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Curves which are obstructions to the existence

of Kähler metrics on threefolds

L. ALESSANDRINI

Riassunto: Si discute il seguente problema: “Sia M una varietà analitica com-
plessa liscia compatta di dimensione tre, e C una sua curva liscia. Supponendo che
M − C abbia una metrica Kähleriana, sotto quali condizioni M è Kähleriana, oppure
è bimeromorfa ad una varietà Kähleriana?”

Abstract: The following problem is discussed: “Let M be a compact complex
threefold and C a smooth curve on M . If M −C has a Kähler metric, when is M itself
Kähler, or bimeromorphic to a Kähler manifold?”.

1 – Introduction

The problem we shall consider here is the following:

(Q) Let M be a compact complex manifold of dimension n = 3, C a

smooth curve of genus g on M , such that M −C has a Kähler metric.

Is M itself Kähler, or bimeromorphic to a Kähler manifold (i.e., in

the class C of Fujiki)?

This kind of problem arises in algebraic geometry, as the search of a

non-projective Moishezon manifold M . The first example was given, in
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dimension 3, by Hironaka; in that case M , which is a modification of P3,

is not Kähler (hence not projective) because it contains a smooth rational

curve C homologous to zero. Nevertheless, by blowing-up this curve we

get a projective variety M1, so that M − C receives from M1 a Kähler

metric.

Our question (Q) does not concern projective geometry, but only

Kähler geometry; moreover, we will not assume that, using suitable mod-

ifications, we get from M a projective or a Kähler manifold. Our starting

point is only a (closed) Kähler form on M −C; in this situation, we study

the conditions which guarantees that M itself is Kähler, or in the class C
(in this case, M carries a balanced metric, as shown in [1]).

The case g = 0 has been studied in the second part of [2]: here

we analyze the “genus g”-case for a threefold M , using heavily some

strong results on positive currents, in particular the Main Theorem in [4].

Moreover, we use a sequence of blow-ups:

· · · −→ Mn+1

αn+1−−→Mn −→ · · · −→ M2
α2−−→M1

α1−−→M0 := M

where α1 is the blow-up of M with center C and exceptional divisor

E1, C∞
1 is a section of minimal self-intersection in E1(C

∞
1 · C∞

1 = −e1),

α2 is the blow-up of M1 with center C∞
1 , and so on. The exceptional

divisor of Mn is the surface En which contains a curve C∞
n of minimal

self-intersection: C∞
n · C∞

n = −en.

Our main result in the case g > 0 (see Theorem 4.5 and its corollaries)

is that if for every n, en+1 ≥ 0 and En+1 · C∞
n+1 ≥ 0, then the following

facts are equivalent:

(i) M is Kähler

(ii) M is bimeromorphic to a Kähler manifold

(iii) C is not homologous to zero in the Aeppli group V 2,2
IR (M).

The hypothesis can be explained as follows (see also the Appendix): none

of the conormal bundles N∗
C|M , N∗

C∞
1

|M1
, . . . is stable, and the intersection

number En+1 · C∞
n+1 in Mn+1, which corresponds to the degree of the line

bundle (N∗
En+1|Mn+1

)|C∞
n+1

on C∞
n+1, is never negative.

The above result holds in particular when en+1 > 0 for every n, that

is, when on every exceptional divisor of the sequence of blow-ups, there is

a curve with negative self-intersection. When g = 0, this corresponds to
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say that in the sequence of blow-ups, the rational ruled surface P1 × P1

does never appear.

In Section 5 we give some results using only the first blow-up M1

of M along C and E1 ·C∞
1 . Similar problems are studied in the projective

case for instance in [3], [12] and [13]; there, typical algebraic-geometric

techniques are added to currents techniques (see at the end of Section 2).

The (standard) machinery on ruled surfaces has been collected in the

Appendix, to which we refer for the notation, whether the notation and

the non-standard results about positive currents are collected in the first

part of Section 2. Some technical results which are very similar to those

stated in [2] are not proved here.

2 – Positive currents

The standard back-ground about positive currents can be found

in [10] or [15] or [2]; we call real (p, p)-currents on M the elements of

the dual space of the space of (smooth) real (n − p, n − p)-forms on M ,

where n = dim M .

As regards closed positive currents, the corner-stone of our techniques

is the following result ([4], Main Theorem 1.1):

Theorem 2.1. Let M be a compact complex manifold, and let u be

the Kähler form of a hermitian metric on M such that c1(OTM(1), h) +

π∗u ≥ 0. Let T be a closed positive (1, 1)-current on M and γ be a

continuous real (1, 1)-form on M such that T ≥ γ ≥ 0.

Then there are a sequence {φk} of closed (1, 1)-forms on M in the

same Aeppli class as T in Λ1,1
IR (M) (that is, T = φk + i∂∂̄ψk), and a non-

increasing sequence {λk} of continuous non-negative functions on M such

that limk→∞ λk(x) = n(T, x) at every point x, and φk ≥ γ − λku.

Notice that we can always choose a smooth hermitian metric h on

OTM(1) and a strictly positive (1,1)-form u on M such that c1(OTM(1),h)+

π∗u > 0 (see [9]). Moreover, n(T, x) denotes the Lelong number of T in x.

Nevertheless, the obstruction to the existence of a Kähler metric on a

manifold M is given in terms of positive currents which are not closed, in

general (see the characterization of compact Kähler manifolds, [8] Theo-

rem 14); so let us recall some definitions.
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Definition 2.2. A real (p, p)-current T is said pluriharmonic if

i∂∂̄T = 0, and plurisubharmonic if i∂∂̄T ≥ 0; T is said to be the (n − p,

n − p)-component of a boundary if there exists a current R such that

∂R + ∂̄R = T , that is, T is the component of a d-exact current, which

means that the class 〈T 〉 in the Aeppli group V p,p
IR (M) vanishes.

The following results about plurisubharmonic and pluriharmonic cur-

rents are proved in [2] for a compact complex manifold of dimension n:

Proposition 2.3. If T is a positive plurisubharmonic (p, p, )-

current on M , and Y is a submanifold of M of codimension p, then

there exists a constant c ≥ 0 such that χY T = c[Y ] ([2], 2.1 and 2.2) (We

shall denote the current [Y ] also by Y ).

Proposition 2.4. Let Y be a submanifold of M with codim Y ≥ 2,

and let α : M ′ → M be the blow-up with center Y and exceptional divisor

E := α−1(Y ). If T is a closed positive (1, 1)-current on M , there exists

a unique closed positive (1, 1)-current on M ′, denoted by α∗T , such that

(i) α∗α
∗T = T

(ii) α∗T ∈ α∗〈T 〉 .

(Notice that the pull-back of smooth forms induces a map on classes α∗ :

Λ1,1
IR (M) → Λ1,1

IR (M ′); we denote by 〈T 〉 the class of T in the Aeppli group

Λ1,1
IR (M)).

Moreover, if n(T, Y ) := inf{n(T, x), x ∈ Y } (and the same for

n(α∗T,E)), it holds n(T, Y ) = n(α∗T,E) ([2], 3.3 and 3.4).

Now let us recall what we got about question (Q) in the first part

of [2]. There, we considered the case where M has dimension n ≥ 3 and C

is an irreducible curve on M (not smooth, in general). In this case, we

have: ([2], Theorem 5.5).

Theorem 2.5. If M − C has a Kähler metric, one and only one of

the following cases may occur:

(i) M is Kähler,

(ii) C is the (1, 1)-component of a boundary,
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(iii) C is part of the (1, 1)-component of a boundary, that is, there

exists a positive (n − 1, n − 1)-current S &= 0 on M such that

S + C is the (1, 1)-component of a boundary and χCS = 0.

We give here the proof of this result to show how the machinery of

currents works.

Proof. If (i) does not hold, by ([8], Theorem 14) there exists a pos-

itive current T &= 0 which is the (1,1)-component of a boundary. Hence,

by Proposition 2.3, there is a constant c ≥ 0 such that χCT = c[C] so

that

T = S + c[C] ,

where S := T − χCT ≥ 0, ∂∂̄S = 0 and χCS = 0.

Let ω be a closed Kähler form on M − C, which extends to a closed

positive current on M (see [7]), also called ω, to which we apply Theo-

rem 2.1.

Therefore

(2.1) 0 = ω · T = ω · S + ω · cC

because T is the (1,1)-component of a boundary; but, by Theorem 2.1,

ω · S = φk · S ≥ S(γ) − S(λku) .

Call µ the positive measure on M given by µ(A) := S(χAu), where A is

a Borel subset of M . Since 0 ≤ λk ≤ λ0, we get:

lim
k→∞

S(λku) = lim
k→∞

∫

M

λkdµ =

∫

M

n(ω, x)dµ = 0 ,

(in fact, ω is smooth on M − C, hence {x ∈ M : n(ω, x) &= 0} ⊂ C and

µ(C) = 0 because χCS = 0). Thus

(2.2) ω · S ≥ S(γ) ≥ 0 .

Moreover, we can take γ strictly positive on every fixed compact subset

of M − C, so that

(2.3) ω · S = 0 ⇔ S = 0 .
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Now, c cannot vanish, otherwise from (2.1) and (2.3) we would obtain

T = 0. So we get (ii) if S = 0 and (iii) if S &= 0.

Let us look now at the relationships among the cases: if (ii) or (iii), (i)

is not allowed. Finally, if (ii) and (iii), then S + C and C are the (1,1)-

component of a boundary, so that S is the (1,1)-component of a boundary

too, and by (2.3), S = 0 because ω · S = 0; this is a contradiction.

If ω denotes the Kähler form of a Kähler metric on M − C, in terms

of the intersection number we have ([2], 5.7):

Theorem 2.6.

(i) If there exists a Kähler metric on M − C whose Kähler form ω

satisfies ω · C > 0, then M is Kähler.

(ii) If there exists a Kähler metric on M − C whose Kähler form ω

satisfies ω ·C = 0, then M is Kähler or C is the (1, 1)-component

of a boundary.

(iii) If there exists a Kähler metric on M − C whose Kähler form ω

satisfies ω · C < 0, then M is Kähler or C is part of the (1, 1)-

component of a boundary.

Theorem 2.5 tells us that C always plays a role among the ob-

structions to the existence of a Kähler metric on M . Moreover, if C

“moves” in M , points where the Lelong numbers of ω does not vanish

can be avoided (see the proof of Theorem 2.5), and we get ω · C > 0:

hence ([2], 5.8 and 5.9):

Corollary 2.7. If there exists a curve C ′ homologous to C, such

that C and C ′ have no common component, then M is Kähler.

Corollary 2.8. Let C be a smooth curve of genus g in M ; if

NC|M · C > (n − 1)(g − 1), then M is Kähler.

Another point of view is given in the following theorem.

Theorem 2.9. Suppose that M is a compact complex manifold

and C an irreducible curve on M , and that there exist p ∈ C and a ball

B(p, r) such that (M − C) ∪ B(p, r) is Kähler. Then M is Kähler.
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Proof. Denote C ∩ B(p, r) by Cr and let ω be a Kähler form on

(M −C)∪B(p, r), extended as a closed positive current across Cr. Since

C − Cr has an open Stein neighborhood in M , we can use Lemma 3.4

in [9]:

For every strictly positive (1,1)-form γ on M , for every (1,1)-form

θ ≥ 0 on M such that ω ≥ θ, and for every ε > 0, there exists a (1,1)-

form ωε in the same Aeppli class as ω such that ωε + εγ ≥ θ.

Now let T be a positive (1,1)-component of a boundary in M :

0 = T · ω = T (ωε) ≥ T (θ) − εT (γ) ,

that is, εT (γ) ≥ T (θ) for every ε > 0.

Hence T (θ) = 0, but θ can be choosen strictly positive on every

compact subset of (M − C) ∪ B(p, r), thus supp T ⊆ C, and T = c[C].

But T has to vanish in B(p, r), hence also on Cr: this gives c = 0 and

T = 0.

As we said in the introduction, also the case of Moishezon manifolds

may be handled using currents, as is done f.i. in [12] and [3]. These

authors investigate the obstructions to the algebraicity of a Moishezon

manifold X in terms of closed currents which are effective (i.e. given by

the integration on effective curves) or weak limits of effective curves (i.e.

in Â+
1 (X)). In [3] the following results are proved: “Let X be a Moishezon

manifold. X is projective if and only if for every T ∈ Â+
1 (X) with 〈T 〉 = 0,

it holds T = 0 (the involved cohomology group is Hn−1,n−1(X, IR))”. “Let

X be a 1-projective non projective threefold; then there exist an effective

curve C and T ∈ Â+
1 (X) such that 〈C〉 + 〈T 〉 = 0.”

Notice that, in Kähler geometry, their problem can be translated as

follows: “Let M ∈ C; when is M Kähler?”, which is much more restrictive

than question (Q), in dimension three (see f.i. the proof of Corollary 4.6).

Also the tools are different: for instance, due to the projective situation,

they may consider closed currents (and the usual cohomology), instead

of pluriharmonic currents.

3 – The sequence of blow-ups

Let M be a compact complex threefold, and C a smooth curve of

genus g on M such that M −C is Kähler. A first answer to question (Q)
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can be given using Corollary 2.8: If deg NC|M > 2g − 2, that is, if

KM · C < 0, then M is Kähler, because C moves in M . To handle the

other cases, we shall associate to (M,C) a sequence of blow-ups (this is

a well-known technique: see f.i. [11] in the case of an exceptional curve).

Definition and notation 3.1. (See also the Appendix) Let M1
α1−→

M0 := M be the blow-up of M with center C and exceptional divisor E1;

if N∗
0 := N∗

C|M is unstable, there exists a unique section C∞
1 on E1 such

that C∞
1 · C∞

1 = −e1 < 0; in this case, since C∞
1 cannot move in E1, we

blow-up M1 with center C∞
1 .

If N∗
0 is semistable, then e1 ≤ 0 and in E1 there are no curves with

negative self-intersection; in this case we blow-up a section C∞
1 with min-

imal self-intersection in E1 (hence C∞
1 ·C∞

1 = −e1 ≥ 0). Recall that by a

theorem of Nagata, it holds e1 ≥ −g, so that in the case of rational ruled

surfaces, N∗
0 is semistable if and only if e1 = 0.

In this manner we get the following diagram:

(3.1) · · · −→ Mn+1

αn+1−−→Mn −→ · · · −→ M2
α2−−→M1

α1−−→M0 := M

The exceptional divisor of Mn is the surface En which contains a curve C∞
n

of minimal self-intersection: C∞
n ·C∞

n = −en; the generic fibre is called Fn

and the conormal bundle N∗
C∞

n |Mn
is denoted by N∗

n. We call (3.1) the

sequence of blow-ups associated to (M,C).

Notation 3.2. Let 1 ≤ m < n; we call Em,n the proper transform

of the exceptional divisor Em of Mm by the modification αm+1 ◦ · · · ◦ αn :

Mn → Mm.

Em,n is birational to Em, but in general not biholomorphic to it. Let

us denote by C∞
m,n and Fm,n the curves that correspond to C∞

m and Fm

in Em,n via the birational map Em,n → Em.

In this section we collect some observations on the ties between the

degrees of the involved conormal bundles and the ej’s.

Remark 3.3. For every n ≥ 0

(3.2)n+1 0 → (N∗
En+1|Mn+1

)|C∞
n+1

→ N∗
n+1 → N∗

C∞
n+1

|En+1
→ 0

is an exact sequence, and

(3.3)n+1 Bn := deg(N∗
En+1|Mn+1

)|C∞
n+1

= −En+1 · C∞
n+1 ,
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(3.4)n+1 deg N∗
C∞

n+1
|En+1

= −C∞
n+1·En+1

C∞
n+1 = en+1 ,

(3.5)n+1

An : = deg N∗
n+1 = deg(N∗

En+1|Mn+1
)C∞

n+1
+ deg N∗

C∞
n+1

|En+1
=

= Bn + en+1 .

In particular, Bn does not depend on the choice of C∞
n+1; moreover,

(3.6)n deg N∗
n = An + Bn, so that An = An+1 + Bn+1 .

Indeed, it holds (N∗
En+1|Mn+1

)|C∞
n+1

∼ aC∞
n+1 + bFn+1, with a =

−En+1|En+1
· Fn+1 = 1, and Bn = −En+1 · C∞

n+1 = −en+1 + b, so that

(N∗
En+1|Mn+1

)|C∞
n+1

∼ C∞
n+1 + AnFn+1 ,

and (see [5] p. 610)

deg N∗
n = (N∗

En+1|Mn+1
)|C∞

n+1
· (N∗

En+1|Mn+1
)|C∞

n+1
= (C∞

n+1 + AnFn+1)·
· (C∞

n+1 + AnFn+1) = 2An − en+1 = An + Bn .

Remark 3.4. Let n ≥ 0, and suppose that N∗
n is unstable. Then

there is a unique exact sequence (see the Appendix)

(3.7)n 0 → Ln → N∗
n → Mn → 0

where deg Ln > deg Mn (and obviously deg N∗
n = deg Ln + deg Mn).

We have in (3.1) the blow-up Mn+1

αn+1−→ Mn, and the exact sequence

(3.2)n+1. Using the definition of C∞
n , it is easy to prove the following

claim:

(N∗
En+1|Mn+1

)|C∞
n+1

∼= Mn and N∗
C∞

n+1
|En+1

∼= Ln ⊗ (Mn)−1 .

So (3.2)n+1 becomes 0 → Mn → N∗
n+1 → Ln ⊗ (Mn)−1 → 0, and

(3.8)n deg Mn = Bn; deg Ln = An .

Proposition 3.5. (i) If en+1 < Bn, then An+1 = Bn and Bn+1 =

An − Bn = en+1, therefore en+2 = An+1 − Bn+1 = Bn − en+1 > 0.

(ii) If en+1 ≥ Bn, then Bn ≤ Bn+1 and An+1 ≤ An − Bn = en+1; thus

en+2 ≤ en+1 − Bn.

(iii) If en+1 = Bn, N∗
n+1 is semistable.
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Proof. In the first case, by (3.2)n+1, N∗
n+1 is unstable, hence (by

the uniqueness in (3.7)n+1)

en+1 = deg Mn+1 = Bn+1, Bn = deg Ln+1 = An+1 .

If en+1 ≥ Bn and N∗
n+1 is unstable, we have the exact sequences

(3.2)n+1 0 → (N∗
En+1|Mn+1

)|C∞
n+1

α−−→N∗
n+1

β−−→N∗
C∞

n+1
|En+1

→ 0

(3.7)n+1 0 → Ln+1
a−−→N∗

n+1

b−−→Mn+1 → 0

where deg Ln+1 > deg Mn+1.

Recall that if γ : L → M is a homomorphism of line bundles on a

curve, and deg L > deg M, then γ = 0, since Hom (L ⊗ M) ∼= L−1 ⊗ M
has no non trivial sections.

Suppose Bn > Bn+1 : then by (3.5)n+1 and (3.6)n+1 we get An+1 =

An − Bn+1 > An − Bn so that b ◦ α = 0, β ◦ a = 0, and from this we can

prove that

0 → (N∗
En+1|Mn+1

)|C∞
n+1

α−−→N∗
n+1

b−−→Mn+1 → 0

is exact; since Bn > Bn+1, it is isomorphic to (3.7)n+1, hence by (3.8)n+1

An+1 = Bn, which gives en+1 = An − Bn < An+1 = Bn, a contradiction.

Moreover, if en+1 = Bn, we get An = en+1 + Bn = 2Bn so that

2Bn = An = An+1 + Bn+1 ≥ An+1 + Bn. Hence (recall that en+2 > 0

because N∗
n+1 is supposed to be unstable): Bn ≥ An+1 > Bn+1 ≥ Bn,

which is a contradiction. Thus, if en+1 = Bn, N∗
n+1 has to be semistable.

If en+1 ≥ Bn and N∗
n+1 is semistable, it holds 0 ≥ en+2 = An+1−Bn+1.

Suppose Bn > Bn+1: then An+1 > An − Bn = en+1 ≥ Bn > Bn+1, which

is a contradiction.

Remark 3.6. If g = 0, C is biholomorphic to P1, hence the conormal

bundle N∗
C|M is decomposable, and also the conormal bundle of C∞

n is

decomposable:

N∗
C∞

n |Mn
∼= O(an) ⊕ O(bn), an ≥ bn ,
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so en+1 = an − bn. Notice that N∗
n is semistable ⇔ en+1 = 0, since the

normalized sheaf is En
∼= (O(−an) ⊕ O(−bn)) ⊗ O(bn) whose degree is

bn − an.

Hence N∗
n is unstable if and only if an >bn, and Bn =−En+1·C∞

n+1 =bn.

Proposition 3.7. Suppose that en+1 ≥ 0 ∀n ∈ IN, and that

Bn ≤ 0 ∀n if g > 0, en+1 > 0 ∀n if g = 0 .

Then in both cases we have:

(i) B0 ≤ B1 ≤ . . . ≤ Bn ≤ . . . ≤ 0,

(ii) ∀ k ≥ 0, ∀m ≥ 1 : ek+m ≤ Ak − mBk.

Proof. If g = 0, let us prove that Bn ≤ 0 ∀n.

We may assume, by contradiction, that Bn > 0; we need only to

check that

(3.9) An > An+1 ≥ Bn+1 > 0

(this obviously implies that there exists m such that Am = Bm, thus

em+1 = 0). From Proposition 3.5, if en+1 < Bn, we get An+1 = Bn < An

and Bn+1 = en+1 > 0; if en+1 ≥ Bn, then An+1 ≤ An − Bn < An and

Bn+1 ≥ Bn > 0, hence (3.9) is proved.

Thus for every g, Bn ≤ 0 ∀n; this implies that we can never have

en+1 < Bn, but only en+1 ≥ Bn, so that by Proposition 3.5 it holds

Bn ≤ Bn+1.

It remains to prove: ∀ k ≥ 0, ∀m ≥ 1 : ek+m ≤ Ak − mBk.

Let us fix k ≥ 0, and argue by induction on m : ek+m+1 = Ak+m −
Bk+m ≤ Ak+m−1 − 2Bk+m−1 = ek+m − Bk+m−1 ≤ Ak − mBk − Bk+m−1 ≤
Ak − (m + 1)Bk.

Remark. The same proof can be used in the case g > 0, en+1 > 0 ∀n,

to give the same results. Hence in particular en+1 > 0 ∀n implies that

Bn ≤ 0 ∀n.

Proposition 3.8. For n ≥ 1 it holds:

(i) C∞
n,n+1 ∼ C∞

n+1 + (en − Bn)Fn+1, with en − Bn ≥ 0.

(ii) C∞
1 − B0F1 ∈ α∗

1〈C〉 in V 2,2
IR (M1), C∞

n+1 − BnFn+1 ∈ α∗
n+1〈C∞

n 〉 in

V 2,2
IR (Mn+1).
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Proof.

(i) By A.2 there exists b ≥ 0 such that C∞
n,n+1 ∼ C∞

n+1 + bFn+1. By

definition

−Bn = En+1 · C∞
n+1 = En+1 · (C∞

n,n+1 − bFn+1) = −en + b ,

since En+1·Mn+1
C∞

n,n+1 = C∞
n · C∞

n = −en; thus b = en − Bn.

(ii) In fact, E1·(C∞
1 −B0F1) = 0, and similarly En+1·(C∞

n+1−BnFn+1) = 0.

4 – The main result

Let us consider the following hypothesis on (M,C) (compare Propo-

sition 3.7):

(H)
en+1 ≥ 0 ∀n ∈ IN (this is obvious when g = 0), and

Bn ≤ 0 ∀n if g > 0, en+1 > 0 ∀n if g = 0 .

In this case, we prove that the only obstruction to the existence of a

Kähler metric on M is the vanishing of the Aeppli class of C (Theo-

rem 4.5), and that M belongs to the class C if and only if M is Kähler

(Corollary 4.6).

Notice that, by Proposition 3.7, condition (H) implies that, if B0 = 0,

then Bn ≤ 0 ∀n; hence the simplest example where condition (H) is

verified is the following:

take a smooth curve C of genus zero in a threefold M , such that N∗
C|M

∼=
O(0)⊕O(2) (as a matter of fact, if N∗

C|M
∼= O(0)⊕O(k) with k < 2, then

M is Kähler by Corollary 2.8). Recall that, if

0 → O(a) → O(a′) ⊕ O(b′) → O(b) → 0

is an exact sequence of bundles on P1, then {a′, b′} = {a+p, b−p}, where

0 ≤ p ≤ (b − a)/2. By applying this result to the sequence in (3.2)1, we

get that N∗
C∞

1
|M1

∼= O(0)⊗O(2) or N∗
C∞

1
|M1

∼= O(1)⊗O(1). Take the case

when N∗
C∞

n |Mn
∼= O(0) ⊗ O(2) for every n; here, en+1 = 2 ∀n, so that our

results apply to (M,C).

About this example, Reid ([14], page 165) notes moreover that, if

there is a neighborhood of C which is an open subset of a compact Moishe-

zon manifold, then the curve moves in M ; therefore, by Corollary 2.7, M
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is Kähler. Notice that, if M itself is Moishezon, we get the same result

by our Corollary 4.6, since Moishezon manifolds belong to the class C.

The idea of the proof of Theorem 4.5 is the following: given a closed

Kähler form ω on M − C, in order to apply Theorem 2.6, we have to

calculate ω · C, using Theorem 2.1. We get as usual ω ∼ ϕk ≥ γ − λku

and thus

ω · C ≥
∫

C

γ − n(ω, C)

∫

C

u ;

therefore we must pay attention to the Lelong number n(ω, C) because

the last term is negative if n(ω, C) &= 0.

To overcome this difficulty, we blow-up C; in M1 we consider a closed

positive form ω1 (see Definition 4.3) which coincides with α∗
1ω in M1 −

E1 and has vanishing Lelong numbers almost everywhere in E1 (but of

course ω1 may have non-vanishing Lelong numbers on some curve of E1);

then if n(ω1, C
∞
1 ) &= 0 we blow-up again, and so on. Thus we shall

estimate ω ·C by means of a suitable sequence {ωn}n≥1 of closed positive

currents such that their Lelong numbers on the exceptional divisor En go

to zero as n goes to infinity.

Lemma 4.1. Suppose (H) and consider the line bundle on En given

by L = 2C∞
n +(3en +2g +1)Fn. Then both L and TMn|En ⊗L are ample.

Proof. L is ample by A.5. Consider now the exact sequence of

bundles on En:

(4.1) 0 → TEn ⊗ L → TMn|En ⊗ L → NEn|Mn ⊗ L → 0 .

A routine computation gives: NEn|Mn ∼ −C∞
n +(−Bn−1−en)Fn, therefore

NEn|Mn ⊗ L ∼ C∞
n + (2en − Bn−1 + 2g + 1)Fn is ample.

Consider also the exact sequence

(4.2) 0 → Ker αn∗ → TEn → α∗
nTC∞

n−1 → 0

where α∗
nTC∞

n−1 ∼ aC∞
n + bFn, with a = 0 and b = 2 − 2g, since a =

α∗
nTC∞

n−1 · Fn = 0, and b = bFn · C∞
n = α∗

nTC∞
n−1 · C∞

n = TC∞
n−1 · C∞

n−1 =

−KC∞
n−1

· C∞
n−1 = 2 − 2g. And also

Kerαn∗ ∼ aC∞
n + bFn, with a = 2 and b = en ,
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in fact by (4.2)

−KEn = TEn ∧ TEn
∼= Ker αn∗ ⊗ α∗

nTC∞
n−1 but also KEn =

= −2C∞
n + (−en + 2g − 2)Fn .

This gives that both Ker αn∗ ⊗ L ∼ 4C∞
n + (4en + 2g + 1)Fn and

α∗
nTC∞

n−1 ⊗ L ∼ 2C∞
n + (3en + 3)Fn are ample by A.5, therefore also

TEn ⊗ L is ample, and we get the thesis from (4.1).

Proposition 4.2. If (H), then for every n ∈ IN there exist a

hermitian metric hn on OTMn(1) and a hermitian metric on Mn with

Kähler form un such that:

(i) c1(OTMn(1), hn) + π∗un > 0

(ii)

∫

C∞
n

un = en + 2g + 1.

The proof of this Proposition is the same as that of Proposition 7.2

of [2] given in the case g = 0, the point is only to use L = 2C∞
n + (3en +

2g + 1)Fn instead of 2C∞
n + (3en + 1)Fn; hence we don’t give it here.

Let us consider on each threefold Mn a closed positive current ωn

as follows: take the Kähler form ω of a Kähler metric on M − C, ex-

tended as a positive current on the whole of M (this can be done because

dimC < 2 = bidimension of ω, see [7]). Let c0 := n(ω, C) = n(α∗
1ω, E1)

(Proposition 2.4) and consider the current ω1 := α∗
1ω − c0[E1]; ω1 is posi-

tive because n(α∗
1ω, E1) = χE1

α∗
1ω ([15], Proposition 12.3), and is smooth

on M1 − E1. Let us now give an inductive definition:

Definition 4.3. Let ω be the Kähler form of a Kähler metric on

M − C, extended as a positive current on the whole of M ; define

ω1 := α∗
1ω − c0[E1] where c0 := n(ω, C) ,

ωn+1 := α∗
n+1ωn − cn[En+1] where cn := n(ωn, C∞

n ) .

Notice that ωn is a closed positive current on Mn, smooth on Mn −
∪n

k=1Ek,n.
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Proposition 4.4.

a) The sequence {cn} given by cn = n(ωn, C∞
n ) is not increasing.

b) The sequence {cn} satisfies:
∑∞

n=0 c2
n < ∞.

Proof. a) First of all, ωn ·Fn = (α∗
nωn−1−cn−1[En]) ·Fn = −cn−1En ·

Fn = cn−1. Thus (see 3.2)

ωn · Fn−1,n = (α∗
nωn−1 − cn−1[En]) · Fn−1,n = ωn−1 · Fn−1 − cn−1 =

= cn−2 − cn−1 .

All fibres Fn−1,n on En−1,n
∼= En−1 are homologous one to each other,

hence we can suppose that ωn has vanishing Lelong numbers on Fn−1,n;

by Theorem 2.1 applied to ωn with γ = 0 we get ωn ·Fn−1,n = φk ·Fn−1,n ≥
−λku · Fn−1,n −→

k→∞
0, so ωn · Fn−1,n ≥ 0.

The proof of b) is involved but very similar to that of Proposition 7.6

of [2], hence we remaind the reader to that paper.

So we can give our main Theorem in this section.

Theorem 4.5. Let M be a compact complex threefold, which is

Kähler outside a smooth curve C of genus g. Suppose (H); then M is

Kähler if and only if C is not the (1, 1)-component of a boundary.

Proof. For every n ≥ 0, let us choose in OTMn(1) a hermitian met-

ric hn, and a hermitian metric on Mn whose Kähler form un satisfy Propo-

sition 4.2.

Let us consider the current ω given by the extension of a closed Kähler

form on M − C, and let ωn on Mn be defined as in 4.3. Then it holds for

every n ≥ 1

(4.3) ω · C = −B0c0 − . . . − Bn−1cn−1 + ωn · C∞
n .

In fact, by Proposition 3.8 (ii),

ω · C =α∗
1ω · α∗

1C =(ω1+c0[E1]) · (C∞
1 − B0F1)=ω1 · C∞

1 −B0ω1 · F1 =

= −B0c0 + ω1 · C∞
1
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since ω1 · F1 = (α∗
1ω − c0[E1]) · F1 = c0. This proves (4.3) for n = 1.

Assume (4.3): then

ωn · C∞
n = α∗

n+1ωn · α∗
n+1C

∞
n = (ωn+1 + cn[En+1] · (C∞

n+1 − BnFn+1) =

= −Bncn + ωn+1 · C∞
n+1

because ωn+1 · Fn+1 = (α∗
n+1ωn − cn[En+1]) · Fn+1 = cn.

By using Theorem 2.1 applied to the current ωn with γ = 0, we

get ωn · C∞
n ≥ − ∫

C∞
n

λkun, hence, if k → ∞, we obtain ωn · C∞
n ≥

−n(ωn, C∞
n )

∫
C∞

n
un = −cn(en + 2g + 1).

By Proposition 3.7, Bn ≤ 0 and there exists an index k such that

Bk = Bk+n for every n, therefore: ω · C ≥ −B0c0 − . . . − Bn−1cn−1 −
cn(en +2g+1) = −B0c0 − . . .−Bk(ck + . . .+ck+n−1)−ck+n(ek+n +2g+1),

but ek+n ≤ Ak − nBk, thus

ω · C ≥ −B0c0 − . . . − Bk−1ck−1 − Bk(ck + . . . + ck+n−1)+

− ck+n(Ak − nBk + 2g + 1) ≥ −B0c0 − . . . − Bk−1ck−1+

− Bkn(ck+n−1 − ck+n) − ck+n(Ak + 2g + 1) .

Since ck+n−1 − ck+n ≥ 0 and the last term goes to zero, as n → ∞
(Proposition 4.4), it follows ω · C ≥ 0. We conclude by Theorem 2.6.

Corollary 4.6. If M and C satisfy (H), but M is not Kähler,

then:

(i) KM · C = 0

(ii) ∀n ∈ IN, Mn is not Kähler

(iii) M cannot belong to the class C.

Proof. (i) By Theorem 4.5, C is the (1,1)-component of a boundary.

(ii) By Proposition 3.8 (ii) we get that

C∞
n − B0F1,n − . . . − (B0 + . . . + Bn−1)Fn ∈ (α1 ◦ . . . ◦ αn)∗〈C〉 ,

but this class vanishes, so that we have on Mn a positive current which

it the (1,1)-component of a boundary.

(iii) A compact manifold M is bimeromorphic to a Kähler manifold if

and only if there exists a modification f : M ′ → M such that M ′ is
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Kähler ([16]). Suppose we are in this case, and call θ a closed Kähler

form on M ′; take ω := f∗θ and define ωn on Mn as in Definition 4.3.

Since we can always find a smooth, positive definite (1,1)-form γ on M

such that ω ≥ γ, we get also ωn ≥ (α1 ◦ . . . ◦ αn)∗γ.

Claim. If n(ω, C) &= 0, there exist k ∈ IN such that n(ωk, C
∞
k ) = 0.

The proof of this claim is based on a local analysis of the modifica-

tion f , considered as a sequence of blow-ups with smooth centers: for

details, see [2], Theorem 7.13.

Now, (4.3) give

ω · C = −B0c0 − . . . − Bk−1ck−1 + ωk · C∞
k , and

ωk · C∞
k ≥

∫

C

γ − n(ωk, C
∞
k )

∫

C∞
k

uk =

∫

C

γ > 0 ,

which gives ω · C > 0, i.e. M is Kähler.

Corollary 4.7. (i) If M is Kähler outside a smooth rational curve,

and no Ej is biholomorphic to P1 × P1, then M is Kähler if and only if

C is not the (1, 1)-component of a boundary. (See also [2] Theorem 7.10).

(ii) If M is Kähler outside a smooth elliptic curve, and A0 + B0 < 0,

then M is Kähler by Corollary 2.8. If A0 + B0 ≥ 0, suppose en+1 ≥ 0

and no Bn is positive; then M is Kähler if and only if C is not the (1, 1)-

component of a boundary. This happens in particular if en+1 > 0 ∀n, or

if there is k such that ek+1 = ek+2 = 0, as the following lemma shows.

Lemma 4.8. Let C be an elliptic curve, and let us suppose that

A0 + B0 ≥ 0, en+1 ≥ 0 ∀n and that ek+1 = 0. Then Ak = Bk and

Bk+1 = 0. If moreover ek+2 = 0, then (An, Bn) = (0, 0) ∀n ∈ IN.

Proof. Let us prove by induction that An + Bn ≥ 0 ∀n. Since

An ≥ Bn because en+1 ≥ 0, we get 2(An+1 +Bn+1) = 2An ≥ An +Bn ≥ 0.

Obviously, Ak = Bk ≥ 0. By Proposition 3.8 (i), Bk+1 ≤ ek+1 = 0.

If Bk+1 < 0, we get a contradiction: if Bk > 0, by Proposition 3.5 (i) we

would get Bk+1 = ek+1 = 0; if Bk = 0, by Proposition 3.5 (iii) we would

get ek+2 = 0, hence Ak+1 = Bk+1 < 0.

If moreover ek+2 = 0, then Ak+1 = Bk+1 = 0, hence also Ak = Bk = 0,

since Ak = Ak+1 + Bk+1.
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Now ek+2 = 0 implies Bk+2 = 0, so that Ak+2 = Ak+1 − Bk+2 = 0,

and ek+3 = 0, and so on. On the other hand, remark that Bk−1 ≤ ek,

because ek+1 = 0 (Proposition 3.5 (i)); hence Bk−1 ≤ Bk = 0; on the

other hand, Ak−1 = Ak + Bk = 0, hence Bk−1 = 0 and ek = 0 and so on.

By Corollary 4.7 (i), it seems interesting to look at this question:

What about a rational curve with Ej biholomorphic to P1 × P1? This

case is discussed in [2] chapter 8.

5 – Some results

Let us collect here some results on the existence of a Kähler metric

on M in terms of the numbers KM |C · C and B0 = −E1 · C∞
1 . Since if

KM ·C < 0, then M is Kähler, let us assume from now on that KM ·C ≥ 0.

Proposition 5.1. If B0 ≤ 0, then M is Kähler if and only if M1

is Kähler.

Proof. Suppose that M1 is Kähler but M is not Kähler: hence by

Theorem 2.5, C is the (1,1)-component of a boundary or C is part of the

(1,1)-component of a boundary. In the first case, by Proposition 3.8 (ii) it

holds C∞
1 −B0F1 ∈ α∗

1〈C〉 = 0, which is impossible because M1 is Kähler.

If C +S is the (1,1)-component of a boundary, take a closed Kähler form

θ on M1 and call ω := α1∗θ. By Theorem 2.6, ω · C < 0, but

ω · C = α1∗θ · C = θ · α∗
1C = θ · (C∞

1 − B0F1) =

∫

C∞
1

θ − B0

∫

F1

θ ,

which is positive

Proposition 5.2. a) If B0 > 0 and KM · C = 0, then g = 0,

A0 = B0 = 1, M1 is Kähler.

b) If B0 > 0 and KM ·C > 0, then it holds KM1
·C∞

1 ≥ 0; if in particular

KM1
·C∞

1 = 0, then we have only three possibilities: g = 0 and e1 ∈ {0, 1},
or g = 1, e1 = −1, A0 = 0, B0 = 1.



[19] Curves which are obstructions to the existence etc. 701

Proof. a) deg N∗
0 = 2 − 2g = A0 + B0 = e1 + 2B0: hence e1 is even.

If e1 < 0, we have e1 ≥ −g, so that 2 − 2g ≥ −g + 2B0, that is, 2 − g ≥
2B0 ≥ 2, thus g = 0, which is impossible. If e1 ≥ 0, 2 − 2g ≥ 2B0 ≥ 2,

hence g = 0, which gives e1 = 0, A0 = B0 = 1.

b) Notice that M is Kähler if and only if C is not part of the (1,1)-

component of a boundary. Moreover, KM1
· C∞

1 = 2g − 2 + B0 + e1: in

fact, KE1
∼ −2C∞

1 + (2g − 2 − e1)F , so that

KE1
· C∞

1 = 2e1 + 2g − 2 − e1 =e1 + 2g − 2=KM1
· C∞

1 + E1 · C∞
1 =

= KM1
· C∞

1 − B0 .

If KM1
· C∞

1 < 0, we get 0 < B0 < 2 − 2g − e1, hence 2g + e1 ≤ 0 but

if e1 < 0, this implies 2g ≤ −e1 ≤ g, so that g = 0, a contradiction; if

e1 ≥ 0, the only possibility is g = 0, e1 = 0, hence 0 < B0 < 2, so that

A0 = B0 = 1, but A0 + B0 > 2 − 2g, a contradiction.

If in particular KM1
· C∞

1 = 0, it holds 0 < B0 = 2 − 2g − e1, hence

2g + e1 ≤ 1. If e1 ≥ 0, then g = 0 and e1 ∈ {0, 1}, that is, B0 = A0 = 2

in the first case, and B0 = 1, A0 = 2 in the second case. If e1 < 0, we

get 2g − 1 ≤ −e1 ≤ g, so g ≤ 1; the only possibility is g = 1, e1 = −1,

B0 = 1, A0 = 0.

Remark 5.3. A natural question is the following: to which extent

do the numbers A0, B0, KM · C, . . . determine the global geometric

situation? Let us check it in the simplest non trivial situation, that given

in Proposition 5.2 a): g = 0, A0 = B0 = 1, where M1 is Kähler. In

this case the normal bundle to C in M is weakly negative and C has an

open neighborhood which is biholomorphic to an open neighborhood of

the zero section of the normal bundle NC|M ([11] Theorem 3.5).

If this is also the global situation (i.e. M is the total space of O(−1)⊕
O(−1) and C is the zero section) (to have a compact manifold, take

the projectivization of the fibers), then M is Kähler. In the example

of Hironaka ([6], p. 444) g = 0, A0 = B0 = 1 but M is not Kähler,

because C is a boundary (hence, a (1,1)-component of a boundary). A

third example shows that also the remaining case in Theorem 2.5 (i.e. M

is not Kähler because C is part of the (1,1)-component of a boundary)

happens.

Let Q be a conic on a projective plane π in P3 and choose a straight

line R which intersects Q in two distinct point: p′ and p′′. Blow-up P3
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with center R getting a projective threefold X; then blow-up X with

center the proper transform of Q, getting again a projective threefold

M ′. The fibers of p′ and p′′ in X have as proper transforms in M ′ two

smooth rational curves C ′ and C ′′. They are homologous one to each

other and NC′|M ′ ∼= NC′′|M ′ ∼= O(−1) ⊕ O(−1).

Now it is easy to check that blowing-up M ′ with center C ′, we

get a projective threefold M1
β−→M ′ and that there exists a contrac-

tion M1
α1−→M onto a smooth threefold such that the exceptional divisor

E1 of β is contracted to a smooth rational curve C on M with normal

bundle NC|M ∼= O(−1) ⊕ O(−1) and C ∼ −α1(β
−1(C ′′)).

M ′ −−−→ X −−−→ P3

β

1

M1
α1−−−→ M

Thus M − C is Kähler and α1(β
−1(C ′′) + C is a positive current on M

which is the (1,1)-component of a boundary.

This proves that in general the global situation cannot be determined

simply by looking at numerical information on the curve C, nor at a

neighborhood of it.

Proposition 5.4. Let us suppose that M1 is Kähler. Then M is

Kähler too if one of the following conditions holds (and obviously also

when KM · C < 0):

(i) B0 ≤ 0

(ii) e1 > 0 and KM · C < 2g + 1.

(iii) deg N∗
0 < 0

Proof. (i) By Proposition 5.1. (ii) In fact, if B0 > 0, then A0 =

e1 + B0 ≥ 2 and we get a contradiction: 3 ≤ A0 + B0 = KM · C + 2 − 2g.

(iii) Since 0 > A0 + B0 = e1 + 2B0, there exists ε > 0 such that B0 +

e1/2 + ε < 0.

Call D := C∞
1 +(e1/2+ ε)F1 : D is ample by A.5 and D.D = 2ε > 0.

Hence nD is effective for n >> 0 (see [6] p. 363). Let θ be a Kähler form
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on M1: then

α1∗θ · nC = α∗
1(α1∗θ) · nα∗

1C = θ · n(C∞
1 − B0F1) =

= θ · n(C∞
1 + (e1/2 + ε)F1 − (e1/2 + ε + B0)F1) =

= θ · nD − θ · n(e1/2 + ε + B0)F1 > 0 ,

thus α1∗θ · C > 0, so that M is Kähler by Theorem 2.6

These results can be seen as a generalization of some results in [13],

where the projective and Moishezon case is studied.

– Appendix: Ruled surfaces

Let π : E → C be a ruled surface, i.e. C is a smooth curve, E is a

smooth surface and every fibre F ∼= P1. We shall refer to [6], ch. V, § 2.

A.1. Any ruled surface is of the form P(E), where E is a locally free

sheaf of rank two on C; moreover, if E and E ′ are two locally free sheaves

of rank two on C, then P(E) and P(E ′) are isomorphic ruled surfaces if

and only if there exists an invertible sheaf L on C such that E ′ ∼= E ⊗ L.

Hence, if π : E → C is a ruled surface, there exists a locally free

sheaf E of rank two on C such that E ∼= P(E) and H0(E) &= 0, but

H0(E ⊗ L) = 0 for all invertible sheaves L on C with deg L < 0. In

this case, we shall say that E is normalized. This does not determine

E uniquely, but it determines e := −deg E , which is an invariant of the

ruled surface E.

A.2. Let us fix a section σ : C → E such that its image C∞ satis-

fies L(C∞) = OE(1): then C∞ has minimal self-intersection among all

sections; if moreover F is a generic fibre of π : E → C, it holds





C∞ · C∞ = −e

F · F = 0

C∞ · F = 1

.

We can choose the classes of C∞ and F as generators of Pic E and

of NumE; but also of the Aeppli group V 1,1
IR (E) = H2(E, IR) (see [17]:

recall that E is Kähler). Hence we shall write in general C ∼ C ′. Notice

that if σ′ : C → E is a section with image C ′, it holds: C ′ ∼ C∞ + bF ,
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with b ≥ 0. In fact, since π(C∞) = C = π(C ′), the coefficient of C∞ is 1;

moreover C∞ · C∞ ≤ C ′ · C ′ = C∞ · C∞ + 2b.

A.3. A locally free sheaf E on a curve C is said to be semistable if for

every locally free sheaf F , F &= 0, F &= E , such that E → F → 0, we have

(deg F)(rkE) ≥ (deg E)(rkF). Since any locally free sheaf of rank two on

a curve C is an extension of invertible sheaves, for such an E we get that:

a) if E is semistable, for every exact sequence

0 → L → E → M → 0

where L and M are invertible sheaves on C, it holds deg L ≤ deg M;

b) if E is unstable, then there exists a unique (up to isomorphisms) exact

sequence

0 → L → E → M → 0

where L and M are invertible sheaves on C and deg L > deg M.

A.4. If E is a normalized locally free sheaf of rank two on C, then E is

semistable if and only if deg E ≥ 0. In particular, let M be a compact

complex threefold and C a smooth curve of genus g on M ; consider

N∗
C|M

∼= IC/I2
C , and normalize it by tensoring with a suitable invertible

sheaf L. Call E0 the normalized sheaf of rank two on C, and define

e1 := − deg E0. Then the ruled surface E1 → C given by E1 := P(E0) is

nothing but the exceptional divisor of the blow-up α : M ′ → M of M

along C, ([5] p. 604) and:

NC|M is unstable ⇔ N∗
C|M is unstable ⇔ E0 is unstable

⇔ e1 > 0 ⇔ there exists on E1 a unique section C∞
1

with negative self-intersection, more precisely, C∞
1 · C∞

1 = −e1 .

This section C∞
1 corresponds to a surjective map E0 → F → 0, where F

is an invertible sheaf on C, such that, if σ(C) = C∞
1 ,

0 → OC → Eo → F → 0 and F = σ∗(L(C∞
1 ) ⊗ OC∞

1
) .

Proposition A.5. Let π : E → C be a ruled surface.
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a) Suppose D ≡ aC∞ + bF is an irreducible curve on E, D &= F and

D &= C∞: if e ≥ 0, then a > 0 and b ≥ ae; if e < 0, then either a = 1

and b ≥ 0 or a ≥ 2 and b ≥ (ae)/2.

b) Suppose D ≡ aC∞ + bF is a divisor on E: if e ≥ 0, D is ample if

and only if a > 0 and b > ae; if e < 0, D is ample if and only if

a > 0 and b > (ae)/2.
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