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A geometry for Lagrangians
on the bundle R" x TL.M

P.R. RODRIGUES

RIASSUNTO: Questo lavoro tratta di alcune strutture geometriche del fibrato di
getti R™ x T M, con il modello geometrico di fibrato tangente non-autonomo. Si
costruiscono particolari campi vettoriali che vengono confrontati con il campo tensoriale
K, associato alla connessione di Fhresmann. Il sistema di equazioni alle derivate
parziali, associato al tensore IK & allora ricondotto al sistema di Fulero-Lagrange per
una lagrangiana regolare definita sullo spazio di getti.

ABSTRACT: This article is concerned with some geometric structures of the jet-
bundle R™ x T2 M, modelled by the non autonomous tangent bundle geometry. We use
this fact to construct similar objects like a particular family of vector fields and we study
its relationship with a tensor field IK, which defines a type of Ehresmann connection.
The integration of the system of partial differential equations associated to IK is then
accomplished via the integration of the corresponding Euler-Lagrange equations for a
regular Lagrangian defined on this jet bundle.

1 — Introduction

One of the interesting aspects of the modern formulation of Clas-
sical Mechanics is its coordinate-free presentation due to the underlying
natural structures: the symplectic structure of the Hamiltonian formalism
and the so-called almost tangent structure of the Lagrangian counterpart.
They allowed an elegant exposition as well as a better understanding of
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the contents of the analytical formalism and now this formalism can be
considered a topic of Symplectic Geometry. So it would not be an exag-
geration to call it Symplectic Mechanics.

Further progress in the study of these canonical structures have been
made and modern techniques of Fiber Bundles and Differential Geom-
etry has been carried out to generalize the ordinary intrinsic approach
to cover also field theories (see the books [17], [24] and [26] and refer-
ences therein). There are some alternative ways of proceeding with these
generalizations and, as far as we know, some of them are known in the
literature as: the multisymplectic approach [2], [8], [9], the polysymplectic
approach [11], the k-symplectic approach [1], and the almost k-tangent
and k-cotangent approaches [14], [15], the latter being a generalization
of the polysymplectic and k-symplectic cases (however in an appropri-
ate setting, polysymplectic and k-symplectic structures turn out to be
essentially equivalent and can be identified with an integrable k-almost
cotangent structure [13]).

Concerning the tangent bundle geometry many independent publi-
cations have appeared since the early works by KLEIN [12] and gener-
alizations recovering Euler-Lagrange equations for Lagrangian functions
in several independent variables were also published (references could be
found in [24], [26], [28] for instance).

One of the purposes of this article is to retake the subject for the case
where the geometry can be modelled by the canonical tangent bundle
geometry of a finite dimensional manifold M. This means that we will
be in the context of some geometric objects underlying the bundles T'M
as well as R x T’M that can be extended to the bundle IR" x T} M,
where T! M is the first order jet bundle of smooth maps f: R" — M
at the origin. This latter manifold is known as the tangent bundle of
the n—velocities (this terminology is due to EHRESMANN [6]). Thus a
first task is the study of the parallelism which exists between the almost-
tangent geometry characterization of ordinary differential equations of
second order (SODE, semispray [17], [26], [28]) and second order partial
differential equations. Roughly speaking this relation comes from the fact
that “the bundle of 1-jets are a Whitney sum of tangent bundles”, i.e.

diffeo

(1) [T M] &S [TM Spy - Sy TM].

n
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The knowledge of the subject is of geometric interest. For example,
it is possible to extend the study of CRAMPIN-THOMPSON [5], [27] and
NAGANO [22] (when a manifold is the tangent bundle of some manifold?)
to the global question of when a manifold is the bundle T'Q of some
manifold @), MERINO [20]. Also, as we shall see, it is possible to establish
a relationship among connections with respect to the fibration pj : R™ x
T*M — IR™ x M, jet fields and partial differential equations. Indeed the
second purpose of the work is to give an application of the subject to the
study of connections on R™ x T M — IR™ x M.

Connections on fibred manifolds is an useful geometric strategy to
study partial differential equation systems (for instance, the integrabil-
ity of the horizontal distribution defined by a connection is equivalent
to the integrability of the correspondent system, like integrability of or-
dinary differential equations systems are geometrically characterized by
the corresponding vector field).

A fruitful result of such relationship is that we can characterize in-
tegral solutions of some partial differential equations as extremals of the
Euler-Lagrange equations. Indeed it is possible to construct a certain
type of connection (called field connection) on pj: R™ x T M — IR™ x M
such that there is canonically associated a class of vector fields, the asso-
ciated semisprays, whose integrals are by definition the solutions of the
connection. We shall show (Theorem 4.1) that if we give an arbitrary
family of semisprays on IR™ x T} M then there is a field connection such
that the original family is precisely the associated field of semisprays of
the connection. The use of a general result due to D. Saunders gives the
relationship of this abstract situation to the Euler-Lagrange equations,
relating its integrals solutions, (assuming that integrability conditions are
verified, of course). In fact the extremals can be characterized by inte-
gral manifolds of the associated horizontal distribution of IK. Thus it
suffices to establish a relationship between Lagrangian functions and IK
(see Proposition 4.3).

Finally, it remains to observe that our study is strongly inspired in the
tangent bundle geometry and restricted to the case of partial differential
equations related to Lagrangians depending explicitly on a set of real
independent variables. A more general study for the investigation of
connections as higher order partial differential equations on a general
fibred manifold (E, 7, N) needs a more sophisticated treatment as it was
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shown by A. VONDRA in his monograph [28].

The work is structured as follows. In § 2 we give some definitions for
clearness and support for the next sections. The section § 3 is concerned
with the geometry of T!M, T[T M)] and field connections. An illustra-
tion of the preceding study is the object of §4 and a simple example is
given at the end of the section.

All objects considered throughout the paper as manifolds, mappings,
forms, vector fields, etc are of C* class. The manifolds are finite di-
mensional, Hausdorff, paracompact, etc. The summation convention on
repeated indices is adopted. We would like to acknowledge M. de Ledén
for suggestions during the preparation of the first draft.

2 — Field of n-vectors
2.1 - Preliminaries

Let M be a differentiable manifold of dimension m, IR™ the n-di-
mensional Euclidean space with coordinates x = (x;) = (21, ,z,)
and J'(IR", M) the n + (n + 1)m-dimensional manifold of one-jets from
R" to M, with elements denoted by f!(z), or j! f, with the follow-
ing canonical bundle structures: the source projection o : J'(R", M) —
R"; o' (f!(x)) = z; the target projection 3*: J'(IR*, M) — M; B(f'(z))
= f(z) and the source-target projection pj : J'(R", M) — IR™ x M,
po(fH(x)) = (z, f(z)), where z € R™ and f : R — M is a smooth
mapping.

We recall that one jets of mappings from IR™ to M may be identi-
fied with one jets of sections of the fibration 7: IR” x M — IR"™ since its
sections are graphs of maps from IR"™ to M. Thus, if J' 7 is the corre-
sponding first order jet manifold of all sections of = : IR x M — IR"
then the identification of J* 7 with J*(IR", M) gives the following com-
mutative diagram

pl
JY(IR" — 5 R"xM

\/
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The tangent bundle of n-velocities T,y M is the (n+ 1)m-dimensional
manifold Jj (IR™, M) of the one jets at the origin of IR". We also denote
the target projection by : T!M — M. Locally, if U is a chart of M
with local coordinates y*, 1< A < m, (y4, z[‘g]): (yA, 28 o282
the corresponding induced coordinates on (8')~'(U) and o: R" - M a
mapping such that o(0) € U then ¢'(0) is represented by

(2) ¥ (6" (0)=y"((0) = 0(0), 2 (5" (0) = (Iy" /04) (0(0)) = 0;(0).

Let F be a tensor of type (1,1) on M such that F=3", 5 F7(9/0y")
®dy“. Then the a-lift F2 of F to T!M is the (1,1)- tensor with local
expression:

Flal = AZB FB (%) ® dy,

(see [21] for further details about the intrinsic construction). If Zp, =
>4 (0/0y?) @ dy” is the identity tensor on M then for each a €
{1,2,...n}, its a-lifting defines the tensor J, = Iﬁ] locally given by

0
3 = —— ® dy™.
(3) J. EA 924 ® dy
Let w be a p—form on T' M. We define

@ (traw)( X1, Xp) =Y w(Xi, . Ja(Xy), .., X)),

resp.ds, =tz d—dtg,),
Ja = LJa Ta

where X,..., X, are vector fields on (7! M) and d is the usual exterior
differentiation.

To close this section we recall the following. Let (E,r, N') be a fibred
bundle where dim N =n, dim E = n+r and 7 : E — N is the projection.
A connection on (E,m, N) in the sense of Ehresmann is a complementary
vector sub-bundle H of T'E of the vertical sub-bundle V = Ker T'r such
that TE may be decomposed as the Whitney sum TE = H® V. If
h: TE — H is the horizontal projector then setting I' = 2h — Idg (resp.
I' = Id7g — 2v) we deduce that I is a tensor field of type (1,1) on E such
that Tol' =T? = Idyg. AsT'oh =h (resp. I'ov = —v) we have that
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the eigenvector bundle corresponding to the eigenvalue 1 (resp. —1) is H
(resp. V).

Reciprocally, if T is a tensor field of type (1,1) on E such that I'oT" =
I'? = Id;g and in addition if the eigenvector bundle corresponding to the
eigenvalue —1 is V = {X € TE|T7(X) = 0} at each point of E then
we have a vertical projector v = (1/2)(Id7g — I') (resp. a horizontal
projector h = (1/2)(Idzg +T")). Thus we shall say that I" is a connection
on (E,m,N).

2.2 — Concomitant geometric objects

Let o: IR"® — M be a mapping, {ei,...,e,} the canonical basis
of R" and o,: IR — M the curve defined by o,(t) = o(te,), where
a€{l,---,n}. Then 5}(0) € TM and we may define

(5) Ya: TAM — TM;  0a(5(0)) = 5.(0).

Using the map ¢, we construct the diffeomorphism Arpy @ TIM —
TMSu ... B TM from the jet manifold T' M to the Whitney sum of
T M n-times given by (see [3])

Arpm(61(0)) = (01(57(0)), .-, (57(0)))-

Therefore, as for any v € T!M we have v. = 7!(0), for some 7 :
IR" — M, from the above definition of ¢, there are n tangent vectors
Vi,...,Vy at the same point 7(0) € M uniquely associated to v (note
that (T M, B, M) is endowed with a vector bundle structure with fiber
IR™™). Thus a section of T M — M is concomitant with n sections of
the n canonical projections T! M — T'M and this suggests the following

DEFINITION 2.1. Let K be a finite dimensional manifold. A section
& K = TIK of f*: TIK — K is called field of n—vectors. We shall write

62 (6[1]3 . 7£[a]a' o af[n])

T'K ——— TK

K
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In particular, if K = T} M then any section & ThM — THTIM],
is identified with a unique set ({1, , &), ,&m)) of vector fields on
T M, each of which is also uniquely 1dent1ﬁed with a set (£, 5 &y

-, &) on TM. In fibred coordinates one has

0 0

£a) = €2 +§baa g 1 <a <mn, (summation on b).

a 8 A
Sometimes we shall set
§[a]=( ; Ja§a7£ba)

2.3 = Solutions

Let us return to (5) and let (y*,y*) be the induced coordinates on a
chart of TM. Then the use of Ar, says that

V(EL0) = 16 0) = 4 05 G1(0) =206 (0) = 9 (0(0)) =
oot
= 57 (0) = 20).

(see (2)). Next we translate by = € IR™ the action of o, and we define
the curve 0, 4(t) = o(z+te,). Then we see that 7, ,(0) € TM is locally
given by

do? do*
A 2.0 I
©) (ax,am), 7 <o>> - (o (@, % <x>> ,
Now if we set 0,(y) = o(z + y) then jlo, € TP M is locally identified

with B B
<O-A(‘T)’ %(%), T (UA(x)7 gz,n ((l)))) :

This suggests the following

DEFINITION 2.2. A solution of a field & M — TIM of n—vectors
is a map o: IR" — M defined on an open domain U C IR"™ such that
&(o(z)) = jy(os), for all z € U. In particular, if &u(o(z)) = j§ 0ua
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then o is said an a-solution of £. Thus a solution is an a-solution for all
1<a<n.

If we set & = (y*,&2) then o is a solution if and only if o is a
solution of the system of partial differential equations

oy* o
gl =G i €Mo(@) = 5 ().

In a similar way, if we consider fields & T!M — THTM] on T M
then a-solutions as well as solutions are also characterized by a set of
partial differential equations, but we shall consider fields & where the
solutions verify equations of type

™) g =W TV
@ Ox, @ Oz 0x,
given by the system
e =, g =22
a a sa aa,;b

The characterization of such fields is as follows. First recall that
there is a well globally defined vector field on the tangent bundle of every
finite dimensional manifold called Liouville or dilation vector field (see [4],
[5], [17]). In our context, if we consider the homothetia of ratio e®, s € IR,
then the infinitesimal generator C of (s,y?,22) — (y*,e®z2) is locally

given by

Thus there is a well defined field of n vectors C = (Cjy, - - - , Cpnj) such that
each Cjy) is Liouville. At the local level one has that for each 1 <a <n

o
0zA"

a

(8) Cla] = 2,

and Cr) = (y*,22,0,22) is so that J, (Cra) = 0, where (J1,-+-,Jn) is

Y ~Ya Y

the field of tensors given by (3).

DEFINITION 2.3. A field of n-vectors &: T'M — THTIM] is said a
field of n-semisprays if J,(§a)) = Cia), for all 1 < a < n.
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It is easy to see that for such fields £ = 2 and so the solutions

verify the system (7). We remark also that if £ = (), ,&) is a
field on T M then the a-lift &2 of each &) to TTIM] is Cpy (it fol-
lows from [22] that these vector fields are the canonical vector fields

on the vector bundle 7*: T'!M — T! M given by (X, -+, X,) =
<X17 ’ 7Xa—1?Xa+17” ' 7Xn)7 1 S a S n)

3 — Field connections

For what follows we shall identify J*(IR", M) with R"x T} M. Fibred
coordinates will be also denoted by (z,,y",z2), with 1 < a < n,1 <
A < m. It is easy to verify that all canonical structures defined before
can be transported from T M to IR™ x T! M. If we preserve the notation

for the natural geometric objects (7, C, etc) then we define the following
family on IR™ x T' M,

(9) ja = ja - C[a] & dxa )
where now C = (Cpyj, - - - Cpp) is the infinitesimal generator of (s, z,, y*, z2)
= (IavyAa e’ 2:14)7 s € R.

A field of n-vectors & = (&), , &), -+ »&ny) is a field of n-semi-
sprays if for all a we have

Jal&a) = 0, day(§ag) = Gap -
Thus we may express locally

8 0 0
g[a] +aaA+§baaA

Let K be a (1, 1) tensor field on this manifold such that for all a

JaoK=T.0K =T,
(10) O ja — _ja;
Ko ja = _ja-
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Then from a long but straightforward calculation one has that locally

K(0/0x,) = =2, (0/0y") + Ky, (0/0z)),
K(0/0y") = 0/0y” + K5,(0/0z),

K(0/0z)) = —0/0z,
that is
0 0 0 0 0
_(_.B 9 B Y o B 9 A A
K= (-2 507 +Kb“8zb3) ®dz,+ (ayA +KAbaz§) Gy~ 55 @z
Therefore K? # K, but K* — K = 0.
ProprosITION 3.1. The tensor K defines a connection on pé :

R" x T!M — R" x M.
PROOF. We first define two canonical operators P, Q associated to K:
P=K? Q=1d-K?.
Therefore
PP=P, Q*=0Q, PoQ=Q0P=0,P+Q=1Id,

i.e. P and Q are complementary operators. From the above equalities
we deduce that locally

We put P =ImP, Q = Im Q. Therefore P and Q are complemen-
tary distributions on R" x T' M, i.e., T(R" x T M) = P& Q. Note that
[0/0y*,0/0z11, resp.

€y = 0/ 00 + 25 (0/0y™) + (Kiy, + 2, K1) (0/0%)

is a local basis of P, resp. Q.
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Let
B =(1/2)(Id+ K)P), Q= (1/2)(Id-K) P

and set
H= imPB, V= imN.

Then V is locally generated in each point by (9/9z2'), and so it is a
vertical distribution with respect to the fibration p} : R™ x T'M —
IR* x M. Therefore H and V are complementary distributions in
P(=HaV)

Now, let us set H = H® Q. As V,H’ are vector bundles over
IR" x T} M one has that K defines a connection on the fibration pj: IR"™ x
T*M — R™ x M, with horizontal fibration H’, that is one has the
decomposition

TR'xTM)=H @& V. 0

DEeFINITION 3.1. K will be called field connection.

From the considerations developed above one has that at each point
of R™ x T M, there is defined a local basis

9 90
YA’ Dz

a):a 5 0 0

Q(axa +

- C - =
axa Za 8yB + gb;a 821)6‘ g[a] ’

where ¢5, = K¢

¢+ 2PKS,. So Q(9/0z,) is an a-semispray. We say
that K and this family of semisprays are associated.

Now, to relate the solutions of a field & = ({17, - ,&m)) of n-vectors
on R" x T! M with a field connection K it is sufficient to recall that a

solution of ¢ at © € IR™ is a mapping o: IR" — M such that

§(6' () = jslo" ()]

where ¢! is the jet prolongation mapping z — j!(o). A solution of K is
then defined as being a solution of the associated family of semisprays ).
Therefore o is a solution of K if and only if ¢ satisfies the following system
of equations:

B 2 A
B 0o A 0%c
“ T obe T Oy,

ox,

_ A ByrA
- Kba +Za KbB .
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Note that we are not taking into account the problem of the existence of
such solutions.

4 — An application

An application of the above results is that we can characterize integral
solutions of some partial differential equations as extremals of the Euler-
Lagrange equations. This can be stated in the following form:

THEOREM 4.1. If LLIR" x T!M — R is a regular Lagrangian
and {€a}, a = {1,--- ,n} is a family of a-semisprays then there exists
a connection IK with respect to the fibration py:IR™ x T!M — R" x M
whose solutions are the extremal solutions of the Fuler-Lagrange equations
if and only if

to(dag) = (n—1)da,,

where @ = 1d —IK? and a, is the Poincaré—Cartan form defined by (13).
Let us first show the existence of IK, that is,

PROPOSITION 4.2. Let {{a)} be a family of a-semisprays on IR™ x
T M, locally written as

I N .
(11) é-[a] - 837(1 +Za 8yA +§b;aazé4 .

Then there exists a field connection IK with respect to the fibration p} :
R" x T!M — R" x M with associated semisprays being precisely (11).

Proor. We have

€1, 0/0y"] = —(9¢48,/0y")(0/02") ,
€1y, 8/02] = —0/0y" — (0€1,/02)(0/0=) .

For what follows we recall the following Lie derivation of a tensor by
a vector field

(LxS)(Y) = [X,8(Y)] = S([X,Y]),
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where X, Y are vector fields, [, ] is the Lie bracket and S is a (1, 1)-tensor
field.
Consider the following tensor field

Ko = — Ly Ja-
Then B B A B A
K (0/0y”) = 0/0y” + (9¢;,,/ 02, )(0/0z;),
Ko (0/02F) = —8/0z

Now, consider the canonical volume form w of IR”, taken as a form
on IR™ x T' M, and the following tensor field of type (n + 1,1)

K/\UJ:ZK[a]/\OJ

Then from the above local computation one has

o | 0%,
K = :
ne <8yA * 0z ) 0zP
Let us set
(12) Q=12Jd N w+KAw), IP=.,Q.

where ¢, denotes contraction. Then one has
P = (0/0y™ +1/2 (0&;},/022)0/0z) ® dy™ .

To obtain a connection on pj : R" x Th M — IR™ x M, we introduce
the tensor field:

0

K=-ld+2P+)" (5 0

— A_Z
~ [C.&w)) @ dza, C= gzb 5o

a

Then IK verifies (10), IK® — IK = 0 and IK is locally expressed as

(- ’?ai — (= gg,,; - &) aaB) ® dzy + (aiA + gi*’zj 623) ® dy”

024 ®dz]
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Furthermore, one has the following equalities:

K*(0/0my) = —2, (9/0y”) — & (0/0%7) ,
K2 (9/0y") = 9/0y"
K*(0/022) = 0/0z

Now, adopting the above procedure for the projectors P = IK? and Q =
Id — IK?, one obtains

o\ 0 9 9
(ges) = 5o T 55 g = Cal- -

Let £: R™ x T'M — IR be a Lagrangian function. The Poincaré—
Cartan form associated to L is the n—form defined by

(13) ap=(d; L) N wat+Lw,

(where w, = t5/92,w , Ja is defined by (9) and d 7, in a similar way as (4)).
We set Q, = dag.
It remains to show the second assertion of the theorem, i.e.,

PROPOSITION 4.3. The solutions of IK are solutions of the Fuler—
Lagrange equations if and only if

Lo(e) = (n—1)Q¢.

PRrOOF. The proof follows Saunders ([25], p. 188) and the above
results. Indeed, as

0 0 0

(14) Q:(a Zgn T g A>®d:ca,

and L is regular, i.e. the matrix

%L
<8zf325 )
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is invertible, then a direct calculation shows that

A A
z, =&

oL L 9L oL
1o(Qe)—(n=1)0e = | 5

B A
— — — & = |dy" Aw.
Oyt 9240z, “a 0zA0y" b 0240z yone

Thus 1o(2z) = (n — 1) if and only if
o°L

J— B f—
Shio A58~ °

o oL, 0L

oA 0220z, “a 0z20yP

Therefore, if o : IR™ — M is a solution of IK (since it is a solution of the
associated semisprays ) then o verifies

doB foalent
B_99 A _
(15) fa = ox,’ Shia 0x,0x,
and so
oL 0L 9L doB 0L b
doA  _,dcA /008 5 04 C_00h 0o\ Oxp0x,
a(axa)axa o( xa)@a a<8xa)a(8xb)
B <ac d ( oL )) B
S \oyt dag\ 907\ ) ) T
6( Oz, )

i.e. o solves the Euler-Lagrange equations. 0

As a simple example let us consider the coordinates (z1, 2, y, 21, 22)
for IR? x Ty IR = IR® and the wave equation

0*v 0*v
(16) o (552) =7 (527)

where ¥ = U(z;,x5) and p, 7 are the coefficients of mass density and
tension, taken as constants. To avoid unnecessary calculations and to
simplify things let us suppose that the physical system is given by a single
frequency w with one degree of freedom and that p = 7 = w = 1. The
separation of the variables gives a general solution of the wave equation

U (z1,22) = a(z1) B(22),
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and so we have the system of equations

0% 98

= (8% =
oz ’ Oxd

_67

As there is no mixed partial derivatives in the wave equation one has
that the projector Q is given by the semisprays

AN )
M 9, Oy oy 0z’
0 da 0 0

= s ooy on

and the 1,2-solutions give solutions of the equation. As we know, a
particular one is
o(x;) = a; .

If we take only the real part, then the projector P = Id — Q define the
vector fields

) 0 0 .
a; {sm(wi) (9—y + cos(z;) 8—%}, 1<3<2.
Note that the Lagrangian is given by £ = {02} — 723}, and (16) is the
corresponding Euler-Lagrange equation.
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