Hopf hypersurfaces of D'Atri- and C-type in a complex space form

J. T. CHO - L. VANHECKE

Riassunto: In uno spazio-forma complesso non piatto si assegna una caratterizzazione delle ipersuperficie di Hopf che sono spazi di D'Atri (cioè varietà riemanniane le cui simmetrie geodetiche preservano il volume a meno del segno) o C-spazi (cioè varietà i cui operatori di Jacobi hanno autovalori costanti sulle geodetiche). Questo porta a una classificazione delle ipersuperficie di Hopf che sono naturalmente riduttive, cioè spazi commutativi o debolmente simmetrici.

Abstract: We classify all Hopf hypersurfaces in a non-flat complex space form $M^{n}(c)$ which are D'Atri spaces (that is, Riemannian manifolds all of whose local geodesic symmetries are volume-preserving up to sign) or C-spaces (that is, their Jacobi operators have constant eigenvalues along the corresponding geodesics). This yields a classification of Hopf hypersurfaces which are naturally reductive, g.o., weakly symmetric or commutative spaces.

1 - Introduction

The study of Riemannian manifolds all of whose local geodesic symmetries are volume-preserving (up to sign) has been started in [9]. Such manifolds generalize locally symmetric spaces and are now called D'Atri spaces [26]. Several examples are known and they have been studied ex-

[^0]tensively. We refer to [14] for a survey. Furthermore, in [4], J. Berndt and the second author generalized in another way the locally symmetric spaces and introduced and studied C-spaces as Riemannian manifolds such that for any geodesic the corresponding Jacobi operator has constant eigenvalues along that geodesic. Although the geometry of C spaces shares a lot of properties with that of the D'Atri spaces, a good understanding of their relation is not yet known. We refer to [3], [5] for a survey.

The main purpose of this paper is to classify all Hopf hypersurfaces in a non-flat complex space form $M^{n}(c), n$ being the complex dimension, which are D'Atri spaces or C-spaces.

Let \bar{M} be an oriented real hypersurface of a complex space form $M^{n}(c)$ and let N be a unit normal vector field on \bar{M}. Then \bar{M} is said to be a Hopf hypersurface [1] if the structure vector field $\xi=-J N$ is a principal curvature vector field, that is, an eigenvector field of the shape operator field on \bar{M}. T. E. Cecil and P. J. Ryan extensively investigated in [7] hypersurfaces which are realized as tubes over certain submanifolds in $\mathbb{C} P^{n}$ by using their focal maps. Furthermore, in [23] R. Takagi classified the homogeneous hypersurfaces of $\mathbb{C} P^{n}$ into six types. By making use of the results in [7] and [23], M. Kimura then proved the following [12]

Proposition A. Let \bar{M} be a Hopf hypersurface in $\mathbb{C} P^{n}$. Then \bar{M} has constant principal curvatures if and only if \bar{M} is locally congruent to one of the following spaces:
$\left(A_{1}\right)$ a geodesic hypersphere of radius r where $0<r<\frac{\pi}{2}$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $\mathbb{C} P^{k}, 1 \leq k \leq n-2$, where $0<r<\frac{\pi}{2}$;
(B) a tube of radius r over a complex quadric Q_{n-1} where $0<r<\frac{\pi}{4}$;
(C) a tube of radius r over $\mathbb{C} P^{1} \times \mathbb{C} P^{\frac{n-1}{2}}$ where $0<r<\frac{\pi}{4}$ and $n(n \geq 5)$ odd;
(D) a tube of radius r over a complex Grassmann manifold $\mathbb{C} G_{2,5}$ where $0<r<\frac{\pi}{4}$ and $n=9$;
(E) a tube of radius r over a Hermitian symmetric space $S O(10) / U(5)$ where $0<r<\frac{\pi}{4}$ and $n=15$.

Note that the result of R. Takagi implies that all the model spaces mentioned in Proposition A are homogeneous. Moreover, since the principal curvatures are constant, they are isoparametric hypersurfaces. These principal curvatures and their multiplicities are explicitly written down in the table in [24]. (See also Section 2.)

Furthermore, real hypersurfaces of a complex hyperbolic space $\mathbb{C} H^{n}$ have been investigated in [1], [2], [18], [19], for example. In particular, in [2], J. Berndt classified the Hopf hypersurfaces with constant principal curvatures in $\mathbb{C} H^{n}$. More precisely, he obtained the following

Proposition B. Let \bar{M} be a Hopf hypersurface in $\mathbb{C} H^{n}$. Then \bar{M} has constant principal curvatures if and only if \bar{M} is locally congruent to one of the following spaces:
$\left(A_{0}\right)$ a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $\mathbb{C} H^{n-1}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $\mathbb{C} H^{k}, 1 \leq k \leq n-2$;
(B) a tube over a totally real hyperbolic space $\mathbb{R} H^{n}$.

These model spaces are obviously again isoparametric and they are also homogeneous (see [1]). The principal curvatures and their multiplicities of these hypersurfaces are also given in [2].

In what follows the hypersurfaces of type $\left(A_{1}\right),\left(A_{2}\right)$ in Proposition A and those of type $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right)$ in Proposition B will be called $h y$ persurfaces of type A.

In Section 2, we collect some basic facts and then, in Section 3, we prove the

Main Theorem. A Hopf hypersurface in a non-flat complex space form is a D'Atri space or a C-space, respectively, if and only if it is locally congruent to a hypersurface of type A.

Several interesting classes of D'Atri and C-spaces are known. More precisely, the following classes of spaces have these properties:
\{i\}: naturally reductive homogeneous spaces or more general, Riemannian manifolds equipped with a naturally reductive structure;
\{ii\}: g.o. spaces, that is, Riemannian manifolds all of whose geodesics are orbits of one-parameter subgroups of isometries;
\{iii\}: weakly symmetric spaces, that is, Riemannian manifolds such that for any pair of points there exists an isometry interchanging these points;
\{iv\}: commutative spaces, that is, Riemannian manifolds such that the algebra of all isometry-invariant differential operators is commutative.

Here, we have the following inclusion relations: $\{\mathrm{i}\} \subset\{\mathrm{ii}\},\{\mathrm{iii}\} \subset\{\mathrm{ii}\},\{\mathrm{iii}\}$ $\subset\{\mathrm{iv}\}$. See [14] for more details and references. We also note that all generalized Heisenberg groups are D'Atri and C-spaces [3]. Furthermore, it has been proved in [20], [21] that a real hypersurface in $M^{n}(c), c \neq 0$, has a naturally reductive structure if and only if it is locally congruent to a hypersurface of type A. (Note that the proof in [21] can be extended to the case $c<0$.) Further, it is proved in [6] that the manifolds of type A are weakly symmetric. For $\mathbb{C} P^{n}$, this result may also be derived from [8], combined with [10]. As a consequence of these remarks and the Main Theorem, we get

Corollary. Let \bar{M} be a Hopf hypersurface in $M^{n}(c), c \neq 0$. Then \bar{M} is equipped with a naturally reductive structure or is locally isometric to a g.o. space, a commutative space or a weakly symmetric space, respectively, if and only if it is locally congruent to a hypersurface of type A.

2 - Preliminaries

Let $\left(M^{n}(c), g, J\right)$ denote a complex space form of constant holomorphic sectional curvature c and let \bar{M} be an orientable, connected real hypersurface. Further, let N be a unit normal vector of \bar{M}. For any vector field X tangent to \bar{M} we put

$$
\begin{equation*}
J X=\varphi X+\eta(X) N, \quad J N=-\xi \tag{2.1}
\end{equation*}
$$

where φ is a tensor field of type $(1,1), \eta$ is a one-form and ξ a unit vector field on \bar{M}. We also denote the induced metric on \bar{M} by g. Then
(φ, ξ, η, g) determines an almost contact metric structure on \bar{M}, that is, we have

$$
\begin{gather*}
\varphi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1 \tag{2.2}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{gather*}
$$

for all tangent vector fields X, Y. Then (2.2) yields

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad \eta(X)=g(X, \xi) \tag{2.3}
\end{equation*}
$$

The Gauss and Weingarten formulas for \bar{M} are

$$
\begin{aligned}
\widetilde{\nabla}_{X} Y & =\nabla_{X} Y+g(A X, Y) \\
\widetilde{\nabla}_{X} N & =-A X
\end{aligned}
$$

for tangent vector fields X, Y and where $\widetilde{\nabla}$ and ∇ denote the Levi Civita connection of $\left(M^{n}(c), g\right)$ and (\bar{M}, g), respectively. A is the shape operator. From (2.1) and $\widetilde{\nabla} J=0$ we then obtain

$$
\begin{gather*}
\left(\nabla_{X} \varphi\right) Y= \tag{2.4}\\
\nabla_{X} \xi=\varphi A X-g(A X, Y) \xi
\end{gather*}
$$

for tangent X, Y. Furthermore, we have the following Gauss and Codazzi equations:

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+ \\
& +g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y+ \tag{2.5}\\
& -2 g(\varphi X, Y) \varphi Z\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \varphi Y-\eta(Y) \varphi X-2 g(\varphi X, Y) \xi\} \tag{2.6}
\end{equation*}
$$

Here, R is taken with the sign convention $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$. Using (2.2) and (2.5) we then get for the Ricci tensor Q of type (1, 1):

$$
\begin{equation*}
Q X=\frac{c}{4}\{(2 n+1) X-3 n(X) \xi\}+h A X-A^{2} X \tag{2.7}
\end{equation*}
$$

where $h=\operatorname{tr} A$ denotes the mean curvature.
Now, let \bar{M} be a Hopf hypersurface and $c \neq 0$. Then

$$
\begin{equation*}
A \xi=\alpha \xi \tag{2.8}
\end{equation*}
$$

where α is constant (see, for example, [2], [11], [17]). Further, let X be a principal curvature vector orthogonal to ξ with principal curvature λ. Then we have

$$
\begin{equation*}
A X=\lambda X, \quad A \varphi X=\frac{\alpha \lambda+c / 2}{2 \lambda-\alpha} \varphi X . \tag{2.9}
\end{equation*}
$$

We note that \bar{M} is of type A if and only if $A \varphi=\varphi A$ [19], [22]. Among the hypersurfaces given in Proposition A and Proposition B, these are also characterized by $\lambda^{2}-\alpha \lambda-c / 4=0$. Moreover, we have

Proposition 1 [24]. The tangent spaces of the hypersurfaces given in Proposition A may be decomposed as follows:
for type $A: T M=\mathbb{R} \xi \oplus T_{\lambda} \oplus T_{-1 / \lambda}, \quad A \xi=\left(\lambda-\frac{1}{\lambda}\right) \xi ;$
for type $B: T M=R \xi \oplus T_{\lambda} \oplus T_{-1 / \lambda}, \quad A \xi=\frac{-4 \lambda}{\lambda^{t}-1} \xi$
where $\lambda>0$ for type A and $0<\lambda<1$ for type B. Further, for type B we have $\varphi T_{\lambda}=T_{-1 / \lambda}[17]$.

Next, we consider Riemannian manifolds which are of D'Atri- and C-type. In both cases the curvature satisfies the Ledger conditions of order three and five [14], that is,

$$
\begin{aligned}
& L_{3}:\left(\nabla_{X} \rho\right)(X, X)=0, \\
& L_{5}: \sum_{a, b} R\left(e_{a}, X, X, e_{b}\right)\left(\nabla_{X} R\right)\left(e_{a}, X, X, e_{b}\right)=0
\end{aligned}
$$

where ρ denotes the Ricci tensor of type $(0,2)$ and $\left\{e_{a}\right\}$ is an orthonormal basis of $T_{p} \bar{M}, p \in \bar{M}$. Here, $R(X, Y, Z, W)=g(R(X, Y) Z, W)$ and $\left(\nabla_{X} R\right)(Y, Z, U, V)=g\left(\left(\nabla_{X} R\right)(Y, Z) U, V\right)$. Note that L_{3} is equivalent to

$$
\mathfrak{S}_{X, Y, Z}\left(\nabla_{X} \rho\right)(Y, Z)=0
$$

where \mathfrak{S} denotes the cyclic sum. This means that ρ is cyclic-parallel or equivalently, ρ is a Killing tensor.

As concerns the Hopf hypersurfaces satisfying the condition L_{3}, we have

Proposition 2 [15], [16]. Let \bar{M} be a Hopf hypersurface of $M^{n}(c)$, $c \neq 0$. Then ρ is cyclic-parallel if and only if
a) $M^{n}(c)=\mathbb{C} P^{n}$ and \bar{M} is locally congruent to a real hypersurface of type A or to one of type B with special radius r;
b) $M^{n}(c)=\mathbb{C} H^{n}$ and \bar{M} is locally congruent to a real hypersurface of type A.

For $c=4$, the defining equation for the class B in Proposition 2 is

$$
\begin{equation*}
\alpha \lambda^{2}+4 \lambda-\alpha=0 \tag{2.10}
\end{equation*}
$$

and the radius r (related to α by $\alpha=2 \cot 2 r$) in Proposition 2 is given by

$$
\begin{equation*}
2 \alpha=3 h \quad\left(\text { or equivalently, } \alpha^{2}=12(n-1)\right) \tag{2.11}
\end{equation*}
$$

See [15], [16].
Finally, we shall use
Proposition 3 [25]. A Riemannian manifold (M, g) is locally homogeneous if and only if there exists a tensor field T of type (1,2) on M (called a homogeneous structure) such that with $\bar{\nabla}=\nabla-T$ we have $\bar{\nabla} g=\bar{\nabla} R=\bar{\nabla} T=0$. Moreover, T is called a naturally reductive structure if $T_{X} X=0$ for all tangent vectors X.

3 - Proof of the Main Theorem

First, let \bar{M} be a Hopf hypersurface which is locally congruent to one of type A. As mentioned in the Introduction, then \bar{M} is equipped with a naturally reductive structure and hence, \bar{M} is a D'Atri space and a C-space.

Conversely, let \bar{M} be of D'Atri- or C-type. Then ρ is cyclic-parallel. So, it follows from Proposition 2 that for $\mathbb{C} H^{n}$ the hypersurface is locally congruent to one of type A. The proof will be complete if for $\mathbb{C} P^{n}$ we can exclude the hypersurfaces which are congruent to one of type B.

To do this, we suppose that \bar{M} is such a Hopf hypersurface in $\mathbb{C} P^{n}$ where we suppose $c=4$. It follows from Proposition 3 that there exists a homogeneous structure T on \bar{M}. Furthermore, since \bar{M} is of D'Atri- or C-type, ρ is cyclic-parallel and hence, we have at $p \in M$:

$$
\rho\left(T_{X} X, X\right)=0
$$

for any $X \in T_{p} \bar{M}$. By polarization, we get

$$
\begin{equation*}
\mathfrak{S}_{X, Y, Z}\left\{\rho\left(T_{X} Y, Z\right)+\rho\left(T_{X} Z, Y\right)\right\}=0 \tag{3.1}
\end{equation*}
$$

for $X, Y, Z \in T_{p} \bar{M}$. Put $X=Y=\xi$ in (3.1) to obtain

$$
\begin{equation*}
\rho\left(T_{\xi} \xi, Z\right)+\rho\left(T_{\xi} Z, \xi\right)+\rho\left(T_{Z} \xi, \xi\right)=0 \tag{3.2}
\end{equation*}
$$

Next, using (2.7) in (3.2), we get

$$
\begin{align*}
3 g\left(T_{\xi} \xi, Z\right)+h g\left(T_{\xi} \xi, A Z\right)-g\left(T_{\xi} \xi, A^{2} Z\right) & -\alpha h g\left(T_{\xi} \xi, Z\right)+ \tag{3.3}\\
& +\alpha^{2} g\left(T_{\xi} \xi, Z\right)=0
\end{align*}
$$

Further, we denote by D_{λ} the eigenspace, orthogonal to ξ, associated to an eigenvalue λ of Q. Assuming $Z \in D_{\lambda}$, we obtain from (3.3) the relation

$$
\begin{equation*}
\left(\lambda^{2}-\lambda h-\alpha^{2}+\alpha h-3\right) g\left(T_{\xi} \xi, Z\right)=0 \tag{3.4}
\end{equation*}
$$

In what follows we first consider the case $n \neq 2$. Then, taking into account the defining relations (2.10), (2.11), we get $\lambda^{2}-\lambda h-\alpha^{2}+\alpha h-3 \neq 0$ and so, for that case, we must have, since T_{ξ} is skew-symmetric,

$$
\begin{equation*}
T_{\xi} \xi=0 \tag{3.5}
\end{equation*}
$$

Next, put $Z=Y$ in (3.1). Then we have

$$
\rho\left(T_{X} Y, Y\right)+\rho\left(T_{Y} Y, X\right)+\rho\left(T_{Y} X, Y\right)=0
$$

which for $X \in D_{\lambda}, Y \in D_{\mu}$ and with (2.7) yields

$$
\begin{equation*}
(\lambda-\mu)(h-\lambda-\mu) g\left(T_{Y} Y, X\right)=0 \tag{3.6}
\end{equation*}
$$

Using again (2.10) and (2.11) in (3.6), we obtain

$$
\begin{equation*}
g\left(T_{Y} Y, X\right)=0 \tag{3.7}
\end{equation*}
$$

for $Y \in D_{\mu}, X \in D_{\lambda}$ and $\lambda \neq \mu$.
Further, put $X=\xi$ and $Z=Y \in D_{\lambda}$ in (3.1). Using (3.5) and (2.7), we then get

$$
\left(\lambda^{2}-\lambda h-\alpha^{2}+\alpha h-3\right) g\left(T_{Y} Y, \xi\right)=0
$$

and for the special hypersurfaces in class B we obtain

$$
\begin{equation*}
g\left(T_{Y} Y, \xi\right)=0 \tag{3.8}
\end{equation*}
$$

Now, put $X=\xi$ in (3.1) and assume $Y \in D_{\lambda}, Z \in D_{\mu}$ for $\lambda \neq \mu$. Using (2.7), we then get

$$
\begin{align*}
\left(\mu^{2}-\mu h-\alpha^{2}\right. & +\alpha h-3) g\left(T_{Y} Z, \xi\right)+ \\
& +\left(\lambda^{2}-\lambda h-\alpha h-3\right) g\left(T_{Z} Y, \xi\right)+ \tag{3.9}\\
& +\left(\mu h-\lambda h-\mu^{2}+\lambda^{2}\right) g\left(T_{\xi} Y, Z\right)=0
\end{align*}
$$

Putting

$$
\begin{aligned}
& a=\mu^{2}-\mu h-\alpha^{2}+\alpha h-3 \\
& b=\lambda^{2}-\lambda h-\alpha^{2}+\alpha h-3 \\
& c=\mu h-\lambda h-\mu^{2}+\lambda^{2}
\end{aligned}
$$

we see that

$$
\begin{equation*}
c=b-a . \tag{3.10}
\end{equation*}
$$

So, (3.9) may be rewritten as

$$
\begin{equation*}
a g\left(T_{Y} Z, \xi\right)+b g\left(T_{Z} Y, \xi\right)+c g\left(T_{\xi} Y, Z\right)=0 \tag{3.11}
\end{equation*}
$$

Moreover, (2.10) and (2.11) imply $a b c \neq 0$ when $n \neq 2$.
In what follows we shall now take into account the Ledger condition L_{5}. Using the homogeneous structure T and the symmetry properties of R, this condition may be written in the form

$$
\begin{equation*}
\sum_{i, j} R\left(e_{i}, X, X, e_{j}\right) R\left(e_{i}, T_{X} X, X, e_{j}\right)=0 \tag{3.12}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is an orthonormal basis of $T_{p} M$. By polarizing (3.12) we get

$$
\begin{align*}
\sum_{i, j}\left\{R\left(e_{i}, X, Y, e_{j}\right)\right. & \left.+R\left(e_{i}, Y, X, e_{j}\right)\right\}\left\{R\left(e_{i}, T_{Z} V, W, e_{j}\right)+\right. \\
& +R\left(e_{i}, T_{Z} W, V, e_{j}\right)+R\left(e_{i}, T_{V} W, Z, e_{j}\right)+ \tag{3.13}\\
& +R\left(e_{i}, T_{V} Z, W, e_{j}\right)+ \\
& \left.+R\left(e_{i}, T_{W} V, Z, e_{j}\right)+R\left(e_{i}, T_{W} Z, V, e_{j}\right)\right\}=0
\end{align*}
$$

Next, put $X=V=W=\xi$ in (3.13) and take $Y \in D_{\lambda}, Z \in D_{\mu}, \lambda \neq \mu$. Using (2.2), (2.3) and (2.5) in (3.13), a long computation then gives

$$
\begin{equation*}
(a+F) g\left(T_{Y} Z, \xi\right)+(b+G) g\left(T_{Z} Y, \xi\right)+(c+H) g\left(T_{\xi} Y, Z\right)=0 \tag{3.14}
\end{equation*}
$$

where

$$
\begin{aligned}
F= & -3 \alpha \lambda+\alpha^{2} h^{2}-\alpha \mu h^{2}+\alpha \mu^{3}-2 \alpha^{4}-\alpha^{2}-\alpha \mu+\alpha^{3} \mu-\alpha^{3} \mu^{2}+\alpha^{5}, \\
G= & -3 \alpha \mu+\alpha^{2} h^{2}-\alpha \lambda h^{2}+\alpha \lambda^{3}-2 \alpha^{4}-\alpha^{2}-\alpha \lambda+\alpha^{3} \lambda-\alpha^{3} \lambda^{2}+\alpha^{5} \\
H= & -3 \alpha \mu+3 \alpha \lambda+\alpha \mu h^{2}-\alpha \lambda h^{2}-\alpha \lambda^{3}+\alpha \mu^{3}+\alpha \mu-\alpha \lambda-\alpha^{3} \mu+\alpha^{3} \lambda+ \\
& +\alpha^{3} \mu^{2}-\alpha^{3} \lambda^{2}
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
G-F=H \tag{3.15}
\end{equation*}
$$

So, from (3.11) and (3.14) we have

$$
\begin{equation*}
F g\left(T_{Y} Z, \xi\right)+G g\left(T_{Z} Y, \xi\right)+H g\left(T_{\xi} Y, Z\right)=0 \tag{3.16}
\end{equation*}
$$

Here, we note that $H \neq 0$ for the considered hypersurfaces. Indeed, if $H=0$, we have

$$
\alpha(\lambda-\mu)\left\{(\lambda+\mu)^{2}-\alpha^{2}(\lambda+\mu)+3+\alpha^{2}-h^{2}\right\}=0 .
$$

Taking account of (2.11), we have

$$
\begin{equation*}
(\lambda+\mu)^{2}-\alpha^{2}(\lambda+\mu)=3+\alpha^{2}-h^{2}=0 \tag{3.17}
\end{equation*}
$$

Moreover, since in this case $\lambda+\mu=-\frac{4}{\alpha}$ and $h=(n-1)(\lambda+\mu)+\alpha=$ $(h-1)\left(-\frac{4}{\alpha}\right)+\alpha$ (see Proposition 1 and $\left.(2.10)\right),(3.17)$ gives

$$
\begin{equation*}
4 \alpha^{3}+(8 n-5) \alpha^{2}-16 n(n-2)=0 \tag{3.18}
\end{equation*}
$$

Now, one may check that there is no integer n satisfying (3.18) and (2.11). (We used a computer to check this.) So, we have $H \neq 0$. Then, multiplying (3.10) by H and (3.16) by c and subtracting, we obtain

$$
\begin{equation*}
(a H-c F) g\left(T_{Y} Z, \xi\right)+(b H-c G) g\left(T_{Z} Y, \xi\right)=0 \tag{3.19}
\end{equation*}
$$

Further, from (3.10) and (3.15) we also see that $a H-c F=b H-c G$, and so, (3.19) becomes

$$
\begin{equation*}
(a H-c F)\left\{g\left(T_{Y} Z+T_{Z} Y, \xi\right)=0\right. \tag{3.20}
\end{equation*}
$$

Finally, in a similar way as for H, one may check that $a H-c F \neq 0$. Hence, we have from (3.20)

$$
\begin{equation*}
g\left(T_{Y} Z+T_{Z} Y, \xi\right)=0 \tag{3.21}
\end{equation*}
$$

So, from (3.5), (3.7), (3.8) and (3.21) we conclude that

$$
\begin{equation*}
g\left(T_{X} X, \xi\right)=0 \tag{3.22}
\end{equation*}
$$

for any vector $X \in T_{p} M$.
To finish this case, we note that the same reasoning as in [21] now yields $\bar{\nabla}_{X} \xi=0$ since $n \geq 3$. Hence, with (2.4) we get

$$
T_{X} \xi=\varphi A X
$$

and so, from (3.22) we obtain $g(\varphi A X, X)=0$. This yields $\varphi A=A \varphi$ which contradicts the fact that \bar{M} is not locally congruent to a hypersurface of type A.

Finally, we consider the case $n=2$. Since \bar{M} satisfies the conditions L_{3} and L_{5}, \bar{M} is equipped with a naturally reductive structure [13] and hence, is locally congruent to a hypersurface of type A, which is again a contradiction. This completes the proof.

REFERENCES

[1] J. Berndt: Über Untermannigfaltigkeiten von komplexen Raumformen, doctoral dissertation, Universität zu Köln, 1989.
[2] J. Berndt: Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math., 395 (1989), 132-141.
[3] J. Berndt - F. Tricerri - L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
[4] J. Berndt - L. Vanhecke: Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl., 2 (1992), 57-80.
[5] J. Berndt - L. Vanhecke: Aspects of the geometry of the Jacobi operator, Riv. Mat. Univ. Parma (5), 3 (1994), 91-108.
[6] J. Berndt - L. Vanhecke: Geometry of weakly symmetric spaces, J. Math. Soc. Japan, 48 (1996), 745-760.
[7] T. E. Cecil - P. J. Ryan: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
[8] J. T. Cho - U-H. KI: On real hypersurfaces of a complex projective space, to appear.
[9] J. E. D'Atri - H. K. Nickerson: Divergence-preserving geodesic symmetries, J. Differential Geom., 3 (1969), 467-476.
[10] J. C. González-DÁvila - L. Vanhecke: A new class of weakly symmetric spaces, preprint, 1996.
[11] U-H. KI - Y. J. Suh: On real hypersurfaces of a complex space form, Math. J. Okayama Univ., 32 (1990), 207-221.
[12] N. Kimura: Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137-149.
[13] O. Kowalski: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, 1983, 131-158.
[14] O. Kowalski - F. Prüfer - L. Vanhecke: D'Atri spaces, Topics in Geometry: In Memory of Joseph D'Atri (Ed. S. Gindikin), Progress in Nonlinear Differential Equations 20, 1996, Birkhäuser, Boston, Basel, Berlin, 241-284.
[15] J.-H. Kwon - H. Nakagawa: Real hypersurfaces with cyclic-parallel Ricci tensor of a complex projective space, Hokkaido Math. J., 17 (1988), 355-371.
[16] J.-H. KWOn - H. Nakagawa: Real hypersurfaces with cyclic η-parallel Ricci tensor of a complex space form, Yokohama Math. J., 37 (1989), 45-55.
[17] Y. MaEdA: On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28 (1976), 529-540.
[18] S. Montiel: Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[19] S. Montiel - A. Romero: On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata, 20 (1986), 245-261.
[20] S. NAGAI: Naturally reductive Riemannian homogeneous structure on a homogeneous real hypersurface in a complex space form, Boll. Un. Mat. Ital. (7), 9-A (1995), 391-400.
[21] S. NAGAI: The classification of naturally reductive homogeneous real hypersurfaces in complex projective space, Arch. Math. (Basel), 69 (1997), 1-6.
[22] M. Okumura: On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355-364.
[23] R. Takagi: On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[24] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan, 27 (1975), 43-53, 507-516.
[25] F. Tricerri - L. Vanhecke: Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge Univ. Press, London, 1983.
[26] L. Vanhecke - T.J. Willmore: Interaction of tubes and spheres, Math. Ann., 263 (1983), 31-42.

Lavoro pervenuto alla redazione il 3 settembre 1997 ed accettato per la pubblicazione il 25 marzo 1998.

Bozze licenziate il 17 giugno 1998

INDIRIZZO DEGLI AUTORI:

Jong Taek Cho* - Department of Mathematics - Chonnam National University - Kwangju 500-757 - Korea
Lieven Vanhecke - Department of Mathematics - Katholieke Universiteit Leuven - Celestijnenlaan 200B - 3001 Leuven - Belgium

[^1]
[^0]: Key Words and Phrases: Complex space forms - Hopf hypersurfaces - D'Atri - C-- naturally reductive - g.o. - weakly symmetric and commutative spaces.
 A.M.S. Classification: $53 \mathrm{C} 25-53 \mathrm{C} 30-53 \mathrm{C} 40-53 \mathrm{C} 55$.

[^1]: *Supported by TGRC-KOSEF and BSRI 97-1425.

