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Hopf hypersurfaces of D’Atri- and

C-type in a complex space form

J. T. CHO – L. VANHECKE

Riassunto: In uno spazio-forma complesso non piatto si assegna una caratteriz-
zazione delle ipersuperficie di Hopf che sono spazi di D’Atri (cioè varietà riemanniane
le cui simmetrie geodetiche preservano il volume a meno del segno) o C-spazi (cioè
varietà i cui operatori di Jacobi hanno autovalori costanti sulle geodetiche). Questo
porta a una classificazione delle ipersuperficie di Hopf che sono naturalmente riduttive,
cioè spazi commutativi o debolmente simmetrici.

Abstract: We classify all Hopf hypersurfaces in a non-flat complex space form
Mn(c) which are D’Atri spaces (that is, Riemannian manifolds all of whose local
geodesic symmetries are volume-preserving up to sign) or C-spaces (that is, their Jacobi
operators have constant eigenvalues along the corresponding geodesics). This yields a
classification of Hopf hypersurfaces which are naturally reductive, g.o., weakly symmet-
ric or commutative spaces.

1 – Introduction

The study of Riemannian manifolds all of whose local geodesic sym-

metries are volume-preserving (up to sign) has been started in [9]. Such

manifolds generalize locally symmetric spaces and are now called D’Atri

spaces [26]. Several examples are known and they have been studied ex-
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tensively. We refer to [14] for a survey. Furthermore, in [4], J. Berndt

and the second author generalized in another way the locally symmet-

ric spaces and introduced and studied C-spaces as Riemannian mani-

folds such that for any geodesic the corresponding Jacobi operator has

constant eigenvalues along that geodesic. Although the geometry of C-

spaces shares a lot of properties with that of the D’Atri spaces, a good

understanding of their relation is not yet known. We refer to [3], [5] for

a survey.

The main purpose of this paper is to classify all Hopf hypersurfaces

in a non-flat complex space form Mn(c), n being the complex dimension,

which are D’Atri spaces or C-spaces.

Let M be an oriented real hypersurface of a complex space form

Mn(c) and let N be a unit normal vector field on M . Then M is said

to be a Hopf hypersurface [1] if the structure vector field ξ = −JN

is a principal curvature vector field, that is, an eigenvector field of the

shape operator field on M . T. E. Cecil and P. J. Ryan extensively

investigated in [7] hypersurfaces which are realized as tubes over certain

submanifolds in CP n by using their focal maps. Furthermore, in [23]

R. Takagi classified the homogeneous hypersurfaces of CP n into six

types. By making use of the results in [7] and [23], M. Kimura then

proved the following [12]

Proposition A. Let M be a Hopf hypersurface in CP n. Then M

has constant principal curvatures if and only if M is locally congruent to

one of the following spaces:

(A1) a geodesic hypersphere of radius r where 0 < r < π
2
;

(A2) a tube of radius r over a totally geodesic CP k, 1 ≤ k ≤ n − 2, where

0 < r < π
2
;

(B) a tube of radius r over a complex quadric Qn−1 where 0 < r < π
4
;

(C) a tube of radius r over CP 1 × CP
n−1

2 where 0 < r < π
4

and n (n ≥ 5)

odd;

(D) a tube of radius r over a complex Grassmann manifold CG2,5 where

0 < r < π
4

and n = 9;

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5)

where 0 < r < π
4

and n = 15.
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Note that the result of R. Takagi implies that all the model spaces men-

tioned in Proposition A are homogeneous. Moreover, since the principal

curvatures are constant, they are isoparametric hypersurfaces. These

principal curvatures and their multiplicities are explicitly written down

in the table in [24]. (See also Section 2.)

Furthermore, real hypersurfaces of a complex hyperbolic space CHn

have been investigated in [1], [2], [18], [19], for example. In particular,

in [2], J. Berndt classified the Hopf hypersurfaces with constant princi-

pal curvatures in CHn. More precisely, he obtained the following

Proposition B. Let M be a Hopf hypersurface in CHn. Then M

has constant principal curvatures if and only if M is locally congruent to

one of the following spaces:

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

CHn−1;

(A2) a tube over a totally geodesic CHk, 1 ≤ k ≤ n − 2;

(B) a tube over a totally real hyperbolic space IRHn.

These model spaces are obviously again isoparametric and they are also

homogeneous (see [1]). The principal curvatures and their multiplicities

of these hypersurfaces are also given in [2].

In what follows the hypersurfaces of type (A1), (A2) in Proposition

A and those of type (A0), (A1), (A2) in Proposition B will be called hy-

persurfaces of type A.

In Section 2, we collect some basic facts and then, in Section 3, we

prove the

Main Theorem. A Hopf hypersurface in a non-flat complex space

form is a D’Atri space or a C-space, respectively, if and only if it is locally

congruent to a hypersurface of type A.

Several interesting classes of D’Atri and C-spaces are known. More

precisely, the following classes of spaces have these properties:

{i}: naturally reductive homogeneous spaces or more general, Riemannian

manifolds equipped with a naturally reductive structure;
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{ii}: g.o. spaces, that is, Riemannian manifolds all of whose geodesics are

orbits of one-parameter subgroups of isometries;

{iii}: weakly symmetric spaces, that is, Riemannian manifolds such that

for any pair of points there exists an isometry interchanging these

points;

{iv}: commutative spaces, that is, Riemannian manifolds such that the al-

gebra of all isometry-invariant differential operators is commutative.

Here, we have the following inclusion relations: {i} ⊂ {ii}, {iii}⊂{ii}, {iii}
⊂ {iv}. See [14] for more details and references. We also note that all

generalized Heisenberg groups are D’Atri and C-spaces [3]. Furthermore,

it has been proved in [20], [21] that a real hypersurface in Mn(c), c &= 0,

has a naturally reductive structure if and only if it is locally congruent to

a hypersurface of type A. (Note that the proof in [21] can be extended to

the case c < 0.) Further, it is proved in [6] that the manifolds of type A

are weakly symmetric. For CP n, this result may also be derived from [8],

combined with [10]. As a consequence of these remarks and the Main

Theorem, we get

Corollary. Let M be a Hopf hypersurface in Mn(c), c &= 0.

Then M is equipped with a naturally reductive structure or is locally

isometric to a g.o. space, a commutative space or a weakly symmetric

space, respectively, if and only if it is locally congruent to a hypersurface

of type A.

2 – Preliminaries

Let (Mn(c), g, J) denote a complex space form of constant holo-

morphic sectional curvature c and let M be an orientable, connected

real hypersurface. Further, let N be a unit normal vector of M . For any

vector field X tangent to M we put

(2.1) JX = ϕX + η(X)N, JN = −ξ

where ϕ is a tensor field of type (1, 1), η is a one-form and ξ a unit

vector field on M . We also denote the induced metric on M by g. Then
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(ϕ, ξ, η, g) determines an almost contact metric structure on M , that is,

we have

(2.2)
ϕ2X = −X + η(X)ξ, η(ξ) = 1,

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

for all tangent vector fields X, Y . Then (2.2) yields

(2.3) ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ) .

The Gauss and Weingarten formulas for M are

∇̃XY =∇XY + g(AX, Y ) ,

∇̃XN = − AX

for tangent vector fields X, Y and where ∇̃ and ∇ denote the Levi Civita

connection of (Mn(c), g) and (M, g), respectively. A is the shape opera-

tor. From (2.1) and ∇̃J = 0 we then obtain

(2.4)
(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ ,

∇Xξ = ϕAX

for tangent X, Y . Furthermore, we have the following Gauss and Codazzi

equations:

(2.5)

R(X, Y )Z =
c

4
{g(Y,Z)X − g(X, Z)Y +

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY +

− 2g(ϕX, Y )ϕZ} + g(AY, Z)AX − g(AX, Z)AY,

(2.6) (∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ} .

Here, R is taken with the sign convention R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ].

Using (2.2) and (2.5) we then get for the Ricci tensor Q of type (1, 1):

(2.7) QX =
c

4
{(2n + 1)X − 3n(X)ξ} + hAX − A2X
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where h = tr A denotes the mean curvature.

Now, let M be a Hopf hypersurface and c &= 0. Then

(2.8) Aξ = αξ

where α is constant (see, for example, [2], [11], [17]). Further, let X be

a principal curvature vector orthogonal to ξ with principal curvature λ.

Then we have

(2.9) AX = λX, AϕX =
αλ + c/2

2λ − α
ϕX .

We note that M is of type A if and only if Aϕ = ϕA [19], [22]. Among

the hypersurfaces given in Proposition A and Proposition B, these are also

characterized by λ2 − αλ − c/4 = 0. Moreover, we have

Proposition 1 [24]. The tangent spaces of the hypersurfaces given

in Proposition A may be decomposed as follows:

for type A: TM = IRξ ⊕ Tλ ⊕ T−1/λ, Aξ = (λ − 1
λ
)ξ;

for type B: TM = Rξ ⊕ Tλ ⊕ T−1/λ, Aξ = −4λ
λt−1

ξ

where λ > 0 for type A and 0 < λ < 1 for type B. Further, for type B we

have ϕTλ = T−1/λ [17] .

Next, we consider Riemannian manifolds which are of D’Atri- and

C-type. In both cases the curvature satisfies the Ledger conditions of

order three and five [14], that is,

L3 :(∇Xρ)(X, X) = 0 ,

L5 :
∑

a,b

R(ea, X, X, eb)(∇XR)(ea, X, X, eb) = 0

where ρ denotes the Ricci tensor of type (0, 2) and {ea} is an orthonor-

mal basis of TpM, p ∈ M . Here, R(X, Y, Z, W ) = g(R(X, Y )Z, W ) and

(∇XR)(Y, Z, U, V ) = g((∇XR)(Y, Z)U, V ). Note that L3 is equivalent to

SX,Y,Z(∇Xρ)(Y, Z) = 0

where S denotes the cyclic sum. This means that ρ is cyclic-parallel or

equivalently, ρ is a Killing tensor.
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As concerns the Hopf hypersurfaces satisfying the condition L3, we

have

Proposition 2 [15], [16]. Let M be a Hopf hypersurface of Mn(c),

c &= 0. Then ρ is cyclic-parallel if and only if

a) Mn(c) = CP n and M is locally congruent to a real hypersurface

of type A or to one of type B with special radius r;

b) Mn(c) = CHn and M is locally congruent to a real hypersurface

of type A.

For c = 4, the defining equation for the class B in Proposition 2 is

(2.10) αλ2 + 4λ − α = 0

and the radius r (related to α by α = 2 cot 2r) in Proposition 2 is given by

(2.11) 2α = 3h (or equivalently, α2 = 12(n − 1)) .

See [15], [16].

Finally, we shall use

Proposition 3 [25]. A Riemannian manifold (M, g) is locally

homogeneous if and only if there exists a tensor field T of type (1, 2)

on M (called a homogeneous structure) such that with ∇ = ∇ − T we

have ∇g = ∇R = ∇T = 0. Moreover, T is called a naturally reductive

structure if TXX = 0 for all tangent vectors X.

3 – Proof of the Main Theorem

First, let M be a Hopf hypersurface which is locally congruent to

one of type A. As mentioned in the Introduction, then M is equipped

with a naturally reductive structure and hence, M is a D’Atri space and

a C-space.

Conversely, let M be of D’Atri- or C-type. Then ρ is cyclic-parallel.

So, it follows from Proposition 2 that for CHn the hypersurface is locally

congruent to one of type A. The proof will be complete if for CP n we can

exclude the hypersurfaces which are congruent to one of type B.
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To do this, we suppose that M is such a Hopf hypersurface in CP n

where we suppose c = 4. It follows from Proposition 3 that there exists

a homogeneous structure T on M . Furthermore, since M is of D’Atri- or

C-type, ρ is cyclic-parallel and hence, we have at p ∈ M :

ρ(TXX, X) = 0

for any X ∈ TpM . By polarization, we get

(3.1) SX,Y,Z{ρ(TXY,Z) + ρ(TXZ, Y )} = 0

for X, Y, Z ∈ TpM . Put X = Y = ξ in (3.1) to obtain

(3.2) ρ(Tξξ, Z) + ρ(TξZ, ξ) + ρ(TZξ, ξ) = 0 .

Next, using (2.7) in (3.2), we get

(3.3)
3g(Tξξ, Z) + hg(Tξξ, AZ) − g(Tξξ, A

2Z) − αhg(Tξξ, Z)+

+ α2g(Tξξ, Z) = 0 .

Further, we denote by Dλ the eigenspace, orthogonal to ξ, associated

to an eigenvalue λ of Q. Assuming Z ∈ Dλ, we obtain from (3.3) the

relation

(3.4) (λ2 − λh − α2 + αh − 3)g(Tξξ, Z) = 0 .

In what follows we first consider the case n &= 2. Then, taking into

account the defining relations (2.10), (2.11), we get λ2−λh−α2+αh−3 &=0

and so, for that case, we must have, since Tξ is skew-symmetric,

(3.5) Tξξ = 0.

Next, put Z = Y in (3.1). Then we have

ρ(TXY, Y ) + ρ(TY Y,X) + ρ(TY X, Y ) = 0

which for X ∈ Dλ, Y ∈ Dµ and with (2.7) yields

(3.6) (λ − µ)(h − λ − µ)g(TY Y,X) = 0 .
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Using again (2.10) and (2.11) in (3.6), we obtain

(3.7) g(TY Y,X) = 0

for Y ∈ Dµ, X ∈ Dλ and λ &= µ.

Further, put X = ξ and Z = Y ∈ Dλ in (3.1). Using (3.5) and (2.7),

we then get

(λ2 − λh − α2 + αh − 3)g(TY Y, ξ) = 0

and for the special hypersurfaces in class B we obtain

(3.8) g(TY Y, ξ) = 0 .

Now, put X = ξ in (3.1) and assume Y ∈ Dλ, Z ∈ Dµ for λ &= µ.

Using (2.7), we then get

(3.9)

(µ2 − µh − α2 + αh − 3)g(TY Z, ξ)+

+ (λ2 − λh − αh − 3)g(TZY, ξ)+

+ (µh − λh − µ2 + λ2)g(TξY,Z) = 0 .

Putting
a = µ2 − µh − α2 + αh − 3 ,

b = λ2 − λh − α2 + αh − 3 ,

c = µh − λh − µ2 + λ2 ,

we see that

(3.10) c = b − a .

So, (3.9) may be rewritten as

(3.11) ag(TY Z, ξ) + bg(TZY, ξ) + cg(TξY, Z) = 0 .

Moreover, (2.10) and (2.11) imply abc &= 0 when n &= 2.

In what follows we shall now take into account the Ledger condi-

tion L5. Using the homogeneous structure T and the symmetry properties

of R, this condition may be written in the form

(3.12)
∑

i,j

R(ei, X, X, ej)R(ei, TXX, X, ej) = 0
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where {ei} is an orthonormal basis of TpM . By polarizing (3.12) we get

(3.13)

∑

i,j

{R(ei, X, Y, ej) + R(ei, Y, X, ej)}{R(ei, TZV,W, ej)+

+ R(ei, TZW,V, ej) + R(ei, TV W,Z, ej)+

+ R(ei, TV Z, W, ej)+

+ R(ei, TW V,Z, ej) + R(ei, TW Z, V, ej)} = 0 .

Next, put X = V = W = ξ in (3.13) and take Y ∈ Dλ, Z ∈ Dµ, λ &= µ.

Using (2.2), (2.3) and (2.5) in (3.13), a long computation then gives

(3.14) (a + F )g(TY Z, ξ) + (b + G)g(TZY, ξ) + (c + H)g(TξY,Z) = 0

where

F = − 3αλ + α2h2 − αµh2 + αµ3 − 2α4 − α2 − αµ + α3µ − α3µ2 + α5 ,

G = − 3αµ + α2h2 − αλh2 + αλ3 − 2α4 − α2 − αλ + α3λ − α3λ2 + α5 ,

H = − 3αµ+3αλ+αµh2 − αλh2 − αλ3 + αµ3 + αµ − αλ − α3µ + α3λ+

+ α3µ2 − α3λ2 .

Hence, we have

(3.15) G − F = H .

So, from (3.11) and (3.14) we have

(3.16) Fg(TY Z, ξ) + Gg(TZY, ξ) + Hg(TξY, Z) = 0 .

Here, we note that H &= 0 for the considered hypersurfaces. Indeed, if

H = 0, we have

α(λ − µ){(λ + µ)2 − α2(λ + µ) + 3 + α2 − h2} = 0 .

Taking account of (2.11), we have

(3.17) (λ + µ)2 − α2(λ + µ) = 3 + α2 − h2 = 0 .
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Moreover, since in this case λ + µ = − 4
α

and h = (n − 1)(λ + µ) + α =

(h − 1)(− 4
α
) + α (see Proposition 1 and (2.10)), (3.17) gives

(3.18) 4α3 + (8n − 5)α2 − 16n(n − 2) = 0 .

Now, one may check that there is no integer n satisfying (3.18) and (2.11).

(We used a computer to check this.) So, we have H &= 0. Then, multi-

plying (3.10) by H and (3.16) by c and subtracting, we obtain

(3.19) (aH − cF )g(TY Z, ξ) + (bH − cG)g(TZY, ξ) = 0 .

Further, from (3.10) and (3.15) we also see that aH −cF = bH −cG, and

so, (3.19) becomes

(3.20) (aH − cF ){g(TY Z + TZY, ξ) = 0 .

Finally, in a similar way as for H, one may check that aH − cF &= 0.

Hence, we have from (3.20)

(3.21) g(TY Z + TZY, ξ) = 0 .

So, from (3.5), (3.7), (3.8) and (3.21) we conclude that

(3.22) g(TXX, ξ) = 0

for any vector X ∈ TpM .

To finish this case, we note that the same reasoning as in [21] now

yields ∇Xξ = 0 since n ≥ 3. Hence, with (2.4) we get

TXξ = ϕAX

and so, from (3.22) we obtain g(ϕAX, X) = 0. This yields ϕA = Aϕ

which contradicts the fact that M is not locally congruent to a hypersur-

face of type A.

Finally, we consider the case n = 2. Since M satisfies the conditions

L3 and L5, M is equipped with a naturally reductive structure [13] and

hence, is locally congruent to a hypersurface of type A, which is again a

contradiction. This completes the proof.
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