Rendiconti di Matematica, Serie VII Volume 18, Roma (1998), 649-653

The points on curves whose coordinates are *U*-numbers

K. ALNIAÇIK

RIASSUNTO: Si dimostra che su ogni curva, che ammetta una rappresentazione parametrica mediante funzioni razionali con coefficienti razionali, ci sono infiniti punti con coordinate che sono numeri di tipo U_m .

ABSTRACT: In this paper it is shown that if a curve C has a parametrization by non constant rational functions having rational coefficients, then there are infinitely many points P on C such that the coordinates of P are U_m -numbers.

It is known that if y = f(x) is a function satisfying some conditions, then there are infinitely many U_1 numbers (Liouville numbers) γ such that $f(\gamma) \in U_1$ (see, [8], [7], [2]). In 1992 Bertnik and Dombrovskij proved that there are infinitely many points P(x, y) on some certain curves in \mathbb{R}^2 such that $x, y \in U_3$. Recently POLLINGTON [5] has shown that for every $m \in \mathbb{Z}^+$, there are infinitely many points on the line y = x + r ($r \in \mathbb{R}$) whose coordinates are U_m -numbers. In this paper we consider the same problem for some algebraic curves in \mathbb{R}^n . Theorem 2 and Theorem 3 are the main results of this paper. For this we recall

KEY WORDS AND PHRASES: Liouville numbers – U-numbers A.M.S. CLASSIFICATION: 10F35 – 10K15

DEFINITION⁽¹⁾. Let $\gamma \in \mathbb{C}$ and $m \geq 1$ an integer. The number γ is called an U_m -number if for every w > 0 there is an algebraic number α of degree m with

$$0 < |\gamma - \alpha| < H(\alpha)^{-w}$$

where $H(\alpha)$ is the maximum of the absolute values of coefficients of the minimal polynomials of α , and if there exist constants c, k > 0 depending only on γ and m such that the relation $|\gamma - \beta| > cH(\beta)^{-k}$ holds for every algebraic number β of degree < m.

LEMMA 1. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ $(k \ge 1)$ be algebraic numbers which belong to an algebraic number field K of degree g, η be algebraic and $F(y, x_1, \ldots, x_k)$ be polynomial with integral coefficients so that its degree with respect to y is at least one. Next assume that $F(\eta, \alpha_1, \ldots, \alpha_k) = 0$. Then degree of $\eta \le dg$ and

$$h_{\eta} \leq 3^{2dg + (l_1 + \dots + l_k)g} H^g h_{\alpha_1}^{l_1g} \dots h_{\alpha_k}^{l_kg},$$

where h_{η} is the height of η , h_{α_i} (i = 1, 2, ..., k) is the height of α_i (i = 1, 2, ..., k), H is the maximum of absolute values of coefficients of F, l_i (i = 1, 2, ..., k) is the degree of F in x_i (i = 1, 2, ..., k) and d is the degree of F with respect to y.

THEOREM 1. Let $\{\alpha_i\}$ be a sequence of algebraic numbers with

(1)
$$\deg \alpha_i = m_i \le k,$$
 $\lim_{i \to \infty} H(\alpha_i) = \infty,$

(2)
$$0 < |\alpha_{i+1} - \alpha_i| = H(\alpha_i)^{-w(i)}$$
 where $\lim_{i \to \infty} w(i) = \infty$,

(3)
$$|\alpha_{i+1} - \alpha_i| < H(\alpha_{i+1})^{-\rho}$$
 for some $\rho > 0$.

Then $\lim_{i\to\infty} \alpha_i \in U_m$ where $m = \liminf_{i\to\infty} m_i$.

We quote a couple of results which can be found in [4] and [1] respectively. Now we generalize the Theorem 2 in [1] as:

THEOREM 2. Let $m \in \mathbb{Z}^+$ and $P_i(x)$, $Q_i(x) \in \mathbb{Z}[x]$, where $(P_i(x), Q_i(x)) = 1$, $\min(\deg P_i(x), \deg Q_i(x)) \ge 1$ $(i = 1, \ldots, k)$. Then there are infinitely many U_m -numbers γ such that $\frac{P_i(\gamma)}{Q_i(\gamma)} \in U_m$ for $i = 1, 2, \ldots, k$.

⁽¹⁾We note that, we have, in fact, defined a Koksma U_m^* -number instead of a Mahler U_m -number. However, it is known that they are the same (see [6], [9]).

PROOF. Let α be a real algebraic number of degree m and let $\alpha^{(1)} = \alpha, \alpha^{(2)}, \ldots, \alpha^{(m)}$ denote the conjugates of α . We set $K_i(x) = \frac{P_i(x)}{Q_i(x)}$ $(i = 1, 2, \ldots, k)$. Let us consider the equation

(4)
$$K_i(\alpha^{(r)} + y) = K_i(\alpha^{(s)} + y).$$

For fixed r, s, i, (4) is equivalent to some polynomial equation $c_t y^t + \cdots + c_1 y + c_0 = 0$ where the coefficient c_i are algebraic numbers. Since $\alpha^{(r)} \neq \alpha^{(s)}$ for $r \neq s$, we have $c_t \neq 0$, and so (4) has only finitely many solutions in $y \in \mathbb{R}$. Therefore for large $n \in \mathbb{Z}^+$ we see that deg $K_i(\alpha + n^{-1}) = m$ and $Q_i(\alpha + n^{-1}) \neq 0$ for $i = 1, 2, \ldots, k$. Let $\{w(n)\}$ be a sequence of positive real numbers with $\lim_{n\to\infty} w(n) = \infty$. We define α_i and positive integers n_i as:

(5)
$$\deg K_i(\alpha + n_1^{-1}) = m \quad (i = 1, 2, \dots, k), \quad \alpha_1 = \alpha + n_1^{-1}$$

(6)
$$\deg K_t(\alpha_i + n_{i+1}^{-1}) = m \ (t = 1, 2, \dots, k) ,$$
$$H(\alpha_i)^{w(i)} < n_{i+1}, \quad n_i^2 < n_{i+1} \quad (i \ge 1)$$

(7)
$$\alpha_{i+1} = \alpha_i + n_{i+1}^{-1}.$$

It follows from (5) and (7) that $\alpha_{i+1} = \alpha + \sum_{j=1}^{i+1} n_j^{-1}$. Applying Lemma 1 we find (using (6))

(8)
$$H(\alpha_{i+1}) < n_{i+1}^{2m+2}$$
 (*i* large).

A combination of (7) and (8) gives us

(9)
$$| \alpha_{i+1} - \alpha_i | \le H(\alpha_{i+1})^{-1/(2m+2)}$$
 (*i* large).

On the other hand it follows from (6) and (7) that

(10)
$$|\alpha_{i+1} - \alpha_i| \le H(\alpha_i)^{-w(i)} \qquad (i \ge 1).$$

Thus $\{\alpha_i\}$ satisfies the conditions (1), (2) and (3) and so we have $\gamma = \lim \alpha_i \in U_m$. Now we show that $K_t(\gamma) \in U_m$ $(t = 1, \ldots, k)$. Since

 $Q_i(x) = 0$ has only finitely many solutions in $x \in \mathbb{R}$, we may assume that $Q_t(\alpha_i) \neq 0$ for $t = 1, \ldots, k$ and $i \in \mathbb{Z}^+$. Put $K_t(\alpha_i) = \beta_i$. Then

(11)
$$|\beta_{i+1} - \beta_i| = |\alpha_{i+1} - \alpha_i| |K'_t(\theta)|$$

where $\alpha_i < \theta < \alpha_{i+1}$ and $K'_t(x)$ is the derivative of $K_t(x)$. Since γ is not algebraic, we have $Q_t(\gamma) \neq 0$ (t = 1, ..., k) and so there is a constant c(t) > 0 depending only on $K_t(x)$ and γ such that $|K_t(\theta)| < c(t)$. Set $c_1 = \max_{t=1}^k \{c(t)\}$. An application of Lemma 1 gives us

(12)
$$H(\beta_i) \le H(\alpha_i)^{qm+1} \qquad (i \text{ large})$$

where q is a positive constant depending only deg P_i , deg Q_i $(i=1,\ldots,k)$. Using (12) and (10) in (11)

$$|\beta_{i+1} - \beta_i| \le H(\beta_i)^{-w(i)+1/(qm+1)} \qquad (i \text{ large}),$$

and combining (9) and (12) we find

$$|\beta_{i+1} - \beta_i| \le c_1 |\alpha_{i+1} - \alpha_i| < |\alpha_{i+1} - \alpha_i|^{1/2} \le H(\beta_{i+1})^{-\rho}$$
 (*i* large)

where $\rho = (4m+4)^{-1}(qm+1)^{-1}$. Thus by Theorem 1 we obtain

$$\lim \beta_i = K_t(\lim \alpha_i) = K_t(\gamma) \in U_m \quad (t = 1, \dots, k).$$

We note that using the arguments in Theorem 3 in [1], one can prove that

THEOREM 3. Let $m \in \mathbb{Z}^+$ and $\{\frac{p_i(x)}{Q_i(x)}\}$ be a sequence of rational functions with $P_i(x)$, $Q_i(x) \in \mathbb{Z}[x]$, $(P_i(x), Q_i(x)) = 1$, $\min(\deg P_i, \deg Q_i) \ge 1$. Then there are infinitely many U_m -numbers γ such that $\frac{P_i(\gamma)}{Q_i(\gamma)} \in U_m$ (i = 1, 2, ...).

The following is a consequence of Theorem 2.

COROLLARY 1. Let C be a curve in \mathbb{R}^n such that C has a parametrization by non constant rational functions having rational coefficients. Then there are infinitely many points $P(x_1, x_2, \ldots, x_n)$ on C where $x_i \in U_m$ $(i = 1, 2, \ldots, n)$. For n = 2 we can give the circle $x^2 + y^2 = a^2$ $(a \in \mathbb{Q})$, the lemniscate curve and the curves $y^m = x^n$ $(m, n \in \mathbb{Z})$ as examples for such curve C.

REFERENCES

- K. ALNIAÇIK: On semi-strong U-numbers, Acta Arithmetica LX, 4 (1992), 349-358.
- [2] K. ALNIAÇIK E. SAIAS: Une remarque Sur les G-denses, Arch. Math., 62 (1994), 425-426.
- [3] V.I. BERNIK I.V. DOMBROVSKIJ: U_3 -numbers on curve in \mathbb{R}^2 , Izv. Akad. Nauk. Belarusi Ser. Fiz.-Mat. Nauk, No (3/4) (1992), 3-7.
- [4] O.Ş. İÇEN: Anhaung zu den Arbeiten "Über die Funktionswerte der p-adisch elliptschen Funktionen I und II", İstanbul Üniv. Fen Fak. Mecm. Ser. A, 38 (1973), 25-35.
- [5] A.D. POLLINGTON: Sum Sets and U-numbers, Number Theory with on emphasis on the Markoff Spectrum, (Provo, UT 1991), Lecture Notes in Pure and Appl. Math., 147, Dekker, New York (1993), 207-214.
- [6] J.F. KOKSMA: über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraischen Zahlen, Mh. Math. Physik, 48 (1939), 176-189.
- [7] G.J. RIEGER: Über die Lösbarkeit von Gleichungssystemen durch Liouville-Zahlen, Arch. Math., 26 (1975), 40-43.
- [8] W. SCHWARZ: Liouville-Zahlen und der Satz von Baire, Math.-Phys. Semesterber., 24 (1977) 84-87.
- [9] E. WIRSING: Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math., 206 (1960), 67-77.

Lavoro pervenuto alla redazione il 9 dicembre 1997 ed accettato per la pubblicazione il 20 maggio 1998. Bozze licenziate il 17 novembre 1998

INDIRIZZO DELL'AUTORE:

K. Alniaçik – Department of Mathematics – Istanbul University – 34459 Vezneciler – Istanbul – Turkey e-mail: kamil@doruk.net.tr