The points on curves whose coordinates are U-numbers

K. ALNIAÇIK

Riassunto: Si dimostra che su ogni curva, che ammetta una rappresentazione parametrica mediante funzioni razionali con coefficienti razionali, ci sono infiniti punti con coordinate che sono numeri di tipo U_{m}.

AbSTRACT: In this paper it is shown that if a curve C has a parametrization by non constant rational functions having rational coefficients, then there are infinitely many points P on C such that the coordinates of P are U_{m}-numbers.

It is known that if $y=f(x)$ is a function satisfying some conditions, then there are infinitely many U_{1} numbers (Liouville numbers) γ such that $f(\gamma) \in U_{1}$ (see, [8], [7], [2]). In 1992 Bertnik and Dombrovskij proved that there are infinitely many points $P(x, y)$ on some certain curves in \mathbb{R}^{2} such that $x, y \in U_{3}$. Recently Pollington [5] has shown that for every $m \in \mathbb{Z}^{+}$, there are infinitely many points on the line $y=x+r(r \in \mathbb{R})$ whose coordinates are U_{m}-numbers. In this paper we consider the same problem for some algebraic curves in \mathbb{R}^{n}. Theorem 2 and Theorem 3 are the main results of this paper. For this we recall
$\operatorname{DEFINition}^{(1)}$. Let $\gamma \in \mathbb{C}$ and $m \geq 1$ an integer. The number γ is called an U_{m}-number if for every $w>0$ there is an algebraic number α of degree m with

$$
0<|\gamma-\alpha|<H(\alpha)^{-w}
$$

where $H(\alpha)$ is the maximum of the absolute values of coefficients of the minimal polynomials of α, and if there exist constants $c, k>0$ depending only on γ and m such that the relation $|\gamma-\beta|>c H(\beta)^{-k}$ holds for every algebraic number β of degree $<m$.

Lemma 1. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}(k \geq 1)$ be algebraic numbers which belong to an algebraic number field K of degree g, η be algebraic and $F\left(y, x_{1}, \ldots, x_{k}\right)$ be polynomial with integral coefficients so that its degree with respect to y is at least one. Next assume that $F\left(\eta, \alpha_{1}, \ldots, \alpha_{k}\right)=0$. Then degree of $\eta \leq d g$ and

$$
h_{\eta} \leq 3^{2 d g+\left(l_{1}+\cdots+l_{k}\right) g} H^{g} h_{\alpha_{1}}^{l_{1} g} \ldots h_{\alpha_{k}}^{l_{k} g}
$$

where h_{η} is the height of $\eta, h_{\alpha_{i}}(i=1,2, \ldots, k)$ is the height of $\alpha_{i}(i=$ $1,2, \ldots, k), H$ is the maximum of absolute values of coefficients of F, l_{i} $(i=1,2, \ldots, k)$ is the degree of F in $x_{i}(i=1,2, \ldots, k)$ and d is the degree of F with respect to y.

THEOREM 1. Let $\left\{\alpha_{i}\right\}$ be a sequence of algebraic numbers with

$$
\operatorname{deg} \alpha_{i}=m_{i} \leq k, \quad \quad \lim _{i \rightarrow \infty} H\left(\alpha_{i}\right)=\infty
$$

$$
\begin{array}{ll}
0<\left|\alpha_{i+1}-\alpha_{i}\right|=H\left(\alpha_{i}\right)^{-w(i)} & \text { where } \lim _{i \rightarrow \infty} w(i)=\infty \\
\left|\alpha_{i+1}-\alpha_{i}\right|<H\left(\alpha_{i+1}\right)^{-\rho} & \text { for some } \rho>0 \tag{3}
\end{array}
$$

Then $\lim _{i \rightarrow \infty} \alpha_{i} \in U_{m}$ where $m=\liminf _{i \rightarrow \infty} m_{i}$.
We quote a couple of results which can be found in [4] and [1] respectively. Now we generalize the Theorem 2 in [1] as:

Theorem 2. Let $m \in \mathbb{Z}^{+}$and $P_{i}(x), Q_{i}(x) \in \mathbb{Z}[x]$, where $\left(P_{i}(x)\right.$, $\left.Q_{i}(x)\right)=1, \min \left(\operatorname{deg} P_{i}(x), \operatorname{deg} Q_{i}(x)\right) \geq 1(i=1, \ldots, k)$. Then there are infinitely many U_{m}-numbers γ such that $\frac{P_{i}(\gamma)}{Q_{i}(\gamma)} \in U_{m}$ for $i=1,2, \ldots, k$.

[^0]Proof. Let α be a real algebraic number of degree m and let $\alpha^{(1)}=$ $\alpha, \alpha^{(2)}, \ldots, \alpha^{(m)}$ denote the conjugates of α. We set $K_{i}(x)=\frac{P_{i}(x)}{Q_{i}(x)}(i=$ $1,2, \ldots, k)$. Let us consider the equation

$$
\begin{equation*}
K_{i}\left(\alpha^{(r)}+y\right)=K_{i}\left(\alpha^{(s)}+y\right) \tag{4}
\end{equation*}
$$

For fixed $r, s, i,(4)$ is equivalent to some polynomial equation $c_{t} y^{t}+\cdots+$ $c_{1} y+c_{0}=0$ where the coefficient c_{i} are algebraic numbers. Since $\alpha^{(r)} \neq$ $\alpha^{(s)}$ for $r \neq s$, we have $c_{t} \neq 0$, and so (4) has only finitely many solutions in $y \in \mathbb{R}$. Therefore for large $n \in \mathbb{Z}^{+}$we see that $\operatorname{deg} K_{i}\left(\alpha+n^{-1}\right)=m$ and $Q_{i}\left(\alpha+n^{-1}\right) \neq 0$ for $i=1,2, \ldots, k$. Let $\{w(n)\}$ be a sequence of positive real numbers with $\lim _{n \rightarrow \infty} w(n)=\infty$. We define α_{i} and positive integers n_{i} as:

$$
\begin{equation*}
\operatorname{deg} K_{i}\left(\alpha+n_{1}^{-1}\right)=m \quad(i=1,2, \ldots, k), \quad \alpha_{1}=\alpha+n_{1}^{-1} \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{deg} K_{t}\left(\alpha_{i}+n_{i+1}^{-1}\right)=m(t=1,2, \ldots, k) \tag{6}\\
H\left(\alpha_{i}\right)^{w(i)}<n_{i+1}, \quad n_{i}^{2}<n_{i+1} \quad(i \geq 1)
\end{gather*}
$$

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}+n_{i+1}^{-1} \tag{7}
\end{equation*}
$$

It follows from (5) and (7) that $\alpha_{i+1}=\alpha+\sum_{j=1}^{i+1} n_{j}^{-1}$. Applying Lemma 1 we find (using (6))

$$
\begin{equation*}
H\left(\alpha_{i+1}\right)<n_{i+1}^{2 m+2} \quad(i \text { large }) \tag{8}
\end{equation*}
$$

A combination of (7) and (8) gives us

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right| \leq H\left(\alpha_{i+1}\right)^{-1 /(2 m+2)} \quad(i \text { large }) \tag{9}
\end{equation*}
$$

On the other hand it follows from (6) and (7) that

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right| \leq H\left(\alpha_{i}\right)^{-w(i)} \quad(i \geq 1) \tag{10}
\end{equation*}
$$

Thus $\left\{\alpha_{i}\right\}$ satisfies the conditions (1), (2) and (3) and so we have $\gamma=$ $\lim \alpha_{i} \in U_{m}$. Now we show that $K_{t}(\gamma) \in U_{m}(t=1, \ldots, k)$. Since
$Q_{i}(x)=0$ has only finitely many solutions in $x \in \mathbb{R}$, we may assume that $Q_{t}\left(\alpha_{i}\right) \neq 0$ for $t=1, \ldots, k$ and $i \in \mathbb{Z}^{+}$. Put $K_{t}\left(\alpha_{i}\right)=\beta_{i}$. Then

$$
\begin{equation*}
\left|\beta_{i+1}-\beta_{i}\right|=\left|\alpha_{i+1}-\alpha_{i}\right|\left|K_{t}^{\prime}(\theta)\right| \tag{11}
\end{equation*}
$$

where $\alpha_{i}<\theta<\alpha_{i+1}$ and $K_{t}^{\prime}(x)$ is the derivative of $K_{t}(x)$. Since γ is not algebraic, we have $Q_{t}(\gamma) \neq 0(t=1, \ldots, k)$ and so there is a constant $c(t)>0$ depending only on $K_{t}(x)$ and γ such that $\left|K_{t}(\theta)\right|<c(t)$. Set $c_{1}=\max _{t=1}^{k}\{c(t)\}$. An application of Lemma 1 gives us

$$
\begin{equation*}
H\left(\beta_{i}\right) \leq H\left(\alpha_{i}\right)^{q m+1} \quad(i \text { large }) \tag{12}
\end{equation*}
$$

where q is a positive constant depending only $\operatorname{deg} P_{i}, \operatorname{deg} Q_{i}(i=1, \ldots, k)$. Using (12) and (10) in (11)

$$
\left|\beta_{i+1}-\beta_{i}\right| \leq H\left(\beta_{i}\right)^{-w(i)+1 /(q m+1)} \quad(i \text { large }),
$$

and combining (9) and (12) we find

$$
\left|\beta_{i+1}-\beta_{i}\right| \leq c_{1}\left|\alpha_{i+1}-\alpha_{i}\right|<\left|\alpha_{i+1}-\alpha_{i}\right|^{1 / 2} \leq H\left(\beta_{i+1}\right)^{-\rho} \quad(i \text { large })
$$

where $\rho=(4 m+4)^{-1}(q m+1)^{-1}$. Thus by Theorem 1 we obtain

$$
\lim \beta_{i}=K_{t}\left(\lim \alpha_{i}\right)=K_{t}(\gamma) \in U_{m} \quad(t=1, \ldots, k) .
$$

We note that using the arguments in Theorem 3 in [1], one can prove that

Theorem 3. Let $m \in \mathbb{Z}^{+}$and $\left\{\frac{p_{i}(x)}{Q_{i}(x)}\right\}$ be a sequence of rational functions with $P_{i}(x), Q_{i}(x) \in \mathbb{Z}[x],\left(P_{i}(x), Q_{i}(x)\right)=1, \min \left(\operatorname{deg} P_{i}, \operatorname{deg} Q_{i}\right) \geq 1$. Then there are infinitely many U_{m}-numbers γ such that $\frac{P_{i}(\gamma)}{Q_{i}(\gamma)} \in U_{m}$ $(i=1,2, \ldots)$.

The following is a consequence of Theorem 2 .
Corollary 1. Let C be a curve in \mathbb{R}^{n} such that C has a parametrization by non constant rational functions having rational coefficients. Then there are infinitely many points $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ on C where $x_{i} \in$ $U_{m}(i=1,2, \ldots, n)$.

For $n=2$ we can give the circle $x^{2}+y^{2}=a^{2}(a \in \mathbb{Q})$, the lemniscate curve and the curves $y^{m}=x^{n}(m, n \in \mathbb{Z})$ as examples for such curve C.

REFERENCES

[1] K. AlniAçik: On semi-strong U-numbers, Acta Arithmetica LX, 4 (1992), 349358.
[2] K. Alniaçik - E. Saias: Une remarque Sur les G-denses, Arch. Math., 62 (1994), 425-426.
[3] V.I. Bernik - I.V. Dombrovskis: U_{3}-numbers on curve in \mathbb{R}^{2}, Izv. Akad. Nauk. Belarusi Ser. Fiz.-Mat. Nauk, No (3/4) (1992), 3-7.
[4] O.Ş. İçen: Anhaung zu den Arbeiten "Über die Funktionswerte der p-adisch elliptschen Funktionen I und II", İstanbul Üniv. Fen Fak. Mecm. Ser. A, 38 (1973), 25-35.
[5] A.D. Pollington: Sum Sets and U-numbers, Number Theory with on emphasis on the Markoff Spectrum, (Provo, UT 1991), Lecture Notes in Pure and Appl. Math., 147, Dekker, New York (1993), 207-214.
[6] J.F. Koкsma: über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraischen Zahlen, Mh. Math. Physik, 48 (1939), 176-189.
[7] G.J. Rieger: Über die Lösbarkeit von Gleichungssystemen durch Liouville-Zahlen, Arch. Math., 26 (1975), 40-43.
[8] W. Schwarz: Liouville-Zahlen und der Satz von Baire, Math.-Phys. Semesterber., 24 (1977) 84-87.
[9] E. Wirsing: Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math., 206 (1960), 67-77.

Lavoro pervenuto alla redazione il 9 dicembre 1997 ed accettato per la pubblicazione il 20 maggio 1998.

Bozze licenziate il 17 novembre 1998

INDIRIZZO DELL'AUTORE:

K. Alniaçik - Department of Mathematics - Istanbul University - 34459 Vezneciler - Istanbul - Turkey
e-mail: kamil@doruk.net.tr

[^0]: ${ }^{(1)}$ We note that, we have, in fact, defined a Koksma U_{m}^{*}-number instead of a Mahler U_{m}-number. However, it is known that they are the same (see [6], [9]).

