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za” e C.N.R. – 2-6 ottobre 1995), nella giornata dedicata ad Olga Oleinik in occasione
del suo settantesimo compleanno.

In esso si passa in rassegna la produzione scientifica della Oleinik con particolare
riferimento a quattro settori, molto importanti nel campo delle equazioni a derivate
parziali, che presentano tuttora un notevole interesse, e nei quali il suo contributo è
stato fondamentale. Essi sono:

1) la teoria delle soluzioni discontinue delle equazioni e dei sistemi di equazioni iper-
bolici delle leggi di conservazione;

2) il problema di Stefan relativo ai cambiamenti di fase;
3) le equazioni a derivate parziali lineari del secondo ordine con forma caratteristica

non negativa;
4) l’individuazione di classi di equazioni e di sistemi di equazioni a derivate parziali

le cui soluzioni sono analitiche.

Abstract: The paper is a survey of scientific work of Olga Oleinik with particular
regard to four arguments:

1) discontinuous solutions of hyperbolic conservation equations or systems;
2) Stefan’s phase-transitions problem;
3) partial linear differential equations with non negative characteristic form;
4) determination of classes of partial differential equations or systems, with analytic

solutions.
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1 – Introduction

First of all I would like to thank the “Organizing Committee” for

the invitation to give a lecture on the scientific work of Olga Oleinik . I

am very glad and honored for that, not only because she is a worldwide

outstanding mathematician, but also because of her friendly relations

with the Italian mathematical community.

O. Oleinik was born in Matusov, a town in the region of Kiev, on the

second of july, 1925. After one year at the Perm’ University, she moved

to the Moscow State University, where she completed her mathematical

studies and obtained the Candidate’s degree in 1950 and the Doctor’s

degree in 1954, having as scientific advisor I. Petrowsky. From 1950 and

up to now she has been working in the Chair of differential equations at

the Moscow State University, first as an assistent professor, afterwards

as an associate professor and finally, from 1955, as a full professor. Since

1973 she is the head of the Chair succeeding I. Petrowsky.

The mathematical work of O. Oleinik is very wide and deep: more

than 340 papers and 8 books; it is impossible to give a satisfactory de-

scription of it in a short time. Therefore I shall limit myself to describe

with some details only some of her researches and to mention the oth-

ers. The choice I made depends on my mathematical knowledge and

it does not mean that these researches are the most important or the

deepest. Anyway I hope to succeed in giving you an idea of the ex-

ceptional quality of the scientific work of O. Oleinik both for the im-

portance of the results and for the deepness and the difficulty of the

used techniques. For a more extensive exposition and a complete list

of the publications I refer to the two following papers: the first one by

V.I. Arnold, M.J. Vishik, Ju. V. Egorov, A.S. Kalashnikov, A.V. Kol-

mogorov, S.P. Novikov, S.L. Sobolev in the “Uspehi” 1985, the second by

N.S. Bakhvalov, S.P. Novikov, A.T. Fomenco in “Uspehi” 1995.

The first works of O. Oleinik, some of them carried out in collabo-

ration with I. Petronsky, concern some topological problems related to

the sixteenth Hilbert’s problem and they give remarkable results (the es-

timates for the Euler characteristic of real algebraic manifolds, so called

the Petrowsky-Oleinik inequalities [2], the estimates for the Betti num-

bers [3], the topology of real algebraic curves on an algebraic surface [4]),

which have served as a base for subsequent studies, in particular of V.I.

Arnold.
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But all the remaining part of her production concerns the field of par-

tial differential equations and its applications. The title of her Doctoral

thesis was “Boundary-value problems for partial differential equations

with a small parameter by the highest derivatives and the Cauchy prob-

lem in the large for nonlinear equations” (a summary was published in

[8]). Moreover one of her first and meaningful results was an elementary

proof of a famous lemma (usually called Hopf’s lemma) on the sign of

the derivative, along a direction non tangent to the boundary, of the so-

lution of a second order linear elliptic equation, at a boundary extremum

point [5].

In the following sections we shall consider O. Oleinik researches con-

cerning:

1) the theory of discontinuous solutions of nonlinear hyperbolic equa-

tions of conservations laws (§ 2);

2) the Stefan problem (§ 3);

3) the linear second order P.D.E. with non negative characteristic form

(§ 4);

4) the analiticity of the solutions of linear P.D.E. and systems of P.D.E.

(§ 5);

Finally in § 6 we shall list, with some remarks, the other researches.

2 – Discontinuous solutions of P.D.E. and systems of P.D.E. of

conservation laws

Equations and systems of conservation laws were studied since a long

time not only by mathematicians (S.D. Poisson, E.S. Stokes, B. Riemann,

W.J.U. Rankine, H. Hugoniot are some of the most famous names). But

the interest of the mathematicians for a rigorous mathematical theory

dates from the period during and immediately after the second world

war, thanks to scientists as R. Courant, K. Friedrichs, J. Von Neumann,

H. Weyl. Starting from a paper of E. Hopf (in Comm. Pure Appl. Math.

1950), the theory has been developed in the years 54-57 by O. Oleinik

and P.D. Lax, who can be consider as its “founders”.

In order to explain Oleinik’s work in this field (see in particular

[6]-[13], [16], [17], [26]), I shall limit myself to consider the simplest but

in any case very meaningful case of the Cauchy problem for a first order
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equation in one space variable

(2.1)
∂u

∂t
+

∂f(u)

∂x
= 0 , u(x, 0) = u0(x)

in the domain

Ω = {0 ≤ t ≤ T < ∞ , −∞ < x < +∞} .

First let me suppose that f is a function from IR to IR, sufficiently smooth

and convex and u0 is a measurable bounded function from IR to IR. Since

the beginning of the “fifthies” it was clear that the classical theory of the

characteristics curves was inadeguate to obtain solutions in “large”, with

possible discontinuities, as required for the applications, in particular to

gas-dynamics. It was necessary to overcome the idea of classical solutions,

as it was made for the linear P.D.E. Therefore if we want to write the

equation in the distribution sense in Ω, it is natural to introduce the

following definition of weak solution of (2.1).

Definition 1. A bounded measurable function u in Ω is a weak

solution of (2.1) if we have

(2.2)

∫

Ω

(
u

∂ϕ

∂t
+ f(u)

∂ϕ

∂x

)
dx dt +

∫ +∞

−∞
u0(x)ϕ(x, 0) dx = 0

for any function ϕ sufficiently smooth in Ω, with compact support and

ϕ(x, T ) = 0.

Definition 1 allows to consider discontinuous solutions and also to

find again the “Rankine-Hugoniot” jump condition, still shown for some

concrete gas-dynamics problems. More precisely: if u(x, t) is a classical

solution in Ω, except along a regular curve x = x(t) (0 ≤ t ≤ T ), where

u can have a jump (as function of x, for every fixed t) given by u+ − u−,

u+ = u(x(t) − 0, t), u− = u(x(t) + 0, t), the jump condition says that

(2.3)
dx

dt
=

f(u+) − f(u−)

u+ − u−

and gives the speed of propagation of the discontinuity along the curve

as function of the jump.
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Nevertheless, even if we consider only discontinuous solutions of this

type, condition (2.3) does not imply the uniqueness of the solution of (2.2)

(a simple example is given by the Burgers equation). Therefore we have

to find a new “admissibility condition”, significant from the physical point

of view. This condition is exactly “Oleinik’s entropy condition”, which

express the growth of the entropy along the discontinuity on the curve

x = x(t)

(2.4) f ′(u+) ≤ dx

dt
≤ f ′(u−) .

Conditions (2.3) and (2.4) characterize the so called “shocks” and can

be used for a new definition of “weak solution” of problem (2.1). The

“Oleinik” condition indeed can also be written in the following form,

which can be applied to every measurable bounded function u; there

exists a suitable continuous function K(t) for 0 < t ≤ T such that

(2.5)

∫ +∞

−∞

[∂ψ

∂t
u + K(t)ψ

]
dx ≥ 0

for any t > 0 and any smooth and non negative function ψ in Ω. Therefore

following O. Oleinik, we can give the following new definition:

Definition 2. A bounded measurable function u(x, t) in Ω is called

weak solution of (2.1) if it satisfies (2.2) and (2.5).

Using this new definition O. Oleinik proves the uniqueness theorem

for (2.1) and moreover she proves that, if u and v are two weak solutions

related to two initial data u0 and v0, we have that

(2.6)

∫ +∞

−∞
|u(x, t) − v(x, t)|dx is a decreasing function of t

(stability in L1 – norm for the solution of (2.1)).

Concerning the existence theorem it is possible to follow two methods.

First the method of “artificial viscosity”, which was suggested for the

gas dynamics problems by J. Von Neumann and R.D. Rictmyer and by

E. Hopf in his paper of 1950, still quoted. Let us indeed consider the
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parabolic problem for ε > 0

(2.7)
∂uε

∂t
+

∂f(uε)

∂x
− ε

∂2uε

∂x2
= 0 , uε(x, 0) = u0(x) .

This problem has a unique solution uε, with some regularity properties.

By using the maximum principle and some suitable estimates and com-

pactness arguments, O. Oleinik proves that uε tends to a weak solution

u of (2.1) in the following sense

(2.8) lim
ε −→ o

∫ a

−a

|uε(x, t) − u(x, t)|dx = 0 ∀t > 0 and ∀a > 0 .

Moreover she proves that this solution (unique for the uniqueness theo-

rem) also verifies an explicit representation formula, introduced for (2.1)

by P. Lax (in Comm. Pure Appl. Math. 1954) which is an extension to

(2.1) of the Hopf’s formula for the Burgers equation. This formula given

in [6]-[11] in the most general case, allows to prove many other important

properties for the solution u:

a) first, that the discontinuity points of u are on a finite or countable

number curves of equation x = xi(t) (i = 1, 2, . . . ) and they are all

“shocks”;

b) the initial condition u(x, 0) = u0(x) is verified in the following sense:

(2.9) lim
t −→ 0+

∫ +∞

−∞
ϕ(x)[u(x, t) − u0(x)]dx = 0

for any function ϕ continuous, with compact support in IR;

c) for any t > 0, u(x, t) is a BV function in any bounded interval (let

us remark that the BV space is fundamental for equations in more

than one space variable and for systems).

A second method to prove an existence theorem is the method of

finite difference introduced by P. Lax in the following way:

for any positive numbers h and l let us define the algorithm:

(2.10) uk+1
n =

1

2
[uk

n+1 + uk
n−1] − [f(uk

n+1) − f(uk
n−1)]

h

2l

where k = 0, 1, 2, . . . and n = ±1,±3,±5, . . . for k = 1, 3, 5 . . . and

n = 0, ±2, ±4, . . . for k = 0, 2, 4, . . . ; moreover u0
n = u0(nl).
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Then let us define the function

uh,l(x, t) = uk
n for (k − 1)h < t ≤ kh , (k ≥ 1), (n − 1)l < x ≤ nl .

Then O. Oleinik in [11], [26] and her student N.D. Vvedenskaja proved

the almost-everywhere convergence in Ω, when h and l tend to zero in a

suitable way, of uh,l to a weak solution of (2.1).

Let us now come back to the hypothesis that f is convex (or, with

obvious modifications, concave). O. Oleinik in [17] also studied the gen-

eral case, by replacing the “entropy” condition (2.4) with the following

one: under the same hypotheses on u and the same notation for u+ and

u−, let us introduce the function

l(u) =
f(u+) − f(u−)

u+ − u−
(u − u+)f(u+) ;

then the new “entropy” condition is written as:

(2.11)

{
l(u) ≤ f(u) for u ∈ [u−, u+] if u− < u+ and

l(u) ≥ f(u) for u ∈ [u+, u−] if u+ < u− .

Under these more general hypotesis on f , O. Oleinik proved the unique-

ness theorem and A.S. Kalashnikov, a student of O. Oleinik, proved the

existence theorem by the method of “artificial viscosity”. We also remark

that the theory has been developed by O. Oleinik by the same techniques

for the more general equation

(2.12)
∂u

∂t
+

∂f(x, t, u)

∂x
+ g(x, t, u) = 0 .

In conclusion we can say that O. Oleinik developed a general and

complete theory for the first order equation of conservation laws in one

space variable; this theory is now a standard chapter in the books on

hyperbolic equations.

Finally let us remark that also for systems of equations the contri-

butions of O. Oleinik have been very important: in [12] she proved the

uniqueness theorem for the “so called” p-systems, that is of the following
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form:

(2.13)





∂v

∂t
− ∂u

∂x
= 0 ,

∂u

∂t
+

∂p(v)

∂x
= 0 in Ω

u(x, 0) = u0(x) , v(x, 0) = v0(x)

under suitable assumptions on u0, v0, p and on the definitions of weak

solution (u, v) of (2.13).

3 – The Stefan problem

One of the peculiarities of the scientific work of O. Oleinik has been

the constant interest in mathematical problems important for applica-

tions, as we have seen in § 2 for the gas-dynamics. Also the Stefan problem

comes from a very important application: the phase-change phenomena.

Stefan problem is the oldest model of these phenomena (Stefan’s paper

was published a century ago). Nevertheless until the last years 1950 a

satisfactory general mathematical formulation didn’t exist. It was thanks

to O. Oleinik (see [18] and also [28]) and her student S. Kamin (this one

in her candidate’s degree thesis and in “Mat. Sbornik” 1961) that the

“good” concept of weak solution was introduced for that problem. I’m

going to explain here the results of [18] in the simplest case, the classical

two-phases Stefan problem (solid-liquid) in one space variable: let Ω be

the rectangular domain Ω = {(x, t) : 0 < x < l, 0 < t < T}; we have to

find a sufficiently smooth function s(t), 0 ≤ t ≤ T , such that x = s(t)

represents the line N (the “free boundary”) separating at each time t

the two phases, and two sufficiently smooth functions θi(x, t), i = 1, 2,

representing the temperature in the two phases, such that:

(3.1)





ρ1c1

∂θ1

∂t
− k1

∂2θ1

∂x2
= 0 in Ω1 = {(x, t) : 0 <t <T, 0 <x <s(t)}

ρ2c2

∂θ2

∂t
− k2

∂2θ2

∂x2
= 0 in Ω2 = {(x, t) : 0 <t <T, s(t) <x <l};

s(0) = b ∈]0, l[;
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(3.2)





θ1 = θ2(= 0) on N (temperature’s continuity)

−k1

(∂θ1

∂x

)−
+k2

(∂θ2

∂x

)+

=ρ2L
ds

dt
on N (“Stefan” energy balance)

(3.3)

{
θ1(x, 0) = h1(x), 0 ≤ x ≤ b; θ2(x, 0) = h2(x) , b ≤ x ≤ l

θ1(0, t) = g1(t) , θ2(l, t) = g2(t) , 0 ≤ t ≤ T

where the positive constants ρi, ci, ki (i = 1, 2) are respectively the

density, the heat capacity and the conductivity of each phase (i = 1 for

liquid, i = 2 for solid), L is the latent heat and h1, h2, g1, g2 are suitable

given functions; moreover we suppose that the melting temperature is

equal to zero and we denote by f−
1 (resp. f+

2 ) the boundary value on

N of a function f1 defined in Ω1 (resp. f2 defined in Ω2). This is the

classical formulation of the problem.

Assume that a solution exists, set θ = θ1 in Ω1, θ = θ2 in Ω2, h = h1

in [0, b], h = h2 in [b, l] and suppose that k1 = k2 = 1 (there is no loss

of generality in assuming this hypothesis). Then let us define the new

quantity E(θ) (which represents the “enthalpy” of the phenomenon):

E(θ(x, t)) =

∫ θ(x,t)

0

a(ξ)dξ + ρ2LH(θ)

where a(ξ) = ρ2c2 if ξ < 0, a(ξ) = ρ1c1 if ξ > 0 and H is the Heaveside

graph. We have to remark that, since N is supposed smooth (therefore

with area equal to zero), we can take for H(θ) on N any value between 0

and 1. Then we can multiply (3.1) by any smooth “test” function ϕ(x, t)

such that ϕ(0, t) = ϕ(l, t) = ϕ(x, T ) = 0, integrate over Ωi, i = 1, 2 and

add the two contributions. Using the Green formula and (3.2), (3.3) we

obtain that θ satisfies the following relation

(3.4)

∫ T

0

∫

Ω

[
E(θ)

∂ϕ

∂t
+ θ

∂2ϕ

∂x2

]
dx dt +

∫ #

0

E(h(x))ϕ(x, 0)dx+

+

∫ T

0

[
g1(t)

∂ϕ(0, t)

∂x
− g2(t)

∂ϕ(l, t)

∂x

]
dt = 0

for any of such ϕ.

Now (3.4) suggests the following definition of a weak solution:
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Definition Given u0 ∈ L∞(0, l), gi ∈ L∞(0, T ), i = 1, 2 find the

functions u (the “enthalpy”) and θ (the “temperature”) belonging to

L∞(Ω) such that u ∈ E(θ) and

(3.5)

∫ T

0

∫

Ω

[
u

∂ϕ

∂t
+ θ

∂2ϕ

∂x2

]
dx dt +

∫ #

0

u0ϕ(x, 0)dx+

+

∫ T

0

[
g1

∂ϕ(0, t)

∂x
− g2

∂ϕ(l, t)

∂x

]
dt = 0

for any smooth function ϕ, such that ϕ(0, t) = ϕ(l, t) = ϕ(x, T ) = 0.

Under suitable assumptions on u0.g1, g2 O. Oleinik proved in [18],

(see also [28]) the existence and the uniqueness of such a weak solution;

in particular, for the construction of approximate solutions and the proof

of existence theorem, she suggested a new approach based on the consid-

eration of a quasi-linear parabolic equation with discontinuous coefficients

and a family of equations obtained by smoothing these coefficients.

This definition was indeed the “good” one: its introduction provided

the opportunity of dealing with more general phase-change models: mul-

tiphases problems, not constant density, heat capacity and conductivity,

possible heat sources and convection terms, existence of “mushy regions”

(when the “free boundary” N , defined by N = {(x, t) : θ(x, t) = 0} is an

irregular curve or a set with positive area), the problems in several space

variables (studied first by S. Kamin), the regularity properties of the

solutions and of the “free boundary”, the numerical and computational

approach to the solution and to the free boundary,. . . . After the papers

of O. Oleinik and S. Kamin a very interesting field of researches has been

opened and many mathematicians have done important and deep results

on it. Till now the mathematical model of phase-change phenomena are

intensively studied, also in Italy.

4 – Second order linear equations with non-negative character-

istic form (elliptic-parabolic equations)

Many important papers have been dedicated from O. Oleinik, par-

tially in collaboration with her student E.V. Radkevich, to the elliptic-

parabolic equations theory. Let us recall some definitions and notations:
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we shall consider the P.D.E.:

(4.1) L(u) ≡
1,... ,n∑

h,k

ahk

∂2u

∂xh∂xk

+
n∑

h=1

bh

∂u

∂xh

+ cu = f

in an open bounded set Ω of IRn, with boundary Σ (for simplicity con-

nected), where ahk, bk, c, f and Ω shall be suitably smooth according to

the results to be obtained. Equation (4.1) will be called elliptic-parabolic

if the characteristic form is non-negative in Ω, namely if ∀x ∈ Ω ∪ Σ we

have

(4.2)
1,... ,n∑

h,k

ahkξhξk ≥ 0 ∀ξ = (ξ1, . . . , ξn) ∈ IRn .

The interest of the mathematicians for this kind of P.D.E. was not too

great in the first part of our century, when the studies of the three classical

equations of mathematical-physics were deeply developed. But we have

to recall at least some papers of M. Picone (in particular the one of 1913

in Mem. Acc. Lincei), the famous paper of F. Tricomi (in Mem. Acc.

Lincei 1923) on the equations of mixed type (which contains an elliptic

problem degenerate on the “parabolic boundary”) and a paper of M.V.

Keldys (in Dokl. Akad. Nauk 1951) on the elliptic equations in two

variables, which degenerate on the boundary.

The interest became evident after a paper of G. Fichera (in Mem.

Acc. Lincei 1955), where he considered in a general form the question of

finding the boundary value problems well-posed for (4.1) and he suggested

and studied the most important ones, that we are going to describe. Let

ν = (ν1, . . . , νn) be the inward unit normal vector to Σ. We denote by

Σ3 the noncharacteristic part of Σ, i.e. the set of points of Σ where the

condition
1,... ,n∑

h,k

ahkνhνk > 0 holds. On the set Σ − Σ3 we examine the

function

(4.3) b =
n∑

h=1

(
bh −

n∑

k=1

∂ahk

∂xk

)
νh

and we denote by Σ0,Σ1,Σ2 respectively the subset of Σ − Σ3 where we

have b = 0, b > 0, b < 0; we obtain that Σ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3. The
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boundary value problems considered by Fichera are the ones in which

on Σ2 u is given and on Σ3 a linear combination αu+β du
dl

is given, where

α and β are suitable functions and l is a suitable direction. In particular

if α = 1 and β = 0 the boundary conditions become

(4.4) u = g on Σ2 ∪ Σ3 (g given)

and the problem is called the first boundary value problem for (4.1) (anal-

ogous of the Dirichlet problem for the elliptic equations). We will suppose

for simplicity g = 0. Therefore we are going to consider the problem

(4.5) L(u) = f on Ω , u = 0 on Σ2 ∪ Σ3 .

Formally using the Green formula, the following definition of a weak

solution of (4.5) is natural:

Definition 1 . Let assume f ∈ Lp(Ω), 1 < p < +∞; we shall say

that u ∈ Lp(Ω) is a weak solution of (4.5) if u verifies

(4.6)

∫

Ω

uL∗(v)dx =

∫

Ω

fv dx

for any function v sufficiently smooth and zero on Σ1 ∪ Σ3, where L∗ is

the formal adjoint operator of L∗.

Then, under suitable hypothesis of smoothness of the data (i.e. Ω,

Σ2, Σ3, ahk, bk, c and f), in particular if c < 0 and c∗ < 0, where c∗

is the coefficient of ν in L∗(v), Fichera showed the existence of at least

one weak solution of (4.5), by a method which is essentially based on the

proof of the following estimate

(4.7) ‖v‖Lq(Ω) ≤ C‖L∗(v)‖Lq(Ω)

(C positive constant, 1
p
+ 1

q
= 1) for any function v sufficiently smooth and

zero on Σ1 ∪ Σ3. In this paper Fichera posed the question of the unique-

ness of the weak solution, and this question was solved by O. Oleinik

among other important results for the equation (4.1), in the papers [23],

[24], [32], [41], [42] and in the book [40]-[51], published in four languages
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(russian, english, italian and chinese). First of all she showed again the

existence of a weak solution by using an elliptic “regularization” of (4.5),

i.e. considering the Dirichlet problem for any ε > 0:

(4.8) ε∆uε + L(uε) = f in Ω , uε = 0 on Σ .

In order to prove the existence of a limit u of uε as ε −→ 0, suitable es-

timates (uniform in ε) are proved for uε; then it is proved that u is a

weak solution of (4.5). After that O. Oleinik studied the difficult unique-

ness problem and, by using also a suitable elliptic regularization for the

adjoint equation of (4.1), she showed the uniqueness under suitable as-

sumptions on the data (in particular if the (n−1) – dimensional measure

of the boundary of Σ2 on Σ is zero) in the case where p ≥ 3, while the

uniqueness does not hold for p < 3.

Another definition of a weak solution of (4.5) of variational type, in

the Hilbert space defined by the scalar product (depending on L)

(4.9) (u, v) =

∫

Ω

( 1,... ,n∑

h,k

ah,k

∂u

∂xh

∂v

∂xk

+ uv
)
dx +

∫

Σ2∪Σ1

|b|uv dσ

has been introduced by Fichera (see his paper in “Boundary problems

and differential equations” Univ. of Wisconsin press, 1960). Problem

(4.5), with this definition, has been studied by Fichera himself and by

R.S. Phillips and L. Sarason (in J. Math. Mech., 1967-68); Oleinik and

Radkevich in [23], [32], [51] chp. I, § 6, have also proved uniqueness and

existence theorem for this kind of weak solutions.

Afterwards the interest of mathematicians was addressed to the regu-

larity properties of the weak solutions of (4.5) and also on these questions,

besides the names of J. Kohn and L. Nirenberg (see Comm. Pure Appl.

Math. 1967), we have to put again the name of O. Oleinik. She has

found sufficient conditions on the data in order that if f ∈ W k,∞(Ω),

the solution u ∈ W k,∞(Ω) (k positive integer) (see [24, [32], [51] chp. I,

§ 7, 8).

Also the “local” regularity of the solutions of (4.1) and the related

question of the hypoellipticity of (4.1) have been studied by O. Oleinik

and Radkevich. It is well known that the hypoellipticity for P.D.E. and

systems was deeply studied by L. Hormander, starting with his famous
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paper in Act. Mat., 1955. O. Oleinik and Radkevich in the papers [24],

[32], [42] and [51] chp. II, § 5, obtained new results: in particular, sufficient

conditions in order that a distribution in Ω, such that ϕL(u) ∈ Hs(IRn),

s ≥ 0, for any ϕ ∈ C∞
0 (Ω), satisfies also ϕu ∈ Hs(IRn); therefore also

conditions in order that L is hypoelliptic. Moreover if the coefficients

of L are analytic in Ω, they obtained in [41] [43] and [51] chp. II, § 8,

necessary and sufficient conditions for the hypoellipticity of L.

Also the maximum principle for smooth solutions of (4.1) has to be

reminded here. Many authors proved important results on this principle

in different forms (A.D. Alexandrov, J.M. Bony, G. Fichera, C. Pucci,. . . ).

No less interesting are the results obtained by O. Oleinik and Radkevich

in [23], [32], [51] chp. I, § 1, 2, 5 and chp. III, § 1.

Finally the papers [36], [31], [38], [51] chp. III, § 2, are also related to

the researches of the present section, since they concern the hyperbolic

degenerate equations of the type

∂2u

∂t2
= L(u) + f , u = u(t, x1, . . . , xn)

where L(u) is a second order linear elliptic-parabolic operator in the space

variables x1, . . . , xn as (4.1), with coefficients depending also on t. They

were among the first papers about hyperbolic equations with multiple

characteristic.

5 – The analyticity of the solutions of linear equations and sys-

tems

This group of researches is also devoted to an important subject

on the field of P.D.E. and contains many deep results. The analyticity

of the solutions of the linear elliptic equations or systems with analytic

coefficients is a classical result. O. Oleinik has considered the problem

to find other linear equations or systems, still with analytic coefficients,

which have only analytic solutions, and she has dedicated to this problem

many papers most of which in collaboration with E.V. Radkevich (see

in particular [45-50], [52], [56], [57], [60], [61]). The approach to the

problem consists in obtaining an “a priori” estimate of the solution’s

analytic continuation to the complex domain in order to describe classes
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of equations and systems possessing at least one nonanalytic solution,

and then to find new classes for which all the solutions are analytic.

Let us consider a system of linear equations with analytic coefficients

in the vector valued unknown u = (u1, . . . , uN)

(5.1) L(u) = 0

in an open bounded set Ω of IRn+1 and let denote by x = (x0, x1, . . . , xn)

the points of Ω. A weak solution of (5.1) (i.e. a solution belonging to the

space of distributions (D′(Ω))N) is called analytic in Ω with respect to xj

if for any open set G with G ⊂ Ω, there exists a positive constant δ(G)

such that u can be extended in the domain

Qδ,j(G) = {(x, yj) : x ∈ G , |yj| < δ(G)}

to a function u(x0, . . . , xj + iyj, . . . , xn) analytic with respect to xj + iyj

and u and ∂u
∂xk

, k = 0, 1, . . . , n, are bounded by modulus in Qδ,j(G). The

class of the functions u analytic with respect to xj in Ω will be denoted

by Aj(Ω). Let now B(Ω) be a Banach space consisting of weak solution

of (5.1) such that the convergence of a sequence in the norm ‖·‖B of B(Ω)

implies the convergence in (D′(Ω))N and moreover B(Ω) ⊂ Aj(Ω). Then

O. Oleinik proves that for any subdomain G, with G ⊂ Ω, there exist

constants δ0 and C0, depending only on G, such that for any solution

u ∈ B(Ω) of (5.1) the following estimate holds

(5.2) sup
Qδ0,j

|u| ≤ C0‖u‖B .

This estimate is the fundamental point of the theory. Indeed, by using

suitable P.D.E. techniques, O. Oleinik finds many sufficient conditions

on L(u) in order to construct a family of solutions, analytic with respect

to xj, which do not satisfy (5.2) for a suitable space B(Ω) and therefore

there exists at least a solution nonanalytic with respect to xj.

We just list here only some corollaries referring in particular to the

paper [49], [61] for the general results.

a) Let us consider the equation of the first order with complex-valued

analytic coefficients

(5.3)
∂u

∂x0

+
n∑

k=1

ak(x)
∂u

∂xk

+ c(x)u = 0
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and suppose that ,aj(x0, x
′ + iy′)x0 does not change the sign in

a neighbourhood of the origin of the space IR2n+1, whose point is

denoted by (x0, x
′, y′)(x′ = (x1, . . . , xn), y′ = (y1, . . . , yn)). Then

(5.3) has a nonanalytic solution with respect to xj in a neighbourhood

of the origin of IRn+1((x0, x
′)). In particular the equation considered

by S. Mizohata in two variables

∂u

∂x0

+ ixs
0

∂u

∂x1

= 0 (s odd)

is a particular case of (5.3).

b) Parabolic equations in the sense of Petrowsky have nonanalytic so-

lutions with respect to the “time” variable.

c) Let us consider with the usual notations the operator

P (u) =
∑

|α|=m,αn=0

aα(x)Dαu +
∑

|α|≤m−1

bα(x)Dαu = Pm(u) + Pm−1(u)

and suppose that there exist x̃ ∈ Ω and ξ̃ ∈ IRn+1 with |ξ̃| -= 0 such

that Pm(x̃, ξ̃) -= 0. Then the equation has at least one nonanalytic

solution with respect to xn in any sufficiently small neighbourhood

of x̃.

d) Let us introduce the notations t = (x0, . . . , xk, 0, . . . , 0), y = (0, . . . ,

xk+1, . . . , xl, 0, . . . , 0), z = (0, . . . , xl+1, . . . , xn) so that x = t+y+z.

Let us consider the equation

P1(Dt)u + |t|2sP2(Dy)u + |t|2dP3(Dz)u = 0

where P1, P2, P3 are homogeneous elliptic operators of order 2p with

constant coefficients and s and d are integers, d ≥ 0. O. Oleinik

shows that a necessary and sufficient condition for the analyticity of

the equation (i.e. all its solutions are analytic) in a neighbourhood

of the origin of IRn+1 is that s = d. In particular we find again the

result of S. Baouendi and C. Goulaouic for the equation

∂2u

∂x0
2

+ x2
0

∂2u

∂x1
2

+
∂2u

∂x2
2

= 0 .
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e) The general second order equations still quoted in section 4, for which

O. Oleinik and Radkevich in [41] and [51] found necessary and suffi-

cient conditions for the hypoellipticity, were again considered in [60],

in order to describe the ones which have only analytic solutions. In

particular the equation

a(x)
∂2u

∂x0
2

+
1,... ,n∑

k,j

akj(x)
∂2u

∂xk∂xj

+ b(x)
∂u

∂x0

+ c(x)u = 0

with

1,... ,n∑

k,j

akj(x)ξ′
kξ

′
j ≥ c0|ξ′|2 , a(x) = |x|2sã(x) , ã(x) > 0

and c0 a positive constant, s an integer, is analytic in a neighbourhood

of the origin.

We have to relate to this group of researches also the papers of

O. Oleinik about the behavior of the solutions of linear elliptic and

parabolic systems in unbounded domains and the extensions of the

classical “Phragmen-Lindelölf” and “Liouville” theorems (see f.i. [53],

[55], [58], [61]), proved using the analyticity properties of some aux-

iliary equations.

6 – Other researches

6.1 – Elasticity theory

Many papers by O. Oleinik, some in collaboration with V.A. Kon-

dratiev and some with her students G.A. Yosifian and J. Kopacek, deal

with the elasticity theory. The most important and deepest of them are

the ones dedicated to “Saint–Venant principle” [63], [62], [82], [80]. A new

and very general formulation of this principle allows many interesting ap-

plications, which are obtained by very delicate techniques. In particular

the boundary value problems of two dimensional elasticity, the “Navier-

Stokes system, the Von Karman system and the biharmonic equation in

unbounded domains or in domains with irregular boundary and irregular

“date’ are deeply studied in the papers [63], [73], [78], [79], [81], [69],
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[99], [70], [97], [87], and optimal estimates are obtained, which precise

the behavior of the solutions at the ∞ or near the irregular boundary

points. The Korn inequalities have been also extended in many direc-

tions, together with the dependence of constants in the inequalities on

the shape and size to the domain and with its application to the Dirichlet

or Neumann or mixed boundary value problems for the elasticity system

in unbounded domains [94], [103], [100], [97], [104], [90], [120] or for the

classical Boussinesq and Cerruti problems ([102], [101]).

6.2 – G-convergence and homogenization

The theory of G-convergence and its application to homogenization

for P.D.E. has been introduced and studied by the School of E. De

Giorgi, starting from the papers of S. Spagnolo. In collaboration with

V.V. Zhikov, S.M. Kozlov and her students G.A. Yosifian, A.S. Shamaev,

T.A. Shaposhnikova, O. Oleinik developed actively this new theory in

many papers. We just quote some of them: [67] where the theory of the

strong G-convergence is developed, [71], [74] where the G-convergence for

parabolic operators is deeply studied, [75] where a new approach for the

homogenization of parabolic operators with almost periodic coefficients

is given, [77] where is similarly solved the homogenization problem for

the elasticity system with almost periodic coefficients. But especially we

have to quote the books [111], [114], [115], published by Springer, North

Holland and Cambridge Univ. Press., where in particular a complete ref-

erence of the Oleinik School is given (the last one is based on the lectures

delivered at the Accademia dei Lincei in 1993). The homogeneization

problems in perforated domains and partially perforated domains are

considered in [111], [114], [115], [118], [121], [124].

6.3 – Nonlinear degenerate parabolic equations

The paper of O. Oleinik [14] (see also [15]) became basic for the math-

ematical theory of nonstationary filtration of fluids in porous media. O.

Oleinik introduced a definition of a weak solution, with a physical rele-

vant meaning, of the related nonlinear parabolic degenerate equation and

proved existence, uniqueness and regularity of the solution to the Cauchy

problem and some of its properties. Many other important results on the

quasi-linear degenerate parabolic equations are contained in the papers
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[19], [27], [30]. This subject has attracted the interest of many mathe-

maticians and physicists. Now it is one of the most actively developing

branches of P.D.E., which has many applications.

6.4 – Mathematical theory of boundary layer

In 1962-1970 O. Oleinik developed the mathematical theory of bound-

ary layer. The equations of such phenomena were proposed by J. Prandtl

since 1904, but the main fundamental questions were left open. O. Oleinik

proved the existence, the uniqueness and the stability of the solution of

the Prandtl boundary layer system, studied its properties and gave new

approaches for constructing approximate solutions (see e.g. [21], [22],

[29], [34], [35] and particular the book [37] and the lecture [44]).

6.5 – General parabolic systems

Also important are the results obtained (see [64], [65], [59]) on evo-

lution equations, especially on general parabolic systems, by the method

of introducing a parameter into the equation and on “a priori” estimates

of its solution, which she suggested. Using this method, she proved the

uniqueness theorems and asymptotic properties of solutions of the Cauchy

problem and general boundary value problems in unbounded domains for

general parabolic systems and for some other classes of evolution equa-

tions.

6.6 – Spectral problems

In collaboration with her students G.A. Yosifian and A.S. Shamaev,

O. Oleinik proposed in [95] (see also [96], [114]) a new approach to the

spectral problems, singularly depending on a parameter and she applied

this approach to many problems concerning highly non homogeneous me-

dia, or perforated domains, or domains with rapidly oscillating bound-

aries and other problems, (see [96], [114] chp 3). This approach was used

also by many mathematicians to study spectral problems of mathematical

physics.

6.7 – Boundary value problems for elliptic equations with rapidly alternating

type of boundary conditions

In papers [116], [115], [111] boundary value problems for second or-

der elliptic equations and the elasticity system with alternating type of
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boundary conditions are considered. On a part Γ of the boundary ∂Ω

of a domain Ω the Dirichlet condition is given and on the rest γ of the

boundary ∂Ω the Neumann or the mixed type of the boundary conditions

are prescribed. It is assumed that γ consists of pieces of size ε and their

number tends to ∞ as ε → 0. The behavior of the solution u of such

boundary value problems is studied as ε → 0.

6.8 – Boundary value problems in non smooth domains

Many papers of O. Oleinik are dedicated to boundary value prob-

lems in nonsmooth domains (see the survey [79] and the papers [80], [81],

[85], [99], [88]), where linear elliptic second order elliptic equations, the

biharmonic equation and the elasticity system are considered and sharp

estimates for solutions of boundary value problems near a non regular

point of the boundary are obtained. In papers [63], [72], [73], [76], [78],

[70], [84], [86], [89], [90], [68]) asymptotic behavior at infinity of solu-

tions of boundary value problems for elliptic and parabolic second order

equations, the biharmonic equation and the elasticity system are studied.

6.9 – Eigenvibrations of bodies with concentrated masses

In papers [91]-[93] O. Oleinik studied problems, which arise in en-

gineering and physics and are connected with vibrations of bodies with

concentrated masses. In particular, an eigenvalue problem for an ellip-

tic equation, depending on a parameter ε, which defines the density of

a body is considered and the asymptotic behavior of eigenfunctions and

eigenvalues as the parameter ε −→ 0 is studied.

6.10 – Nonlinear elliptic equations in unbounded domains

Many papers concern nonlinear elliptic equations in unbounded do-

mains, interesting for applications, as the Gauss equation ∆u+q(x)e−u =

0 (see [66]), or the equation ∆u + k ∂u
∂xn

− |u|p−1u = 0, p > 1, k ∈ IRn (see

[105]-[107]), or ∆u − eu = 0 (see [109]). A good reference for nonlinear

equations in unbounded domains is also the monograph [115] where gen-

eral second order semilinear elliptic equations in cylindrical domains are

studied.
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I hope to have succeded in giving you an idea of the exceptional qual-

ity and wideness of the scientific work done by O. Oleinik. Moreover O.

Oleinik is a very good teacher, with a large number of students. Certainly

she is one of the leaders of the Russian School in P.D.E., which has been

and still is one of the best in the world.
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