈ F of e1e2e3. Then

c0 := e2e3b0 ∧ b1 +
√

e1e2e3b2 ∧ b3 ,

c1 := −e1e3b0 ∧ b2 +
√

e1e2e3b1 ∧ b3 ,

c2 := e1e2b0 ∧ b3 +
√

e1e2e3b1 ∧ b2 ,

c3 := e2e3b0 ∧ b1 − √
e1e2e3b2 ∧ b3 ,

c4 := −e1e3b0 ∧ b2 − √
e1e2e3b1 ∧ b3 ,

c5 := e1e2b0 ∧ b3 − √
e1e2e3b1 ∧ b2 ,

is an eigenbasis of V ∧ V with respect to f and the distinct planes(5)

EL := Fc0 ∨ Fc1 ∨ Fc2 , ER := Fc3 ∨ Fc4 ∨ Fc5

are fixed pointwise under α. There are no α-invariant points other than

those in EL or ER. We shall frequently use the projections

(5)
λ : P(V ∧ V ) \ EL → ER , X :→ (X ∨ EL) ∩ ER ,

ρ : P(V ∧ V ) \ ER → EL , X :→ (X ∨ ER) ∩ EL .

(5)The indices L and R stand for “left” and “right”, respectively, and are arbitrarily
assigned to these two planes.
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They are induced by f−√
e1e2e3 id and f+

√
e1e2e3 id, respectively. If

X, Xα are distinct antipodal points in P(V ∧V ) then X ∨Xα = Xλ ∨Xρ.

By (5) and Lemma 2,

(
#O(a, b) ≥ 3

) ⇐⇒ (aγλ = bγλ or aγρ = bγρ) for all a, b ∈ L(V ) .

Lines a, b ∈ L(V ) will be called Clifford parallel
(
a ‖ b

)
if O(a, b) ≥ 3,

left parallel
(‖L

)
if aγλ = bγλ and right parallel

(‖R

)
if aγρ = bγρ. Left

(right) parallelism is an equivalence relation on L(V ). We adopt the

notations

SL(a) :=
{
x ∈ L(V )|x‖La

}
, SR(a) :=

{
x ∈ L(V )|x‖Ra

}
.

In subsequent results the terms “left” and “right” may be inter-

changed without further notice. We start with an almost trivial

Lemma 3. Let a ∈ L(V ). Then SL(a) is an elliptic linear congru-

ence of lines (regular spread).

Proof. The subspace aγ ∨ EL ⊂ P(V ∧ V ) is 3-dimensional and

SL(a)γ = (aγ ∨ EL) ∩ Γ is a quadric that cannot contain a line, since

distinct left parallel lines are skew. The point aγ ∈ SL(a)γ is regular(6),

because of (aγ ∨ aπγ) ∩ EL /∈ Γ. Hence quadric SL(a)γ is elliptic so that

SL(a) is an elliptic linear congruence.

We infer from Eκ
L = ER and EL ∩ Γ = ∅ that κ induces an elliptic

projective polarity κL in EL by setting X :→ X κ ∩ EL for all subspaces

X ⊂ EL. Hence EL becomes an elliptic plane(7). Two points of EL are

κL-conjugate if, and only if, they are κ-conjugate.

Lemma 4. Given lines a, b ∈ L(V ) then a ≈ b holds if, and only if,

aγλ, bγλ are κR-conjugate and aγρ, bγρ are κL-conjugate.

(6)A point X of a quadric is regular if the tangent space at this point is a hyperplane.
This will be true if at least one line through X meets the quadric in exactly two points.
(7)The elliptic quadric SL(a)γ discussed in the proof of Lemma 3 may be seen as a
sphere in the Euclidean 3-space that arises from aγ ∨ EL by regarding EL as its plane
at infinity and κL as its absolute polarity. The midpoint of SL(a)γ is (aγ ∨ EL) ∩ ER,
whence antipodal points on SL(a)γ (with respect to α) are antipodal points in the

usual sense.
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Proof. In P(V ∧ V ) we shall consider the lines

ma := aγλ ∨ aγρ = aγ ∨ aπγ , mb := bγλ ∨ bγρ = bγ ∨ bπγ .

If a ≈ b then each of a, aπ is a common transversal line of b and bπ.

Hence each of aγ , aπγ is κ-conjugate to bγ and bπγ which in turn implies

that ma ⊂ mκ
b so that aγλ ∈ bγλκ and aγρ ∈ bγρκ, as required.

Since each point of EL is κ-conjugate to all points of ER, the first part

of the proof is easily reversed.

Lemma 5. Suppose that a ≈ b holds for two lines.

(I) If x ∈ SL(a) and y ∈ SL(b) are concurrent then x ≈ y.

(II) Define

RL :=
{
x ∈ SL(a)|x ≈ y′ for some y′ ∈ SR(b)

}
,

RR :=
{
y ∈ SR(b)|y ≈ x′ for some x′ ∈ SL(a)

}
.

Then RL and RR are mutually opposite reguli. Therefore x ∈ RL

and y ∈ RR imply that x ≈ y.

Proof. (I) We infer x *= y from a *= b. Write F ⊂ L(V ) for the

only ruled plane (or, dually, the only star of lines) containing x and y.

This F may be regarded as a projective plane with “point set” F and the

pencils in F being the “lines”. From this point of view γλ|F : F → ER

is a collineation. By Lemma 4 and by slight modification of Lemma 1,

we obtain that x′ ≈ y′ is equivalent to x′γλ, y′γλ being κ-conjugate for all

x′, y′ ∈ F . But xγλ = aγλ and yγλ = bγλ are κ-conjugate by Lemma 4,

whence x ≈ y.

(II) We ask for all pairs (x, y) ∈ SL(a) × SR(b) satisfying x ≈ y. By

Lemma 4 this is equivalent to

xγρ ∈ yγρκ = bγρκ and yγλ ∈ xγλκ = aγλκ .

This in turn may be written as

xγ ∈ SL(a)γ ∩ bγρκ = Rγ
L and yγ ∈ SR(b)γ ∩ aγλκ = Rγ

R ,

where RL ⊂ SL(a) and RR ⊂ SR(b) are reguli, since their γ-images are

regular conics containing {aγ , aπγ} and {bγ , bπγ}, respectively. In order
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to establish that RL and RR are mutually opposite, it is sufficient to

show that the planes spanned by Rγ
L and Rγ

R are polar with respect to

κ. Using the law of modularity in the lattice of subspaces of P(V ∧ V )

yields

span(Rγ
L)κ =

(
(aγλ ∨ EL) ∩ bγρκ

)κ
= aγλκ ∩ (ER ∨ bγρ) = span(Rγ

R) .

Remark 1 Instead of the mapping γλ : L(V ) → ER one could also

assign to every line a ∈ L(V ) its only left parallel line through some

fixed point of P(V ) or, dually, in a fixed plane of P(V ). This gives a

non-injective idempotent mapping L(V ) → L(V ) that is preserving the

relation ∼. Cf. [20], where this is discussed for real elliptic 3-spaces.

Remark 2 Recall the settings at the beginning of section 3. The dis-

criminant of the form β (with respect to any basis) is a square if, and only

if, e1e2e3 ∈ F (2). If e1e2e3 ∈ F (2) then we shall speak of a 3-dimensional

classical elliptic space. One may easily show that
(P(V ),L(V ), ‖L, ‖R

)

is a projective double space, whence it can be described in terms of a

quaternion skew field with centre F ; cf. [9, p. 75].

Remark 3 We discuss some modifications of the settings stated at

the beginning of section 3 when
(P(V ),L(V )

)
is a 3-dimensional Pappian

projective space over F .

If π is a non-projective elliptic polarity or if F is a field with charac-

teristic 2, then a (possibly non-projective) antipodal collineation α may

be defined in an analogous way and Lemma 2 remains true.

If π is projective and charF = 2 then all results on π, β, α and f up

to formula (4) remain true. However, (4) is non longer basis of V ∧ V . If

α has an invariant point then all α-invariant points form a plane E , say.

The linear mapping

ϑ : P(V ∧ V ) \ E → E , X :→ (X ∨ Xα) ∩ E ,

induced by f +
√

e1e2e3 id, is replacing the projections (5). Defining

Clifford parallel lines as before yields that a‖b is equivalent to aγϑ = bγϑ,

whence ‖ is an equivalence relation. We mention without proof that(P(V ),L(V ), ‖)
is a projective parallelogram space so that it permits an

algebraic description in terms of a pure separable extension field of F [9,

p. 75].



[11] On Plücker transformations of generalized etc. 49

4 – Plücker transformations of classical elliptic 3-spaces

At first we are going to discuss the invariance of left and right paral-

lelism under Plücker transformations:

Theorem 2. Let
(P(V ),L(V ), π

)
be a 3-dimensional classical el-

liptic space. Every Plücker transformation ϕ : L(V ) → L(V ) has the

following properties:

(I) Clifford parallelism of lines is preserved.

(II) aπϕ = aϕπ for all a ∈ L(V ).

(III) If two left parallel lines a ∈ L(V ), b ∈ L(V ) \ {a, aπ} go over

to left parallel lines, then left and right parallelism of lines is

invariant; otherwise left and right parallelism is interchanged.

Proof. (I) This is trivial by definition.

(II) Note that aπ can be characterized as the only line y ∈ L(V )\{a}
such that x ≈ a is equivalent to x ≈ y for all x ∈ L(V ).

(III) We shall confine our attention to aϕ‖Lbϕ. Choose any line x ∈
SL(a) = SL(b). Hence xϕ is parallel to a and b. There are two possibilities:

If xϕ‖Laϕ or xϕ‖Lbϕ then xϕ ∈ SL(aϕ), as required. Otherwise xϕ‖Raϕ

and xϕ‖Rbϕ, whence aϕ‖Rbϕ, so that aπϕ = bϕ, an absurdity. Repeating

these arguments for ϕ−1 establishes that SL(aϕ) = SL(a)ϕ is a left parallel

class.

Next suppose c ≈ a. The arguments from above show that SL(c)ϕ is

either a left or right parallel class. For every line x ∈ SL(a) there exists

a concurrent line y ∈ SL(c) by Lemma 3, whence x ≈ y follows from

Lemma 4. But this property carries over to SL(a)ϕ and SL(c)ϕ. Thus,

by Lemma 4, SL(c)ϕ is a left parallel class. Finally, by virtue of (1), we

may drop the assertion c ≈ a, whence SL(c)ϕ is a left parallel class for all

c ∈ L(V ).

By Theorem 2 (III), a Plücker transformation ϕ : L(V ) → L(V ) is

either direct or opposite, i.e. preserving or interchanging left and right

parallelism, respectively. All partial π-transformations are direct. The

product of an elliptic reflection (a harmonic homology with centre C ∈
P(V ), say, and axis Cπ) with an opposite Plücker transformation yields

a direct Plücker transformation. Thus we may restrict our attention to

direct transformations.
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We introduce a definition: Two collineations ζ : EL → EL and η :

ER → ER are called admissible if they satisfy the following conditions:

(Ad1) ζ and η are commuting with κL and κR, respectively.

(Ad2) Whenever a line X ∨ Y (X ∈ EL, Y ∈ ER) has non-empty inter-

section with the Klein quadric Γ then (Xζ ∨Y η)∩Γ is non-empty

too.

Theorem 3. Let
(P(V ),L(V ), π

)
be a 3-dimensional classical el-

liptic space.

(I) If ϕ : L(V ) → L(V ) is a direct Plücker transformation then

ϕL : EL → EL , aγρ :→ aϕγρ and

ϕR : ER → ER , aγλ :→ aϕγλ
(
a ∈ L(V )

)

are admissible collineations.

(II) A homomorphism from the group of direct Plücker transfor-

mations of
(L(V ),∼ )

into PΓL(EL) × PΓL(ER) is given by

ϕ :→ (ϕL, ϕR). The kernel of this homomorphism is formed by

all partial π-transformations.

(III) Let ζ : EL →EL and η : ER →ER be two admissible collineations.

Then there exists a direct Plücker transformation ϕ : L(V ) →
L(V ) such that ϕL = ζ, ϕR = η.

Proof. (I) The γ-image of a ruled plane is a plane on the Klein

quadric. Thus Γρ = EL. The fibres of ρ|Γ are exactly the Klein images

of the equivalence classes with respect to right parallelism so that ϕL is

a well-defined bijection by Theorem 2 (III). Applying Lemma 4 yields

that ϕL takes κL-conjugate points to κL-conjugate points. Finally, by

the dual of Theorem 1, ϕL is a collineation commuting with κL. These

results carry over to ϕR.

If we are given points X ∈ EL, Y ∈ ER such that (X ∨ Y ) ∩ Γ *= ∅
then

X = aγρ = aπγρ , Y = aγλ = aπγλ

for some line a ∈ L(V ), say. Joining the ϕL-image of X and the ϕR-image

of Y yields a line carrying the points aϕγ , aπϕγ of Γ.
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(II) This is obviously true.

(III) By the axiom of choice there exists a subset L ⊂ L(V ) such that

L ∪ Lπ
= L(V ) , L ∩ Lπ

= ∅ .

We define a mapping ϕ: L(V ) → L(V ) as follows:

• If a ∈ L then there exists a unique line in L, say b, such that

(aγρζ ∨ aγλη) ∩ Γ = {bγ , bπγ} .

Let aϕ := b.

• If a ∈ L(V ) \ L then aπ ∈ L and we set aϕ := aπϕπ.

This mapping ϕ has the required properties by Lemma 4.

Theorem 3 is a generalization of a result from the kinematics of real

elliptic 3-spaces(8) or, in algebraic terms, a result on an isomorphism of

classical groups; cf., e.g., [3, p. 6ff], [6, p. 107ff], [7, p. 252], [11, p. 323],

[19, p. 18ff] for details and further references.

To sum up, we have shown that for a 3-dimensional classical elliptic

space all Plücker transformations of
(L(V ),∼ )

can be obtained according

to the proof of Theorem 3, possibly followed by an elliptic reflection.

Now we are going to express the previous results in algebraic terms.

Recall the eigenbasis (4) of the linear mapping f inducing the antipodal

collineation α. Write

EL := span{c0, c1, c2} , ER := span{c3, c4, c5} .

In the sequel we shall represent the Klein quadric by the quadratic

form

Q := e1(
√

e1e2e3)
−1q

and we shall change to the new basis

d0 := (
√

e1e2e3)
−1c0 ,

d1 := e−1
1 c1 ,

d2 := e−1
1 c2 ,

d3 := (
√

e1e2e3)
−1c3 ,

d4 := e−1
1 c4 ,

d5 := e−1
1 c5

(8)In that context instead of two elliptic planes two Euclidean spheres are used and the
lines of L(V ) are subject to orientation. Dropping orientation of lines forces to identify

antipodal points on those spheres and yields two elliptic planes.
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of V ∧ V . Then

( 5∑

j=0

xjdj

)Q

= x2
0 + e3x

2
1 + e2x

2
2 − x2

3 − e3x
2
4 − e2x

2
5 (xj ∈ F ) .

Lemma 6. Two collineations ζ : EL → EL and η : ER → ER are

admissible if, and only if, they can be induced by mappings g ∈ ΓL(EL)

and h ∈ ΓL(ER), respectively, such that the following conditions hold true

for some constant k ∈ F \ {0}:
(I) xgQ = k(xQG) for all x ∈ EL.

(II) xhQ = k(xQH) for all x ∈ ER.

(III) If Fa∈ EL, Fb ∈ ER and −(bQ)−1aQ ∈F (2) then −(bQH)−1aQG ∈
F (2).

Here G, H ∈ Aut(F ) denote the companion automorphisms of g, h,

respectively.

Proof. (a) Let ζ and η be admissible. Choose any semilinear map-

ping g inducing ζ assume that g belongs to G ∈ Aut(F ). Since ζ is

commuting with κL, there exists a constant k ∈ F \ {0} such that (I)

holds true. Similarly η can be induced by a mapping h′ ∈ ΓL(ER) with

companion automorphism H ∈ Aut(F ) satisfying

xh′Q = l(xQH) for all x ∈ ER

and some constant element l ∈ F \ {0}.

Given points Fa ∈ EL and Fb ∈ ER then (Fa ∨ Fb) ∩ Γ *= ∅ holds

if, and only if, the equation aQ + bQx2 = 0 has a solution in F , which in

turn is equivalent to

(6) −(bQ)−1aQ ∈ F (2) .

Applying this condition to Fd0 and Fd3 yields −(dQ
3 )−1dQ

0 = 1. Since

ζ and η are admissible, (Fd0)
ζ ∨ (Fd3)

η too has common points with Γ

or, equivalently,

−(dh′Q
3 )−1dgQ

0 = l−1k ∈ F (2) .
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But this allows to replace h′ by the semilinear mapping

h :=
√

l−1kh′

so that (II) is fulfilled. Finally, (6) implies
(
(Fa)ζ ∨ (Fb)η

) ∩ Γ *= ∅,

whence

−(bhQ)−1agQ = −k−1(bQH)−1kaQG ∈ F (2) .

(b) If g and h are given subject to (I), (II), (III), then the induced

collineations are easily seen to be admissible.

Theorem 4. Let
(P(V ),L(V ), π

)
be a 3-dimensional classical el-

liptic space and let ϕ : L(V ) → L(V ) be a direct Plücker transforma-

tion. There exists a partial π-transformation δ : L(V ) → L(V ) such that

ϕδ is induced by a collineation µ ∈ PΓO
(P(V ), π

)
if, and only if, the

collineations ϕL : EL → EL and ϕR : ER → ER (described in Theorem 3)

belong to the same automorphism of the ground field (9).

Proof. (a) If δ and µ are existing then, by Lemma 1, µ ∈
PΓO

(P(V ), π
)
. There is a unique automorphic collineation σ of the Klein

quadric such that aµγ = aγσ for all a ∈ L(V ). Moreover, σ and the

antipodal collineation α are commuting. We infer Eσ
L = EL and Eσ

R = ER

from ϕδ being direct. Hence

ϕL = (ϕδ)L = σ|EL and ϕR = (ϕδ)R = σ|ER

so that ϕL and ϕR belong to the same automorphism of the ground field.

(b) Assume that ϕL and ϕR belong to the automorphism of the

ground field. Thus, according to Lemma 6, we may choose semilin-

ear mappings g ∈ ΓL(EL) and h ∈ ΓL(ER) with the same compan-

ion automorphism G = H. There exists a unique semilinear mapping

s ∈ ΓL(V ∧ V ) extending both g and h. Since V ∧ V = EL ⊕ ER is an

orthogonal direct sum (with respect to the bilinear form associated to

Q), we obtain

xsQ = k(xQG) for all x ∈ V ∧ V .

(9)An example of two admissible collineations with different companion automorphisms
is given at the end of the paper.
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Therefore the mapping s gives rise to an automorphic collineation σ,

say, of the Klein quadric. We observe that σ and α are commuting. Hence

there exists either a collineation or a duality, say ω, of
(P(V ),L(V )

)

commuting with the absolute polarity π such that aωγ = aγσ for all

a ∈ L(V ). If ω is a collineation then set µ := ω, else put µ := πω. So

under all circumstances we obtain a collineation µ ∈ PΓO
(P(V ), π

)
such

that

{aµ, aπµ} = {aϕ, aπϕ} for all a ∈ L(V ) .

Thus there exists a partial π-transformation δ with required proper-

ties.

Since every opposite Plücker transformation equals the product of an

elliptic reflection and a direct Plücker transformation, Theorem 4 imme-

diately implies

Theorem 5. Let
(P(V ),L(V ), π

)
be a 3-dimensional classical el-

liptic space such that every automorphism of the ground field F is trivial.

Then for every Plücker transformation ϕ : L(V ) → L(V ) there exists a

partial π-transformation δ : L(V ) → L(V ) such that ϕδ is induced by a

(necessarily projective) collineation µ ∈ PΓO
(P(V ), π

)
.

Theorem 5 describes, e.g., the Plücker group of the real elliptic 3-

space.

Remark 4 Let F be a commutative Pythagorean field. Then every

sum of non-zero squares in F is again a non-zero square in F . Following

[1, p. 73ff] we discuss the elliptic space on V = F 4 with an absolute

polarity π induced by the standard bilinear form. Thus (b0, b1, b2, b3) can

be chosen as the standard basis, so that e1 = e2 = e3 = 1. Hence

( 5∑

j=0

xjdj

)Q

= x2
0 + x2

1 + x2
2 − x2

3 − x2
4 − x2

5 (xj ∈ F ) ,

xQ ∈ F (2) for all x ∈ EL , −yQ ∈ F (2) for all y ∈ ER .

Now, by Lemma 6, condition (Ad2) in the definition of admissible

collineations is automatic.
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We note the following consequence: Write Lπ(V ) for the set of un-

ordered pairs {a, aπ} where a ∈ L(V ). Then

ι : Lπ(V ) → EL × ER , {a, aπ} :→ (aγρ, aγλ)

is a bijection. EL × ER may be regarded as the Corrado Segre product

space of the projective planes EL and ER (cf. [18, p. 211], [15]) and,

by virtue of ι−1, we obtain an isomorphic partial line space with “point

set” Lπ(V ). Two “points” {a, aπ}, {b, bπ} ∈ Lπ(V ) are “collinear” if, and

only if, the lines a, b ∈ L(V ) are Clifford parallel. It is immediate that

all Plücker transformations of
(L(V ),∼ )

induce automorphisms of this

partial line space by their action on Lπ(V ).

Remark 5 The field IR((T )) of formal Laurent series with real co-

efficients is Pythagorean (cf., e.g., [10, p. 204]) and admits a non-trivial

automorphism G taking T to T + 1. Defining

g : EL → EL ,
2∑

j=0

xjdj :→
2∑

j=0

xG
j dj

(
xj ∈ IR((T ))

)

and letting h be the identity on ER, yields a direct Plücker transforma-

tion that does not permit a factorization into an orthogonality-preserving

collineation and a partial π-transformation.
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