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A regular threefold of general type with p, = 0 and P, = 12

Ezio Stagnaro

Abstract. Following an idea of Ronconi, we construct a nonsingular, normal threefold of
general type with pg = q1 = q2 = 0 and P> = 12. Similar examples in the literature have
pg=q1=q2=0and0< Py <8.

Sunto. Seguendo un’idea di Ronconi, si costruisce una varieta tridimensionale, non singolare,
normale e di tipo generale con pg = q1 = q2 = 0 e P» = 12. Nella letteratura esempi connessi

hanno pg =q1 =q2=0e 0 < P, <8.

1. Introduction

It is well known that nonsingular surfaces S of general type with the geometric
genus py(S) = 0 have the irregularity ¢(S) = 0, and the bigenus satisfies 2 <
P5(S) < 10. There are also known examples for all possible values of the bigenus
in this range (cf. for instance [1]).

In the case of nonsingular threefolds X of general type having the geometric
genus py = 0 and the irregularities ¢; = g2 = 0, the value of the minimum integer
ng, if any, such that the bigenus Pa(X) < ng is still unknown. Whether P»(X) can
take any value up to ng also remains to be established.

The examples in the literature are as follows, depending on the range of Ps:
P,=01[6,11]; B =11[9; P, =2[12]; P, =3,4[2]; P, =5[3,8,10]; P, =6
[7); P = 7,8 [8]. Other examples with 0 < P < 4 are produced as threefolds in
weighted projective spaces [4, 5].

M.C. Ronconi found her best result in [8] using a remarkable trick. She con-
sidered a degree 7 hypersurface Fy C IP*, given by a linear system of monomials
depending on 25 parameters, and having the 10 edges of the fundamental penta-
hedron as triple lines. By cancelling 6 suitable monomials in the equation of F7
and replacing them with 3 new ones, she was able to replace 6 triple edges on F7
with 6 double lines having an infinitely near double surface. No other triple edges
could be replaced with double lines having an infinitely near double surface. A
desingularization of the original F% has the birational invariants given by p, = 0,
the irregularities ¢; = g2 = 0, and the bigenus P, = 5 (cf. [8]). A desingularization
of the new F% constructed by Ronconi has the same invariants p; = 0,q1 = g2 = 0,

2010 Mathematics Subject Classification: 14C20, 14E05, 14J30, 14J70, 14J99, 14MO05.
Keywords: Algebraic projective hypersurfaces, bicanonical and tricanonical threefolds.
© The Author(s) 2019. This article is an open access publication.



18 E. Stagnaro

but the bigenus is increased by three, obtaining P» = 8. This is because the double
lines with an infinitely near double surface give the same conditions to the canon-
ical adjoints (which give py), and to the adjoints (giving the irregularities ¢1, g2),
but fewer conditions to the bicanonical adjoints, which give P,, because the two
degree 7 hypersurfaces are normal (cf. [8, 10]).

In P* with homogeneous coordinates (Xo, X1, X2, X3, X4) the equations of the
above 6 edges are given by r1, ro, T3, 74, I's5, T Of the equations

Xo=0 Xo=0 Xo=0

X1 =0 X1 =0 X9=0 X5=0 X1 =0 X1 =0

Xo=0 "] Xo=0 "] X3=0 "] X3=0 "] X3=0 "] X3=0"
X4=0 X4=0 X4=0

In the two blow-ups resolving the double edges with an infinitely near double
surface (which is locally given by planes), the variable X, must also produce two
exceptional divisors in the case of the above first, third, and fifth lines, and the
variable X, must again produce two exceptional divisors in the case of the above
second, fourth, and sixth lines.

Indicating the five vertices of the fundamental pentahedron with
Ay =(1,0,0,0,0), 4, = (0,1,0,0,0), A2 = (0,0,1,0,0), A5 = (0,0,0,1,0),

Ay = (0,0,0,0,1), the 6 double edges £4,4, are shown in the following picture,
where they are drawn in bold type.

As
Ao

A Ay

Ay

That said, our aim here is: first, to start with a generic hypersurface F;, C IP*
of degree 7, and to impose on Fr the above 6 double edges having an infinitely
near double surface, and the above-mentioned properties of the variables X, and
X4 (Section 2); second, to find the conditions given by these singularities to
the canonical adjoints to F% for the computation of the geometric genus p, of a
desingularization of Fr, and the conditions given to the bicanonical adjoints to
F; for the computation of the bigenus P, (Section 3); and third, to look for new
singularities on F7 to substitute the 4 triple lines considered by Ronconi, with a
view to increasing the bigenus P, = 8 (Section 4).

Concerning this third step, from the normality of the last F», we obtain P, = 12
with the new singularities given by €4, a,, €4, a5, £4,4, as triple lines, according
to Ronconi, but the fourth line £4, 4, is left nonsingular and substituted by a new
singularity given by an isolated ordinary 4-ple point (Sections 4,5,6).
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Section 8 contains the desingularization of F7, and Section 9 its property of
being of general type, while we compute pg, P>, the trigenus Ps, in Section 10, and
the irregularities ¢; = g2 = 0 in Section 11.

The ground field k, is an algebraically closed field of characteristic zero, that
we can assume to be the field of complex numbers.

In all the sections, the computations are done with “muMATH”.

We have to add a few words here about the desingularization of our F7 because
we use a method that is very long and new to us. Some different approaches to the
desingularization were discussed with Alberto Calabri, and the author is grateful
for his contribution.

In Ronconi’s paper [8] we read: “... apart from unimposed double lines appearing
on the exceptional divisor, that we resolve after blowing up all the ¢;, ...”. This
means that, in solving the singularities of our F%7, when we start blowing up a
double line with an infinitely near double surface, or a triple line, we cannot go on
blowing up the unimposed double lines infinitely near the exceptional divisors. We
have to go on blowing up the imposed singularities outside the exceptional divisors
(cf. Remark 2, Section 8.2.2 and Remark 6, Section 8.3.1) because otherwise the
singularities imposed on our F; interfere with the singularities on the exceptional
divisors. With such an interference, we would obtain an infinite sequence of blow-
ups moving in a circular manner.

2. F; C IP* with the six above singularities - our first step

The equation of a generic F7 is given by a system of monomials with coefficients

Let us impose on the generic F» the six double lines with an infinitely near
double surface, which is locally given by planes. Let us start by considering the
line

I‘12X0:X1:X2:0.

To do so, we consider the affine set Uy of affine coordinates Xy = w, X; =
z,Xo =y, X3 =2,X4 =1, and we impose the double line r; NUy:w=2x=y=0
on Fr;NUy. Let Fr(w,z,y,z) = 0 be the equation of F7 N U.

To impose the double line 1 N Uy, we consider the blow-up of this line, which
is locally given by

w = w1 w = Wak2 w = w3yYs
B . Tr=Tiwr B . Tr = T . . T = T3Y3
wy - —_ )y Mxg — Y3 - —
Y=y Y = YaT2 Y=1ys3

zZ=21 zZ =22 zZ = Z3
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We consider B,,. Substituting in Fr(w,x,y, 2), dividing by 22, and imposing
that ch%]*—'7(102@, X9, Y2Z2, Z2) be a polynomial, we obtain conditions on the coeffi-
2
cients a;yiginigi, Of Fr.
Let us call F,, (wa,x2, Y2, 22) the polynomial ;L%F7(w2:cz,:c2,y2x2, 29), so that
2
the hypersurface F)., (wa, x2,y2, 22) = 0 has the double line wy = 29 = yo = 0.
Next, we want to impose the double plane 7 : we = x5 = 0 infinitely near the
double line we = x5 = y» = 0.
Locally, the blow-up of 7 : wy = x5 = 0 is given by

W2 = W21 W2 = W22T22

T2 = T21W21 T = T22
me : — ; szz : —

Y2 = Y21 Y2 = Y22

Z2 = 221 22 = 222

We consider B,,,, and substitute in Fy, (wa, 2, y2, 22).

By imposing that 7%2 o (W22T22, Tag, Y22, 222) be a polynomial, we obtain con-
ditions on the coefficients, and r; has the double plane that we wanted infinitely
near.

In conclusion, the conditions obtained on the coefficients are due to the fact
that we imposed the edge r; on F7 as a double line with a double plane 7 infinitely
near.

The two blow-ups that we have considered are clearly incomplete. They will
be completed in the desingularization of the last F; (Section 8).

Considering B,, and B,,,, we can nonetheless see that the variable Xy = w
furnishes two exceptional divisors in the two blow-ups, as required.

To obtain all the conditions on the coefficients of F7 in order to obtain the six
double lines having a double surface infinitely near, we produce a sketch showing
only the remaining 4 blow-ups concerning r3 and 75:

w = wWaY2 W2 = W22Y22
. . T = T2 . . T2 = T22
ry:w=y=2z2=0,By,: — ; By,, _
Y =12 Y2 = Y22
Z = 22Y2 =222
W = wW3z3 W3 = W33233
. . €T =T3z3 . T3 = I33
rsrw=c=2z=0,B8,: _ i Bags B
Yy=1ys Y3 = Ys3
Z=2z3 23 = 233

Next, we have to consider the lines ra,r4 and rg, and repeat what we did for
ri,r3 and rs, but we omit this repetition here, which only involves changing X
to X4.

Having imposed the above singularities, the equation of F; is given by
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a41002X§X1X2 + a10102 X X2X5 + a20012 X5 X3 X3 + a32002 X X1 X7 + az1111 X5 X1 X2 X3 Xa+
a31102XgX1X2XZ + a31012X8X1X3Xf + a31003X3X1X2 + 1130202XSX§XZ + a30112X8X2X3Xf+
430103 X0 X2 X3 + a30022 X X2 X2 + a30013 X X3 X5 + 23002 XEXP X2 + a20001 Xe X2 X2 X4+
a22111 Xe X7 X2 X3 X4 + 22102 XEXE X2 X3 + 220201 XEXE X2 X4 + 22012 XE X2 X3 X3+
a22003X§X12XZZ’ + a21211X§X1X§X3X4 + a21202X§X1X§X2 + a21121X§X1X2X§X4+
a21112 X0 X1 X2 X3X3 + a21103 X X1 X2 X3 + a21020 X5 X1 X2 X5 + az1013 X5 X1 X3 X5+
a21004X§X1XZ + 1120302X§XSXZ + 020221X3X22X§X4 + 20212 X3 X3 X3 X3 + a20203 X0 X3 X5+
a20122 X0 X2 X3 X7 + az0113 X5 X2 X3X} + a20104 Xg X2 X5 + +a20032X5 X5 X3 + az0023 X3 X35 X5+
20014 X5 X3 X1 +a13201 X0 X} X3 Xa+a13111 X0 X5 X2 X3 Xa+a13021 X0 X X35 Xa+a12301 X0 X7 X5 Xa+
412220 X0 X2 X2X2 4+ a12211 X0 X2 X2 X3 X4 + 012202 X0 X P X2 X3 + a12121 X0 XF X2 X2 Xa+
a12112 X0 X7 X2 X3 X5 + a12031 X0 X T X5 Xa + a12020 X0 X7 X2XZ + ar1311 Xo X1 X5 X3 Xa+
a11221 X0 X1 X3 X5 Xs + a11212 X0 X1 X2 X3X] + a11131 X0 X1 X2 X5 Xa + ar1120 X0 X1 X2 X3 X5+
a11113X0X1 X2 X3 X3 +a10321 X0 X5 X3 Xa+a10231 X0 X5 X5 Xa+a10200X0X5 X3 X5 +aoss10X5 X5 X3+
403220 X3 X2 X2 4+ a03130 X3 X2 X3 + 02320 X2 X5 X2 + a02230 X2 X2 X5 + ao2221 X2 X2 X2 X4+
ao1330X1 X5 X5 = 0.

3. Pluricanonical adjoints to the last F; - our second step

Throughout the present paper, the hypersurfaces are normal and the infinitely
near surfaces are locally given by planes, so we can use the theory of adjoints and
pluricanonical adjoints to F7 that we revisited and developed in [10].

In the present section, we assume that the F7 given at the end of Section 2
only has the six double lines with an infinitely near double surface as singularities,
and no others.

Let
Py, 25 P, 2 pp TS Py = P

be a sequence of blow-ups resolving the singularities on F», i.e. by setting o =
12 0 ... 0mg 0, if X is the strict (or proper) transform of F7 with respect to o,
then

O'|XIX—>F7

is a desingularization of F7.
If we call V; the strict (or proper) transform of V;_; with respect to m;, then
the desingularization of F7 can be written as follows:

X=Vio 23 . oy, 2y v = B
where 7} = iy, 1 Vi — Vi_1.
Let us assume that m; is a blow-up of IP;_; along an algebraic subvariety
Y;_1 C IP;_1 of dimension j;_; = 1 or = 2, that the variety Y;_1 is also a subvariety

of V;_1, and that V;_; C IP;_, passes with multiplicity 2 through Y;_;. Here Y;_;
is either a line or a surface.
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Let us set n;—1 = =4+ 1+ 5,1 +2, fori =1,...,12 (cf. [10, p. 152]).

A hypersurface @3, of degree 2m in IP* is an m-canonical adjoint to Fy (with
respect to the sequence of blow-ups 71, ..., m12) if the restriction to X of the divisor

Dm = 7TT2{7TT1 [ . Wik(q)gm) — mn0E1 i ] — mn10E11} — mn11E12

is effective, i.e. Dy, > 0, where E; = 771(Y;_1) is the exceptional divisor of 7;
and 7} : Div(IP;,_1) — Div(IP;) is the homomorphism of the Cartier (or locally
principal) divisor groups.

Note that, if ®a,, is an m-canonical adjoint to F7, then Dy, = mK, where
‘=" denotes linear equivalence, K denotes a canonical divisor on X, and D, |, €
ImK| = H°(X, Ox(mK))*/k*, where (...)* = (...)\{0}.

The following picture is useful.

{linear system of m-canonical adjoints to F — |mKx|

Hry
(I)2m|p7 — Dm\x

Since F7 is normal, the map in the above picture is an isomorphism of projective
spaces (cf. [10, Section 4, Corollary 8]).

3.1. Canonical adjoints to F7 and pg

The canonical adjoints to F7 are obtained for m = 1. They are hypersurfaces
of degree 2: ®5 passing with multiplicity n;_1 on each singularity on F%. The
singularities on F; are either lines or infinitely near surfaces, so we have n;,_1 =0
for lines, and n;_1; = 1 for surfaces. For six lines with a surface infinitely near, we
thus have ®5 as a canonical adjoint to F7 if @5 passes through the six lines.

The linear system of canonical adjoints to F7 is given by

Do a10001 X0X4 + a01100X1X2 + a01010X1 X3 + a00110X2X3 =0

and p, = 4.

3.2. Bicanonical adjoints to F; and P,

The bicanonical adjoints to F7 are obtained for m = 2. They are hypersurfaces
of degree 4: ®, passing with multiplicity 2n;_; on each singularity on Fy. The
singularities on F; are either lines or infinitely near surfaces, so we have 2n;, 1 =0
for lines, and 2n;_; = 2 for surfaces. For six lines with a surface infinitely near,
we thus have ®4 as a bicanonical adjoint to F7 if ®4 passes through the six lines
and the proper transform of ®4 passes through the six infinitely near surfaces.
For bicanonical adjoints we need the restriction to F7, but two bicanonical
adjoints cannot be identified using this restriction because the degree of ®4is 4 < 7.
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Thus, from the normality of F7, the number of linearly independent bicanonical
adjoints coincides with the bigenus P, (cf. [10]). These bicanonical adjoints are
also called global bicanonical adjoints (loc. cit.).

The linear system of bicanonical adjoints to F7 is given by

Dy a30001 XS X4 + a21001 X2 X1 X4 + a20101 X2 X2 X4 + a20011 X2 X3X4 + a20002 X2 X3+
@12001 X0 X2 X4 + a11110X0X1 X2 X3 + a11101 X0 X1 X2 X4 + a11011 X0 X1 X3 Xa+
a11002X0X1X2 4 a10200 X0 X2 X4 + a10111 X0 X2 X3X4 + a10102X0X2X2 + a10021 Xo X2 Xa+
a10012X0X3X7 + a10003X0X3 + a02200 X2 X3 + a02110X2 X2 X3 + ap2020 X2 X3+
a01210X1 X2 X3 + a01120X1 X2 X2 + a01111 X1 X2 X3X4 + aoo220X2X2 =0

and P, = 23.

We do not calculate the 3-canonical adjoints and P; for now. We shall do so
when we have all the singularities on F; (Section 9.3).

4. New singularities on F; - our third step

If we agree with Ronconi, then we impose on the remaining four edges r7, rg, r9,

710
Xo=0 Xo=0 Xo=0 X1 =0
r7 X1=0 , Ts: X2:0 , Tg! X3:0 , T10 X2:0 s
X4=0 X4=0 X4=0 X3=0

that they be triple lines. In this case, the canonical adjoints to the new Fy (cf.
Section 3.1) must pass through the four lines because n;_; = —-4+1+1+4+3=1
It is easy to see that there are no canonical adjoints, so p, = 0. The bicanonical
adjoints to the new F; (cf. Section 3.2) must pass doubly through the four edges
because 2n;_1 = 2, so they have the equation

a12001 X0 X2 X4 + 410201 X0 X2 X4 + a10021 X0 X2 X4 + a11110X0X1 X2 X3 + a11101 X0 X1 X2 Xa+
a11011 X0X1X3X4 + a10111 X0 X2 X3X4 + a01111 X1 X2 X3X4 =0

andP2:8.

Remark 1. There is an important fact to consider when imposing that the four
edges r7, rg, Tg, r19 be triple, as above. If we impose on the three edges 77, rg, 9
that they be triple, then we kill six coefficients in the equation of the bicanonical
adjoints, i.e. ap2200 = @o2110 = @02020 = Q01210 = Go1120 = Goo220 = 0, whereas if
we only impose on the edge r1(¢ that it be triple, then we kill nine coefficients, i.e.
30001 = G21001 = 020101 = @20011 = (20002 = 411002 = A10102 = @10012 = 410003 =
0.

This is due to the particular position of the first six double edges, and to the
properties of the variables X and X4. O
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The new singularities having six double edges with a double surface infinitely
near that we want to impose on F7 (see Section 2) are given by three triple edges
r7, T3, 9. This means that there is only one canonical adjoint to this F%7, and it is
given by

Dy 1 a10001 XXy = 0.

To kill ajgoo1, we impose on F7 an ordinary 4-ple point P = (1,1,1,1,1). The
canonical adjoints must pass through P, so a1pp01 = 0 and py = 0. The bicanonical
adjoints must have a double point at P. For this to happen, five conditions must
be satisfied, and the bigenus is therefore P, = 23 — 6 — 5 = 12. In other words,
we have a gain of four numbers by comparison with the triple edge 19, and again
P, =844 =12 (see Remark 1).

We also tried to substitute the 4-ple point on F7 with a triple point at P =
(1,1,1,1,1) having an infinitely near triple line, but this last singularity seems to
disturb the previous singular edges and creates new singularities.

Conclusion. The best choice of singularities for F7 is given by the above six
double edges r1,72,73,74,75,7¢ With an infinitely near double surface, the triple
lines r7,rg, r9, and the ordinary 4-ple point at P = (1,1,1,1,1). New unimposed
singularities appear as well (cf. Section 8, Propositions 2,3): they are double sin-
gular lines, and they are negligible singularities because they do not affect the
canonical adjoints to Fr, so they leave the birational invariants unchanged. In
this case, we shall prove that the birational invariants of a desingu-
larization of F7 are given by qi = q2 = pg =0 and Pz = 12 (cf. Sections
8,9,10,11).

5. Imposing the triple lines r;,rg,rg on F

This is easy to do by choosing ai13201 = @13021 = @12301 = Q12031 = Q10321 =
(10231 = 03310 = (03220 = (03130 = Q02320 = 402230 = G01330 = 0.

6. Imposing a 4-ple point on F; at P =(1,1,1,1,1)

The equation of F; with a 4-ple point in P is very long, so we cancel several
coefficients a;jrim that are not essential to our construction. To be precise, we set
(22111 = **+ Q12121 = - -+ = a11122 = 0, except for as1211 because, in the calculation
of the 4-ple point, it equals %(—13031111 + a13111 + a11311 + a11131 + 13a11113).
After cancelling these coefficients, and those in Section 5, the equation of Fr
given at the end of Section 2 now looks like
Fr: (141002X3X1Xf + a40102X3X2Xf + a40012X3X3Xf + a32002 X X2 X2 + az1111 Xg X1 X2 X3Xa+
a31102 X5 X1 X2 X7 + az1012 X5 X1 X3X] + as1003 X X1X§ + a30202 X5 X5 X3 + azo112 X5 X2 X3 X5+
Ol30103X3X2X413 + a30022XgX§X42 + a30013 X5 X3 X5 + ag3002 XZ X3 X2 + a22201X§X12X22X4+
422102 Xe X7 X2 X2 + a20021 Xe XTI X2 X4 + a22012 X X7 X3 X2 + ano003 X X7 X5+
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a21211 Xg X1 X3 X3X4 + 21202 X X1 X3 X3 + a21103 X3 X1 X2 X3 + a21020 X5 X1 X2 X3
a21013X§X1X3X2 + 21004 XEX1 X} + a20302 XZ X3 X2 + a20221X§X22X§X4 + a20212XgX22X3X42+
420203 X5 X3 X3 + a20122 X2 X2 X5 X3 + a20113 X3 X2 X3 X5 + a20104 X5 X2 X} + a20032 X0 X3 X7+
20023 X5 X2 X5 + a2001a X2 X3X ] +ar3111 X0 X3 Xo X3 X4 + 12220 X0 XF X3 X5 + a122020 X0 X T X3 X3+
a12022 X0 X7 X2X5 + ar11311 Xo X1 X5 X3X4 + a11131 Xo X1 X2 X5 X4 + a11113 X0 X1 X2 X3 X5+
410222 X0 X2 X2 X2 + ap2e21 X2X2X2X4 = 0.

We impose the 4-ple point P = (1,1,1,1,1) considering the affine coordinate
Xo=1,X1 =z, Xy =y, X3 = 2z, X4 =t, making the translation

Fr(l,z—1,y—1,2—1,t—1)
= @41002(.’17 — 1)(t — 1)2 + -4 a13111($ — 1)3(y — 1)(,2 — 1)(t — 1) =+
+ a02221(ZL' — 1)2(y — 1)2(2 — 1)2(t — 1)

and imposing that the constant and the polynomials of degrees 1,2,3, in z,y, z,t
disappear.

There are 35 long equalities, the three simplest of which are: as3002 = —a13111,
1
ag0032 = —@11131," " * ,@21211 = 7(—13a31111 +a13111 +a11311 +a11131 + 13a11113).

7. The long final equation of F; with the singularities de-
scribed in the Conclusion at the end of Section 4

Fr: Q41002[10X0X7(2X0X1X2 —4X2X1 X2 + 2X3 X1 + X2X2 — X2X2 4+ 2X0X2X, — X2X? —
2X0X2 X5 — 2X0 X5 X3 +4X3 X2 X5 + X0 X3 — 2X5X3)]+

Q21004 [10X5Xa( — 4X1X3X] +2X1 X5 Xs +2X1 X5 +2X7X3Xs — X7 X3 — X7 X; +4X2X3X] —
2X2 X3 X4 — 2X2 X5 — 2X3 X3 X4 + X53X3 + X3X3)]+

Q20014 [10X5 X4 (4X1 X2 X] —4X1 X5 X —2X1 X3 X4 +2X1 X5 X4 —2X7 Xo Xa+2X7 X3 X4+ X7 X5 —
X7X3 —2XoX3 +2X3X5 + X3X5 — X3X3)]+

Q12022 [20X0 X7 (2X0X1X3 — 2XoX1 X5 —4XZX1X2 +4X2X1X3 — X7 X3 + X7X3 4+ 2X0o X7 Xa —
2Xo X7 X3 — Xg X3 + X§X3 +2X5 X2 — 2X5X3)]+

A31111( —4X3X1 X2 X5 — 6X3X1X3X5 — 26X X1 X5 X3Xa + 12X3X1 X3 X5 + 24X X1 X3X3 +
20X3X1 X2 X5 Xy +12X3X1 X2 X] — 36 X3 X1 X3 X] + 4X5X1X5 +8XoX3X5X5 + 12X X7 X3 X5 +
12X0 X7 X3X7 — 1AXE X X2 X7 + 24X X7PX3X] — 9X3X?X3 Xy — 16X X7 XXy — OXEXTX5+
8XSXTX7 — 8XPX3X2Xs —4X2X2X3X5 — 6X2XoX3X7 +12X3Xo X} +20X2 X2 X3 X5~
OXEXZX3Xy — 28X2X3XE —9XZX3XE — AX3XoX3X] +4XSXo X3 +AX3 X3 X3 + 16X3X3 X3+
AXEX2IXF — 16X5X2X3 +8X5 X3 X3)+

Q13111 ( — 12X2 X1 X2 X5 — 18X5X1 X3 X5 + 2X3 X1 X5 X3 Xy + 56X X1 X5 X5 + 32X X1 X3 X5 —
AUXEX X X2 + 12X X1 X3 X2 — 28X3 X1 X2 + 14X0X2X2X? —4XoXZX2X2 — 14X X2 X2X3—
2XEXTXo X7 — 28X3XT X3 X7 — TXEXTX3 X, —8X3XTX3 X4 + 33X XTXE +34X3XT X3~
AXZX2ZX2X, +20X0 X3 X0 X3 Xs — 20X2 X3 X2 4 28 X2 Xo X3 X5 — 38X2Xo X2 X2 — 4X2Xo X4 —
40X X2 X3 X 18X 2 X2 X3 Xy —4X e X3 X3 —TX X2 X2 428 XS Xo X3 X3 +12X S Xo X3 +12X3 X3 X3 —
12X8X3X3 +2X3X3XF + 12X3 X2 X5 — 16 X3 X3X5)+
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Q711311 (20X0X1X5X5Xy — 12X5X1 X2 X5 + 22X0 X1 X3 X5 +2X X1 X5 X3Xa — 44X X1 X5X] —
8X2X1X3X7 +36X3X1X2X] — 28X X1 X3 X] + 12X X1 X5 — 6XoX3X3X7 —AXo X7 X3 X2+
6XoXZXZX: +18XEX XoX: — 8X2XIX3 X2 — TXEXEXEX, +12X2X2X2X, — TX2XIXE —
6XEXTXT —AXTX3X3IXs — 12X3 X2 X3 X5 + 42X X2 X3X] — AX3 X2 X — 20X X5 X5 X} —
TXGXIX3X1+36XEX5X3 — 20X X5XF —TX5X5XE —12X5 X2 X3 X5 — 28X Xo X5 +12X8 X3 X3 +
48XSXIXE — 18X X3XF — 28X5 X2 X5 + 24X X3 X7)+

Q11131 (20X0X1 X2 X5 X4 + 28X X1 X2 X5 — 18X X1 X3 X} + 2X2 X1 X3 X3 Xy — 24X3 X1 X3 X5 —
28X X1 X3XF —AXEX1 X X] + 12X8 X1 X5 X7 + 12X5X1 X5 — 6X0X3X3X37 —4Xo XTI X3 X3+
6XoXZX3IXF —22X2X7PXo X7 + 32X X7 X3 X7 + 13X2XIXEXa — 8X2XIXEXy — TXEXX5—
6XSXTXF —AXIX3X2X, — 12X X0 X3X5 — 18X X2 X3 X7 — AX2 X2 X 1§ +40X2 X3 X3X 35—
TXEXZX2X, —AX2X2X3+33X2X2X3 —20X2 X3 X2 — 12X Xo X3 X2 +12X3 X X3 — 28X 3 X3 X5 —
12X8X3X3F +42X5X3XE + 12X5 X2 X7 — 16X5 X3X7)+

Q11113 (20X0X1X2X3X] — 4XJ X1 X2 X5 — 46X X1 X3X5 — 26X X1X5X3Xy + 52X X1 X5X] —
16X2X1X3X57 — 68X5X1 X2 X7 +84X3X1 X3 X] +AX3X1 X3 — 22X X2 X3X7 — 8XoXi X3 X2~
38X XTX3X] +26X3 X7 X2 X] — 16X X7 X5 X7 + 21 X3 XF X3 Xy + AX2XT X3 X + 21 X3 X7 X5 —
22XSXIXZ 4+ 12XFX3X3Xa — 4XE X2 X3 X5 —6X3 X X2XE — 8X7 X0 X5 + 20X X3 X3 X5+
2IXZXIX2Xa+12X3X2XE +21X2X3X5 —AXSXo X3 X +AXS X0 X3 +4XS X3 X5 — 44XEX3XT —
6XSXIX] +44X5X2X] — 32X5X3X]) = 0.

This F7 is a linear system of hypersurfaces of degree 7. From now on, by Fr; we
mean the generic element of the above linear system (often omitting the adjective
“generic”).

8. Desingularization of the (generic) Fr

8.1. On the actual singularities on F7; and the normality of Fr

We call the singularities on F7 actual singularities to distinguish them from those
infinitely near.

We have imposed the singularities described in the Conclusion at the end of
Section 4 on a degree 7 hypersurface. In particular, we have imposed the actual
singularities among them. In the present section, we prove the following:

Proposition 1. The actual singularities on ¥y are given by siz double lines
r1,r2,r3,04,T5,Te (cf. Section 2), three triple lines r7,rg,rg (cf. Section 5) and
the 4-ple point P = (1,1,1,1,1) (¢f. Section 6), and no others. In particular, Fy
is normal.

Proof. (The proof is very long.) Using Bertini’s theorem, the actual singularities
on the generic F; belong to the base points of the linear system. These base points
are points that are the zeros of all the polynomials defining the hypersurfaces of
the linear system.

First step [(1)]: Let us start by considering a4100210X0X3(Xo — X2)?(X1 —
X3)(2Xo — X1 — X3) =0, and Xy = 0 in particular. By intersecting F7 = 0 and
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Xo = 0, we obtain
0 X?X3X3X4(—8as1111 — 4ars111 — 4ar1s11 — 4ari131—
{ [ = 12(111113) = 0
Xo=0
and we deduce the following 4 planes that are in the base points of the linear
system:

X():O X():O X():O X():O
{ X; =0 U{ X, =0 U{ X;=0 7\ Xa=0
According to Bertini’s theorem, the actual singularities on F%7, that are con-
tained in Xy = 0, belong to the 4 above planes.

I) Let us consider the singularities on { §0 i 8
1=
From (%)X02X1:O = X22X§Xf(10a41002 —+ 8(],31111 + = 22(111113) _ 07 we
obtain the three imposed singular lines
Xo=0 Xo=0 Xo=0
riiq X1=0 ,7m5:8 X3=0 , r7:4 X1=0
Xo=0 X3=0 X, =0
II) Let us consider the singularities on { §0 i 8
5=

From (%)XO:X?ZO = 20a12022 X7 X3X? = 0, we obtain the three imposed
singular lines

Xo=0 Xo=0 Xo=0
r1 X1:0 , Ts: X2:0 , Tsg: X2=0
Xo=0 X3=0 X,=0
III) L ider the singulariti Xo=0 g oF; =
) Let us consider the singularities on Xs=0 ° rom (BX0 ) Xo=Xs=0 =
X12X22Xf(—10a41002 — 20a12022 + 12a31111 + -+ — 38&11113) = 0, we obtain the
three imposed singular lines
Xo=0 Xo=0 Xo=0
rs:¢ X1=0 , r3:¢ Xo=0 , rg:< Xo=0
X3=0 X3=0 Xy=0

IV) Let us consider the singularities on { §2 z 8 . From (gﬁ ) Xo=X4=0 =

X?X2X3(12a31111 +- - —8ai1113) = 0, we obtain the three imposed triple lines

Xo=0 Xo=0 Xo=0
T X1=0 , rg: Xo=0 , rg: X3=0
X,=0 X4=0 X,=0

Second step [(2)]: Let us continue to consider X4 = 0 in
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a4100210X0X42(X0 —X2)2(X1 —Xg)(QXo —X1 —X3) =0. By replacing XO with X4
and omitting this duplicate, as before, we obtain the three imposed double lines

X1 =0 Xo=0 X1 =0
o & X2:0 , Ty X3:0 , Te : XgZO
X, =0 Xy =0 X4=0

From now on, we consider XqXy4 # 0, because Xo X4 = 0 has already been
considered.

To argue our next point, it is convenient to consider the first four parts of the
linear system defining F7 in the following way:

10a41002 X0 X3 (X0 — X2)* (X1 — X,
10a21004 X5 X4 (X3 — X4)* (X1 — X
10a20014 X5 X4 (X1 — X4)? (X2 — X3
20012022 X0 X7 (X0 — X1)? (X2 — X.

(%)

Third step [(*)(3)]: In the first equation of (x), we choose Xy = X5. In this step,
substituting Xy = X5, we have to find the zeros of all the hypersurfaces of the
linear system defining F7. Let us start with the fourth equation of (k). Substituting
Xy = X5, we obtain

XoX2(X1 — X5)2(Xy — X3)2=0.

Since we have already considered Xg = 0 and X, = 0, it remains for us to
consider two cases:

[(M)B)(A)] X1 =Xz [(*)(3)(B)] X3 = Xo.

In case [(*)(8)(A)], the second equation of (x) is vanishing. So, we consider
the third of (x). It is vanishing in the event of three possibilities:
[(A)I] X,=Xo, [(A)II] X35=Xo, [(A)III] —2X,+ X5+ X3=0.

In possibility [(A)I], we obtain the line Xg — Xo = X7 — X5 = Xy — X5 = 0.
The points of this line are base points of F7.

From (g%)erz:Xer:XrXQ:O = 20a11131X§(X3 — Xg) = 0 and from
Xo = Xo # 0 we obtain the singular 4-ple point P = (1,1,1,1,1). We note that if
we consider X5 = 0, then we obtain the singular point (0, 0,0, 1,0) € r1NraNryNrs.

In possibility [(A)II], we obtain the line Xg — X5 = X; — Xo = X5 — X5 = 0.
Its points are not base points of F7, so we intersect the line with F%. Considering
the particular equation of the linear system defining F» given by the coefficient
ai1113, for example, we obtain the equation

—8a11113X5 (X4 — X2)* =0
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which again furnishes the singular point P.

In possibility [(A)III], we obtain the line Xg — Xo = X7 — Xo = Xy — (X2 +
X3)/2 = 0. Its points are not base points of F%, so we intersect the line with Fy.
Considering the particular equation of the linear system defining F7 given by the
coeflicient agi111, for example, we obtain the equation

3/8&31111X22(X3 — X2)4(—3X3 — Xg) =0.

Considering X3 — X5 = 0, we obtain the singular point P and from X3 =
—X5/3, we have the point (Xa, X5, Xo, —X>2/3, X2/3). Substituting again in F,
we obtain

320/81X7(—2/3a13111 — 2/3a11311 — 2/3a11131 + A11113)-

This last expression cannot be equal to zero, because X5 # 0. (If Xo = 0, then
we obtain (0,0,0,0,0) ¢ IP*).
In conclusion, the point (Xso, Xo, Xo, —X5/3, X2/3) ¢ F;.

In case [(*)(3)(B)] the third equation of (x) is vanishing. So we consider the
second equation of (). It is vanishing in the event of three possibilities:

(B)I] X4= Xy, [(B)II] X; =Xy, [(B)III] 2X,; — X; — X2 =0.

In possibility [(B)I], we obtain the line Xg — X = X35 — X5 = X3 — X5 = 0.
The points of this line are base points of F7.
Let us consider (?)Q,)XO—X2=X3—X2=X4—X2=O = 20&13111X§(X2 — X1)3 = O,

finding the singular point P again.

Possibility [(B)II] coincides with [(A)I].

In possibility [(B)III], we obtain the line Xg — Xo = X3 — Xo = Xy — (X7 +
X52)/2 = 0. Its points are not base points of F7, so we intersect the line with F.
Considering the particular equation of the linear system defining F7 given by the
coefficient azq111, for example, we obtain the equation

3/8@31111X22(X1 — X2)4(—3X1 — Xg) =0.
Considering X7 — X5 = 0, we obtain the singular point P, and from X; =

—X5/3 we have the point (X2, —X5/3, X, X5,2/3X5). Substituting again in F7,
we obtain

320/81X7(—2/3a13111 — 2/3a11311 — 2/3a11131 + A11113)-

This last expression cannot be equal to zero, because X5 # 0.
In conclusion, the point (X2, —X5/3, Xo, X5,2/3X5) ¢ Fr.
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Fourth step [(*)(4)]: In the first equation of (%), we choose X; — X5 = 0,
considering XoX4(Xo — X2) # 0. This step is very similar to the third step
[(*)(3)], so we omit it here.

Fifth step [(*)(5)]: In the first equation of (%), we choose 2Xy — X; — X5 =0,
considering XoX4(Xo — X2)(X1 — X2) # 0. Again this step is very similar to the
third step [(*)(3)], so we omit it again.

As an example, we make the calculation in the last possibility of the Fifth
step [(*)(5)].

The last possibility starts with 2Xy — X7 — X3 =0 and 2X, — X; — X5 = 0.
Substituting in —2X,4 + X + X3 = 0, we obtain X; = X5 and the line Xy — (X2 +
X3)/2 = X4 — X5 = X; — X5 = 0. Substituting the last equalities in the fourth
(*), we obtain zero. We thus substitute in F7. Considering the particular equation
of the linear system defining F» given by the coefficient a3q111, for example, we
obtain the equation

1/2a31111 X5 (X2 — X3)* (X2 + 2X3) = 0.

Considering X5 = 0, we obtain the singular point (X3/2,0,0, X3,0) € ro, and
from X3 = X5 we obtain the 4-ple point P.

Finally, from X3 = —X5/2, we have the point (X2/4, X2, X2, —X2/2, X3), and
this point ¢ F7.

We have thus found the 9 singular edges, the 4-ple point P and no other
singularities.

This proves Proposition 1. ([

8.2. Resolution of the singularities on F; starting with the resolution of
the double lines rq,r3,...,rg on Fy

Proposition 2. We start the desingularization of Fr blowing up the double line rq
on Fr having a double surface infinitely near, given locally by planes. We also blow
up the singularities infinitely near the double surface, which are given by double
lines that are negligible singularities.

Proof. (The proof is again very long.) Let us consider r1 : Xg = X; = X5 =0 and
the affine set U, of affine coordinates Xg = w, X7 =z, Xo =y, X3 =2, Xy = 1.
8.2.1. Let us blow up the double line r; NU,y : w =2 =y = 0.

Locally the blow-up of this double line is given by B, , By,, By, which are de-
scribed in Section 2.

The strict transform F, of I with respect to the local blow-up By, is the
total transform divided by w? given by

I
o I, 21(20a20014 — 10a2001421 — 9az111121 — Ta1311121 — Ta1131121 + 33a1113121+
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+21a1111321 — 20a1113127) + wi(12a31111y1 + - - + 20ag100421 + -+ ) = 0.

The base points of the (generic) F;, on the exceptional divisor w; = 0 are given
by the plane w; = z; = 0. According to Bertini’s theorem, the possible singular
points on F}, that are on the exceptional divisor belong to this plane. To find the

. . . . . . . . OF,
possible singular points, we use partial derivatives. Considering (ﬁ)wl:zlzo =
20a20014 # 0, we see that there are no singular points on the plane and no singular
points on the exceptional divisor.

The strict transform F,  of F; with respect to the local blow-up By, is the
total transform divided by x3, given by

roL2

o I w522(20a20014 — 1042001422 — 9a3111122 — Ta1311122 — Ta11311%2 + 33G11131 22
2 2 2,22 _

+2lai111322 — 20a1113123) + x2(20a2100aw5 + - - - ) + x5Y525 (—4a13111 +---) = 0.

On the exceptional divisor xo = 0 there is the imposed double plane wo =
Ty = 0.

The strict transform F;S of F7 with respect to the local blow-up By, is the
total transform divided by y2, given by

o Fy - w323(20a20014 — 10a2001423 — 943111123 — Ta1311123 — Ta1131123 + 33a1113123
+21a1111323 — 20a1113123) + y3(—20az0014w3 + - - - ) + 23y3 23 (—4aizi1 +---) = 0.

On the exceptional divisor y3 = 0 there is the imposed double plane ws = y3 = 0.

8.2.2. Let us blow up the double plane w; = 22 =0 on F},,.

Locally, its blow-up is given by B.,, , By,,, which are described in Section 2.

The strict transform F;) of F, with respect to the local blow-up B,,, is the
total transform divided by w3;, given by

'Y qum : 20a20014221 + -+ + w21(20a21004a:21 + .- ) =0.

As before, the base points of the (generic) F,,, on the exceptional divisor
wg; = 0 are given by the plane wy; = 297 = 0. Using Bertini’s theorem, the
possible singular points on F; ~that are on the exceptional divisor belong to this

plane. To find the possible singular points, we use partial derivatives. Considering

oF"

( 82“;211 Vaway =201 =0 = 20a20014 # 0, we see that there are no singular points on the

plane and no singular points on the exceptional divisor.

The strict transform F, of F, with respect to the local blow-up By,, is the

T2g
total transform divided by x3,, given by

22

) =0

[/ 2 2 2 .2 2
oo [ 20a20014W55 222 +20a12022W22255 — 8G31111Y30255 + - - - +T22(20a21004 w55 +
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According to Bertini’s theorem, the singularities on F)/ are given by the
unimposed double line wgs = x99 = 299 = 0, which is on the exceptional divisor
z92 = 0, and by the imposed double line woy = Y22 = 295 = 0, which is outside
the exceptional divisor. The first double line is negligible, while the second is the
image of the imposed double line r3 : Xy = X5 = X3 = 0 having a double plane
infinitely near (cf. Introduction and Section 2).

Let us blow up the double plane ws = y3 = 0 on Fés. Locally, this blow-up is
given by

w3 = W31 W3 = W32Y32
BwSl : 1;3 i 1:31 7 Y32 : x3 i I32

Y3z = Y31W31 Ys = Y32

23 = 231 Z3 = 232

The strict transform F,, 1 of Fy_ with respect to the local blow-up By, is the

total transform divided by w3, glven by

oo F :20a20014231 + - + w31(20a21004y31 +---)=0.

w31

on the exceptional divisor ws; = 0 are given

1

As before, the base points of F,

w31

by the plane ws; = z31 = 0. Using Bertini’s theorem, and (2% )w;,=z5=0 =

20a20014 # 0, it follows that this threefold is nonsingular on the plane w3y = 231 =
0 and nonsingular on the exceptional divisor.

The strict transform F_ of F, /! with respect to the local blow-up B,., is the

7432

total transform divided by y3,, glven by

Y32

2 2 2
oo F/ : 20a20014w3p 232 + 10a41002w32235 + 1201111303223 + - -

+y32(—20a21004w3y + - -+ ) = 0.

Using Bertini’s theorem, the singularities on F/, are given by the unimposed
double line w3s = y32 = 232 = 0, which is on the exceptional divisor y3> = 0, and
by the imposed double line w3y = z33 = 232 = 0, which is outside the exceptional
divisor. The first double line is negligible, while the second is the image of the
imposed double line r5 : Xg = Xo = X3 = 0 having a double plane infinitely near
(cf. Introduction and Section 2).

Remark 2. Based on our aim (as stated at the end of the Introduction), we now
have to blow up the double lines that are outside the exceptional divisors. O

From now on, reference to Bertini’s theorem is taken for granted, and not
mentioned again.

8.2.3. We blow up the imposed double line wy; = y22 = 2220 = 0 on F,/ ,
which is outside the exceptional divisor.

Locally, the blow-up of this line is given by
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W22 = Wa21 Wa2 = W222Y222 W2 = W2232223

me . T22 f 221 : Byay - 22 f 222 i Bay, 22 f Z223 )
Y22 = Y221W221 Y22 = Y222 Y22 = Y2232223
222 = 2221W221 222 = 2222Y222 222 = 2223

The strict transform F)) =~ of F, with respect to the local blow-up By,,, is

given by

21
Y Fl’lf;zl : 20a21004%221 + - -+ + wag1(--+) = 0. Operating with the instruments
that we used before, we obtain that this threefold is also nonsingular on the plane
wWa21 = X221 = 0 and nonsingular on the exceptional divisor.

eee The strict transform F,) = of F;, with respect to B,,,, has the double plane
wazy = Y222 = 0.
eee The strict transform F7) =~ of F, with respect to B.,,, has the double plane

Wa23 = Y223 = 0.

We blow up the imposed double line w3s = w35 = 235 = 0 on F;’Bz‘, which is
outside the exceptional divisor. Locally, the blow-up of this line is given by

W32 = W321 W32 = W3227322 W32 = W3232323
Bw321 . T32 f I321w321; s Z32 f €322 : Bayy T32 f T3232323 _

Y32 = Y321 Y32 = Y322 Y32 = Ys23

232 = 2321W321 232 = 23227322 232 = 2323

The strict transform F'”  of FZ:; , With respect to the local blow-up B,,,, is

w321
given by
eoe 1) 1 y321(—20a21004+- - —8a11113) +- - +wsz1 (- - - ) = 0. Operating with the

w321
instruments that we used before, we obtain that this threefold is also nonsingular

on the plane w3z = y321 = 0 and nonsingular on the exceptional divisor.

eee The strict transform F,” ~of F) with respect to By,,, has the double plane

w322 = T322 = 0.

eee The strict transform F[7 = of F’ with respect to B.,,, has the double plane

w323 = 2323 = 0.

8.2.4. We blow up the double plane wagy = 222 =0 on F,/ .

Locally, the blow-up of this plane is given by

W222 = W2221 W222 = W2222Y2222
B . X222 = T2221 - B . T222 = 2222
w2221 * _ 9 Y2222 * _
Y222 = Y2221W2221 Y222 = Y2222

2222 = 22221 2222 = 22222
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The strict transform F/?__ of F!” with respect to the local blow-up B

. . w2221 Y222 w2221
is given by

ov I a21004(20 — 1022201 ) To201 + 2201 (- - - ) +Y2021 22201 (- - - ) Fwao21 (- ) = 0.

The base points of F,; ., on the exceptional divisor w21 = 0, are given
by two lines: waz21 = 2221 = y2221 = 0 and woa1 = 2221 = 22201 = 0.

’v

. . L OF
Calculating the partial derivatives ( 8;;“;22211)wmmzmmzymm:o = 20a21004 # 0,
8F/TJ

(G221 ) ty001 =w2221 =22021=0 = 20021004 7 0, We obtain that the threefold is non-

singular on the two lines and on the exceptional divisor.

ov The strict transform F;? =~ of F;” = with respect to By,,,, has the double line
Wao922 = Togoa = 22292 = 0. This double line is outside the exceptional divisor
and it is the image of the unimposed double line w9y = x93 = 292 = 0 on the

exceptional divisor on F) .

We blow up the double plane waz3 = 2203 = 0 on F./ . Locally, the blow-up
of this plane is given by

W223 = W2231 W223 = W223222232

€223 = T2231 €223 = 2232
Bw2231 : — 7 Bz2232 : —

Y223 = Y2231 Y223 = Y2232

2223 = 22231W2231 2223 = 22232

The strict transform Fy) = of F,) = with respect to the local blow-up Bu,,s,
is given by

i ) 2 .2 2
ov EY 10@210()24(2$%231 — T5931 Y9231 72231) + 10021004 (272231 — T593;) +
20a12022 (22231 — L3931 Y3031 22231) + az1111(- -+ ) + - -ar1113(- -+ ) + wazzi (- ) = 0.

The base points of F}) . on the exceptional divisor wa23; = 0, are given by

the line: wog31 = 2231 = 29231 = 0. Calculating the partial derivative

OF'?

(G222 Jwzzg1=w2281=22201=0 = 20@41002+20a23004 7 0, we obtain that the threefold

is nonsingular on the line and on the exceptional divisor.

The strict transform F.Y  of F!” = with respect to the local blow-up B.,,,, is
given by

oo 2 .9 2 2

ov [V ¢ —10a41002W22327 59325032 + 10021004 (2W3939T2232 — Wan30T2232)+
S _

20a12022 (w2232 + W2232%5930Y5030) +az1111 (- -+ )+ - -+ a11113(- - - ) + 22232(- - ) = 0.

The base points of F’ 2”2’232 on the exceptional divisor z2932 = 0 are given by the

plane wgo321 = 29932 = 0. Considering
aF/’U

(52222 )iyagn=20232=0 = 20a12022 # 0, it follows that this threefold is nonsin-

gular on the plane was32 = 29232 = 0 and nonsingular on the exceptional divisor.

We blow up the double plane wszo = 320 = 0 on F,” . Locally, the blow-up
of this plane is given by
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W322 = W3221 W322 = W3222T3222
B . €322 = T3221W3221 B . T322 = 3222
w3221 * I ) 3222 * —
Y322 = Y3221 Y322 = Y3222
2322 = 23221 2322 = 23222
: v 111 :
The strict transform Fy) =~ of F,” —with respect to the local blow-up Bu,,,,
is given by
] . —
ov F) i y3201(—20a21004 + -+ — 8a11113) + 322123201 (- -+ ) + w3221 () = 0.
The base points of Fﬁ;m on the exceptional divisor w321 = 0 are given by
two lines: ws221 = 3221 = Y3221 = 0, W3221 = Y3221 = 23201 = 0.
v
w3221 et N p—
( Oys221 )w3221:w3221:y3221:0 = —20a21004 8ai1113 75 0,
(8F[,Jv3221) — _90 —..—8 #0
0y3221 w3221 =Y3221=23221=0 — 21004 11113 .

It follows that this threefold is nonsingular on the exceptional divisor.

The strict transform F,”  of F," ~with respect to By,,,, is given by

oo 2 2 2
ov Y+ —10a41002W3222Y3929 + 10020014W3090 + 1241111323909 + - - - + T3202(- - )

The threefold F;.gm on the exceptional divisor x3209 = 0 has the double point

(0,0,0,0). Outside the exceptional divisor, F,? ~ has the double line wszzn =
Y3202 = 23200 = 0. This double line is the image of the unimposed double line
w3s = Y3z = 232 = 0 on the exceptional divisor on F;’SQ We note that the double
point (0,0,0,0) is on the above double line, so we can consider F}? ~ nonsingular

322
on the exceptional divisor.
We blow up the double plane wss3 = 2303 = 0 on F!” . Locally, the blow-up

. . . 2323 "
of this plane is given by

W323 = W3231 W323 = W3232%3232
. ) T323 = T3231 . . ) %323 = T3232
Bw3231 * — ) 823232 * —
Y323 = Y2231 Y323 = Y3232
2323 = 23231W3231 2323 = 23232
The strict transform F);, = of F!” ~with respect to the local blow-up Buy,,,,
is given by
ov FY .+ 10a2100423231 —20a21004Y3231 + - - +ws231 (. . . ) = 0, which is nonsingular

on the exceptional divisor.

The strict transform F!V _ of F!” with respect to the local blow-up B.,,,,, is

. 23232 2323
given by
oV Fé;}232 : w3232(10a41002 + = 22@11113) +--- 4 23232(' N ) = 07 which is nonsin-

gular on the exceptional divisor.

The tree of the blow-ups solving almost all of the singularities of Fy N Uy is
shown below.
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F70U4

F/

Wi

/N /\

" 1" 1
FW21 F$22 FW31
" " /// l// /l/ "
FW221 F 2223 V"321 13322 FZS23

ANYANRYANY AN

F/v F/v F/v F/v F/v F/v F/v F/v

W2221 Y2222 7 W2231 Z2232 W3g221 = T3222 W3231 Z3232

where the nonsingular threefolds on the exceptional divisor are drawn in bold type.

Remark 3. We still need to blow up two unimposed double lines: wa290 = X922 =
Z2992 = 0 outside the exceptional divisor on Fégmz, and w3009 = Y3220 = 23092 = 0
outside the exceptional divisor on F,? . As we have already said, they are images
of the unimposed double line woy = X295 = 222 = 0 on the exceptional divisor on
F; , and of the unimposed double line w3y = y32 = 232 = 0 on the exceptional
divisor on F} . Infinitely near each of these lines there is another double line. The
four double lines terminate the desingularization of Proposition 2, showing that

they are four negligible singularities infinitely near the imposed singularities. [

8.2.5. We blow up the unimposed double line W2222 = X292922 = 2292922 — 0

outside the exceptional divisor on F;z’nz

Locally, the blow-up of this line is given by

waz22 = W1 waz22 = WaXo waz22 = W3Z3
B, : Tooo9 = X1 Wy, . By, : T2222 = X2 . By, - To222 = X323 .

Y2222 = Y1 Y2222 = Yo 3 Y2222 = Y3

29200 = Z1 W1 29200 = Z2X> 29220 = Z3

The strict transform Fy, of Fézm with respect to the local blow-up By, is

given by

v Fyy : 20a1111321 + -+ + Wi (- -+ ) = 0, which is nonsingular on the exceptional
divisor.
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v The strict transform F§_ of F,’ = with respect to Bx, has the double line
Wy =Xo=2,=0.

The strict transform Fy_ of F;;mz with respect to Bz, is given by

v Fy o —8azii+- -+ 12a1113+ - + Z3(--+) =0, which is nonsingular on the
exceptional divisor.

We blow up the unimposed double line w3o20 = Y3292 = 23202 = 0 outside the
exceptional divisor on F'? Locally, the blow-up of this line is given by

r3222"°
w3222 = Wiy w3222 = W5Y5 w3290 = WsZs
B, : T3202 = X4 . By, : T3090 = X5 . By - 3999 = Xg .
Y3222 = Y4 Wy ° Y3222 = Y5 6 Y3229 = Y576
23200 = ZyWy 23200 = Z5Y5 23200 = Zg

The strict transform Fjy, of F,"  with respect to the local blow-up By, is

3222
given by

v Fyy, 0 20a1111324 + - + Wa(---) = 0, which is nonsingular on the exceptional
divisor.

v The strict transform Fy.  of FY  with respect to By, has the double line

3222
Ws=Ys = Z5 = 0.

The strict transform Fy of F, ., with respect to Bz, is given by

v ng : —8agi111 + -+ 12a11113 + - + Zg(- - - ) = 0, which is nonsingular on the
exceptional divisor.

8.2.6. We blow up the double line W5 = X5 = Z5 = 0 on the exceptional
divisor on F'y, .

Locally, the blow-up of this line is given by

Wo = Wy Wo = Waz Xo9 Wy = Wa3Zas

Bu.. - Xo = Xo1Wa1 | By, : Xo = Xo By, - Xo = X23223.
2 Yo =Yo T Yo = Yo T Yo =Yo3
Zy = ZnnWay Zy = Zz2 X2 Zy = Za3

The strict transform F"'yy,, of 'y, with respect to the local blow-up By, is
given by

ve FMW[/V21 : X21(710a41002 + -+ 20&11113) + -+ W21(' : ) = 0, which is non-
singular on the exceptional divisor.

The strict transform F”'x,, of F§ with respect to Bx,, is given by
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ve FVx , : ng(—loa41002 + = 38a11113) + 4 X22(~ . ) = 0, which is non-
singular on the exceptional divisor.

The strict transform F*'z,, of F§  with respect to Bz,, is given by

ve FV 5 .+ —8asi111 + -+ 12a11113 + - - - + Za3(- - - ) = 0, which is nonsingular on
the exceptional divisor.

We blow up the double line W5 = Y5 = Z5 = 0 on the exceptional divisor on
F%,. Locally, the blow-up of this line is given by

W5 = Ws1 Ws = Ws2Y52 Ws = Ws3Z53
Bur - X5 = X51 By X5 = X5 B, - X5 = X53
Wor ') Y=Y Wsr 7% Ys=VYs TUP Y Y = YasZss
Zs = Z51 Wiy Zs = Z53Y52 25 = Zs3

The strict transform F*'w,, of Fy_ with respect to the local blow-up By, is
given by

Ve Fvlwsl : *38@11113}{51 +20a11113Z51 +-- +W51(' . ) = 0, which is nonsingular
on the exceptional divisor.

5

The strict transform F™'y;, of Fy. with respect to By, is given by

ve ley52 : W52(710a41002+- . ‘738&11113)+' . +Y:52( N ) = O, which is nonsingular
on the exceptional divisor.

The strict transform "'z, of Fy_ with respect to Bz, is given by

ve FV 5 .+ —8azi111 + -+ 12a11113 + - - - + Zs3(- -+ ) = 0, which is nonsingular on
the exceptional divisor.

This proves Proposition 2. O

Remark 4. In the proof of Proposition 2, we have solved the singularities given by
the three imposed double lines rq, r3 and rs. In fact, we have already said that the
double line wgy = Yoo = 220 = 0 is the image of rg : Xg = X3 = X3 = 0, and that
the double line wss = x32 = 232 = 0 is the image of r5 : Xo = X; = X3 = 0. Since
we solved the singularities given by these double lines in the proof of Proposition
2, the above statement is true. O

Remark 5. We have to solve the singularities given by the three imposed double
lines ra, r4 and rg, but this desingularization is very similar to the one in the proof
of Proposition 2. We just need to change Xy to X4, so we omit this duplicate here.
We add that, in the proof of the following Proposition 3, we solve the singularity
given by rg : X1 = X3 = X4 =0. O
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8.3. Resolution of the singularities starting with the triple lines r7, rg
and rg on Fr.

Proposition 3. Blowing up the triple edge r7 on ¥7 having negligible singularities
infinitely near.

Proof. (The proof is again very long.) Let us consider r7 : Xg = X7 = X4 =0, and
the affine set Us of affine coordinates Xg = w, X7 =2, Xo =1, X3 =2, X, =t

8.3.1. Let us blow up the triple line r,NUs; :w=xz=t=0 on F; NUs,.

Locally, the blow-up of the double line 7 NUs : w = =t = 0 is given by

w = Wi W = Wak2 w = w3t3
) Tr=x1w1 . T =I5 i i T = x3ls
By, : _ 3 By, _ ; By _
z=2 Z =29 zZ =23
t= t1w1 t= t2$2 t= t3

The strict transform F, of F7 N U, with respect to B, is obtained from the
total transform by dividing by w$

o Fl, : 10a2100427t1 + 20a1131121 2101 — 8an11132727 + -+ - + wi(—20a11311¢7 +
2a13111%1 211 + -+ ) = 0.

The base points of Fy, that are on the exceptional divisor w; = 0 are given by
the points of the simple plane w; = z; = 0. On this plane there is the unique

singularity given by the unimposed double line w; = 2z = t; = 0, because
OF,, X
(Gutwi=z=0 = —20a11311¢7 = 0.

Outside the exceptional divisor there is the imposed double line x1 = 21 =
t1 = 0, which is the image of rg : X7 = X35 = X4, =0.

The strict transform F,, of F7 with respect to By, is obtained from the total
transform by dividing by 3

ro. 2 2 2
o I : 12a1111325t2 — 8ai1113wazs + 20a11311wa20ts + - - + w2(2a11131W5 20t —
2,2
20a11311w2t2 + - ) =0.

The base points of F), that are on the exceptional divisor x2 = 0 are given by

. OF!
the points of the plane x5 = z5 = 0. We have (67122)12222:0 = 20a11311wats = 0.
The plane is therefore simple and it contains the two unimposed lines wy = x5 =
2z =0, x5 = 29 = t3 = 0 and the two lines are double lines.

Outside the exceptional divisor there is the imposed triple line wy = 29 =ty =
0, which is the image of rg : Xg = X3 = X4, = 0.

The strict transform F}  of F; with respect to By, is obtained from the total
transform by dividing by 3
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L] Ft/5 : 22&1111311)323% - 4(111131.%%2% + 20a11311W31‘323 + -+ tg(—20a41002w§,23 -
200,11311’11]% -+ .- ) =0.

The base points of F}, that are on the exceptional divisor t3 = 0 are given by
the points of the simple plane z3 = t3 = 0. On this plane there is the unimposed
. OF)]
double line w3 = z3 = t3 = 0 because (Tt;’)zgztgzo = —20a11311w3 = 0.

Outside the exceptional divisor there is the imposed double line w3 = x3 =
z3 = 0, which is the image of r5 : Xg = X3 = X35 =0.

Remark 6. Based on our aim (as stated at the end of the Introduction), here
again, we now have to blow up the singularities that are outside the exceptional
divisors. d

8.3.2. Let us blow up the double line z; = z; =t; =0 on Fé)l.

Locally, the blow-up of this double line is given by

wi = w11 w1 = W12 wi; = w13
B . 1 = Z11 . . T1 = 12212 | B, T1 = T13t13
T11 _ s Mz - _ y Ptz - _ t
21 = 211711 21 = 212 21 = Z13l13
t1 = t11211 t1 = t12212 t1 =113

ee The strict transform F, of F ~with respect to B,,, has the double plane

x11 = t11 = 0 on the exceptional divisor.

ee The strict transform F!' of F with respect to B.,, has the double plane
z12 = t12 = 0 on the exceptional divisor.

The strict transform F}! of F), with respect to By, is given by

PYS F//

tis

: —20a11311 w13 + - - - + tlS(' e ) = 0.

The base points of Fy/ that are on the exceptional divisor t;3 = 0 are given

"

. dF,
by the pOlIltS of the plane w13 = t13 = 0. From ( 61;1133 )w13=t13=0 = —20&11311 75 0,
we deduce that there are no singular points on the plane or on the exceptional

divisor.

Let us blow up the triple line wy = 2o = t3 = 0 on F}_. Locally, the blow-up
of this triple line is given by

Wz = Wa1 Wa = W22222 wWg = waztas
B . T2 = T21 . . T2 = T22 - B, - T2 = T23
w21 _ z22 * _ ’ tos - _ t
29 = Z21W21 22 = 222 Z9 = Z23123
12 = 191w to = t22222 to = 123

ee The strict transform F, —of F, with respect to By, has the double point
(0,0,0,0) on the exceptional divisor. This double point is on the double line
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To1 = 291 = to; = 0 outside the exceptional divisor. So, we can say that F[ljm
is nonsingular on the exceptional divisr.

Remark 7. We note that this double line is the image of the unimposed double
line x5 = 25 = t5 = 0 on the exceptional divisor of threefold F ;2. O

The strict transform F, of F,  with respect to B.,, is given by
oo [ i wip(12a31111+- - - —8a11113) +toa(—8azii1n +- - - +12a11113) +222(- -+ ) = 0.
The base points of I/} that are on the exceptional divisor ze; = 0 are given
by the points of the line wss = t23 = 0. From (ﬁ)wm:m:tmzo = 12a31111 +
-+« — 8a11113 # 0, we deduce that there are no singular points on the line or on
the exceptional divisor.

ee The strict transform F}! of F, with respect to By,, has the double point
(0,0,0,0) on the exceptional divisor. It is on the double line wog = xag = 203 =0
outside the exceptional divisor. So, we can say that Ft’; , is nonsingular on the
exceptional divisor.

Remark 8. We note that this double line is the image of the unimposed double
line wy = 22 = 22 = 0 on the exceptional divisor of threefold F,. O

Let us blow up the double line w3 = x3 = 23 = 0 on Ft’s Locally, the blow-up
of this double line is given by

w3 = w31 w3 = W32232 w3 = W33233
B, : Ty = Ty s " T3 = T32 By, : T3 = T33233

23 = 231W31 23 = 232T32 23 = 233

3 =1tz t3 = 32 t3 =133

The strict transform F); ~of F}, with respect to B, is given by

ee i —20a11311t31 + - —w31(---) = 0. The base points of F;_ on the excep-

aF//
tional divisor are given by the simple plane ws; = t3; = 0. From (ﬁ)wm:tm:o
= —20a31311 # 0, we deduce that there are no singular points on the plane or on
the exceptional divisor.

ee The strict transform F,. of F} with respect to By,, has the double plane

Z32
ws3s = T32 = 0 on the exceptional divisor.

ee The strict transform F = of F} with respect to By,, has the double plane
w3z = 233 = 0 on the exceptional divisor.

8.3.3. We blow up the double plane z;; =t¢;; =0 on F”

xri1*

Locally, the blow-up of this plane is given by
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w11 = Wi11 W11 = Wi112
B . T11 = T111 - B . r11 = 112112
r111 * _ ) t112 * _
211 = 2111 211 = 2112
t11 = t1117111 t11 = t112

eee The strict transform F,” —of F)' with respect to B,,, has the double point
(0,0,0,0) on the exceptional divisor. It is on the double line w17 = 2111 = t111 =0

outside the exceptional divisor.

Remark 9. We note that this double line is the image of the unimposed double
line wy = z1 = t1 = 0 on the exceptional divisor of threefold Fqu U

The strict transform F}’ of F/ with respect to By,,, is given by

YY) Ft/;/u

0 —20a11311 w112 + - 4 Tr122112(- - 0) Ftie(-) = 0.
The base points of Fy”  on the exceptional divisor are given by the two lines

w12 = T112 = t112 = 0, w112 = 2112 = 112 = 0.
111 111
oF oF,"

t112 — —
From (512 ), ,=010=tio=0 = —20a11311 # 0, (5522 )wiis=s115=ti1o=0 =
—20a11311 # 0, we deduce that F}” is nonsingular on the exceptional divisor.

We blow up the double plane 212 = t12 = 0 on F7/ . Locally, the blow-up of
this plane is given by

W12 = Wi21 W12 = Wi122

T12 = T121 T12 = 122
132121 : _ ; lgt122 : _

Z12 = 2121 Z12 = Z122t122

t12 = t1212121 t12 = t122

YR . us
The strict transform F7

eee [ :10a21004t121 + 2250 () + -+ 2101(- -+ ) = 0. If we intersect

of F' with respect to B.,,, is given by

The base points of F” ~on the exceptional divisor are given by the line x19; =
2121 = t121 = 0.

111

oF
From (572515 =210 =t121=0 = 10a21004 + -+ + 21a11113 # 0, we deduce that

Fy"  is nonsingular on the exceptional divisor.

The strict transform Ft/i/m

of F/' with respect to By,,, is given by

T Ft/i/m

: 10a210042122 + Wino (- ) + - + t122(- -+ ) = 0.

The base points of F{” on the exceptional divisor are given by the line w122 =
z122 = t122 = 0.

n"r
t
From (—5;222) 90 =2120=t125=0 = 10a21004 + - - - + 2La11113 + 20a11311T122 # 0,

Ot122
we deduce that F/” _ is nonsingular on the exceptional divisor.

ti22




A regular threefold of general type with py = 0 and P> = 12 43

We blow up the double line x21 = 221 = t21 = 0 on F};, . Locally, the blow-up
of this line is given by

W21 = Wa11 W21 = W212 W21 = W213
To] = To11 ) T2l = T2122212, . T91 = X2130213

lgIzll : 3 Pzaip - ) lgtzls : :
221 = 22112211 221 = %212 221 = 22131213
to1 = to117211 to1 = 2122212 to1 = t213

eee The strict transform F,” —of F)) = with respect to B,,,, has the double line

To11 = 2211 = t211 = 0.

The strict transform F) of F} =~ with respect to B.,,, is given by

Z212
eee [V :12a31111 + - — 8ai1113) + 20a11211t212 + - + 2212( ) = 0.
F!”  is nonsingular on the exceptional divisor.

The strict transform F{” = of F; = with respect to By,,, is given by

eee F/” . 20a112112213 + -+ + to13(---) = 0. The base points on the excep-

ta13 °
nr
t

tional divisor are given by the plane 2213 = t213 = 0. From (5;22)., ,=t,,=0 =
20a11311 # 0, we deduce that F}” is nonsingular on the exceptional divisor.

We blow up the double line we3 = w23 = 293 = 0 on F}} . Locally, the blow-up
of this line is given by

W23 = W231 W23 = W232T232 W23 = W233%2233
B . T23 = X231W231, . T23 = X232 . . T23 = X233%233
s s s )
21 293 = Zz231Wa31 o 293 = Z232T232 = °° 223 = Z233
taz = ta31 to3 = ta32 to3 = ta33
et . " 1" . 3 PR
The strict transform F - of F/} with respect to By, is given by
eee I 20a113112231 + -+ + wo3i(---) = 0. The base points on the excep-
"

tional divisor are given by the plane wa3; = 2231 = 0. From ( 8;;‘;11 ) I —

= 20a11311 # 0, we deduce that the threefold is nonsingular on the exceptional

divisor.

eee The strict transform F!”’ —of F}/ with respect to By,,, has the double line
T232 ta3 232

Wa32 = Ta32 = 2232 = 0.

The strict transform F[” = of F}! with respect to B.,,, is given by

oo F' : —8azi111 + -+ 12a11113 + - - - + 20a11311Wass + 2233(- -+ ) = 0.

2233 °

F!” . is nonsingular on the exceptional divisor.

We blow up the double plane wszs = 232 = 0 on F,/ . Locally, the blow-up of
this plane is given by
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W32 = W321 W32 = W322T322
B . T32 = T321W321 B . T32 = T322
I 230 = 2321 TUERT) 239 = 2390
t3o = t301 t3o = t322

The strict transform F))' —of F) with respect to By,,, is given by

w321 32
(YY) FQZ;M : —20a11311t321 + - -+ + $3212321(' . ) —+ w321(' . ) = 0. The base points
on the exceptional divisor are given by two lines. Considering
OF)! oF!"
321 j— w321 —
( Otzo1 )w321:1321:t321:0 = —20a11311 7é 0, ( Dtza1 )w321:2321:t321:0 = —20a11311

# 0, we deduce that F}) is nonsingular on the exceptional divisor.

eee The strict transform F,” —of F, with respect to B,,,, has the double line

W399 = 2z309 = t320 = 0 outside the exceptional divisor.

Remark 10. We note that this double line is the image of the unimposed double
line wg = z3 = t3 = 0 on the exceptional divisor of threefold Ft’s. O

We blow up the double plane w33 = 233 = 0 on F, ;; ,- Locally, the blow-up of
this plane is given by

W33 = W331 W33 = W3322332
B ) x33 = w331 B . ¥33 =332
WSS ) 23y = 2zgziwazr | 00T | 233 = 2332
t33 = t331 t33 = t332

The strict transform F)”' —of F! with respect to By,,, is given by

w331 Z33
11 . —
eee [ :10a410022331 + - -+ — 20a11311t331 + - +wszi(---) =0,
The base pointsmon the exceptional divisor are given by the line w33; = 2331 =
OF,, oo
tzz1 = 0. From (5535 )y =g =t55,=0 = —20a11311 # 0, we deduce that F7  is

nonsingular on the exceptional divisor.

The strict transform F, of F!' with respect to B.,,, is given by

Z332
eee " 10ag1000w3z2 + -+ + 2335(-++) + 2332(---) = 0. The base points on
the exceptional divisor are given by the line wszs = x330 = 23320 = 0. From
OF!! _
( aw::; )w332:z332:z;332:0 = 10&41002 + = 22&11113 7é O, we deduce that Fz/;,;;g 1S

nonsingular on the exceptional divisor.

The tree of the blow-ups solving almost all of the singularities of Fy N Us is
shown below.
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F7ﬂU2

l /
F,, F,

JIN DN TN

F// F// F// F// F// F// F//

AN ANANLWA

ua /// " /I/ 11 " /I/ " 11 " " 111 " "

T111 '3112 Z121 t122 T211 ~ Z212 t213 W231" T2327 Z233° W321 322

where the nonsingular threefolds on the exceptional divisor are drawn in bold type.

8.3.4. We blow up the double line w111 = %111 = t111 =0 on Félllu

Locally, the blow-up of this line is given by

w111 = Wi111 Wi11 = W111221112
mel . T111 j T1111 : Bayy T111 f T1112 ;

2111 = 21111W1111 2111 = #1112

t111 = t1111W1111 t111 = t111221112

w111 = Wi113t1113
111 = L1113
Z111 = z1113t1112
t111 = t1113

Bt1113 :

ov The strict transform F,; =~ of F}" with respect to By,,,, has the double line

wirnn = 21111 =t = 0.
The strict transform F?  of F)" with respect to B.,,,, is given by

Z1112
I
ov FIV :12a31111 + -+ — 8aiinz + - + z1112(- ) = 0.
F’" is nonsingular on the exceptional divisor.

Z1112
The strict transform F} . of F/ ~with respect to By,,,, is given by

) = 0. The base points on the exceptional

/v
ov F{V :20a1131121113 + - - + trais (-
divisor are given by the plane 21113 = t1113 = 0. From
OF"
1113 J— /v 3
(5222 )2 =tiis=0 = 20a11311 # 0, we deduce that F7,  is nonsingular on the

exceptional divisor.

We blow up the double line z211 = 2211 = t211 = 0 on F . Locally, the

blow-up of this line is given by
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Wa11 = W2111 Wa11 = W2112
B . T211 = T2111 . T211 = 211272112,
xT . Z .
2 Zo11 = Zo111%2111" P 2211 = 22112
to11 = 211122111 to11 = t211222112
W11 = W2113
B ) 211 = 21132113
ta113 ° _ t .
2211 = 221132113
211 = t2113
e strict transform F,? —of F,7 ~with respect to B,,,,, is given by
The strict t £ b f " th t to B b
ov IV i 10a20014t2111 + -+ + 23111(-++) + 22111)(- - -) = 0. The base points on
= 29111 = t2111 = 0. From

the exceptional divisor are given by the line xo111
F/’U

AF!Y
2111 J—

( D21118 o111 =22111=t211,=0 = 10@20014 + - - + 21ai1113 # 0, we deduce that F,?
is nonsingular on the exceptional divisor.

The strict transform F,Y  of F)” —with respect to B.,,,, is given by
ov IY .t 12az1111 + - — 8a11113 + 10a2001472112¢ 2112 + - -+ + 22112(- -+ ) = 0.
F[? . is nonsingular on the exceptional divisor.

The strict transform F}? . of F,” ~with respect to By,,,, is given by

ov F/U ¢ x0113(10a20014 + -+ + 21a11113) + 206113120113 + 25193(- ) + -+

to113(--+) = 0. The base points on the exceptional divisor are given by the line
aF/‘U

ﬂ)fwus:zmm:tzlw:o = 200‘11311 7é 0’ we

T2113 = 2211 = tanng = 0. From (5 24

deduce that F{?  is nonsingular on the exceptional divisor.

4

We blow up the double line wyszy = @32 = 2232 = 0 on F, . Locally, the

blow-up of this line is given by
W232 = W2321 W232 = W2322X2322

B . T232 = 12321W2321, i T232 = X2322

w M b xT N b

22 2232 = 22321W2321 2322 2232 = 2232272322
tag2 = la322

tage = t2321
Wa32 = W232322323
T232 = T232322323

Brosaa : 2932 = 22323
ta32 = ta3o3
The strict transform F,; ~of F;”  with respect to By,,,, is given by
ov FlY ¢ @2321(—10a41002 + - - - — 38a11113) + 201131122321 + 23391 (- -+ ) + - +

v

Ry
Wagzl = Ta321 = Z2321 = 0. From (73222211 Jwasa1 =zagar =22321=0 = 20a11311 # 0, we
deduce that F}y is nonsingular on the exceptional divisor.

w2321 :
wage1(--+) = 0. The base points on the exceptional divisor are given by the line
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The strict transform F,?  of F,” ~with respect to B,,,,, is given by

2322

/ . 2
ov FY  twazpr(—10a41002 + - - - — 38a11113) + 20a11311W232222322 + Z3309(- ) +
-+« + X9322( -+ ) = 0. The base points on the exceptional divisor are given by the
. F
line wazoe = @230 = 22302 = 0. From (5222 ), 00 —0p500=20g0=0 = —10@a1002 +

-+ —38a11113 # 0, we deduce that F;Zm is nonsingular on the exceptional divisor.

The strict transform F,Y = of F,”  with respect to B.,,,, is given by

Z2323
/ .
ov FY i —8azi111 +- - +12a11113 +20a11311W2323 + Wa323T2323(- - - ) + 22323(- - )
W . . .
F}? . is nonsingular on the exceptional divisor.

We blow up the double line wszas = 2320 = t320 = 0 on F," . Locally, the

blow-up of this line is given by

W322 = W3221 W322 = W322223222
Bus, - X322 = T3221 B T322 = T'3222

2322 = 23221W3221 2322 = 23222

t300 = t3221W3221 t320 = t322223222

w322 = W3223t3223
322 = T3223

Bt.sys - .
faz2s 2322 = 2322303223
322 = l3223
The strict transform F,) =~ of F;” = with respect to By,,,, is given by
ov F/V :20a1131123221+ -+ w3201 (- - - ) = 0. The base points on the exceptional

w3221
divisor are given by the plane w3221 = 23221 = 0. From

OF.LY . .
(22221 ) ypn1 =200 =0 = 20a11311 # 0, we deduce that Fy7  is nonsingular on the
exceptional divisor.

The strict transform F,Y, ~of F,” ~with respect to B.,,,, is given by

ov FIY ¢ —8azii1 + -+ 12a11113 + 20a11311 w3222 + - + 23202(- -+ ) = 0.
5222 X . o
F7 ., is nonsingular on the exceptional divisor.
ov The strict transform FyY =~ of F}” = with respect to Bi,,,, has the double line

W3923 = 23223 = t3203 = 0 on the exceptional divisor.

8.3.5. We blow up the double line w1111 = %1111 — t1111 =0 on Fajuu.

Locally, the blow-up of this line is given by

win = Wi w1 = WaZs wiin = WsT3
B : 1111 = X1 - By - z1111 = Xo - Bp. : 1111 = X3
U)oz = Z20WH ! zii1 =24 0 )z = 2313

t1111 =T1Wy tii11 = 122 t1111 =13
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The strict transform Fy, of F? = with respect to By, is given by
A% F{/le : T1(10a20014 + e + 21&11113) +20a11311Z1T1 e + 212( . ) + Wl( . ) = 0

6F/‘U .
From (aTV‘Il)W1=leT1=0 = 10agp014 + - - - + 21ai113 # 0, we deduce that F‘%}l is
nonsingular on the exceptional divisor.

The strict transform Fy of Fy?  with respect to Bz, is given by
v Iy i 12a31111 + -+ — 8aiiniz + 20a11311 Ty + Wala (- ) + - Za(-+) = 0.

F7 is nonsingular on the exceptional divisor.

The strict transform Ff, of Fy?, = with respect to Br, is given by
v EFpo: Wa(ago01a + -+ + 2laginsz) + 20a113112325(-++) + -+ - T3(---) = 0. The
base points on the exceptional divisor are given by the line W3 = Z35 = T3 = 0.

OF, . .
From ({m?; YWs=zs=Ts=0 = 20a11311 7# 0, we deduce that F”  is nonsingular on

w3221
the exceptional divisor.
We blow up the double line wsg03 = 23003 = t3293 = 0 on Ft’:223.
blow-up of this line is given by

Locally, the

W3222 = Wy w3223 = W5Z5 w3223 = Wesls
By, : 4 ©8228 = Xy By . T3 = X5 By : ] ¥8223= X6
* 23923 = ZuW4 —7° Z3ga3 =45 | ° 23223 = Zglg

13223 = T4W, 3223 = 1575 13223 = 1§

The strict transform Fy, of F{?

v By Tu(—10a41002 + - - - — 38a11113) + 20011311 Z4 + Z3 (- -+ ) + Wa(---) = 0. The
base points on the exceptional divisor are given by the line Wy = Z, = T, = 0.

with respect to By, is given by

oF . :
From (—z%)w,=z,=1,=0 = 20a11311 # 0, we deduce that F,  is nonsingular on

the exceptional divisor.

3221

The strict transform Fy_ of Fy?

with respect to Bz, is given by
v Iy —8aziiin + - + 12a11113 + 20a11311 Wi + W5T5(- -+ ) + Zs(---) = 0.
F7_ is nonsingular on the exceptional divisor.

The strict transform Fp, of F;

tangs With Tespect to Bry is given by

v Fp : We(=10a41002 + - - - — 38a11113) + 20a11311 W6 Zs + ZE(- -+ ) + Te(---) = 0.

The base points on the exceptional divisor are given by the line Wy = Zg = T = 0.
OF7,

From 5y )we=2s=Ts=0 = —10a41002 + - - - — 38a11113 # 0, we deduce that Fy

is nonsingular on the exceptional divisor.
The desingularization starting with the triple line r7 : Xg = X; = X4y =0 is
over, and Proposition 3 has been proved. |

Remark 11. The situation in the proof of Proposition 3 is similar to the one seen
in the proof of Proposition 2. In proving Proposition 3, we solved the singularity
starting with r7 : Xog = X; = X4 = 0, but we also solved the singularity starting
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with the triple line rg : Xo = X3 = X4 = 0 (see wy = 22 = t; = 0 on F},_), and the
singularities given by the double lines rg : X1 = X3 = X, =0, r5 : Xg = X1 =
X3 =0 (see xy =2 =t =0on F,, , ws = 23 = 23 = 0 on Fy,). We note that
r5 had already been desingularized in the proof of 2, and that rg is one of three

double lines that we omitted blowing up (see Remark 5, Section 8.2.6). O

Remark 12. The triple line rg : Xg = X5 = X4 = 0 is missing in the proof of
Proposition 3. This singularity can be solved in the same way as the singularity
given by rr, considering Us = {X3 # 0}, for example. As explained in Remark 5,
Section 8.2.6, we omit this because it is a duplicate of Proposition 3. O

8.4. We complete the desingularization of F; with the resolution of the
singularity given by the 4-ple point P = (1,1,1,1,1)

Proposition 4. Resolution of the singularity given by the 4-ple point P.

Proof. There are two ways to prove this resolution of P. The first is to consider
the affine equation of F7, assuming that Xog = 1, X; = z, X5 = y, X3 = 2z, and
X4 = t, for example, and obtaining F7(z,y, z,t) = 0. Next, if we translate P at
the origin (0,0,0,0), then the singularity is solved with only one blow-up. There
are no singular points infinitely near P. We leave the interested reader to consider
the easy blow-up involved in this first method.

The second way is to consider the tangent cone at P, and to make sure that
it has no singular lines. It follows from this that the point P has no singularities
infinitely near.

Taking this second approach, let us find the tangent cone at P. To do this
in F7(X0,X1,X2,X3,X4) = 07 we set XO = 1,X1 = $,X2 = y,Xg = Z,X4 = t,
obtaining Fy(z,y, z,t) = 0 and, with the translation x = Xu+1,y,Yu+1, 2z, Zu+
1,t =Tu+ 1, u € k, we have

Fr(Xu+1,Yu+1,Zu+1,Tu+1) =
(tangent cone)u* + (---)u® + (- )ub + (- )u”

To prove that there are no singular lines on the tangent cone, we intersect the
tangent cone with the hyperplane T' = 1, obtaining a surface that we call Sp. The
equation for Sp is given by

Sp: a41002(—10X2Y? +10Y22%)+

12022(—20X2%Y2 4 20X22%)+

21004 (40Y Z —20Y Z% —20Y —40X Z+20X Z2 +20X +20X2Z —10X2Z2 —10X2% —20Y2Z4+10Y 222 +
10Y2)+

a20014(40XY — 20X2Y — 20Y — 40X Z 4 20X Z? + 20X?Z — 10X2Z% 4+ 20Z — 10Z% — 20XY? +
10X2Y? +10Y?%)+

31111 (=96 XY Z + 16 XY Z2 + 44XY +16X2Y Z — 14X2Y +44Y Z — 14Y Z2 — 12Y + 42X Z — 24X —
12X27% +3X% —24Z +32% +12 — 10XY?Z 4+ 12XY? + 7X?Y? + 12Y?Z + 3Y? 2% — 16Y?)+
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a13111(32XY Z —32XY Z? — 28XY 4+ 28X2%Y Z — 22X2Y 4+ 20X3Y +12YZ —2Y Z? +4Y — 34X Z +
40X Z% +8X —20X%Z — 16X22% +29X2% +20X°%Z — 20X°% +8Z — 112% —4 - 30XY?Z +36XY? —
29X2Y?2 —4Y2Z +19Y2%2% —8Y?)+

a11311(32XY Z —32XY Z? —28XY —32X2Y Z +38X2Y —28Y Z+38Y Z24+4Y +6X Z+8X +4X2 2% —
11X%2482—112%—4+430XY2Z-24XY2-9X2Y?-24Y?Z-21Y?Z2 4+32Y % +20X Y3 4+20Y3Z —20Y %)+
a11131(28XY Z% +12XY — 32X2Y Z — 2X%Y —28Y Z — 22Y Z2 4+ 20Y Z3 4 4Y + 32XY Z — 34X Z —
20X Z2 +20XZ% 4+ 8X 4+ 40X2Z —16X22% —11X? +8Z + 2922 — 20Z° — 4 — 30XY?Z —4XY? +
11X2Y2 4+ 36Y2%Z — 21Y222% —8Y?)+

11113(104XY Z +16XY Z% —16XY +16X%Y Z — 34Y X2 —16Y Z — 34Y Z%2 + 8Y — 58X Z 4+ 16X +
8X2Z% +13X% +16Z + 1327 — 8 — 10XY?Z — 8XY? — 13X2Y? —8Y?Z +3Y?Z% + 4Y?) = 0.

The singular lines on the cone coincide with the singular points on the generic
Sp. According to Bertini’s theorem, these singular points are in the base points of
the linear system defining Sp.

We leave to the interested reader the easy proof that the generic Sp is nonsin-
gular.

This proves Proposition 4. O

With Proposition 4, the desingularization of Fr is complete.

9. Pluricanonical adjoints to the generic F

In the present section, we have to add the triple line r7, rg, r9, and the 4-ple
point P = (1,1,1,1,1) that we did not consider in Section 2. With this addition,
the theory of pluricanonical adjoints to the generic F; is a little longer than the
one considered in Section 3, but it is much the same. The changes only involve
n;_1=—-44+1+1+3 =1 for the triple lines and n,_1 = —-4+4+14+0+4 =1 for
P =(1,1,1,1,1) (cf. [10, p. 152]). We omit this easy addition here, leaving it to
the interested reader. We return to the canonical and bicanonical adjoints to F
that we had begun to consider in Sections 2.1 and 2.2. Here we also consider the
tricanonical (3-canonical) adjoints to the generic F7, that we omitted in Section
3. In particular, this F7 remains normal too.

9.1. Canonical adjoints to F7 and pg
As we already said in Section 4, there are no canonical adjoints to the generic Fr,
so the geometric genus of a desingularization is p, = 0.

9.2. Bicanonical adjoints to F7 and P,

For bicanonical adjoints we need the restriction to F7, but with this restriction we
cannot identify two bicanonical adjoints to F7 because the degree of &y is 4 < 7.
Thus, from the normality of F7, the number of linearly independent bicanonical
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adjoints coincides with the bigenus P». These bicanonical adjoints are also called
global bicanonical adjoints (cf. [10]).

We must combine the conditions given to the hypersurfaces of degree 4 given by
the singularities starting with the double lines r1, ro, r3, 74, 75, 76, With those given
by the triple line 77, rs, 79, and those given by the 4-ple point P = (1,1,1,1,1).
To be precise, the degree 4 hypersurfaces must pass doubly on the triple lines and
they must have a double point at P.

The linear system of bicanonical adjoints to F; is therefore given by

Dy a12001 X0X4(Xo — X1)2 4 a11110X0[XoX4(Xo — X1) — XoX4(X2 — X4) + X3(—XoX4 +
X1X2)] + a11101 X0 X4(Xo — X1)(Xo — X2) + a11011 X0 X4(Xo — X1)(Xo — X3)+
a11002X0X4(Xo — X1)(Xo — X4) + 10201 X0 X4 (X0 — X2)? + a10111 X0 X4 (X0 — X2)(Xo — X3) +
10102 X0X4(Xo — X2)(Xo — Xa) + 10021 X0X4(Xo — X3)? + a10012 X0 X4 (X0 — X3)(Xo — Xa) +
a10003X0X4(Xo — X4)? 4+ ao1111 X4[XZ(2X0 — X1 — X2) — X3(X2 — X1 X2)] =0.

From the normality of F%, the bigenus is P, = 12.

9.3. Tricanonical adjoints to F7 and the trigenus P3

For tricanonical (3-canonical) adjoints we need the restriction to F7, but with this
restriction we cannot again identify two tricanonical adjoints to Fr because the
degree of tricanonical adjoints is 6 < 7. The number of linearly independent tri-
canonical adjoints thus coincides with the trigenus P5;. These tricanonical adjoints
are also called global tricanonical adjoints (cf. [10]).

The conditions applied to the hypersurfaces of degree 6 given by the singu-
larities starting with the double lines 71, ro, 73, 74, 75, 76 are as follows: the
hypersurfaces of degree 6 must pass doubly on each of the six lines, and singly
through the double surfaces infinitely near the six lines. The hypersurfaces must
also pass triply on each triple line r7, g, rg9, and they must have a triple point at
the 4-ple point P = (1,1,1,1,1).

We write only 2 short tricanonical adjoints to Fr

az1012(— X3 Xa(Xo — X1)(X1 — X3)(X2 — X4) =0,
a20202 X2 X4 (X1 — X2)(X5 — X4)(X1 4+ X2 —2X0) =0,

omitting the complete equation of the linear system of tricanonical adjoints because
it is too long. The equation is given by 23 parameters and, from the normality of
F, the trigenus is P3 = 23.

10. The desingularization X — F; of Fy is of general type

Let 0 : X — F% be the desingularization of F7. ¢ is the composition of all the
blow-ups resolving the singularities of Fr.

Let ¢ : Fy ——» IP"2~1 the rational transformation defined by the linear system
of bicanonical adjoints to F7.
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There is a Zariski’s open set U C X and a Zariski’s open set U; C Fr, that are
isomorphic. By identifying U and U;, we find that the bicanonical transformation
Peryx| P X - P is identified with  as rational transformations. These results
essentially follow from the commutativity of the following triangle

X —————— — Pll — PP2_1
t
\
\
\
[

Fr

In particular, we establish that ¢35, | birational <= ¢ birational.

Proposition 5. ¢ is birational on F7.

Proof. In the linear system of bicanonical adjoints to F7, we consider only a11011 X0 X4(Xo—
X1)(Xo — X3) 4+ a10111 X0X4(Xo — X2)(Xo — X3) + a10021 X0 X4 (X0 — X3)%+
+a10012X0X4(Xo — X3)(Xo — X4) + ao1111 X4[X3(2X0 — X1 — X2) — X3(X2 — X1X2)] = 0.
The 5 bicanonical adjoints define the rational transformation 7: IP* --» P4
given by
Yo = me{g@Xo — X1 — X2) — X3(X? — X1X2)]
Y1 = p(Xo — X1)
T Yo = p(Xo — X2)
Y3 = p(Xo — X3)
Yy = p(Xo — X4)

where we have divided by XoX4(Xo — X3).

We want to find 77!, so we consider X; = X, — %, i = 1,2,3,4, and we
substitute them in YE)X()(XO —Xg) —p[Xg(QXO —X1 —X2) —Xg(Xg —X1X2)] = 0,
obtaining

Xo =Y1YaY3/p(=YoY5 + V1Yo + Y1 V3 + YoY3).
Substituting this Xy in X; = Xy — %, i=1,2,3,4, we obtain

. Xo =Y1YaY3/p(—YoY3 + Y1Y2 + Y1Y3 + Y2 Y3)
T : ;
X, = YV1YaY3/p(—YoYs + Y1Ya + V1Y + YaY3) — % i=1,2,3,4.

This proves that 7 is birational on IP*. Since Fy is not contained in the indeter-
minacy locus of 7, the restriction of 7 to F7: 7, = ¢ is birational too. O

Corollary 1. @2k s birational on X.
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Corollary 2. X s of general type.
Proof. Cf. [13, Chap. II, §§ 5,6]. O

11. The regularity of the desingularization X — Fy

What remains for us to prove is that ¢;(X) = dimH*(X,Ox) =0, for i = 1, 2.
Theorem. X is totally regular, i.e. ¢;(X) =10 fori=1,2.

Proof. We calculate q2(X) = dim H?(X, Ox) using the formula (36) in Section 4
in [10], which states that:

g2(X) = pg(X) +pg(S) — dimy (W3),

where p,(X) denotes the geometric genus of X, and py(S) denotes the geometric
genus of a desingularization S of a generic hyperplane section of Fr, where W3 is
the vector space of the degree 3 forms that define global adjoints ®3 to F7, i.e.
they define hypersurfaces ®3 of degree 3 passing through the singularities on F7
with the same multiplicity as the canonical adjoints to Fr.

We note that S C X is the strict transform, with respect to a desingularization
o: X — Fr, of a generic hyperplane section of Fr performed by a generic hyper-
plane H C IP*. Since the hyperplane H is generic, the variety S can be considered
nonsingular.

We remember that ¢;(X) = dimH(X,0x) = ¢1(S) = dimH!(S,Os),
where S is defined above (cf. [10, p. 174]).

We compute ¢;1(S) by applying the formula (36) (loc. cit.) to S:

q1(S) = pg(S) +pg(5/) — dimy (Wy),

where W, is the vector space of the degree 4 forms defining global adjoints &4, C H
to Fr N H, and where S’ C S is the nonsingular strict transform, with respect to
o of a generic hyperplane section of F; N H, performed by a generic (hyper)plane
H' CH.

The singularities on F7 N H are given by 6 isolated double points with a double
line infinitely near, called tacnodes, and other negligible double points (see also [8,
Section 7]). In addition, the other singularities of F; N H are given by triple points
(at the intersections of the triple lines r7, s, rg on Fy with the hyperplane H).

Lemma 1. ¢;(X) = ¢1(S) = 0.

Proof. We have to calculate py(S), which appears in the above formula for cal-
culating ¢;(S). The geometric genus py(S) of S is given by the dimension of the
vector space of the forms defining canonical adjoints to F7 N H in the hyperplane
H. These canonical adjoints are hypersurfaces of degree 3 in H that pass appropri-
ately through the singularities on F7N H. To be precise, the degree 3 hypersurfaces
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must pass simply through 6 points (at the intersections of r; with H, i =1,--- ,6),
and they must pass simply through 3 points (at the intersections of the triple lines
r7, T8, T9 on F7 with the hyperplane H). Note that P = (1,1,1,1,1) ¢ H. It is not
difficult to see that the 9 points give linear conditions to the degree 3 surfaces in
H, and therefore p,(S) =20 — 9 = 11 (see also [8, Section 7]).

On F; N H' there are no singularities, thus F7y N H' is a nonsingular curve of
degree 4 and p,(S’) = 15.

W, are adjoints of degree 4 to F7 N H, i.e. degree 4 surfaces passing through
the 9 points described above, so dimy(W,) = 35 — 9 = 26.

To conclude, q1(S) = py(S) + pg(S’) — dimy(Wy) = 11415 - 26 = 0.

This proves Lemma 1. U

Lemma 2. ¢2(X) = 0.

Proof. In the proof of Lemma 1, we computed py(S) = 11. In Section 9.1, we
computed p, = py(X) = 0. W3 are the hypersurfaces in IP* passing through the 9
lines r1,- -+ , 79 and through the point P = (1,1,1,1,1). We have

Wy : 020001X3X4 + a11100X0X1X2 + a11010X0X1X3 + a11001 Xo X1 X4+
a10110X0 X2 X3+ a10101 X0 X2 X1+ a10011 X0 X3 X4 +a10002 X0 X3 +ao1110X1 X2 X3+
ao1101 X1 X2 X4 + ao1011 X1 X3X4 + ago111 X2 X3X4 =0,

with the condition

20001 +a@11100 + @11010 + 11001 + A10110 + @10101 + A10011 + Q10002 + @01110 + A01101 +
aop1011 + aoo111 = 0.

Therefore dimy (Ws3) = 11 and g2(X) = pg(X) +pg(S) — dimk(W3) =0+ 11 —
11 =0.

This proves Lemma 2 and the Theorem. ([l
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