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One-point connectifications of

subspaces of the Euclidean line

A. FEDELI – A. LE DONNE

Riassunto: Uno spazio connesso di Hausdorff Y è detto connettificazione con un
punto di uno spazio X se X è immerso in Y e Y \ X ha esattamente un punto. In
questo lavoro si caratterizzano i sottospazi della retta euclidea che hanno una connet-
tificazione con un punto. Inoltre vengono dati alcuni esempi per dimostrare che tale
caratterizzazione non è più valida nel caso del piano euclideo.

Abstract: A connected Hausdorff space Y is called one-point connectification of
a space X if X is embedded in Y and Y \ X has exactly one point. In this paper we
characterize the subspaces of the Euclidean line which have a one-point connectification.
Several examples are given to show how different is the situation in the Euclidean plane.

A space X is called connectifiable if it can be densely embedded in a

connected Hausdorff space Y , in such a case Y is called a connectification

of X (see [6], [5], [1]). Obviously every one-point connectification of a

space X is a connectification of X.

Recently the authors have introduced the related concept of pathwise

connectifiable space [3] : a space X is called pathwise connectifiable if

it can be densely embedded in a pathwise connected Hausdorff space Y
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(Y will be called a pathwise connectification of X). Similarly we say

that a pathwise connected Hausdorff space Y is a one-point pathwise

connectification of a space X if X is embedded in Y and |Y \ X| = 1.

Since a subspace of the Euclidean line R is connected if and only if it is

pathwise connected, it is natural to ask if a subspace of R is connectifiable

if and only if it is pathwise connectifiable. Although the answer to this

question is negative in general (the subspace {0} ∪ ⋃{( 1
2n+2

, 1
2n+1

] : n ∈
IN ∪ {0}} of R is connectifiable but it is not pathwise connectifiable, see

Example 2.4 in [3]), in this paper we show that the situation changes

radically if we consider only one-point connectifications. More precisely

we will show that a subspace X of R has a one-point connectification

if and only if it has a one-point pathwise connectification, and it will be

also shown that the above conditions are equivalent to the fact that every

component of X is open and non compact.

We will conclude this paper with some examples showing the different

situation occurring in the Euclidean plane.

We refer the reader to [2] for notations and terminology not explicitly

given.

Theorem. Let X be a subspace of the Euclidean line R. Then the

following conditions are equivalent:

i) X has a one-point connectification;

ii) X has a one-point pathwise connectification;

iii) every component of X is open and non compact;

iv) X is locally connected and every component of X is not compact.

Proof. ii) ⇒ i) is obvious.

iii) ⇒ ii) Let us suppose that every component Cα is open and non

compact. Therefore we may assume that every Cα has the form [aα, bα)

or (aα, bα), with aα, bα ∈ R̃ = R ∪ {−∞, +∞}. Let S = {bα}α and,

for every α, set Dα = Cα ∪ {bα}. Clearly the members of {Dα}α are

pairwise disjoint. Let Z be the quotient of the sum ⊕αDα (every Dα

has the subspace topology of the extended Euclidean line R̃) obtained

identifying S to a point. Obviously X is embedded in Z and |Z \X| = 1.

Moreover Z is a T2-space (S is a closed subset of the T3-space ⊕αDα).

It remains to show that Z is pathwise connected. Let p : ⊕αDα → Z be

the natural mapping. Now {p(Dα)}α is a family of pathwise connected
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subspaces of Z with non empty intersection whose union Z. Therefore Z

is pathwise connected.

i) ⇒ iii) Since X has a one-point connectification, it contains no

non empty compact open subsets. Therefore it is enough to show that

every component of X is open. Let us suppose that C is a component

of X which is not open, and let us pick some a ∈ C \ intX(C). Let

Y = X ∪ {p} be a one-point connectification of X and let us take two

disjoint open subsets U and V of Y such that a ∈ U and p ∈ V . We

may take U = (a − ε, a + ε) ∩ X for some ε > 0. Observe that there is

some α ∈ (a− ε, a+ ε) \X ( otherwise (a− ε, a+ ε) would be a connected

subset of X containing a, so (a − ε, a + ε) ⊂ C and a ∈ intX(C), a

contradiction). We may assume, without loss of generality, that α <

a. Now let b ∈ (X \ C) ∩ (α, a + ε) (if (X \ C) ∩ (α, a + ε) = ∅ then

(α, a + ε) ∩ X is an open neighbourhood of a in X which is contained

in C, a contradiction). Since a and b are in different components, there

is some β ∈ R \ X between them. Now (α, β) ∩ X is a proper non empty

clopen subset of Y , a contradiction.

iii) ⇔ iv) It is enough to observe that a subspace X of R is locally

connected if and only if every component of X is open.

Remark 1. A Hausdorff space is called H-closed if it is closed in every

Hausdorff space in which it can be embedded. It is worth noting that

if X has a one-point pathwise connectification then every path component

of X is not H -closed. In fact let Z = X ∪ {p} be a one-point pathwise

connectification of X and let {Cα}α be the family of path components

of X. We claim that p ∈ clZ(Cα) for every α (and therefore every Cα is

not H-closed). Let x ∈ Cα and let f : I → Z be an embedding such that

f(0) = x and f(1) = p. Since f([0, 1)) is a pathwise connected subset

of X containing x, it follows that f([0, 1)) ⊂ Cα. By the continuity of f

it follows that p ∈ clZ(Cα).

The following examples will show that the above theorem is no more

valid for subspaces of the Euclidean plane.

Example 1. Let F be the Knaster-Kuratowski fan (see [2], 6.3.23)

and let X = F \ {( 1
2
, 1

2
)}. F is a one-point connectification of X (in

the terminology of [4] X is called pulverized), but X has no one-point

pathwise connectifications. In fact X is hereditarily disconnected (i.e., it
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does not contain connected subsets of cardinality larger than one) and

therefore every path component of X is H-closed (= compact).

However X is pathwise connectifiable, in fact it is a dense subspace

of the cone over the Cantor set with vertex in (1
2
, 1

2
).

Remark 2. Regarding example 1, observe that it is also possible to

find a one-point connectifiable subspace of the Euclidean plane which is

not pathwise connectifiable at all. In fact, let X = A ∪ {(0, 0)} where

A = {(x, sin π
x
) : 0 < x ≤ 1}. X is one-point connectifiable (if p ∈ {(0, y) :

−1 ≤ y ≤ 1, y &= 0}, then X ∪ {p} is a one-point connectification of X),

but X is not pathwise connectifiable. Assume the contrary and consider

a pathwise connected Hausdorff space Z in which X is densely embedded.

First let us show that for every x ∈ (0, 1) the set G(x) = {(y, sin π
y
) :

y ∈ (x, 1]} is open in Z. Since G(x) is open in Z, there is an open set W

of Z such that W ∩ X = G(x). We claim that G(x) = Z. If not, take a

z ∈ W \G(x), then z /∈ X and so z ∈ clZ(G(x)) = {(y, sin π
y
) : y ∈ [x, 1]}.

Since clZ(G(x)) is compact, there are two disjoint open subsets U and V

of Z such that z ∈ U and clZ(G(x)) ⊂ V . Set H = U ∩ W , then

H ∩ clZ(G(x)) = ∅ and H ∩ X ⊂ W ∩ X = G(x). So H ∩ X = ∅, a

contradiction (X is dense in Z). Therefore W = G(x) and G(x) is open

in Z.

Now let f : I → Z be an embedding such that f(0) = (1, 0) and

f(1) = (0, 0). We claim that A ⊂ f(I). If not, take (x, sin π
x
) ∈ A \ f(I),

then G(x)∩ f(I) = clZ(G(x))∩ f(I) is a proper non empty clopen subset

of f(I), a contradiction. So A ⊂ f(I) and Z = clZ(A) = f(I).

Now take three distinct points z1, z2, z3 ∈ Z \ A (since {(0, 0)} is a

path component of X, it follows by remark 1 that |Z \ X| ≥ 2) and let

t1, t2, t3 ∈ I such that f(ti) = zi, i = 1, 2, 3. Since f is a homeomorphism

of I onto Z, it follows that Z̃ = Z \ {z1, z2, z3} and Ĩ = I \ {t1, t2, t3} are

homeomorphic, a contradiction (Z̃ is connected while Ĩ is not).

Therefore X is not pathwise connectifiable.

Remark 3. Other examples of one-point connectifiable spaces which

are not pathwise connectifiable can be obtained in the following way.

Let X be a continuum which is not pathwise connected. If there is a

point p ∈ X such that Y = X \ {p} is not pathwise connected, then Y is

not pathwise connectifiable (although Y is obviously one-point connecti-

fiable). In fact, let us suppose that Z is a pathwise connected Hausdorff
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space in which Y is densely embedded, and let H = Z \ Y . We claim

that the map f : Z → X, defined by f(z) = z if z ∈ Y and f(z) = p

if z ∈ H, is continuous. Let C be a closed subset of X. If p /∈ C then

f−1(C) = C is closed in Z (observe that C is compact). If p ∈ C then

f−1(C) = (C \ {p}) ∪ H. H is closed in Z (Y is a locally compact dense

subspace of the Hausdorff space Z, therefore Y is open in Z), moreover

C \{p} = C ∩Y = clY (C ∩Y ) = clZ(C ∩Y )∩Y , therefore clZ(C \{p}) =

clZ(C ∩ Y ) = (clZ(C ∩ Y ) ∩ Y ) ∪ (clZ(C ∩ Y ) ∩ H) \ (C \ {p}) ∪ H.

Hence clZ(f−1(C)) = clZ(C \{p})∪clz(H) ⊂ (C \{p})∪H = f−1(C) and

f−1(C) is closed in Z. By the continuity of f it follows that X is pathwise

connected, a contradiction. Therefore Y is not pathwise connectifiable.

Observe that the compactness condition on X cannot be omitted.

Let T be the extended long line and let X be the quotient of the sum

(T \{0})⊕ [−2,−1] obtained identifying {ω1,−2} to a point. X is a (non

compact) connected Hausdorff space which is not pathwise connected.

Nevertheless Y = X \ {−1} is a pathwise connectifiable space which is

not pathwise connected.

Example 2. For every n ∈ IN let Ln be the segment joining (0, 0)

with (1, 1
n
) and set X =

⋃{Ln : n ∈ IN}. The only (path) component

of X (which is X itself) is open and non compact. Nonetheless X has

no one-point pathwise connectifications. In fact let us suppose that Z =

X ∪ {p} (p /∈ X) is a pathwise connected Hausdorff space. Observe that

p /∈ clZ(Ln) = Ln for every n ∈ IN. Since Z is T2 there are two disjoint

open sets U and V such that 0 ∈ U and p ∈ V . Take an embedding

f : I → Z such that f(0) = p and f(1) = 0. Let ε be a positive number

such that f([0, ε)) ⊂ V and set G = f([0, ε)). Take a natural number n

such that G ∩ Ln &= ∅. Since Ln \ {0} is open in Z, it is easy to see

that G ∩ Ln = G ∩ (Ln \ {0}) is a non empty proper clopen subset of G.

Since G is connected, we have a contradiction.

Example 3. Let X be as in example 2 and let Y = X ∪ (L \ ( 1
2
, 0))

where L is the segment joining (0, 0) and (1, 0). Now Y ∪{( 1
2
, 0)} is a one-

point pathwise connectification of Y but the path component {(x, 0) ∈
Y : x ∈ ( 1

2
, 1]} of Y is not open in Y .

Example 4. Let X and L be as in example 3 and let Y = (X ∪ L) \
{(0, 0)}. Clearly X ∪L is a one-point pathwise connectification of Y , but

the component L \ {(0, 0)} of Y is not open.
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Motivated by the above examples we conclude this paper with the

following

Problem. Characterize those subspaces of the Euclidean plane

which have a one-point (pathwise) connectification.
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