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An uniqueness result for body with voids

in linear thermoelasticity

M. MARIN

Riassunto: Il lavoro tratta il problema ai valori iniziali (ed al contorno) per le
equazioni della termoelastodinamica lineare dei continui con vuoti. Assunta l’esistenza
della soluzione, se ne dimostra l’unicità senza far ricorso né alla legge di conservazione
dell’energia né ad alcuna ipotesi di limitatezza dei parametri termoelastici.

Abstract: This paper is dedicated to the uniqueness of solution of initial bound-
ary value problem in thermoelasticity of bodies with voids. The proof of theorem is
obtained without recourse either to an energy conservation law or to any boundedness
assumptions on the thermoelastic coefficients.

1 – Introduction

The theory of elastic materials with voids is a recent generalization

of the classical theory of elasticity. This theory has attracted in the past

as nowadays many writers. In fact, in this theory a behavior of porous

solids in which the matrix material is elastic and the interstices are void

of material, is presented.

The intended applications of this theory are to geological materials,

like rocks and soils and, also, to manufactured porous material. In the

paper [4] of Cowin and Nunziato, the linear theory of elastic materials
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with voids was developed. Saccomandi, in [6], has established the equa-

tions of the thermoelasticity of materials with voids by considering the

effect of dissipation. The linear theory of micropolar bodies with voids

was developed by Marin in [2]. The result presented in what follows

are aimed to strengthen some theorems previously available. First, we

present the basic equations and conditions in the linear theory of thermoe-

lasticity of bodies with voids, as in [6]. Next, we present a counterpart of

Brun’s theorem, [1], in the isotermal theory of elastic bodies and use the

latter to prove the uniqueness. Previous studies on uniqueness have been

based almost exclusively on the assumptions that the elasticity tensor is

positive definite or is strongly eliptic or, others, recourse to an energy

conservation law. Exception include a result of the paper by Brun [1],

where an assumption concerning negative definiteness of the initial time

derivative of the relaxation tensor is used. Our objective is to obtain

the uniqueness without recourse either to an energy conservation law or

to any boundedness assumptions on the elastic coefficients. For conve-

nience, the notation and terminology chosen are almost identical to those

of [2], [6].

2 – Basic equations

Let the body occupy, at time t = 0, a properly regular region B of

the euclidian three-dimensional space, bounded by the piece-wise smooth

surface ∂B (such that allowing of divergence like theorem). We refer the

motion of the body to a fix system of rectangular cartesian axes Oxi,

i = 1, 2, 3. We use the summation convention over repeated indices. The

subcript j after a comma indicates partial differentiation with respect

to xj. All latin subscripts are understood to range over the integers

(1, 2, 3), while the greek indices have the range 1, 2. A superposed dot

denotes the derivative with respect to the t-time variable. The basic equa-

tions of the linear thermoelastodynamics of bodies with voids are, [2], [6]

– the equations of motion

(1) tij,j + Fi = :üi ;

– the equation of energy

(2) T0η̇ = qi,i + r ;
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– the balance of the equilibrated forces

(3) hi,i + L + g = :κσ̈ ;

– the constitutive equations

(4)

tij = Cijmnemn + Bijσ + Dijkσ,k − βijθ ,

hi = Dmniemn + diσ + Aijσ,j − aiθ ,

η = βijeij + aθ + mσ + aiσ,i ,

g = −τ σ̇ − Bijeij − ξσ − diσ,i + mθ ,

qi = kijθ,j ;

– the kinetic relations

(5) 2eij = ui,j + uj,i, σ = ϕ − ϕ0 .

In these equations we have used the following notations:

tij – the components of the stress tensor;

: – the constant mass density;

Fi – the components of the body force;

L – the extrinsic equilibrated body force;

hi – the components of the equilibrated stress;

g – the the intrinsec equilibrated force;

ui – the components of the displacement;

θ – the temperature variation measured from the reference constant

temperature T0;

κ – the equilibrated inertia;

ϕ – the volume distribution function which in the reference state is ϕ0;

σ – the change in volume fraction measured from the the reference state;

eij – the kinematic characteristics of strain;

r – the heat supply; qi-components of the heat flux vector;

The characteristic functions of the material Cijmn, Bij, βij, Dijk, di,

ai, Aij, kij, ξ, a, m, τ , are assumed to satisfy the symmetry relations:

(6)
Cijmn = Cmnij = Cjimn, Aij = Aji ,

βij = βji, Bij = Bji, Dijk = Djik .
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and they are continuously differentiable on B. Moreover τ is assumed

positive and the extend Fi the extorud heat supply and the extrinsic

equilibrated force L are continuous on B × [0,∞).

The components of the surface traction ti, the heat flux q, and the

surface equilibrated traction h at the regular points of ∂B × [0, ∞) are

defined by ti = tijnj, q = qini and h = hini respectively, where we

denote by ni the unit normal on ∂B, pointing towards the exterior of

∂B. Along with (2.1)-(2.5) we shall assume that the following standard

initial conditions hold

(7)
ui(x, 0) = αi(x), u̇i(x, 0) = βi(x), θ(x, 0) = θ0(x)

σ(x, 0) = σ0(x), σ̇(x, 0) = σ1(x), x ∈ B ,

where the functions αi, βi, θ0, σ0 and σ1 are prescribed.

Let ∂Bi, (i = 1, 2, 3, 4, 5, 6) be subsets of the surface ∂B so that

∂̄B1 ∪ ∂B2 = ∂̄B3 ∪ ∂B4 = ∂̄B5 ∪ ∂B6 = ∂B ,

∂B1 ∩ ∂B2 = ∂B3 ∩ ∂B4 = ∂B5 ∩ ∂B6 = φ .

To the above equations we adjoin the following boundary conditions

ui = ũi on ∂B1 × [0, ∞), ti = tijnj = t̃i on ∂B2 × [0, ∞) ,

θ = θ̃ on ∂B3 × [0, ∞), q = qini = q̃ on ∂B4 × [0, ∞) ,(8)

σ = σ̃ on ∂B5 × [0, ∞), h = hini = h̃ on ∂B6 × [0, ∞) ,

where ũi, t̃i, θ̃, q̃, σ̃ and h̃ are given functions.

In all what follows we use the assumptions

– αi, βi, σ0, σ1 and θ0 are continuous functions on B;

– ũi, θ̃ and σ̃ are continuous functions on ∂B1 × [0, ∞), ∂B3 × [0, ∞),

∂B5 × [0, ∞), respectively;

– t̃i, q̃ and h̃ are continuos functions in time and are piece-wise regular

on ∂B2 × [0,∞), ∂B4 × [0, ∞), ∂B6 × [0, ∞), respectively.

By a solution of the mixed initial boundary value problem of the

thermoelastic bodies with voids, in the cylinder B × [0, ∞), we mean
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an ordered array (ui, θ, σ) which satisfies eqns. (1)-(5), the initial condi-

tions (7) and the boundary conditions (8).

3 – Uniqueness result

Throughout this section it is assumed that a twice continuously dif-

ferentiable solution (ui, θ, σ) exists satisfying the eqns. (1)-(5) and the

conditions (7) and (8) on a maximal interval of existence (for instance,

see the papers [5] and [6]). First, we establish some estimations and then,

as a consequence, the basic theorem which proves the uniqueness for the

solution of our problem.

We consider the functions K and U on [0,∞) defined by

K(t) =
1

2

∫

B

:(u̇iu̇i + κσ̇2)dV ,(9)

U(t) =
1

2

∫

B

(Cijmnui,jum,n + 2Dijkui,jσ,k + 2Bijui,jσ+

(10)

+ aθ2 + 2diσσ,i + Aijσ,iσ,j + ξσ2)dV,

where for convenience, we have omitted the explicit dependence of the

functions on their spatial argument x and on the time t. In all that follows

where it is possible for simplicity, we shall suppress the spatial argument

x or the time variable t. We also define

G(α, β) =

∫

B

[
Fi(x, α)u̇i(x, β) + L(x, α)σ̇(x, β) − 1

T0

r(x, α)θ(x, β)
]
dV +

(11) +

∫

∂B

[
ti(x, α)u̇i(x, β) + h(x, α)σ̇(x, β) − 1

T0

q(x, α)θ(x, β)
]
dA,

∀α, β ∈ [0, ∞) .

Theorem 1. If the symmetry relations (6) are satisfied, then

(12) U(t) − K(t) =
1

2

∫ t

0

[
G(t + s, t − s) − G(t − s, t + s)

]
ds +

1

2
R(t)
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with

R(t) =

∫

B

{
Cijmnui,j(2t)um,n(0) + Bij[ui,j(2t)σ(0) + ui,j(0)σ(2t)]+

+ Dijk[ui,j(0)σ,k(2t) + ui,j(2t)σ,k(0)]+ di[σ,i(0)σ(2t)+
(13)

+ σ,i(2t)σ(0)] + aθ(0)θ(2t) + Aijσ,i(0)σ,j(2t) + ξσ(0)σ(2t)+

− :u̇i(0)u̇i(2t) − :κσ̇(0)σ̇(2t)
}
dV, t ∈ [0, ∞) .

Proof. From the constitutive equations (4), we obtain

(14)

tij(t − s)u̇i,j(t + s) + hi(t − s)σ̇,i(t + s) + η̇(t + s)θ(t − s)+

− tij(t + s)u̇i,j(t − s) − hi(t + s)σ̇,i(t − s) − η̇(t − s)θ(t + s) =

=
∂

∂s

{
Cijmnui,j(t + s)um,n(t − s) + Aijσ,i(t − s)σ,j(t + s)+

+ Dijk[ui,j(t + s)σ,k(t − s)+ui,j(t − s)σ,k(t + s)]+

+ aθ(t + s)θ(t − s)
}

− Bijσ(t + s)u̇i,j(t − s)+

+ Bijσ(t − s)u̇i,j(t + s) − diσ̇,i(t − s)σ(t + s)+

+ diσ̇,i(t + s)σ(t − s) + mσ̇(t + s)θ(t − s) − mσ̇(t − s)θ(t + s) .

In view of (1), (2) and (3) , it follows

tij(t − s)u̇i,j(t + s) + hi(t − s)σ̇,i(t + s) + η̇(t + s)θ(t − s)+

− tij(t + s)u̇i,j(t − s) − hi(t + s)σ̇,i(t − s) − η̇(t − s)θ(t + s) =

=
[
tij(t − s)u̇i(t + s) + hj(t − s)σ̇(t + s) +

1

T0

qj(t + s)θ(t − s)
]

,j
+

−
[
tij(t + s)u̇i(t − s) + hj(t + s)σ̇(t − s) +

1

T0

qj(t − s)θ(t + s)
]

,j
+

+ Fi(t − s)u̇i(t + s) + L(t − s)σ̇(t + s) +
1

T0

r(t + s)θ(t − s)+(15)

− Fi(t + s)u̇i(t − s) − L(t + s)σ̇(t − s) − 1

T0

r(t − s)θ(t + s)+

+
∂

∂s
[:u̇i(t − s)u̇i(t + s)+:κσ̇(t − s)σ̇(t+s)]−ξσ(t − s)σ̇(t + s)+

+ ξσ(t + s)σ̇(t − s) + diσ,i(t + s)σ̇(t − s) − diσ,i(t − s)σ̇(t + s)+

− Bijσ̇(t + s)ui,j(t − s) + Bijσ̇(t − s)ui,j(t + s).
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Taking into account eqns. (14) and (15), we may write

(16)
∂

∂s

{
Cijmnui,j(t + s)um,n(t − s) + Bij[ui,j(t + s)σ(t − s)+

+ ui,j(t − s)σ(t + s)] + Dijk[ui,j(t + s)σ,k(t − s)+

+ ui,j(t − s)σ,k(t + s)] + di[σ,i(t + s)σ(t − s) + σ,i(t − s)σ(t + s)]+

+ aθ(t + s)θ(t − s) + ξσ(t + s)σ(t − s) + Aijσ,i(t − s)σ,j(t + s)
}
+

− ∂

∂s

[
:u̇i(t − s)u̇i(t + s) + :κσ̇(t − s)σ̇(t + s)

]
=

=
[
tij(t − s)u̇i(t + s) + hj(t − s)σ̇(t + s) +

1

T0

qj(t + s)θ(t − s)
]

,j
+

−
[
tij(t + s)u̇i(t − s) + hj(t + s)σ̇(t − s) +

1

T0

qj(t − s)θ(t + s)
]

,j
+

+ Fi(t − s)u̇i(t + s) + L(t − s)σ̇(t + s) +
1

T0

r(t + s)θ(t − s)+

− Fi(t + s)u̇i(t − s) − L(t + s)σ̇(t − s) − 1

T0

r(t − s)θ(t + s) .

Now, by integrating in (16) on B × [0, t] and by using the divergence

theorem, it results

∫ t

0

∫

∂B

[
ti(t − s)u̇i(t + s) +

1

T0

q(t − s)θ(t + s) + h(t − s)σ̇(t + s)+(17)

− ti(t + s)u̇i(t − s) − 1

T0

q(t + s)θ(t − s) − h(t + s)σ̇(t − s)
]
dAds+

+

∫ t

0

∫

B

[
Fi(t − s)u̇i(t + s)+

1

T0

r(t − s)θ(t + s)+L(t − s)σ̇(t + s)+

−Fi(t + s)u̇i(t − s)− 1

T0

r(t + s)θ(t − s)−L(t + s)σ̇(t − s)
]
dV ds=

=

∫

B

{
Cijmnui,j(2t)um,n(0) + Bij[ui,j(0)σ(2t) + ui,j(2t)σ(0)]+

+ Dijk[ui,j(0)σ,k(2t) + ui,k(2t)σ,k(0)] + aθ(0)θ(2t)+

+ Aijσ,i(0)σ,j(2t) + di[σ,i(0)σ(2t) + σ,i(2t)σ(0)] + ξσ(0)σ(2t)+

− :u̇i(0)u̇i(2t) − :κσ̇(0)σ̇(2t)
}
dV −

∫

B

[Cijmnui,j(t)um,n(t)+

+ 2Dijkui,j(t)σ,k(t) + 2Bijui,j(t)σ(t) + aθ2(t) + Aijσ,i(t)σ,j(t)+

+ 2diσ,i(t)σ(t) + ξσ2(t) − :u̇i(t)u̇i(t) − :κσ̇2(t)]dV .
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Taking into account the notations (9), (10), (11), (13), the relation (17)

may be restated such that we arrive at (12).

Theorem 2. Let P (t) be the function

(18) P (t) =

∫

B

[
Fiu̇i +

1

T0

rθ + Lσ̇
]
dV +

∫

∂B

[
tiu̇i +

1

T0

qθ + hσ̇
]
dA .

Then we have the following relations

2U(t) = U(0)+K(0)+R(t) − 1

T0

∫ t

0

∫

B

kijθ,iθ,jdV ds+

−
∫ t

0

∫

B

τ σ̇2dV ds
1

2

∫ t

0

[G(t + s, t − s)+(19)

− G(t − s, t + s) + 2P (s)]ds ,

2K(t) = U(0)+K(0)−R(t) − 1

T0

∫ t

0

∫

B

kijθ,iθ,jdV ds+

−
∫ t

0

∫

B

τ σ̇2dV ds − 1

2

∫ t

0

[G(t + s, t − s)+(20)

− G(t − s, t + s) − 2P (s)]ds ,

provided that the symmetry relations (6) hold .

Proof. With aid of the constitutive equations (3) and the symmetry

relations (6), we can write

(21)
tiju̇i,j + hiσ̇,i + η̇θ = Biju̇i,jσ + diσ̇,iσ + mσ̇θ+

+
1

2

∂

∂s
(Cijmnui,jum,n + 2Dijkui,jσ,k + Aijσ,iσ,j + aθ2)

On the other hand, in view of the equations of motion, (1), the balance of

the equilibrated forces, (2), the equation of energy (3) and the geometrical

equations (5), it results

(22)

tiju̇i,j + hiσ̇,i + η̇θ = −Bijui,jσ̇ − diσ,iσ̇ + mσ̇θ+

+ Fiu̇i + Lσ̇ +
1

T0

rθ +
(
tiju̇i + hjσ̇ +

1

T0

qjθ
)

,j
+

− 1

2

∂

∂s
(:u̇iu̇i + :κσ̇2) − 1

T0

kijθ,iθ,j .
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From (21) and (22), by equalizing their right-hand sides, we are led to

(
tiju̇i + hjσ̇ +

1

T0

qjθ
)

,j
+ Fiu̇i + Lσ̇ +

1

T0

rθ =(23)

=
1

2

∂

∂s
(Cijmnui,jum,n + 2Dijkui,jσ,k + 2Bijui,jσ+

+ Aijσ,iσ,j +aθ2+ξσ2+2diσ,iσ+
1

2

∂

∂s
(:u̇iu̇i+:κσ̇2)−τ σ̇2 .

By integrating in (23) over B, we conclude, with the aid of the divergence

theorem and the notations (9), (10) and (18), that

(24) K̇(t) + U̇(t) = P (t) − 1

T0

∫

B

kijθ,iθ,jdV −
∫

B

τ σ̇2dV −
∫

B

τ σ̇2dV .

Integrating in (24) from 0 to t, t ∈ [0, ∞), we obtain

(25)

K(t) + U(t) = K(0) + U(0) +

∫ t

0

P (t)ds+

− 1

T0

∫ t

0

∫

B

kijθ,iθ,jdV ds −
∫ t

0

∫

B

τ σ̇2dV ds .

Now, by adding the relations (25) and (12) we establish the rela-

tion (19) and, at last, by subtracting (17) from (25), it follows the rela-

tion (20).

Theorem 1 and Theorem 2 form the basis of the following theorem

which establishes the uniqueness of solution.

Theorem 3. Assume that

(i) the symmetry relations (6) are valid;

(ii) :, τ and κ are strictly positive;

(iii) a is strictly positive (or strictly negative).

Then the mixed problem of thermoelastodynamics of bodies with voids

has at most one solution.
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Proof. Assume to the contrary that there exist two solutions, say

(u
(α)
i , q(α), s(α)), α = 1, 2. We denote their difference by (Ui,Θ,Υ), i.e.

Ui = u
(2)
i − u

(1)
i ,Θ = θ(2) − θ(1),Υ = σ(2) − σ(1) .

Because of the linearity of our problem, (Ui,Θ,Υ) is also a solution, but

corresponds to null data. Thus, we conclude from (20) that

(26)

∫

B

(:U̇iU̇i + :κΥ̇2)dV +
1

T0

∫ t

0

∫

B

kijΘ,iΘ,jdV ds+

+

∫ t

0

∫

B

τΥ̇2dV ds = 0 .

Based on the assumptions (i)-(iii), (26) implies that

(27) U̇i = 0, Υ̇ = 0 on B × [0, ∞) ,

and

(28)
1

T0

∫ t

0

∫

B

kijΘ,iΘ,jdV ds +

∫ t

0

∫

B

τΥ̇2dV ds = 0, (0 ≤ t < ∞) .

With the aid of (27) the relation (28) become

1

T0

∫ t

0

∫

B

kijΘ,iΘ,jdV ds = 0, (0 ≤ t < ∞) .

Because of the fact that Ui and Υ vanish initially, from (27) we deduce

(29) Ui = 0,Υ = 0 on B × [0,∞) .

Taking into account (28), (29), the relation (19) leads to

∫

B

aΘ2dV = 0 ,

such that, since a>0 (or a<0), we conclude that Θ=0 on B×[0,∞).
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