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Hopf hypersurfaces of D’Atri- and

C-type in a complex space form

J. T. CHO - L. VANHECKE

RIASSUNTO: In uno spazio-forma complesso non piatto si assegna una caratteriz-
zazione delle ipersuperficie di Hopf che sono spazi di D’Atri (cioé varieta riemanniane
le cui simmetrie geodetiche preservano il volume a meno del segno) o C-spazi (cioé
varieta © cui operatori di Jacobi hanno autovalori costanti sulle geodetiche). Questo
porta a una classificazione delle ipersuperficie di Hopf che sono naturalmente riduttive,
ctoé spazi commutativi o debolmente simmetrici.

ABSTRACT: We classify all Hopf hypersurfaces in a non-flat complex space form
M"™(c) which are D’Atri spaces (that is, Riemannian manifolds all of whose local
geodesic symmetries are volume-preserving up to sign) or C-spaces (that is, their Jacobi
operators have constant eigenvalues along the corresponding geodesics). This yields a
classification of Hopf hypersurfaces which are naturally reductive, g.o., weakly symmet-
ric or commutative spaces.

1 — Introduction

The study of Riemannian manifolds all of whose local geodesic sym-
metries are volume-preserving (up to sign) has been started in [9]. Such
manifolds generalize locally symmetric spaces and are now called D’ ATRI
spaces [26]. Several examples are known and they have been studied ex-
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tensively. We refer to [14] for a survey. Furthermore, in [4], J. BERNDT
and the second author generalized in another way the locally symmet-
ric spaces and introduced and studied C-spaces as Riemannian mani-
folds such that for any geodesic the corresponding Jacobi operator has
constant eigenvalues along that geodesic. Although the geometry of C-
spaces shares a lot of properties with that of the D’Atri spaces, a good
understanding of their relation is not yet known. We refer to [3], [5] for
a survey.

The main purpose of this paper is to classify all Hopf hypersurfaces
in a non-flat complex space form M"(c), n being the complex dimension,
which are D’Atri spaces or C-spaces.

Let M be an oriented real hypersurface of a complex space form
M"(c) and let N be a unit normal vector field on M. Then M is said
to be a Hopf hypersurface [1] if the structure vector field £ = —JN
is a principal curvature vector field, that is, an eigenvector field of the
shape operator field on M. T. E. CiciL and P. J. RYAN extensively
investigated in [7] hypersurfaces which are realized as tubes over certain
submanifolds in CP" by using their focal maps. Furthermore, in [23]
R. TakAcGI classified the homogeneous hypersurfaces of CP™ into six
types. By making use of the results in [7] and [23], M. KIMURA then
proved the following [12]

PROPOSITION A. Let M be a Hopf hypersurface in CP". Then M
has constant principal curvatures if and only if M is locally congruent to
one of the following spaces:

(A1) a geodesic hypersphere of radius v where 0 <r < 7;

(As) a tube of radius v over a totally geodesic CP*,1 < k < mn — 2, where
0<r<3;

(B) a tube of radius v over a complex quadric Q,_1 where 0 < r < T

(C) a tube of radius r over CP' x CP"T where 0 <r < Zandn (n >5)
odd;

(D) a tube of radius r over a complex Grassmann manifold CGs 5 where
O0<r<7andn=9;

(E) a tube of radius v over a Hermitian symmetric space SO(10)/U(5)
where 0 <r < 7 and n = 15.
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Note that the result of R. Takagi implies that all the model spaces men-
tioned in Proposition A are homogeneous. Moreover, since the principal
curvatures are constant, they are isoparametric hypersurfaces. These
principal curvatures and their multiplicities are explicitly written down
in the table in [24]. (See also Section 2.)

Furthermore, real hypersurfaces of a complex hyperbolic space CH"
have been investigated in [1], [2], [18], [19], for example. In particular,
in [2], J. BERNDT classified the Hopf hypersurfaces with constant princi-
pal curvatures in CH™. More precisely, he obtained the following

PROPOSITION B. Let M be a Hopf hypersurface in CH"™. Then M
has constant principal curvatures if and only if M is locally congruent to
one of the following spaces:

(Ao) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
(DHn—l;

(Ay) a tube over a totally geodesic CH*, 1 <k <n —2;

(B) a tube over a totally real hyperbolic space RH™.

These model spaces are obviously again isoparametric and they are also
homogeneous (see [1]). The principal curvatures and their multiplicities
of these hypersurfaces are also given in [2].

In what follows the hypersurfaces of type (A;), (Az) in Proposition
A and those of type (Ayp), (A1), (Az2) in Proposition B will be called hy-
persurfaces of type A.

In Section 2, we collect some basic facts and then, in Section 3, we
prove the

MAIN THEOREM. A Hopf hypersurface in a non-flat complex space
form is a D’Atri space or a C-space, respectively, if and only if it is locally
congruent to a hypersurface of type A.

Several interesting classes of D’Atri and C-spaces are known. More
precisely, the following classes of spaces have these properties:

{i}: naturally reductive homogeneous spaces or more general, Riemannian
manifolds equipped with a naturally reductive structure;
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{ii}: g.o. spaces, that is, Riemannian manifolds all of whose geodesics are
orbits of one-parameter subgroups of isometries;

{iii}: weakly symmetric spaces, that is, Riemannian manifolds such that
for any pair of points there exists an isometry interchanging these
points;

{iv}: commutative spaces, that is, Riemannian manifolds such that the al-
gebra of all isometry-invariant differential operators is commutative.

Here, we have the following inclusion relations: {i} C {ii}, {iii} C {ii}, {iii}
C {iv}. See [14] for more details and references. We also note that all
generalized Heisenberg groups are D’Atri and C-spaces [3]. Furthermore,
it has been proved in [20], [21] that a real hypersurface in M"(c),c # 0,
has a naturally reductive structure if and only if it is locally congruent to
a hypersurface of type A. (Note that the proof in [21] can be extended to
the case ¢ < 0.) Further, it is proved in [6] that the manifolds of type A
are weakly symmetric. For CP”, this result may also be derived from [§],
combined with [10]. As a consequence of these remarks and the Main
Theorem, we get

COROLLARY. Let M be a Hopf hypersurface in M"(c),c # 0.
Then M is equipped with a naturally reductive structure or is locally
isometric to a g.o. space, a commutative space or a weakly symmetric
space, respectively, if and only if it is locally congruent to a hypersurface

of type A.

2 — Preliminaries

Let (M™(c),g,J) denote a complex space form of constant holo-
morphic sectional curvature ¢ and let M be an orientable, connected
real hypersurface. Further, let N be a unit normal vector of M. For any
vector field X tangent to M we put

(2.1) JX =X +n(X)N, JN=-¢

where ¢ is a tensor field of type (1,1), n is a one-form and £ a unit
vector field on M. We also denote the induced metric on M by g. Then
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(p,€&,1m,g) determines an almost contact metric structure on M, that is,
we have

P’X =X +n(X)E,  n(é) =1,
9(pX,pY) = g(X,Y) —n(X)n(Y)

for all tangent vector fields X,Y. Then (2.2) yields

(2.2)

(2.3) pE=0, nop=0, nX)=g(X.
The Gauss and Weingarten formulas for M are

ViV =VyY + g(AX,Y),
VxN =— AX

for tangent vector fields X,Y and where V and V denote the Levi Civita
connection of (M" (C)N, g) and (M, g), respectively. A is the shape opera-
tor. From (2.1) and V.J = 0 we then obtain

(Vxe)Y =n(Y)AX —g(AX,Y)E,

(2.4)
Vx&=pAX

for tangent X, Y. Furthermore, we have the following Gauss and Codazzi
equations:

R(X,Y)Z = g{g(Y, 2)X — g(X, Z)Y +
(2.5) + 9(0Y, Z)pX — g(¢X, Z)pY +
—29(p X, Y)oZ} + g(AY, Z)AX — g(AX, Z)AY,
(2:6) (VxA)Y = (Vy A)X = Z{n(X)pY —n(Y)eX —29(oX, )}

Here, R is taken with the sign convention R(X,Y) = [Vx,Vy| = V(xy].
Using (2.2) and (2.5) we then get for the Ricci tensor @ of type (1,1):

(2.7) QX = 2{(271 +1)X — 3n(X)¢} + hAX — AX
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where h = tr A denotes the mean curvature.
Now, let M be a Hopf hypersurface and ¢ # 0. Then

(2.8) A = o

where « is constant (see, for example, [2], [11], [17]). Further, let X be
a principal curvature vector orthogonal to £ with principal curvature A.
Then we have

aX+c/2

2.9 AX =2X ApX =
(2.9) ’ 7 20—«

pX.

We note that M is of type A if and only if Ap = pA [19], [22]. Among
the hypersurfaces given in Proposition A and Proposition B, these are also
characterized by A\* — aX — ¢/4 = 0. Moreover, we have

PROPOSITION 1 [24]. The tangent spaces of the hypersurfaces given
in Proposition A may be decomposed as follows:

for type A: TM =TRESTA®T-1)n, AL=(A— )&

for type B: TM = REGT\®T_1/5, AL = ;‘_’\1
where A > 0 for type A and 0 < X\ < 1 for type B. Further, for type B we

have T\ =T_1,\ [17] .

Next, we consider Riemannian manifolds which are of D’Atri- and
C-type. In both cases the curvature satisfies the Ledger conditions of
order three and five [14], that is,

Ly :((Vxp)(X, X) =0,
Ls:Y R(e, X, X,e)(VxR)(ea, X, X, ;) =0

a,b

where p denotes the Ricci tensor of type (0,2) and {e,} is an orthonor-
mal basis of T,M,p € M. Here, R(X,Y,Z, W) = g(R(X,Y)Z,W) and
(VxR)(Y,Z,U,V)=g((VxR)(Y,Z)U,V). Note that L3 is equivalent to

Gx,v,z(Vxp)(Y,Z) =0

where & denotes the cyclic sum. This means that p is cyclic-parallel or
equivalently, p is a Killing tensor.
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As concerns the Hopf hypersurfaces satisfying the condition Ls, we
have

PROPOSITION 2 [15], [16]. Let M be a Hopf hypersurface of M"(c),
c# 0. Then p is cyclic-parallel if and only if

a) M"(c) = CP" and M is locally congruent to a real hypersurface
of type A or to one of type B with special radius r;

b) M"(c) = CH™ and M is locally congruent to a real hypersurface

of type A.

For ¢ = 4, the defining equation for the class B in Proposition 2 is
(2.10) aX +4\ —a =0
and the radius r (related to a by o = 2 cot 2r) in Proposition 2 is given by
(2.11) 2ac = 3h  (or equivalently, o® = 12(n — 1)).

See [15], [16].
Finally, we shall use

ProposITION 3 [25]. A Riemannian manifold (M, g) is locally
homogeneous if and only if there exists a tensor field T of type (1,2)
on M (called a homogeneous structure) such that with V.=V — T we
have Vg = VR = VT = 0. Moreover, T is called a naturally reductive
structure if Tx X = 0 for all tangent vectors X.

3 — Proof of the Main Theorem

First, let M be a Hopf hypersurface which is locally congruent to
one of type A. As mentioned in the Introduction, then M is equipped
with a naturally reductive structure and hence, M is a D’Atri space and
a C-space.

Conversely, let M be of D’Atri- or C-type. Then p is cyclic-parallel.
So, it follows from Proposition 2 that for CH™ the hypersurface is locally
congruent to one of type A. The proof will be complete if for CP™ we can
exclude the hypersurfaces which are congruent to one of type B.
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To do this, we suppose that M is such a Hopf hypersurface in CP"
where we suppose ¢ = 4. It follows from Proposition 3 that there exists
a homogeneous structure 7" on M. Furthermore, since M is of D’Atri- or
C-type, p is cyclic-parallel and hence, we have at p € M:

p(TxX,X) =0
for any X € T, M. By polarization, we get
(3.1) Sxyvz{p(TxY,Z)+ p(TxZ,Y)} =0
for X,Y,Z € T,M. Put X =Y = ¢ in (3.1) to obtain
(3.2) P18, 2) + p(TeZ,€) + p(T2€,€) = 0.
Next, using (2.7) in (3.2), we get

3g(T§§7 Z) + hg(T§§7 AZ) - g(T§§7 AQZ) - ahg(Tffa Z)+

(3.3) 2
+ag(Te€, Z) =0.

Further, we denote by D, the eigenspace, orthogonal to £, associated
to an eigenvalue A\ of (). Assuming Z € D,, we obtain from (3.3) the
relation

(3.4) (A2 = Xh—a®+ah —3)g(Te,Z) = 0.

In what follows we first consider the case n # 2. Then, taking into
account the defining relations (2.10), (2.11), we get A>—Ah—a’*+ah—3#£0
and so, for that case, we must have, since T is skew-symmetric,

(3.5) Te€ = 0.

Next, put Z =Y in (3.1). Then we have

p(TxY,Y)+ p(TyY, X) + p(Ty X,Y) =0

which for X € D,,Y € D,, and with (2.7) yields

(3.6) (A=) (h = A = n)g(TyY, X) = 0.
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Using again (2.10) and (2.11) in (3.6), we obtain
(3.7) oY, X) =0

forY € D,,X € Dy and X\ # p.
Further, put X =¢ and Z =Y € D, in (3.1). Using (3.5) and (2.7),
we then get
(A2 —Ah—a®+ah —3)g(TyY, &) =0

and for the special hypersurfaces in class B we obtain
(3.8) 9(IyY,£) = 0.

Now, put X = ¢ in (3.1) and assume Y € D,,Z € D, for A # p.
Using (2.7), we then get

(u* — ph — o® + ah — 3)g(Ty Z, &)+
(3.9) + (A = Ah — ah — 3)g(T2Y, &)+
+ (uh — Ah — @® + XN)g(TY, Z) = 0.

Putting
a=p®—ph—ao®+ah—3,
b=M —\h—ao®+ah—3,
c=ph—Mh—p? 4+ )2,

we see that

(3.10) c=b—a.

So, (3.9) may be rewritten as
(3.11) ag(Ty Z,6) + bg(T,Y.€) + cg(TeY. Z) = 0.

Moreover, (2.10) and (2.11) imply abc # 0 when n # 2.

In what follows we shall now take into account the Ledger condi-
tion Ls. Using the homogeneous structure 1" and the symmetry properties
of R, this condition may be written in the form

(3.12) Y Rlen X, X,¢;)R(e;, Tx X, X, ¢;) =0

,J
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where {e;} is an orthonormal basis of 7,M. By polarizing (3.12) we get

> {R(ei. X, Y, e;) + R(e;, Y, X, ;) H{R(e;, Tz V, W, e;)+
%,
(3.13) + R(ei, TzW, V. ¢;) + Rlei, Ty W, Z, ¢;)+
+ R(ei,TvZ, W, 6])+
+ R(ei, Tw‘/, Z, ej) + R(€i, TWZ, V, ej)} =0.

Next, put X =V =W = ¢ in (3.13) and take Y € Dy, Z € D, A # p.
Using (2.2), (2.3) and (2.5) in (3.13), a long computation then gives

(3.14) (a+ F)g(Iv Z,&) + (b+ G)g(TzY,&) + (c+ H)g9(TY,Z) =0

where

F =—3a\+a?h? —aph® + ap® — 2a* —o? —ap+op — o’y + o’

G = —3ap+ a*h? —adh? + o)’ —2a* —a® —ad + X — PN + o’

H = - 3ap+3ar+auph® — alh® — aX’ + ap® + ap — o — o’ + o® A+
+oPu? — o).

Hence, we have

(3.15) G-F=H.

So, from (3.11) and (3.14) we have

(3.16) Fg(TyZ,€) + Gg(T,Y,€) + Hg(TeY, Z) = 0.

Here, we note that H # 0 for the considered hypersurfaces. Indeed, if
H =0, we have

aA = {(A+p)? —a*(A+p)+3+a®— R’} =0.
Taking account of (2.11), we have

(3.17) A+p)?—a*?AN+p)=3+a®>—h*=0.
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Moreover, since in this case A + pu = —% and h=(n—-1)A+pu)+a=

(h—1)(—=2) + a (see Proposition 1 and (2.10)), (3.17) gives
(3.18) 40® + (8n —5)a® — 16n(n —2) = 0.

Now, one may check that there is no integer n satisfying (3.18) and (2.11).
(We used a computer to check this.) So, we have H # 0. Then, multi-
plying (3.10) by H and (3.16) by ¢ and subtracting, we obtain

(3.19) (aH — cF)g(Ty Z,&) + (bH — cG)g(T7Y,£) = 0.

Further, from (3.10) and (3.15) we also see that aH —cF = bH — c¢G, and
50, (3.19) becomes

(3.20) (aH — cF){g(IvZ +T7Y,€) =0.

Finally, in a similar way as for H, one may check that aH — cF # 0.
Hence, we have from (3.20)

So, from (3.5), (3.7), (3.8) and (3.21) we conclude that
(3.22) g(TxX,£) =0

for any vector X € T,M.
To finish this case, we note that the same reasoning as in [21] now
yields Vx& = 0 since n > 3. Hence, with (2.4) we get

Tx§ = pAX

and so, from (3.22) we obtain g(pAX,X) = 0. This yields pA = Ap
which contradicts the fact that M is not locally congruent to a hypersur-
face of type A.

Finally, we consider the case n = 2. Since M satisfies the conditions
Ls and Ls, M is equipped with a naturally reductive structure [13] and
hence, is locally congruent to a hypersurface of type A, which is again a
contradiction. This completes the proof.
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