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Natural Lagrangians for quantum structures

over 4-dimensional space-time

J. JANYŠKA

Riassunto: Si assegna una classificazione delle funzioni lagrangiane della teoria
einsteiniana generale della meccanica quantistica relativistica. Si utilizzano metodi di
fibrati di tipo gauge-naturali ed operatori naturali. Si riconosce che tutte le lagrangiane
quantistiche naturali possono essere descritte mediante una base funzionale costituita
da quattro elementi. Si fornisce anche una descrizione invariante di queste lagrangiane.

Abstract: The natural quantum Lagrangians which appear in Einstein general
relativistic quantum mechanics are classified by using methods of gauge-natural bundles
and natural operators. It is proved that all natural quantum Lagrangians for scalar
particles have a functional base formed by four Lagrangians. The invariant description
of these Lagrangians is given.

– Introduction

In [1], [3], [4] the authors have proposed a new geometric formulation

of quantum mechanics of a classical charged particle, with given gravita-

tional and electromagnetic classical fields, in the framework of a general
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relativistic Galilei spacetime. An important role in this theory is played

by the distinguished quantum Lagrangian constructed naturally from the

metric tensor, a potential of the electromagnetic field and a section of the

quantum bundle. In [5] all natural quantum Lagrangians in the Galilei

approach are classified by using the theory of natural operators, [8], [9].

Recent papers [6], [7] have proposed the Einstein analogue to some

results of [1], [3], [4]. The aim of this paper is to introduce the Ein-

stein analogue of the distinguished quantum Lagrangian in the Galilei

approach and to classify all natural quantum Lagrangians for scalar par-

ticles in the Einstein approach. We prove that the set of natural quantum

Lagrangians has a functional base formed by four Lagrangians and the

only Lagrangian in the base involving both gravitational and electromag-

netic structure of the spacetime is the distinguished quantum Lagrangian

which is constructed by using a quantum connection. For the natural

basic Lagrangians we give the corresponding Euler-Lagrange operators

and generalized Euler-Lagrange equations.

We assume the following fundamental unit spaces [1]:

(1) the oriented 1-dimensional vector space T over IR of time intervals,

(2) the positive 1-dimensional semi-vector space IL over IR+ of lengths,

(3) the positive 1-dimensional semi-vector space IM over IR+ of masses.

Moreover, we refer to the light velocity and the Planck’s constant

c ∈ T+∗⊗IL , ! ∈ T+∗⊗IL2⊗IM ,

and consider a classical particle with mass and charge

m ∈ IM , q ∈ T∗⊗IL3/2⊗IM1/2 .

1 – Geometry of phase space

In this section we recall basic geometric properties of the phase space

of a classical particle in the Einstein general relativistic framework. For

further details and proofs see [6].
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1.1 – Phase space

We start with the basic assumptions and definitions.

We assume spacetime to be a 4-dimensional oriented and time-orien-

ted manifold M equipped with a scaled Lorentzian metric of signature

(+ − −−)

g : M → IL2⊗T ∗M ⊗
M

T ∗M .

We denote by ḡ : M → IL∗2⊗TM⊗MTM the inverse metric.

Local coordinate charts on M will be denoted by (xλ), λ = 0, 1, 2, 3.

The coordinate expression of g and ḡ are then

g = gλµdλ⊗dµ , gλµ : M → IL2⊗IR ,

ḡ = gλµ∂λ⊗∂µ , gλµ : M → IL∗2⊗IR .

In what follows we shall use local coordinate charts such that the vector ∂0

is time-like and time oriented and ∂1, ∂2, ∂3 are space-like; hence g00 > 0,

g11, g22, g33 < 0.

Latin indices i, j, p, . . . will span space-like coordinates, while Greek

indices λ, µ, φ, . . . will span space-time coordinates.

A 1-jet of 1-dimensional submanifolds of M at x ∈ M is defined

to be an equivalence class of 1-dimensional submanifolds touching each

other at x with a contact of order 1, [11]. The k-jet of a 1-dimensional

submanifold l ⊂ M at x ∈ l is denoted by j1l(x). The set of all 1-jets of

1-dimensional submanifolds of M can be equipped, in a natural way, with

a smooth structure. The corresponding manifold is denoted by J(M, 1)

and its projection on M is denoted by π1
0 : J(M, 1) → M .

We have the canonical fibred isomorphism over M of J(M, 1) with

the Grassmannian bundle of dimension 1

J(M, 1) → Grass(M, 1) : φ /→ Lφ ,

where φ ∈ J(M, 1) and Lφ ⊂ TφM is the tangent space at φ = π1
0(φ) of

1-dimensional submanifolds generating φ.

A local chart on M is said to be divided if the set of its coordinate

functions is divided into two subsets of 1 and (dimM − 1) elements. Our

typical notation for a divided chart will be

(x0, xi) , 1 ≤ i ≤ dimM − 1 .
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A divided chart and a 1-dimensional submanifold l ⊂ M are said to

be related if the submanifold l can be expressed locally by formulas of

the type

xi = li(x0) ;

i.e., more precisely xi|l = li ◦ x0|l , with li : IR → IR.

Every divided chart on M determines canonically a local fibred chart

(x0, xi;xi
0)

on J(M, 1). We shall always refer to such charts.

A motion in M is defined to be a 1-dimensional time-like submani-

fold l ⊂ M .

We define the phase space

UM ⊂ J(M, 1)

to be the subspace of all 1-jets of motions. Hence, φ = j1l(φ) ∈ J(M, 1)

belongs to UM if and only if Lφ = Tφl lies inside the light cone.

1.2 – Contact structure

The geometric structure of the phase space and the Lorentz metric

allow us to recover the contact structure.

We have the following contact maps

D : UM → T∗⊗TM , τ & :=
g'

c2
◦D : UM → T⊗T ∗M ,

with coordinate expressions

(1.1) D = c α D0 = c α (∂0 + xi
0∂i) , τ & ≡ τ &

λ dλ =
α

c
(g0λ + giλxi

0)d
λ ,

where

α = 1/‖D0‖ = 1/
√

g00 + 2g0jx
j
0 + gijxi

0x
j
0 ∈ IL∗ .

We have

D! τ & = 1 ,
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i.e., in coordinates,

(1.2) c α (τ &
0 + τ &

hxh
0) = 1 .

1.3 – Splitting of the tangent and cotangent spaces of spacetime

The contact structure induces a natural splitting of the tangent and

cotangent spaces of spacetime into two orthogonal components over the

phase space.

We define the vector bundles over UM

T ‖M := {(φ, X) ∈ UM ×
M

TM | X ∈ Lφ} ,

T ⊥M := {(φ, X) ∈ UM ×
M

TM | X ∈ L⊥
φ } ,

and
T ∗

‖ M := {(φ, ω) ∈ UM ×
M

T ∗M | 〈ω, L⊥
φ 〉 = 0} ,

T ∗
⊥M := {(φ, ω) ∈ UM ×

M
T ∗M | 〈ω, Lφ〉 = 0} .

which yield the splittings over UM

UM ×
M

TM = T ‖M ⊕
UM

T ⊥M , UM ×
M

T ∗M = T ∗
‖ M ⊕

UM
T ∗

⊥M .

The following mutually dual local bases of vector fields and forms are

adapted to the above splittings

D0 := ∂0 + xi
0∂i , bi := ∂i − c ατ &

i D0 ,(1.3)

λ0 := d0 + c ατ &
i θ

i = c ατ & , θi := di − xi
0d

0 .(1.4)

It is convenient to introduce the matrices, with respect to a natural

base,

hiµ := giµ − c2τ &
i τ

&
µ , hiµ := giµ − xi

0g
0µ ,

and the mutually inverse matrices, with respect to an adapted base,

(1.5) g⊥
ij := gij − c2τ &

i τ
&
j , gij

⊥ := gij − gi0xj
0 − gj0xi

0 + g00xi
0x

j
0 .
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Moreover, the parallel and orthogonal projections

λ : UM ×
M

TM → T ‖M , θ = 1M − λ : UM ×
M

TM → T ⊥M ,

and

λ∗ : UM ×
M

T ∗M → T ∗
‖ M , θ∗ = 1∗

M − λ∗ : UM ×
M

T ∗M → T ∗
⊥M ,

have the coordinate expressions

λ = λ0⊗D0 , θ = θi⊗bi ,

and

λ∗ = D0⊗λ0 , θ∗ = bi⊗θi .

In what follows we shall use the following

Lemma 1.1. We have

gij
⊥τj =

1

c α
(g00xi

0 − g0i) ,

gij
⊥τiτj =

1

c2α2
(g00 − α2) .

Proof. It follows immediately from (1.1) and (1.5).

Additionally, we have a natural linear fibred isomorphism over UM

v⊥ : V UM → T∗⊗T ⊥M ,

with the coordinate expression

v⊥ = c α di
0⊗bi , v⊥−1 =

1

c α
θi⊗∂0

i .
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1.4 – Connections and 2-forms

A linear connection of spacetime induces naturally on the phase space

a connection and a 2-form.

A linear connection K on the vector bundle πM : TM → M can be

expressed, equivalently, by a tangent valued form, or by a vertical valued

form

K : TM → T ∗M ⊗
TM

TTM , νK : TM → T ∗TM ⊗
TM

TM ,

respectively, with coordinate expressions

K = dφ⊗(∂φ + Kφ
µ

ψ ẋψ ∂̇µ) , νK = (ḋµ − Kφ
µ

ψ ẋψ dφ)⊗∂µ ,

where Kφ
µ

ψ ∈ C∞(M) and (xφ, ẋφ) is the induced coordinate chart

on TM .

We observe that a linear connection νK on TM → M induces a

linear connection ν ′
K : T (T∗ ⊗TM) → T∗ ⊗TM on the vector bundle

T∗⊗TM → M , with coordinate expression

ν ′
K = u0⊗(ḋµ

0 − Kφ
µ

ψ ẋψ
0 dφ)⊗∂µ ,

where u0 is a base of T∗ and (xφ, ẋφ
0 ) denotes the induced chart on T∗⊗TM .

A connection Γ on UM can be expressed, equivalently, by a tangent

valued form, or by a vector valued form

Γ : UM → T ∗M ⊗
UM

TUM , v⊥◦νΓ : UM → T ∗UM ⊗
UM

(T∗⊗T ⊥M) ,

with coordinate expressions

Γ = dφ⊗(∂φ + Γφ
i
0 ∂0

i ) , v⊥◦νΓ = c α(di
0 − Γφ

i
0
dφ)⊗bi ,

respectively, where Γφ
i
0 ∈ C∞(UM).

For any linear connection K on TM the map

νΓ = v⊥−1◦θ◦ν ′
K ◦TD
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turns out to be a connection on the bundle UM → M with coordinate

expression

Γφ
i
0 = Kφ

i
j xj

0 + Kφ
i
0 − xi

0(Kφ
0
j xj

0 + Kφ
0
0) .

A connection Γ on UM and the metric g yield the scaled 2-form

on UM

Ω(g,Γ) := (v⊥◦νΓ)∧̄ θ : UM → T∗⊗IL2⊗∧2T ∗UM ,

where ∧̄ denotes the wedge product and the contraction via the metric g.

We have the coordinate expression

(1.6) Ω(g,Γ) = c α hiµ (di
0 − Γφ

i
0 dφ) ∧ dµ .

1.5 – Gravitational objects

First of all, we consider the objects introduced in the above Subsec-

tion, that come from the Lorentz metric.

The metric g yields the gravitational connection on TM and the

gravitational connection on UM

K& := κ , νΓ! := v⊥−1◦θ◦ν ′
K! ◦TD ,

respectively, where κ is the Levi-Civita connection with the Christoffel

symbols

κσ
φψ = −gστ

2
(∂φgτψ + ∂ψgτφ − ∂τgφψ) .

Moreover, the gravitational 2-form

Ω& := Ω(g, Γ&)

turns out to be the contact 2-form generated by c2τ &; namely, we obtain

the equality

Ω& = c2dτ & .
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The metric g admits the canonical scaled volume form and the canon-

ical scaled 4-vector

ε : M → T⊗IL3⊗∧4T ∗M , ε̄ : M → T∗⊗IL∗3⊗∧4TM ,

with coordinate expressions

(1.7) ε =
1

c

√
|det(g)| d0 ∧ d1 ∧ d2 ∧ d3

and

(1.8) ε̄ =
c√

|det(g)| ∂0 ∧ ∂1 ∧ ∂2 ∧ ∂3 ,

respectively. Clearly 〈ε̄, ε〉 = 1.

1.6 – Total connections and 2-forms

Next, we deform the above geometric structures by a suitable cou-

pling with electromagnetic field.

We assume the electromagnetic field to be a closed scaled 2-form

on M

F : M → (T∗⊗IL3/2⊗IM1/2)⊗∧2T ∗M .

We denote a local potential of F by

A : M → (T∗⊗IL3/2⊗IM1/2)⊗T ∗M .

Here, by definition we set 2dA = F . Let us remark, that A is given locally

up to a “gauge”. We shall be involved with this fact later in Section 2.

Next, we show that the electromagnetic field can be naturally incor-

porated into the gravitational structures of the phase space. Namely, we

obtain total objects obtained correcting the gravitational objects by an

electromagnetic term, in such a way to preserve their original relations.

For this purpose we need a suitable coupling constant. So, we con-

sider a particle with a given mass and charge

m ∈ IM , q ∈ T∗⊗IL3/2⊗IM1/2 ,



632 J. JANYŠKA [10]

and refer to the coupling constant

q

m
∈ T∗⊗IL3/2⊗IM∗1/2 .

We have the obvious coupling of the electromagnetic field with the

gravitational contact 2-form on UM . Accordingly, we define the total

2-form to be

Ω := Ω& +
q

2mc
F : UM → T∗⊗IL2⊗∧2T ∗UM .

Of course, we obtain a local potential of Ω in the form

τ = c2τ & +
q

mc
A

and

dΩ = 0 .

2 – Quantum bundle

In this section we introduce the quantum bundle, which is a line

complex bundle over spacetime and we define quantum connections which

live on the pullback of the quantum bundle with respect to the projection

UM → M .

2.1 – Quantum bundle

We assume the quantum bundle to be a Hermitian line bundle over

spacetime

π : Q → M ,

i.e., π : Q → M is a Hermitian complex vector bundle with one-dimen-

sional fibres. Let us denote by h : Q ×M Q → C the Hermitian product.

Let b : M → Q be a (local) base of Q such that h(b,b) = 1. Such a local

base is said to be normal and the fibred coordinate chart (xλ, z) induced

by a normal base of Q is said to be a normal coordinate chart on Q. In

any fibred normal coordinate chart h(Ψ,Φ) = ψ̄ϕ for every sections Ψ,

Φ : M → Q, with Ψ = ψb, Φ = ϕb.
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It is easy to see that Q admits a bundle atlas constituted by nor-

mal fibred coordinate charts; the associated cocycle takes its value in the

group U(1, C). Hence Q can be viewed as an associated gauge-natural

vector bundle functor defined on the category PB4(U(1, C)) of principal

U(1, C)-bundles over 4-dimensional bases, [5]. Hence any local principal

bundle isomorphism (called the change of gauge) ϕ ∈ MorPB4(U(1, C)),

covering an isomorphism f , can be viewed as the linear fiber diffeomor-

phism ϕ : Q → Q, covering f .

Let (xλ, z) be a new normal coordinate chart on Q, then the corre-

sponding transformation relations are of the form

(2.1) xλ = xλ(x), z = e2πiϑ(x)z .

The Liouville vector field I : Q → V Q = Q ×M Q will be identified

with I = idQ : M → Q∗ ⊗M Q. In a normal base I = z ⊗ b.

2.2 – Quantum connection

Let us consider the pullback bundle parametrized by observers π↑ :

Q↑ := UM ×M Q → UM of the quantum bundle π : Q → M with respect

to UM → M .

A connection C : Q↑ → T ∗UM ⊗UM TQ↑ is said to be a quantum

connection if, [3], [4], [12], [13],

(1) C is Hermitian,

(2) C is a universal connection,

(3) the curvature of C is given by

R[C] = i
m

!
Ω ⊗ I : Q↑ → ∧2T ∗UM ⊗

UM
Q↑ .

For the definition of universal connection see [4], [10]. Very briefly:

if {ξ[o]} is a system of Hermitian connections on the bundle π : Q → M ,

parametrized by the family of observers (sections of UM) {o : M →
UM}, then there exists a unique connection C on the bundle Q↑ → UM

such that, for each observer o : M → UM , the pullback o∗C equals ξ[o].

This connection is said to be universal.

A pair (Q, C) is said to be a quantum structure.
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The coordinate expression of a universal Hermitian connection C

on Q↑ is

(2.2) C = dλ⊗∂λ + di
0⊗∂0

i + iCλdλ⊗I .

The curvature of C is

R[C] : Q↑ → ∧2T ∗UM ⊗
UM

Q↑ ,

with coordinate expression

R[C] = i d(Cλ) ∧ dλ⊗I .

Since a local potential of Ω is of the type c2τ &+ q
mc

A, the condition (3)

implies that, in a normal coordinate chart, the coordinate expression of

a quantum connection is of the kind

(2.3) C = dλ⊗∂λ + di
0⊗∂0

i + i
m

!

(
c2τ &

λ +
q

mc
Aλ

)
dλ⊗I ,

where A = Aλdλ is a local particular electromagnetic potential (deter-

mined by C).

2.3 – Quantum electromagnetic connection

A connection C̃ : Q↑ → T ∗UM ⊗
UM

TQ↑ is said to be a quantum

electromagnetic connection if

(1) C̃ is Hermitian,

(2) C̃ is a universal connection,

(3) the curvature of C̃ is given by

R[C̃] = i
q

2! c
F ⊗I : Q↑ → ∧2T ∗M ⊗

UM
Q↑ .

A pair (Q, F ) is said to be a quantum electromagnetic structure.

The coordinate expression of a quantum electromagnetic connection

is of the kind

(2.4) C̃ = dλ⊗∂λ + di
0⊗∂0

i + i
q

! c
Aλdλ⊗I .
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Remark 2.1. Let us stress that quantum electromagnetic connec-

tions live in fact on π : Q → M , but from the technical reasons we prefer

to define them on Q↑ → UM . The difference between a quantum con-

nection and a quantum electromagnetic connection corresponding to the

same local electromagnetic potential is

C − C̃ = i
mc2

!
π↑τ &⊗I ,

where π↑τ & is the pullback of τ &.

2.4 – Transformation relations for an electromagnetic potential

Let us suppose the change of gauge given by (2.1) and assume an

universal Hermitian connection C on Q↑ given in a new normal coordinate

chart by

C = dλ⊗∂λ + di
0⊗∂0

i + iCλz dλ⊗b .

Then from the linearity of C and (2.1) we get the transformation relations

Cλ = (Cµ + 2π∂µϑ)
∂xµ

∂xλ
,

which implies together with (2.3) that coefficients of an electromagnetic

potential A are transformed by

(2.5) Aλ =
(
Aµ +

2π! c

q
∂µϑ

)∂xµ

∂xλ
.

The transformation (2.5) implies that A is a section of a 1st order gauge-

natural bundle on the category PB4(U(1, C)). We shall call this bundle

the bundle of electromagnetic potentials and denote it by PM . Let us

note that PM contains the unit spaces T, IL, IM.

Remark 2.2. The flat quantum electromagnetic connection given

by a chosen normal coordinate chart corresponds to the electromagnetic

potential A = df , where f is a T∗⊗IL3/2⊗IM1/2-valued real function on M

given up to a “gauge”. It means that if we change a normal coordinate

chart (gauge) by the formula (2.1), we have

f(x) = f(x) +
2π! c

q
ϑ(x) .
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2.5 – Existence of quantum and quantum electromagnetic structures

In [12], [13] a topological necessary and sufficient condition for the

existence of a quantum structure was found.

Theorem 2.1. The following conditions are equivalent:

(1) there exists a quantum structure (Q, C);

(2) the closed form m
! Ω determines a cohomology class in the subgroup

[m

!
Ω

]
=

[ q

! c
F

]
∈ i(H2(M, Z)) ⊂ H2(M, IR) ,

where i : (H2(M, Z)) → H2(M, IR) is the canonical group morphism.

As a consequence of the above theorem the existence of a quantum

structure is equivalent to the existence of a quantum electromagnetic

structure.

In what follows we shall assume that a quantum structure on M

exists.

2.6 – Quantum and quantum electromagnetic covariant differential

For a section Ψ : M → Q (quantum history) we have the quantum

covariant differential

∇Ψ :=∇[C]Ψ↑ : UM → T ∗M⊗Q

with coordinate expression

(2.6) ∇Ψ =
(
∂λψ − i

m

!
ψ(c2τ &

λ +
q

mc
Aλ)

)
dλ⊗b .

Similarly the quantum electromagnetic covariant differential

∇̃Ψ :=∇[C̃]Ψ : M → T ∗M⊗Q ,
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has coordinate expression

(2.7) ∇̃Ψ =
(
∂λψ − i

q

! c
ψAλ

)
dλ⊗b .

Clearly

(∇̃Ψ)↑ = ∇Ψ + i
mc2

!
τ & ⊗

UM
Ψ .

The parallel component of the quantum covariant differential is de-

fined by

∇‖Ψ :=C !∇Ψ : UM → T∗⊗Q

with coordinate expression

∇‖Ψ =
(
c α(∂0ψ + ∂pψxp

0) − i
mc2

!
ψ − i

qα

!
ψ(A0 + Aλxλ

0)
)
⊗b ,

which can be written as

(2.8) ∇‖Ψ =
(
D.ψ − i

mc2

!
ψ − i

q

! c
ψ(D! A)

)
⊗b .

The orthogonal component of the quantum covariant differential is

defined by

∇⊥Ψ = θ∗!∇Ψ : UM → T ∗
⊥M⊗Q

with coordinate expression

∇⊥Ψ =
(
∂jψ−c ατ &

j (∂0ψ+∂pψxp
0)− i

q

! c

(
Aj −c ατ &

j (A0 +Apx
p
0)

)
ψ

)
θj⊗b ,

which can be written as

(2.9) ∇⊥Ψ =
(
∂jψ − i

q

! c
Ajψ + i

q

! c
ψτ &

j (D! A) − τ &
j D.ψ

)
θj ⊗b .

Lemma 2.1. We have

∇Ψ = ∇⊥Ψ + τ &⊗∇‖Ψ .



638 J. JANYŠKA [16]

Proof. It follows from (2.6), (2.8) and (2.9).

3 – Quantum Lagrangians

In this section we shall introduce a distinguished quantum Lagrangian

which is the Einstein equivalent to the Galilei quantum Lagrangian, [1],

[3], [4].

3.1 – Scaled functions

Let us consider a section Ψ : M → Q. We define the following scaled

real functions on UM

4‖(Ψ) =
1

2
h(∇‖Ψ, ∇‖Ψ) : UM → T∗2⊗IR ,

4o(Ψ) =
1

2

(
h(Ψ, i∇‖Ψ) + h(i∇‖Ψ,Ψ)

)
: UM → T∗⊗IR ,

4⊥(Ψ) =
1

2
(ḡ⊗h)(∇⊥Ψ, ∇⊥Ψ) : UM → IL∗2⊗IR .

Lemma 3.1. We have

(3.1)

4‖(Ψ) =
1

2
D.ψD.ψ̄ + i

mc2

2!
(
ψ̄D.ψ) − ψD.ψ̄

)
+

+ i
q

2! c

(
ψ̄D.ψ − ψD.ψ̄

)
(D! A)+

+
m2c4

2!2
ψ̄ψ +

qmc

!2
ψ̄ψ(D! A) +

q2

2!2c2
ψ̄ψ(D! A)2 ,

(3.2) 4o(Ψ) =
mc2

!
ψ̄ψ +

q

! c
ψ̄ψ(D! A) +

i

2

(
ψ̄D.ψ) − ψD.ψ̄

)
,

(3.3)

4⊥(Ψ) =
1

2
gλµ∂λψ̄∂µψ +

q2

2!2c2
gλµAλAµψ̄ψ+

+ i
q

2! c
gλµAλ(ψ̄∂µψ − ψ∂µψ̄) − q2

2!2c4
ψ̄ψ(D! A)2+

− i
q

2! c3

(
ψ̄D.ψ − ψD.ψ̄

)
(D! A) − 1

2c2
D.ψD.ψ̄ .
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Proof. (3.1) and (3.2) follow directly from (2.8). To prove (3.3) we

have to use (2.9) and Lemma 1.1.

The functions 4‖(Ψ), 4o(Ψ), 4⊥(Ψ) are defined on UM , i.e. are ob-

server dependent. We would like to find their linear combination pro-

jectable on M (observer independent). We have

Lemma 3.2. There is a unique (up to a multiplicative factor) linear

combination (with coefficients dependent on c, !, m) of the functions

4‖(Ψ), 4o(Ψ), 4⊥(Ψ) projectable on M with values in IR, namely

(3.4) 4(Ψ) =
!2

m2c4
4‖(Ψ) +

!2

m2c2
4⊥(Ψ) − !

mc2
4o(Ψ) : M → IR

with coordinate expression

(3.5)
4(Ψ) =

!2

2m2c2
gλµ∂λψ̄∂µψ + i

q!
2m2c3

gλµAλ(ψ̄∂µψ − ψ∂µψ̄)+

+
( q2

2m2c4
gλµAλAµ − 1

2

)
ψ̄ψ .

Proof. It follows directly from (3.1)–(3.3).

Moreover, we define the real function

4̃(Ψ) =
!2

2m2c2
(ḡ⊗h)(∇̃Ψ, ∇̃Ψ) : M → IR ,

with coordinate expression

(3.6)
4̃(Ψ) =

!2

2m2c2
gλµ∂λψ̄∂µψ + i

q!
2m2c3

gλµAλ(ψ̄∂µψ − ψ∂µψ̄)+

+
q2

2m2c4
gλµAλAµψ̄ψ .

Clearly we have

(3.7) 4(Ψ) = 4̃(Ψ) − 1

2
h(Ψ, Ψ) .
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3.2 – Distinguished quantum Lagrangians

By using the functions 4(Ψ) and 4̃(Ψ) we can define two distinguished

quantum Lagrangians by

L[Ψ] := 4(Ψ) · ε : M → T⊗IL3⊗∧4T ∗M ,

L̃[Ψ] := 4̃(Ψ) · ε : M → T⊗IL3⊗∧4T ∗M ,

where L[Ψ] = L̃[Ψ] − 1
2
h(Ψ,Ψ) · ε.

The coordinate expression of the distinguished quantum Lagrangian

L[Ψ] is of the form

(3.8)
L[Ψ] =

[ !2

2m2c3
gλµ∂λψ̄∂µψ + i

q!
2m2c4

gλµAλ(ψ̄∂µψ − ψ∂µψ̄)+

+
( q2

2m2c5
gλµAλAµ − 1

2c

)
ψ̄ψ

]√
|det(g)| d0 ∧ d1 ∧ d2 ∧ d3 .

The distinguished quantum Lagrangian L[Ψ] looks to be the Einstein

equivalent to the distinguished Galilei quantum Lagrangian.

3.3 – Natural quantum Lagrangians

According to the theory of natural operators, [8], [9], the Lagrangian L
can be regarded as a fibred mapping over M

(3.9) L : T ∗M⊗T ∗M ×
M

PM ×
M

J1Q → T⊗IL3⊗∧4T ∗M

by setting L ◦ j1Ψ = L[Ψ]. Moreover L is equivariant with respect to

changes of gauge and changes of bases in the unit spaces. The coordinate

expression can be deduced from (3.8).

We define a natural quantum Lagrangian to be a fibred morphism

over M

(3.10) F : T ∗M⊗T ∗M ×
M

PM ×
M

J1Q → T⊗IL3⊗∧4T ∗M

equivariant with respect to changes of gauge and changes of bases in the

unit spaces.
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4 – Classification of natural quantum Lagrangians

From the point of view of natural geometry, [8], [9], the distinguished

quantum Lagrangians described in Section 3 are natural operators trans-

forming the metric g, the electromagnetic potential A and the section

Ψ : M → Q into T⊗IL3-valued 4-forms on M . Moreover, these operators

are of order 1 with respect to ψ (i.e., they depend on the first deriva-

tives of Ψ) and are invariant with respect to changes of bases in the unit

spaces T, IL, IM. Recall that naturality expresses the fact, that the op-

erator is invariant with respect to changes of fibred local coordinates on

π : Q → M (changes of gauge). In this section we shall classify all natural

Lagrangians of the type described above.

4.1 – Bundle J1Q

In the coordinate expression of the distinguished quantum Lagrangian

there are the first order derivatives of a section Ψ. It means that the

Lagrangian is defined on 1-jet bundle J1Q of π : Q → M . For a nor-

mal coordinate chart on Q we get the induced fibred coordinate chart

(xλ, z; zλ) on J1Q and the transformation relations

(4.1) zλ = e2πiϑ(zµ + 2πiz∂µϑ)
∂xµ

∂xλ
.

Moreover, we need the transformation relations for the inverse metric

tensor

(4.2) gλµ = gρσ ∂xλ

∂xρ

∂xµ

∂xσ
.

4.2 – Invariant functions

It is easy to see that any natural quantum Lagrangian is of the type

F = f ·ε, where f is an invariant real function on T ∗M⊗T ∗M ×M PM ×M

J1Q. So to classify natural quantum Lagrangians it is sufficient to classify

all invariant functions.
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Lemma 4.1. A functional base of invariant functions on T ∗M ⊗
T ∗M ×M PM ×M J1Q is constituted by four functions which have, in a

fibred normal coordinate chart on Q, the following expressions

f1 =
q2

! c
,(4.3)

f2 =
1

2
z̄z ,(4.4)

f3 =
!2

2m2c2
gλµ(zz̄λ + zλz̄)(zz̄µ + zµz̄) ,(4.5)

f4 =
!2

2m2c2
gλµz̄λzµ + i

q!
2m2c3

gλµAλ(z̄zµ − zz̄µ)+(4.6)

+
q2

2m2c4
gλµAλAµz̄z ,

i.e. any invariant function is in the form f = f(f1, f2, f3, f4), where f is

a function of four real variables.

Proof. According to the general theory of equivariant mappings, [9],

we get from (2.1), (2.5), (4.1) and (4.2) that any invariant function f on

T ∗M⊗T ∗M ×M PM ×M J1Q has to be a solution of the following system

of partial differential equations

c
∂f

∂c
+ !

∂f

∂!
+ q

∂f

∂q
+ Aλ

∂f

∂Aλ

= 0 ,

c
∂f

∂c
+ 2!

∂f

∂!
+

3

2
q
∂f

∂q
− 2gλµ ∂f

∂gλµ
+

3

2
Aλ

∂f

∂Aλ

= 0 ,

!
∂f

∂!
+

1

2
q
∂f

∂q
+ m

∂f

∂m
+

1

2
Aλ

∂f

∂Aλ

= 0 ,

2gλν ∂f

∂gµν
− Aµ

∂f

∂Aλ

− zµ

∂f

∂zλ

− z̄µ

∂f

∂z̄λ

= 0 ,

! c

q

∂f

∂Aλ

+ iz
∂f

∂zλ

− iz̄
∂f

∂z̄λ

= 0 ,

z
∂f

∂z
− z̄

∂f

∂z̄
+ zλ

∂f

∂zλ

− z̄λ

∂f

∂z̄λ

= 0 .

Let us remark that the first three equations correspond to changes of

bases in the unit spaces T, IL and IM, respectively, and the last three

equations corresponds to a change of gauge.
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This system is complete and has 28 independent variables and 24

equations, so a functional base is formed by four solutions. Clearly f1,

f2, f3, f4 are functionally independent solutions and form such a base.

Remark 4.1. The invariant function corresponding to the distin-

guished quantum Lagrangian L̃ is 4̃ = f4 and the function corresponding

to the distinguished quantum Lagrangian L is 4 = f4 − f2.

4.3 – Natural quantum Lagrangians

Finally we shall classify all natural quantum Lagrangians.

Theorem 4.1. Let Ψ : M → Q be a section. All natural quantum

Lagrangians are of the form

F [Ψ] = f(f1(Ψ), f2(Ψ), f3(Ψ), f4(Ψ)) · ε ,

where

f1(Ψ) =
q2

! c
,(4.7)

f2(Ψ) =
1

2
h(Ψ, Ψ) ,(4.8)

f3(Ψ) =
!2

2m2c2
ḡ(dh(Ψ,Ψ), dh(Ψ, Ψ)) ,(4.9)

f4(Ψ) =
!2

2m2c2
(ḡ⊗h)(∇̃Ψ, ∇̃Ψ) ,(4.10)

and f is a function of four real variables.

Proof. It is easy to see that, in a normal fibred coordinate chart,

the coordinate expression of (4.7) is given by (4.3), (4.8) by (4.4), (4.9)

by (4.5) and (4.10) by (4.6). Our theorem is now a direct consequence of

the above Lemma 4.1.
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Remark 4.2. The Lagrangian F1 = f1 ·ε is a constant multiple of the

canonical volume form. The natural quantum Lagrangians F2 = f2 ·ε and

F3 = f3·ε have only gravitational meaning, because they do not depend on

the potential of the electromagnetic fields. The unique natural quantum

Lagrangian in the base which has both gravitational and electromagnetic

meaning is F4 = L̃.

Remark 4.3. In the construction of the distinguished quantum La-

grangians we have used essentially the properties of the Lorentz metric.

Finally we can see from Theorem 4.1 that the resulting natural quantum

Lagrangians are independent of the dimension of the underlying mani-

fold M and of the signature of the metric g.

5 – Euler-Lagrange operators

In this section we shall describe the Euler-Lagrange operator and the

corresponding field equations for the natural Lagrangians which form the

base of quantum Lagrangians.

5.1 – Euler-Lagrange operator

Let us consider a Lagrangian

F : T ∗M⊗T ∗M ×
M

PM ×
M

J1Q → T⊗IL3⊗∧4T ∗M

given in coordinates in the form

F = F d0 ∧ d1 ∧ d2 ∧ d3

and consider the Euler-Lagrange operator

E(F) : J1(T
∗M⊗T ∗M) ×

M
J1PM ×

M
J2Q → V ∗Q⊗∧4T ∗M

given by

E(F) =
(∂F

∂z
− Dλ

∂F

∂zλ

)
dz⊗d0 ∧ d1 ∧ d2 ∧ d3 ,

where Dλ is the formal derivative with respect to xλ.
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By using the identification of V ∗Q with Q × Q∗, the isomorphism

5(h) : Q∗ → Q given by the real part of h and the contraction with ε̄,

we can characterize the Euler-Lagrange operator by the fibred morphism

over M

E(F) := 〈5(h)(E(F)), ε̄〉 : J1(T
∗M⊗T ∗M) ×

M
J1PM ×

M
J2Q → Q.

E(F) has the following coordinate expression

(5.1) E(F) =
c√

|det(g)|
[∂F

∂z
−

( ∂

∂xλ
+ zλ

∂

∂z
+ zλµ

∂

∂zµ

)( ∂F

∂zλ

)]
b .

For a section Ψ : M → Q we set E(F [Ψ]) = E(F) ◦ j2Ψ.

5.2 – Euler-Lagrange operators of the distinguished Lagrangians

Theorem 5.1. We have

E(F1[Ψ]) = 0 ,(5.2)

E(F2[Ψ]) = Ψ ,(5.3)

E(F3[Ψ]) =
!2

m2c2
gλµ(−ψ2∂λµψ̄ − ψ̄ψ∂λµψ+(5.4)

− 2ψ∂λψ∂µψ̄ − κν
λµ(ψ∂νψ̄ + ψ̄∂νψ)ψ)b ,

E(F4[Ψ]) =
!2

m2c2
gλµ

(
− ∂λµψ + 2i

q

! c
Aλ∂µψ + i

q

! c
ψ∂λAµ+(5.5)

+
q2

!2c2
ψAλAµ − κν

λµ∂νψ + i
q

! c
κν

λµψAν

)
b .

Proof. (5.2) and (5.3) can be obtained immediately from (4.3)

and (4.4).

To calculate the Euler-Lagrange operator for the quantum Lagran-

gians F3 and F4 = L̃ we have to use the formula

(5.6)
∂λ(gλµ

√
|det(g)|)√

|det(g)| = gρσκµ
ρσ .

Now from (4.5) and (4.6) we get (5.4) and (5.5).
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Remark 5.1. For the distinguished quantum Lagrangian L = F4 −
F2 we have the Euler-Lagrange operator

E(L[Ψ]) = E(F4[Ψ]) − E(F2[Ψ]) .

5.3 – Covariant differential with respect to the Levi-Civita connection

Let us recall that the metric tensor g admits the Levi-Civita connec-

tion κ on TM and its dual connection κ∗ on T ∗M . For a 1-form β :

M → T ∗M its covariant differential with respect to κ∗ is ∇[κ∗]β : M →
T ∗M⊗T ∗M with coordinate expression ∇[κ]β = (∂λβµ + κν

λµβν)d
λ⊗dµ.

Applying the covariant differential with respect to κ∗ on the 1-form

dh(Ψ,Ψ) we have

∇[κ∗](dh(Ψ,Ψ)) : M → T ∗M⊗T ∗M

with coordinate expression

(5.7)
∇[κ∗](dh(Ψ,Ψ)) =

(
ψ̄∂λµψ + ∂λψ∂µψ̄ + ∂µψ∂λψ̄ + ψ∂λµψ̄+

+ κν
λµ(ψ∂νψ̄ + ψ̄∂νψ)

)
dλ⊗dµ .

Theorem 5.2. We have

E(F3[Ψ]) = − !2

m2c2
〈ḡ,∇[κ](dh(Ψ,Ψ))〉Ψ .

Proof. It follows from (5.4) and (5.7).

5.4 – Second order quantum electromagnetic covariant differentials

Let us consider the connection κ∗ ⊗
UM

C̃ on T ∗M ⊗
UM

Q↑. For the

quantum electromagnetic covariant differential ∇̃Ψ : M → T ∗M⊗MQ we

can define the second order covariant differential by

∇̃∇̃Ψ :=∇[κ∗ ⊗
UM

C̃](∇̃Ψ)↑ : M → T ∗M ⊗
M

T ∗M ⊗
M

Q .
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We have

(5.8)

∇̃∇̃Ψ =
(
∂λµψ − i

q

! c
(Aλ∂µψ + Aµ∂λψ) − i

q

! c
ψ∂µAλ+

− q2

!2c2
ψAλAµ + κν

λµ∂νψ − i
q

! c
κν

λµψAν

)
dµ⊗dλ⊗b ,

Theorem 5.3. We have

E(L̃[Ψ]) = − !2

m2c2
〈ḡ, ∇̃∇̃Ψ〉 ,

E(L[Ψ]) = − !2

m2c2
〈ḡ, ∇̃∇̃Ψ〉 − Ψ .

Proof. It follows immediately from (5.3), (5.5) and (5.8).

5.5 – Euler-Lagrange equations

Now we can write down the Euler-Lagrange equations E(F [Ψ])=0 for

an unknown section Ψ for all quantum Lagrangians in the base. For the

Lagrangians F1 and F2 the corresponding equations are obvious. For F3

we get from Theorem 5.2 the Euler-Lagrange equation in the form

〈ḡ,∇[κ](dh(Ψ,Ψ))〉Ψ = 0 .

For the distinguish quantum Lagrangian L̃ = F4 we get from Theo-

rem 5.3 the corresponding equation in the form

〈ḡ, ∇̃∇̃Ψ〉 = 0 ,

and finally, for the distinguish quantum Lagrangian L = F4 − F2 we get

the corresponding equation in the form

〈ḡ, ∇̃∇̃Ψ〉 +
m2c2

!2
Ψ = 0 ,

i.e., we get the generalized Klein-Gordon equation.
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