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Timelike shock waves in a generic

matter-energy field in general relativity

G. GEMELLI

Riassunto: Si studiano le onde d’urto del genere tempo per una generica distri-
buzione di materia-energia sotto diverse condizioni sulla struttura dello spazio-tempo,
basate sull’esistenza di Ricci collineation e di vettori di Killing. Infine si studia la
conservazione del carattere temporale di un’onda.

Abstract: Timelike shock waves for a generic matter-energy field are studied
under different structural conditions for the space time, based upon the existence of
Ricci collineations and Killing vectors. The conservation of the timelike kind of a wave
is also studied.

1 – Introduction

A wave in the sense of Hadamard is a field which is regularly discon-

tinuous across a moving surface, which is called the wave-front. However,

for the sake of simplicity, the name “wave” is commonly given to the

wave-front, rather than to the solution.

Waves in the sense of Hadamard in any case correspond to the prop-

agation of discontinuities of physical quantities describing either fields (in

mathematical physics essentially electromagnetic field and gravitational
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field) or the motion of a fluid, or together, like in magnetohydrodynamics,

the changes in time of a field and of a fluid (see e.g. [4], [5], [25]).

In this framework, an ordinary gravitational wave is a discontinuity

hypersurface for the Riemann curvature tensor: [Rαβρσ] &≡ 0 (for complete

details, see Section 2.1, Definition 1). To avoid any confusion we have to

remark that, with different terminology, this kind of waves are elsewhere

called gravitational shock waves (see e.g. [31]); however, following Catta-

neo and Lichnerowicz, we prefer to adopt the latter denomination only in

the particular case of discontinuity of the first derivatives of the gravita-

tional potentials, which we are not going to study in the present paper.

In general relativity the properties of matter and fields are summa-

rized by the stress-energy tensor, which, by Einstein equations, plays the

role of source of the gravitational field. Thus the Einstein equations rule

the interactions between gravitation and the evolution of matter and en-

ergy. Consequently, in a matter-energy field, a gravitational wave may

also carry a discontinuity for the stress-energy tensor, so as to define, in

the terminology of this paper, a shock wave for the matter energy (Sec-

tion 2.2, Definition 2). If a shock wave for the matter energy is timelike

(i.e. the normal vector to the wave-front is spacelike), for the sake of

brevity we call it a material wave (Section 3.1).

There is a vast literature on ordinary and shock waves for matter

and energy in relativity (expecially on magnetohydrodynamical waves)

and also, separately, on gravitational waves, but the problem of their

interaction in general relativity, due to Einstein equations, does not seem

to have aroused the main interest of the scientists.

In particular, during the 60s and the 70s, Lichnerowicz published a

series of papers with the derivation of a complete theory of relativis-

tic magnetohydrodynamical waves (for a synthesis of that theory see

e.g. [25]). About the same years, the theory of gravitational disconti-

nuity waves was developed by a number of valuable scientists, including

Lichnerowicz, Pirani, Papapetrou, Treder and Trautman (for a survey

of the theory of gravitational waves and radiation see e.g. [36]). There

seems to be only one paper, that published by Dautcourt in 1963 [7],

where generic shock waves for the stress-energy tensor are approached by

means of their coupled gravitational discontinuity.

The aim of this paper is to study material waves in terms of the

discontinuity of metric, Riemann and Ricci tensors, rather than more fa-
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miliar terms as the discontinuity of density, pressure and other dynamical

variables. With this method, it is possible to characterize their propa-

gation in a generic matter-energy field under very general hypothesis on

the structure of the space time. In particular, a special class of waves,

characterized by a continuous curvature scalar, seems worth to be stud-

ied. Special material waves are a generalization of Alfven shock waves

of magneto-hydrodynamics; under suitable conditions, they are the only

possible material waves.

The study of this kind of link between material and gravitational

waves is interesting, since it can display the differences between special

relativistic and general relativistic dynamics. Moreover, in a time when

several experiments for the detection of general relativity are in prepara-

tion, it also suggests the possibility, in principle, of indirect revelation of

general relativistic properties of gravity by means of observations on the

motion of fluids.

However in this paper we are going to study the problem under a

mathematical point of view only, leaving possible experimental applica-

tions as open problems still to be investigated.

The formalism used here is that of waves in the sense of Hadamard

(see e.g. [4], [5], [10]), both for what concernes gravitational and material

waves. This permits to recognize their links and to obtain results which

are very general, in the sense that they do not depend on the choice of

a particular solution of the Einstein equations. Thus the very difficult

problem of solving that equations for some model allowing the presence

of both matter and gravitational radiation is avoided at this level.

In Section 2 general definitions of gravitational wave (Definition 1)

and matter-energy shock wave (Definition 2) are given in terms of the

jump of the Riemann tensor and of the energy tensor.

In Section 3 matter-energy shock waves are studied: here their classi-

fication in terms of propagation speed is given (Section 3.1). The follow-

ing concepts are then introduced: material waves (Section 3.1), essential

(i.e. gauge invariant) metric discontinuity (Section 3.2), third order tensor

potentials formalism (Section 3.3), special material waves (Section 3.4).

In Section 4 matter-energy shock waves are studied in the presence

of Ricci collineations: general theorems are given (Section 4.1); a simple

model of wave transmission from empty space to matter is introduced

(Section 4.2); the case of magnetohydrodynamics is considered; a mistake
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contained in an earlier paper by the writer is corrected (Section 4.3).

In Section 5 material waves are studied in the presence of Killing

vectors: a property of tangence is proved (Section 5.1); the conservation

in time of the timelike kind of a wave is studied (Section 5.2).

In Section 6 the examples of a perfect charged fluid, of a radiating

fluid and of a plane simmetric neutral fluid are considered.

2 – Definitions

Let V4 be the space time of general relativity, i.e. (see for ex. [17], [25])

an oriented differentiable manifold of Dimension 4, of class (C2, piece-

wise C4), provided with a metric tensor gαβ of strictly hyperbolic type,

signature – + + + and class (C1, piecewise C2).

Greek indices run from 0 to 3, latin indices from 1 to 3, except where

otherwise stated.

Units are chosen in order to have the speed of light in empty space c = 1.

Let Ω ⊂ V4 be an open domain with compact closure and Σ ⊂ Ω

be a hypersurface of equation f(x) = 0, where f ∈ C2(Ω), 4α
def
= ∂αf ,

40 &= 0. Let g ∈ C1(Ω) ∩ C2(Ω\Σ) and let its second derivatives be

regularly discontinuous (eventually with null discontinuity) across Σ. Let

us denote by [ϕ] the jump across Σ of a generic regularly discontinuous

function ϕ.

2.1 – Gravitational waves

Definition 1. If [Rαβρσ] &= 0, then Σ is called an (ordinary discon-

tinuity) gravitational wave (see for ex. [33], [18], [19], [36], [25], [11]).

The metric discontinuity is a well defined field on Σ, denoted by ∂2gαβ,

such that the following Hadamard compatibility conditions hold (see for

ex. [4], [10]):

(1) [∂α∂βgρσ] = 4α4β∂2gρσ .

In terms of ∂2gαβ, from the usual definition of the curvature tensor (see

for ex. [30], [8]) and from (1) we have:

(2) [Rαβρσ] = (1/2)(4β4ρ∂
2gασ − 4β4σ∂2gαρ − 4α4ρ∂

2gσβ + 4α4σ∂2gβρ) .
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The metric discontinuity is a tensor with respect to C3 coordinate trans-

formations. Any piecewise C3 transformation of the so called “tangent

to identity” kind instead produces a “gauge change” like the following:

(3) ∂2gαβ ↔ ∂2gαβ + 4αqβ + 4βqα ,

(see for ex. [19], [32] p. 174, [1] p. 98, [25] chap IV), where the vector q,

defined on Σ, is determined by the discontinuity of the third derivatives

of the transformation. Therefore there is a gauge freedom for ∂2gαβ. In

particular ∂2gαβ &= 0 is not an invariant condition (it is invariant only

for C3 coordinate transformations).

[Rαβρσ] is instead invariant for gauge changes (3). In particular

[Rαβρσ] &= 0 is an invariant condition. This is the reason why it is cor-

rect to define gravitational waves by requiring [Rαβρσ] &= 0 rather than

∂2gαβ &= 0. For example, a metric discontinuity of the kind ∂2gαβ =

4αqβ + 4βqα, is “inessential”, since it is due to the gauge choice (i.e. it can

be eliminated by a suitable gauge change) and produces no discontinuity

for the Riemann tensor: [Rαβρσ] = 0 (see (2)).

From (2) we have the following “Bianchi like” formulae:

(4) 4[α[Rβρ]σν ] = 0 ,

and the following expressions for the jump of the Ricci tensor Rβρ
def
=

Rαβρ
α and that of the scalar R

def
= Rα

α:

(2)
[Rβρ] = (1/2){4β4ρ(g

σν∂2gσν) − 24ν4(ρ∂
2gβ)ν + (! · !)∂2gβρ} ,

[R] = (! · !)(gσν∂2gσν) − 4σ4ν∂2gσν .

From (5) we also have the relation:

(6) [Rβρ]4
ρ = (1/2)[R]4β .

It is not difficult to prove the following theorem, which is well known,

and has a number of different equivalent proofs in the literature (see for

ex. [34], [18], [35], [19], [31], [11]):

Theorem 1. [Rαβρσ] &≡ 0, [Rβρ] = 0 ⇒ (! · !) = 0.
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Gravitational waves have been studied by many authors in the case

of a continuous Ricci tensor: [Rαβ] = 0 (see for ex. [34], [19], [7], [11]);

for example, this is the case of empty space-time. For the sake of brevity

in the following we will call pure wave a wave such that [Rαβ] = 0.

2.2 – Matter-energy shock waves

Let Tαβ ∈ C0(Ω\Σ) denote the energy tensor of the matter-energy

distribution in the domain Ω. We suppose that Tαβ is regularly discon-

tinuous across Σ (eventually with null discontinuity) and satisfies the

conservation equations

(7) ∇βT αβ = 0

in the ordinary sense in Ω\Σ, and in the weak sense globally in Ω. This

implies that if [Tαβ] is not null then the Rankine-Hugoniot jump condi-

tions must be satisfied:

(8) 4β[T αβ] = 0

(see for ex. [22], [23], [25]).

Definition 2. If [Tαβ] &= 0 then Σ is called a matter-energy shock

wave.

3 – Gravitational waves in a matter-energy field

Let us now consider the jump of the Einstein equations in the pres-

ence of a gravitational wave (Definition 1):

(9) Rβρ − (1/2)Rgβρ = −χTβρ ⇒ [Rβρ] − (1/2)[R]gβρ = −χ[Tβρ] .

Since [R] = χ[T ], (T
def
= Tα

α), we have [Rβρ] = 0 ⇔ [Tβρ] = 0.

The case [Rβρ] &= 0, [Tβρ] &= 0 therefore necessarily corresponds to

the presence of matter (or energy) in Ω ⊂ V4; in particular it defines a

matter-energy shock wave. This is probably usually taken for granted,

since [Tβρ] &= 0, but if we adopt Definition 2 for matter-energy shock

waves we have to verify that the Rankine-Hugoniot conditions are also
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satisfied; this is not difficult to prove, so let us formalize this result by

the following theorem.

Theorem 2. Let Σ be a gravitational wave and let [Rαβ] &= 0.

Then Σ is a matter-energy shock wave. Conversely, if Σ is a matter-

energy shock wave it is also a gravitational wave.

Proof. Definition 1 is compatible with Definition 2 in the case

[Rαβ] &= 0, [Tαβ] &= 0, since, due to the Einstein equations (9), (6) is equiv-

alent to the Rankine-Hugoniot conditions (8). This proves that, if Σ is a

gravitational wave and [Rαβ] &= 0, then it is also a matter-energy shock

wave. On the other hand, if [Tαβ] &= 0, then [Rαβ] &= 0 and consequently

[Rαβρσ] &= 0. This proves the converse.

3.1 – Material waves and limit waves

Lichnerowicz ([21], [22], [23], [25]) showed that, under reasonable

compressibility hypothesis, magneto-hidrodynamic shock waves are time-

like (i.e. (!·!) > 0). Moreover condition (!·!) > 0 assures the admissibility

of the propagation speed of the wave with respect to the generic observer.

Actually, if u is a timelike unit vector field representing a reference frame,

we have:

(10) (vΣ(u))2 = (u · !)2/{(u · !)2 + (! · !)} ,

and therefore, if (! · !) > 0 then |vΣ(u)| < 1, ∀ u.

Therefore, it is natural to study matter-energy shock waves ([Tαβ] &=0)

in the following cases:

a) (! · !) > 0; for the sake of brevity in the following we will simply call

this kind of waves material waves.

b) (! · !) = 0; this is the limiting case of a), for the sake of brevity in the

following we will simply call them limit waves.

As said before, case b) cannot occur in compressible magneto-hydro-

dy-namics. Limit waves can instead appear in pure electro-magnet-

ism (see for ex. [19], [25]) and in the relativistic version of incom-

pressible hydro-dynamics (see [17], [21], [24]).
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Of course we are not going to consider the case:

c) (! · !) < 0;

since it violates the causality principle.

The above classification is local, since it in principle is not invariant from

event to event of the domain Ω (nor from domain to domain of the space-

time manifold). However we are going to see (Section 5) that, if a Killing

vector field is present, the classification gains some global significance.

3.2 – Essential metric discontinuity for material waves

One may wonder if it is possible to neglect the inessential part of

the metric discontinuity, due to the gauge choice, and work with gauge-

invariant quantities.

This is certainly possible for material waves: since (! · !) &= 0, we can

define:

(11) Gαβ
def
= (δα

µ − (! · !)−14α4µ)(δβ
ν − (! · !)−14β4ν)∂2gµν .

Since Gαβ is clearly invariant for gauge changes (3), we can name it the

essential metric discontinuity. It is always possible to choose the gauge

such that ∂2gαβ = Gαβ: it suffices to choose:

(12) qα = −(! · !)−14ν∂2gαν + (1/2)(! · !)−24ν4µ∂2gνµ4α

in the gauge change (3). We call this gauge the natural gauge for the

material wave. The natural gauge is unique, in the sense that it is always

determined by a unique gauge change (the one with qα defined by (12)).

Therefore Gαβ is at the same time:

• the completely orthogonal component of ∂2gαβ with respect to !;

• the essential part, i.e. gauge-invariant, of ∂2gαβ;

• the representation of ∂2gαβ in the natural gauge.

In particular Gαβ has a precise geometrical meaning, besides one in terms

of gauge-invariance. This means that results expressed in terms of Gαβ,

different that in terms of ∂2gαβ, are invariant and have no degrees of

freedom.
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In terms of Gαβ, we have:

(13)

[Rαβρσ] = (1/2)(4β4ρGασ − 4β4σGαρ − 4α4ρGσβ + 4α4σGβρ)

[Rβρ] = (1/2){4β4ρGν
ν + (! · !)Gβρ}

[R] = (! · !)Gν
ν .

The essential metric discontinuity was first introduced in [9], without

mention of its properties of gauge-invariance, as a very useful tool for

splitting the jump of the Einstein equations; material waves were first

studied in terms of metric discontinuity in [7], in a tethrad formalism.

3.3 – Third order potentials of the Riemann tensor

It is useful to introduce a method for the study of gravitational wave-

fronts in terms of third order potentials.

Lanczos ([16], [2]), showed that the Weyl tensor has a third order

tensor potential. In case the Riemann tensor has the same property one

has interesting consequences ([3]), but this occurs only in a few particular

situations ([2], [29]).

In the case of gravitational waves, however, in our continuity hypoth-

esis for the metric, the jump of the Riemann tensor is equal to that of

the complex of the second derivatives of the metric: [Rαβρσ] = [R′
αβρσ],

where:

(14) R′
αβρσ

def
= (1/2)(∂β∂ρgασ − ∂β∂σgαρ − ∂α∂ρgσβ + ∂α∂σgβρ) .

R′
αβρσ, which is not a tensor, is generated by the following third order

“potential”:

(15) Hαβρ
def
= (1/2)∂[αgβ]ρ ,

according to the formula:

(16) R′
αβρσ = ∂σHαβρ − ∂ρHαβσ + ∂βHρσα − ∂αHρσβ .

We have Hαβρ ≡ (1/2)Γρ[αβ] and Hαβρ ∈ C0(Ω) ∩ C1(Ω\Σ). In our

continuity hypothesis [Hαβρ] = 0, while ∂Hαβρ is a tensor field (with
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support on Σ), with respect to C3 local coordinate transformations, which

is not null unless gαβ ∈ C2(Ω).

Consequently in this case we can follow [3] just adding square brackets

to the formulae quoted there. Thus, or also directly from (16), we have:

(17)

[Rαβρσ] = 4σ∂Hαβρ − 4ρ∂Hαβσ + 4β∂Hρσα − 4α∂Hρσβ

[Rαβ] = 24(α∂Vβ) + gαβ4σ∂Vσ − 4σ(∂Kασβ + ∂Kβσα)

[R] = 44σ∂Vσ ,

with:

(18) Vα
def
= gβρHαβρ, Kαβρ

def
= (2/3)V[βgα]ρ − Hαβρ ⇒ gβρKαβρ = 0 .

We will use (17)3 in the following section for defining the class of special

material waves.

3.4 – Special material waves

Let us consider the complex: Vα ∈ C0(Ω) ∩ C1(Ω\Σ); its derivatives

are regularly discontinuous across Σ, such that the following Hadamard

compatibility conditions hold:

(19) [Vα] = 0, ∂β[Vα] = 4β∂Vα ,

where: ∂Vα = (1/2)gβρ4[α∂2gβ]ρ. The derivative ∂β[Vα] can be uniquely

defined on Σ with the help of arbitrary regular prolongations; we have:

∂β[Vα] = [∂βVα] (see for ex. [4], [10]).

From a classic decomposition theorem (see for ex. [3], [28] p. 49), any

vector field is the sum of a gradient plus a solenoidal part. Let us make

use of this property for [Vα]:

(20) [Vα] = ∂αΦ + ηα
µ

ρσ∇µΨρσ ,

where Φ is a suitable scalar field, Ψρσ a suitable antisymmetric 2-tensor

with support on Σ and η is the antysimmetric Ricci tensor. For the

compatibility conditions (19) to be satisfied, there must exist a suit-

able scalar field φ and a suitable antisymmetric 2-tensor ψρσ, of class

∈ C1(Ω) ∩ C2(Ω\Σ), with regularly discontinuous second derivatives,
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such that Φ = [φ], Ψαβ = [ψαβ], ∂α∂β[φ] = 4α4β∂2φ and ∂α∂β[ψρσ] =

4α4β∂2ψρσ; therefore:

(21) ∂Vα = 4α∂2φ + ηα
β

ρσ4β∂2ψρσ .

From (17)3 and (21) we directly have: [R] = 4(! · !)∂2φ. Let ϕ
def
= 4φ; we

have just proved the following theorem.

Theorem 3. Let Σ be a gravitational wave. Then there is a function

ϕ ∈ C1(Ω) such that

(22) [R] = (! · !)∂2ϕ ;

ϕ is a suitable function of the metric gαβ, but in the general case it is

unknown.

Corollary 3.1. [R] = 0 ⇒ (! · !) = 0, or ∂2ϕ = 0.

This corollary generalizes, in a sense, Theorem 1, since, if we neglect

the special case when ϕ ∈ C2(Ω) even if gαβ ∈ C1(Ω) ∩ C2(Ω\Σ), then

we have:

[Rαβρσ] &≡ 0, [R] = 0 ⇒ (! · !) = 0 ,

while Theorem 1 needs the stronger hypothesis: [Rαβ] = 0.

We are therefore led to define special material waves those such

that [R] = 0, (! · !) > 0, ∂2ϕ = 0. In the following we will see that

this kind of waves has notable properties related to the propagation of

gravitational waves in matter.

An example of special material wave according to our definition is

given by Alfven magneto-hydrodynamical shock waves (see for ex. [20],

[21], [25]), which are such that the thermodynamical variables ρ and p are

continuous across the wave-front, and consequently [T ] = 0 and [R] = 0.

We moreover have the following interesting property of limit waves:

Corollary 3.2. For a limit wave one necessarily has: [R] = 0.
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Therefore, Corollary 3.1 can be equivalently expressed as follows:

Corollary 3.3. If [R] = 0, a gravitational wave can be a pure

wave, a limit wave or a special material wave; the case of a general ma-

terial wave is forbidden.

4 – Material waves and Ricci collineations

In this section we wish to study the propagation of matter-energy

shock waves (in a generic matter-energy field) under additional hypothesis

about the structure of the space-time based on the existence of Ricci

collineations.

4.1 – Ricci collineations

Let us recall a useful conservation property about Ricci collineations:

Theorem 4. Let Rαβ be a symmetric tensor field such that ∇β(Rα
β−

(1/2)Rν
νδα

β) = 0. If there is a vector field Y such that LY Rαβ = 0, then

the following conservation law holds:

(23) ∇α(Rα
βY β) = 0 .

Proof. Written explicitely, equation LY Rαβ = 0 is:

Y µ∇µRαβ + ∇αY µRµβ + ∇βY µRαµ = 0 ;

by contraction on α and β we have:

∇α(Rµ
αY µ) + Y µ∇α

(
(1/2)Rν

νδµ
α − Rµ

α
)

= 0 ,

which leads to the thesis.
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Theorem 4 actually is a slight generalization of the analogous result

for Ricci collineations (Rαβ = Rαβ, see [6]; for the case R = 0 see [13]).

We have introduced this generalization in view of application to the case

Rαβ = [Rαβ] (see Theorem 6).

The existence of Ricci collineations are general properties of many

space-times (see for ex. [14], [12]).

The following theorem holds.

Theorem 5. If there is Y ∈ C0(Ω) such that:

(24) LY Rαβ = 0 ,

then a necessary condition for Σ to be a material wave is:

(25) (! · Y)∂2ϕ = 0 .

Proof. From (23) we have that LY Rαβ = 0 implies the conservation

law: ∇α(Rα
βY β) = 0. From the shock condition (8) and the continuity

of Y, we then have on Σ: 4αY β[Rαβ] = 0; in the case of a material wave,

from (13)2:

(! · !)(! · Y)Gν
ν = 0 .

Therefore we must have (!·Y) = 0, or Gν
ν = 0, which, from (13)3, implies

[R] = 0. In this case from (22) we have (! · !) = 0 (no material wave) or

∂2ϕ = 0.

Corollary 5.1. If the hypothesis of Theorem 5 hold in Ω and

moreover (! · Y) &= 0, then in Ω gravitational waves which propagate in

matter are necessarily pure waves, limit waves or special material waves;

the case of general material waves is forbidden. Therefore in this case

the only possible material waves are special waves.

4.2 – A toy model of wave transmission in the matter

Let us now consider a domain of space-time Ω ⊂ V4 where the fol-

lowing elements are present:

• a regular world tube V ⊂ Ω, such that Tαβ &≡ 0 in V;
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• an external empty space Ω\V, such that Tαβ ≡ 0 in Ω\V;

• a gravitational wave Σ ⊂ Ω such that Σ ∩ ∂V &= ∅.

In this situation Ω is divided into four parts by Σ and ∂V. V may be

the world tube of a star and Ω\V the outer space, so as to represent the

transmission of an ingoing wave in the matter. Since Ω\V is empty, Σ

is necessarily a pure wave in Ω\V, while in V it may or not become

a material wave or a limit wave. It is rather reasonable to make the

continuity hypothesis: [Rαβ] = 0 on Σ ∩ ∂V. We can find conditions

which, in this model, are sufficient to determine the kind of the wave

in V.

Theorem 6. If the following structural condition holds:

(26) L1[Rαβ] = 0 ,

then the wave can be transmitted in V as a pure wave, a limit wave or a

special material wave; the case of a general material wave is forbidden.

Proof. The jump of the Riemann tensor on a wave-front Σ satis-

fies the Bianchi identities ∇[α[Rβρ]σν ] = [∇[αRβρ]σν ] = 0, where covari-

ant derivatives of the jump are well defined by the use of the regular

prolongation method (see [4], [5], [10]). Consequently the jump of the

Ricci tensor also satisfies the Bianchi contracted identities: ∇β

(
[Rα

β] −
(1/2)[Rν

ν ]δα
β
)

= 0, and we can make use of Theorem 4. From (23) we

thus have: ∇α([Rα
β]4β) = 0. From (6) we then have the conservation

law:

(27) ∇α([R]4α) = 0 .

Therefore in this case our model must have [R] = 0 in V. Consequently

general material waves are forbidden.

Corollary 6.1. If there is a vector field ! ∈ C1(Ω) which coincides,

on the hypersurface Σ, with the normal vector of Σ, and which is such that

(28) L1Rαβ ∈ C0(Ω)
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then again the wave Σ can be transmitted in V as a pure wave, a limit

wave or a special material wave; the case of a general material wave is

forbidden.

We have found several simple structural conditions under which no

general material wave can be transmitted in a matter-energy field. The

most interesting surviving case is that of special material waves, since it

is the only possible case where (! · !) > 0, i.e. the propagation speed of

the wave is less than the speed of light.

Corollary 6.2. If, in our transmission model, the structural

condition (24) holds with (Y · !) &= 0, or if (26) holds, or if (28) holds,

then a necessary condition for Σ to be a material wave is: ∂2ϕ = 0.

Consequently, under these hypothesis, the only possible material

waves are the special ones.

4.3 – Gravitational waves and Alfven shock waves

In perfect magneto-hydrodynamics an example of special waves are

Alfven shock waves (see for ex. [26], [25]); moreover, if certain hypothesis

are satisfied, Alfven shock waves are the only magneto-hydrodynamical

special material waves:

Theorem 7. Given a special material wave Σ in a perfect charged

fluid, if [Rαβ]Dα = 0, where D is the current density vector, then Σ is

an Alfven shock wave.

Proof. The current density vector is a particular vector which is

orthogonal to both the 4-velocity of the fluid and the magnetic field (for its

definition see [26] and [25] p. 211). A theorem due to Lukacevic ([26]),

gives the following necessary and sufficient conditions for a material wave

to be an Alfven shock wave:

(29) [Rαβ]4β = 0, [Rαβ]Dβ = 0 .

Condition (29)1 is verified, for special material waves, as a conse-

quence of (6). Condition (29)2 is contained in the hypothesis of the

theorem.
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As a corollary, we have a uniqueness property of Alfven shock waves:

Corollary 7.1. Let us consider a perfect charged fluid in the hy-

pothesis of Corollary 5.1 or of Theorem 6 or of Corollary 6.1. If moreover

condition [Rαβ]Dα = 0 holds, then any material wave necessarily is an

Alfven shock wave.

The connection between Alfven shock waves and gravitational waves

in the matter was already studied in some particular cases (see [26], [27]).

In an earlier paper ([9]) the writer studied the compatibility conditions

which relate the weak discontinuity of the metric to the shocks of the

dynamical variables, when a gravitational wave is coupled with a material

wave. In Section 9 of that work it is concluded that Alfven shock waves

are the only possible material waves of magneto-hydrodynamics. We

have just seen that this is true if some suitable structural conditions

hold, but not in the general case, since this would contrast Theorem 2

(every shock wave is a gravitational wave). Therefore that conclusion

must be wrong. We realize now of an error contained in [9], which caused

the mistake: an incorrect “−1” appears in equation (9.4)2 instead of the

correct “h2”. Actually, equation (9.9) and (9.13) are identities; which

invalidates the results of Section 9, where they are instead considered as

the relations identifying Alfven shocks and matchable (with gravitational

waves) hydrodynamical shocks, respectively.

5 – Material waves and Killing vectors

In this section we wish to study the propagation of matter-energy

shock waves (in a generic matter-energy field) under additional hypothesis

about the structure of the space-time based on the existence of Killing

vectors.

5.1 – Killing vectors

Let us suppose there exists a vector field ξ ∈ C1(Ω)∩C2(Ω\Σ) which

satisfies the Killing equation:

(30) ∇αξβ + ∇βξα = 0 .
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We therefore have:

(31) ∂αξβ + ∂βξα = 2Γαβ
νξν ,

and, from the definition of curvature tensor:

(32) ∂ρ∂(αξβ) − ∂α∂(ρξβ) = (Rαρβ
ν − 2Γµ(ρ

νΓα)β
µ)ξν + 2Γβ[α

ν∂ρ]ξν .

Theorem 8. Let ξ have regularly discontinuous second derivatives

across a hypersurface Σ. Then, a necessary condition for Σ to be a ma-

terial wave is (! · ξ) = 0.

Proof. Let us consider the weak disontinuity of order 2 of ξα and

denote it by ∂2ξα; this is a well defined field on Σ, such that Hadamard

compatibility conditions hold: [∂α∂βξρ] = 4α4β∂2ξρ. From our continuity

hypothesys and from (32) we have:

(33) 4β(4ρ∂
2ξα − 4α∂2ξρ) = 2[Rαρβ

ν ]ξν .

From (13)1 we consequently have:

(34) 4β4[ρ(Gα]
νξν − ∂2ξα]) + (! · ξ)4[αGρ]β = 0 .

A splitting of the equation above along ! and its orthogonal subspace

gives the following equivalent system:

(35)
∂2ξα − (! · !)−1(4ν∂2ξν)4α − Gα

νξν = 0 ,

(! · ξ)Gαβ = 0 .

If a material wave is present (Gαβ &=0) we must therefore have (!·ξ)=0.

Condition (! · ξ) = 0 gives 4ν∂2ξν = ∂2(! · ξ) − 4ν∂24ν = ∂2(! · ξ) − (! ·
ξ)∂3f = 0. Therefore the following corolary holds:

Corollary 8.1. Let Σ be a material wave and ξ a Killing vector

in the hypothesys of Theorem 8. Then we have:

(36) ∂2ξα = Gα
νξν , (! · ξ) = 0 .
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5.2 – Conservation of the timelike kind of a wave

An interesting property, which extends the concept of material wave

from a single event E ∈ Σ to some portion of Σ, is expressed by the

following theorem.

Theorem 9. Let Σ be a material wave and ξ a Killing vector in

the hypothesis of Theorem 8. Then the scalar (! · !) is constant along the

integral lines of ξ.

Proof. We wish to prove that ξα∇α(! · !) = 0. Making use of the

Killing property ∇(αξβ) = 0 for ξ and of the gradient property ∇[α4β] = 0

for !, we have:

ξα∇α(! · !) = 24βξα∇β4α = 24β∇β(ξ · !) .

Therefore ξα∇α(!·!) vanishes since, by Theorem 8, we have (!·ξ) = 0.

As a consequence, condition (!·!) > 0 can be transported from a given

event E ∈ Σ to a line laying on Σ, and eventually, from a 2-dymensional

section of Σ, to the whole Σ∩Ω. Let us introduce a reference frame in Ω,

determined by a 1-parameter family of spacelike leafs. We may consider

sections of Σ with different leafs as the (2-dymensional) wave-front at

different times. We have just proved the following corollary:

Corollary 9.1. In the hypothesys of Theorem 8, if Σ is a material

wave at a given time, it is a material wave always (in Ω). Conversely, if

it is a limit wave at a given time, then it is a limit wave always.

6 – Examples

It is interesting to see what essential metric discontinuity actually are

in a known example. Let us consider a perfect charged fluid in a world

tube T ⊂ Ω. The energy tensor is (see [20], [21], [22], [23], [25]):

(37) Tαβ
def
= (ρ + p + µh2)UαUβ + (p + (1/2)µh2)gαβ − µhαhβ ,

where µ is a positive constant (magnetic permeability), h is the magnetic

field and h2 def
= (h · h) > 0. If a material wave Σ is present, we have
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[Tαβ]4β = 0, or:

[(ρ + p + µh2)Uα(U · !) + (p + (1/2)µh2)4α − µhα(h · !)] = 0 .

From Theorem 2, a gravitational ordinary wave corresponds to Σ; from

equations (9) and (13) we have:

(38)

Gν
ν = χ(! · !)−1[3p − ρ] = ∂2ϕ

Gαβ = −2χ(! · !)−1[(ρ + p + µh2)UαUβ − µhαhβ]+

+ (1/2)[(! · !)−1(3p − ρ)4α4β + (ρ + p + µh2)gαβ] .

The latter is the expressions of the essential metric discontinuity in terms

of shocks of the dynamical variables. For a magneto-hydrodynamical

shock wave to be a special wave, we must have Gν
ν = ∂2ϕ = 0; therefore

the special wave condition, in the considered example, is: [ρ] = 3[p].

Consequently, in the particular case where the equation of state is ρ = 3p

any shock wave is a special one. This equation of state defines a situation

called “incoherent radiation” (see e.g. [15] p. 75). In the general case,

instead, an example of special wave is given by Alfven shock waves, which

are such that [ρ] = [p] = [h2] = 0 (see e.g. [21], [23], [25]).

These considerations have been made without specifying the metric.

Let us now consider a perfect fluid exact solution, as given by Taub

(see [15] p. 161). The line element:

(39) ds2 = −e2ν(z)dt2 + z2(dx2 + dy2) + z/F (z)dz2

corresponds to a neutral perfect fluid of the kind:

(40) Tαβ = (ρ + p)UαUβ + pgαβ, ρ = ρ(p)

if the following relations hold between the variables:

2zp′(ρ + p)−1 = 1 − χpz3F −1 , F ′ + χρz2 = 0, (ρ + p)ν ′ = p′ .

Let us consider a (C1, piecewise C2) match of two solutions of the kind (39)

across the hypersurface Σ of equation z = z0. This corresponds to a
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gravitational ordinary discontinuity wave and, from Theorem 2, to a

matter-energy shock wave. We have 4α = δα
z and (! · !) = F/z. Since

g = −e2νz3/F < 0, we must have F/z > 0 and therefore Σ is timelike

and the wave is a material wave. The metric discontinuity is:

∂2gαβ = −2e2ν0 [ν ′′]δα
tδβ

t − z0/F 2
0 [F ′′]δα

zδβ
z ;

and its essential component is:

(42) Gαβ = −2e2ν0 [ν ′′]δα
tδβ

t, Gν
ν = 2[ν ′′] .

We also have:

(43) [Rαβ] = {−(F0/z0)e
2ν0δα

tδβ
t +δα

zδβ
z}[ν ′′], [R] = 2(F0/z0)[ν

′′] .

The essential metric discontinuity Gαβ is perpendicular to !; the

Rankine-Hugoniot shock condition [Tαβ]4β = 0 is therefore automatically

satisfied.

Finally, the conservation of the timelike character of the wave is,

in this example, expressed by the indipendence of (! · !) = F/z on the

variable t.
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