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The perturbation functor

in the calculus of variations

O. AMICI – B. CASCIARO – M. FRANCAVIGLIA

Abstract: In the framework of second order Calculus of Variations on jet bundles
we show that the operator which determines the “First Variation” is a functor which we
call “Perturbation Functor”. This functor allows us to link the Jacobi morphism for the
second variation to the first variation of a new Lagrangian. Its naturality properties are
discussed. We also show that it permutes with most of the relevant cohomology functors
of the Calculus of Variations and with the de Rham’s one.

0 – Introduction

In the last decades several techniques having a geometrical origin
have been developed to deal with partial differential equations in general
and, more particularly, for those equations which are the consequence of
a variational principle (see, e.g., [1], [2], [3], [4] and references quoted
therein). In all these frameworks, which are of course based on the use
of the jet-prolongations (possibly of infinite order) of both the bundles
and the equations involved, the tools of homological algebra have revealed
themselves to be extremely powerful. As a few examples we mention: the
work of Anderson and Duchamp ([5], for the introduction of cochain
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complexes in the Calculus of Variations); the work of Bryant and Grif-

fiths ([6] and [7], where the notion of cohomological tower is extensively
used); of Tulczyjew and Dedecker ([8], with the introduction of the
so-called “Lagrange complex”); of Krupka ([9] and [10], with the intro-
duction of the so-called “variational sequences”; see also [11]).

The Calculus of Variations on jet bundles is a very powerful method
in Analysis, Geometry and Matematical Physics. It allows in fact a global
perspective on the problems and helps, via Noether’s theorem, to provide
a general setting for conservation laws (see, e.g., [14]). The fundamen-
tal ingredients in this direction are contained in the notion of contact
forms, of Poincaré-Cartan forms, of local and global exactness (both at
the “strong” level of the bundle or at the “weak” level of the space of
critical sections).

In recent investigations of ours ([15], [16], [17]) we have been consid-
ering the somehow neglected problem of second variation of a Lagrangian
action from the geometrical viewpoint, together with the ensuing notion
of (generalized) Jacobi equation. In particular, we have been able to show
that the Euler-Lagrange equations together with the Jacobi equations are
in fact the Euler-Lagrange equations of a “derived” variational principle
in a larger space, governed by a “deformed Lagrangian” which is an alge-
braic counterpart of the first variation of the original Lagrangian (see [16]
for the definition of this new Lagrangian, [15] and [18] for an application
to Riemannian Geometry and [19] for a short review).

In the course of our investigations we have realized that most of the
relevant constructions entering the first variation, the second variation,
the Poincaré-Cartan form and the Jacobi morphism can be alltogether
factorized through a functorial operation which can be given the name of
“perturbation functor”. The perturbation functor, denoted by P, essen-
tially associates to any given Lagrangian L its first order deformation, in
such a way that all relevant quantities of the Calculus of Variations are
carried over to the analogous quantities for the new Lagrangian. Such
a functor P is not unique, owing to the well known fact that equivalent
Lagrangians and equivalent Jacobi morphisms exist (see, e.g., [10], [14],
[18]), although it will be possible to choose “canonical” one.

In this paper we shall develop the basic tools to construct a reasonable
(and canonical) perturbation functor in the physically relevant case of
Lagrangian theories of order at most two; generalizations to higher orders
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are of course possible and will be considered elsewhere. We shall then
begin (Section 1) with a short account about the basic framework of
the Calculus of Variations on jet bundles and the notion of first order
deformation of a Lagrangian. Section 2 will be devoted to introduce the
fundamental categories of bundles and morphisms which are needed to
our purposes, as well as to define the perturbation functor P and discuss
some of its basic features; among them, the most useful comes from a
surprising aspect of the procedure which following [16] determines the
deformed Lagrangian, which in turn is determined by the existence of a
class of immersions (which will be investigated in this Section and which
must be taken into account, not only to understand the main properties
of the deformation procedure, but also to avoid mistakes which can occur
in practical calculations). In Section 3 we shall briefly account on some of
the many relations existing between the cohomological interpretation of
our functor P and the existing cohomological tools of [6] and of [9]. Our
comparison will be based on the introduction of suitable ideals of forms
in the de Rham complex of a convenient jet-prolongation of the relevant
bundle. The sub-complex we derive differs in general from the previously
existing ones and, in a sense, it is intermediate between the variational
complex of [9] and the whole de Rham’s complex. We shall investigate
how properties of P reflect in these three cohomological complexes, as
well as in the complex introduced in [6].

Among the results of this comparison we quote the construction of
a second type of “tower prolongation” (here called “Jacobi tower”) ob-
tained by iterating the action of the functor P. This tower prolongation
is in a sense the completion of the “tower prolongation” of Bryant and
Griffiths and, if applied to the cohomology investigated in [6], it pro-
vides informations on the conservation laws of the higher order Jacobi
fields, while, if applied to the cohomology introduced in [9], it provides
informations on the “Lepagean equivalence” of higher order deformed La-
grangians. Since the notion of “Jacobi tower” applies to any “level” of
the tower construction of [6], we obtain a family of cohomological groups,
here called “JBG-wall” (where JBG means Jacobi, Bryant and Griffiths).
An analogous construction is made for the cohomological groups of [9],
since the Bryant-Griffiths tower construction applies to these groups, too.
Finally, since closed ideals generate their own cohomological groups, we
show that a Jacobi tower construction is possible for both ideals used
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by Bryant-Griffiths in [6] and by Krupka in [9]. As we said above,
we also introduce a new complex in which the Euler-Lagrange form is
closed and we show that even for this complex it is possible to perform
the “wall construction”. More detailed investigations about the interre-
lationship among these various cohomologies will in fact form the subject
of a forthcoming paper ([20]).

Our investigation will pay a continuous attention to the “naturality”
properties of the perturbation functor, especially in view of its possible
applications to the problem of conservation laws. This intriguing aspect
of the theory is still under investigation and will as well form the subject
of a further paper ([21]). The present paper contains an appendix, which
contains a few remarks about the applications to some relevant partial
differential equations of parabolic type (in the sense of [6] and [7], heat
equation and KdV equation included).

1 – Preliminaries and notation

In this first Section we shall recall the main framework we need in
this paper.

1.1 – Basics on calculus of variations

Let us first list some basic facts about the Calculus of Variations on
fibered manifolds. Notation follows closely [2] and [22], to which we refer
the reader for further details.

Let B = (B, M, π) be a fibered manifold over a m-dimensional mani-
fold M , with p-dimensional fibers. We will denote by (xµ), µ ∈ {1, . . . , m}
a local coordinate system on M and by (xµ, ya), a ∈ {1, . . . , p} a fibered
coordinate system on B over (xµ).

The bundle of vertical vectors of B is defined as follows. We set V π ≡
Ker(Tπ) ⊆ TB and we define a bundle over B as V B = (V π, B, νB),
where νB is the appropriate restriction of the natural projection τB :
TB → B. For notational convenience, if there is no danger of confusion,
we shall write V B instead of V π. In the sequel we shall be also concerned
with double fibrations C

α−→B
π−→M . In this case there are two vertical

bundles, namely those defined by Ker(Tα) over B and by Ker[T (π ◦ α)]
over M , respectively; they will be respectively denoted by V BC (or, more
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simply, just by V C) and by V MC. Hereafter, for the sake of simplicity,
“vertical” will shortly mean “vertical with respect to a given projection”
whenever there is no need to specify which projection is being considered
(if this is already clear from the context).

For any (regular) domain D (i.e., D ⊆ M is a compact m-dimensional
submanifold with sufficiently regular boundary) ΓD(π) will denote the set
of (local) sections λ : D → B. Moreover, JkB ≡ (JkB, B, πk) will denote
the k-th order jet-prolongation of B, with naturally induced coordinates
(xµ, ya, ya

µ, ya
µν , . . . ). If λ ∈ ΓD(π) is a local section, locally expressed by

(xµ, λa(xρ)), thence its k-th order jet-prolongation jkλ has local expres-
sion (xµ, λa(xρ), ∂νλ

a(xρ), ∂2
µνλ

a(xρ), . . . ).
A section Σ : D → JkB is said to be holonomic iff there exists a sec-

tion λ : D → B such that Σ = jkλ. We denote by ΛM =
⊕

0≤h≤m ΛhM

the exterior bundle of M and by Ω(M) =
⊕

0≤h≤m Ωh(M) the module of
its sections, i.e. of differential forms of M . We set:

(1.1) ds = dx1 ∧ · · · ∧ dxm , dsµ ≡ ∂µ�ds ,

where X� (or, equivalently, sometimes iX) denotes inner product with
respect to a vectorfield X on M ; the forms (1.1) determine a (local) basis
for m-forms and (m − 1)-forms, respectively.

A fibered morphism L : J2B → ΛmM will be called a (second order)
Lagrangian. The Lagrangian L is locally expressed by:

(1.2) L = L(xµ, ya, ya
µ, ya

µν)ds ,

where L is a scalar density on J2B with respect to coordinate changes
in the base manifold M . The Lagrangian L defines a variational problem
(of the second order) on B, through the action functionals:

(1.3) A(λ) =
∫

D

L ◦ (j2λ) .

Critical sections are those sections λ ≡ λ0 ∈ ΓD(π) such that

δA ≡ ∂

∂ε
A(λε)|ε=0

= 0

for all homotopic 1-parameter deformations λε (with ε ∈] − a, a[, a >

0) which strongly fix the boundary (i.e., j1λε|∂D = j1λ|∂D, for any ε).
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Here and in the sequel the first variation operator δ will shortly denote
the ε-derivative ∂

∂ε
evaluated at ε = 0. It is well known that critical

sections are those sections which satisfy the “Euler-Lagrange equations”
of L (see below). From now on we shall consider only homotopic 1-
parameter deformations which strongly fix the boundary.

1.2 – Horizontal forms and canonical momenta

For any integer k let Hor(JkB) =
⊕

0≤q≤m Horq(JkB) be the tensor
algebra of horizontal forms of JkB (i.e., those forms which vanish when-
ever they are evaluated on a set of vectorfields containing at least one
vertical vectorfield).

Definition 1.1 (see [23]). The horizontal differential is the oper-
ator dH uniquely defined on Hor(JkB) with values into Hor(Jk+1B) and
intrinsically expressed by:

(dHω) ◦ jk+1λ = d(ω ◦ jkλ) ∀λ ∈ Γ(π) ,

for all ω ∈ Hor(JkB), where d is the exterior differential operator of M .

Locally, dH is determined by a family of operators dµ acting on
smooth functions, called formal derivatives. As an example, if f : J4B →
IR is a differentiable mapping, then dµf is the function on J5B defined by:

dµf =
∂f

∂xµ

+
∂f

∂ya
ya

µ +
∂f

∂ya
ν

ya
νµ +

∂f

∂ya
νρ

ya
νρµ +

∂f

∂ya
νρσ

ya
νρσµ +

∂f

∂ya
νρστ

ya
νρστµ .

Finally, we set dV = d − dH , where d is now the exterior differential
operator in JkB (see [14]). It is known that d2

H = 0 and d2
V = 0, so that

dV dH = −dHdV because of d2 = 0 (in JkB).
We also recall that, if B = (B, M, π) is a fibered manifold and Bx ≡

π−1(x) is its fiber over x, for any x ∈ M , then one defines the dual
vertical bundle by setting V ∗B = 	x∈M(TBx)∗; this vector bundle V ∗B =
(V ∗B, B, µB) is not a sub-bundle of the cotangent bundle (T ∗B, B, πB).
Let us denote by ⊗M the tensor product of vector bundles over M .

Theorem 1.1 (see [14]). There exist two global bundle mor-
phisms denoted by fB

(1)(L) : J3B → Λm−1M ⊗M V ∗B and fB
(2)(L) :
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J2B → Λm−1M⊗M V ∗J1B, and a global bundle morphism eB(L) : J4B →
ΛmM ⊗M V ∗B, associated to the Lagrangian L and to its action (1.3),
where V ∗J1B ∼= J1V ∗B is the dual bundle of the vector bundle V J1B ∼=
J1V B (these last two isomorphisms being canonical), which enter the fol-
lowing expression for the first perturbation of L under any homotopic
variation λε : D → B of any section λ ≡ λ0:

(1.4) δ(L ◦ j2λε) = eB(L) ◦ j4λ + dH [fB
(1)(L) + fB

(2)(L)] ◦ j4λ .

Equation (1.4) is known as the (global) first variation formula for L.
As we said above, the critical sections of (1.3) satisfy Euler-Lagrange
equations:

eB(L) ◦ j4λ = 0 .

The bundle morphisms entering (1.4) have local expressions given, re-
spectively, by:

(1.5)

fµ
a ≡ [fB

(1)(L)]µa = pµ
a − dνp

µν
a ,

fµν
a ≡ [fB

(2)(L)]µν
a = pµν

a ,

ea ≡ [e(L)B]a = pa − dµ[fB
(1)(L)]µa =

= pa − dµpµ
a + dνdµpµν

a ,

having defined the canonical momenta (pa, p
µ
a , pµν

a ) by setting

(1.6) pa ≡ pa(L)=
∂L

∂ya
, pµ

a ≡ p(L)µ
a =

∂L

∂ya
µ

, pµν
a ≡p(L)µν

a =
∂L

∂ya
µν

.

The local components (fµ
a , fµν

a ) of the bundle morphisms fB
(1)(L) and

fB
(2)(L) are known as the true momenta, while eB(L) is the Euler-Lagrange

morphism.

Remark. Notice that the bundle morphisms above determine in turn
the following tensorfields, which by an abuse of notation will be denoted
by the same symbols of the corresponding morphisms:

(1.7)
fB
(1)(L) = fµ

a dya ∧ dsµ ,

fB
(2)(L) = fµν

a dya
µ ∧ dsν ,

eB(L) = eadya ∧ ds .
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1.3 – Contact forms and symmetries

Definition 1.2. The ideal of contact forms K(J2B), is the ideal
of the exterior algebra Ω(J3B) formed by those forms η ∈ Ω(J2B) which
vanish along all holonomic sections j2λ of the bundle J2B = (J2B, M, π).

The ideal K(J2B) is generated by the following family of local 1-
forms:

(1.8) θa = dya − ya
σdxσ , θa

µ = dya
µ − ya

µσdxσ ,

by the ring Ω0(J2B).

Definition 1.3. The Poincaré-Cartan form is the m-form along
the canonical projection of J3B onto B, having the following local ex-
pression:

(1.9) Θ ≡ ΘB(L) = (fµ
a θa + fµν

a θa
ν) ∧ dsµ + L .

Finally, the form Ω ≡ ΩB(L) = dΘ is the multiplectic form of the vari-
ational problem (see [24]). This form Ω determines the Euler-Lagrange
equations, which can in fact be equivalently written as:

(1.10) (j3σ)∗(iv(Ω)) = 0 , ∀v ∈ V J3B ∼= J3V B .

For more details see, e.g., [22] and [25].

Now we denote by L the Lie derivative operator, defined on the sec-
tions of a bundle B whenever the bundle is a natural bundle (see [26]) or
a gauge-natural bundle (see [27], [28] and [29]).

Definition 1.4 (see [12] and [25]). An infinitesimal symmetry is
a vectorfield Ξ ∈ X (J3B) is said to be of L if:

(1.11) LΞ[ΘB(L)] = 0 .

Then Ec(L,Ξ, λ) = (j3λ)∗(Ξ�Θ(L)) is called the conserved Noether
current associated to Ξ.

If λ is a solution of the Euler-Lagrange equations of L one has
dµ[Ec(L,Ξ, λ)]µ = 0 (see [12] and [25]).
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As we explained in the Introduction, we are here interested into in-
vestigating the naturality of the “first order perturbation” procedure, by
means of a functor suitably defined on a suitable category. Obviously, the
“largest” is the category on which the functor is defined, the strongest
will be its naturality properties.

Definition 1.5. A (local) section λ : U → B is said to be admissi-
ble for Φ if and only if the mapping φλ

t ≡ φt ◦ λ : U → φλ
t (U) = Vt is a

local diffeomorphism.

Theorem 1.2. Equation (1.11) is meaningful even if the local 1-
parameter group Φ = {Φt} generated by Ξ is not a (local) group of bundle
automorphisms, but just a group of diffeomorphisms of the total space.

Proof. In fact, let us set φt = π ◦ Φt : B → M . Then the action of
Φ on λ is defined by setting

(1.12) λt(x) ≡ (Φ∗
t λ)(x) = Φt ◦ λ ◦ (φλ

t )−1(x)

for any x ∈ Vt; the family {λt}t∈(−ε,ε), with ε > 0, is a homotopic variation
of λ ≡ λ0 and, as in [22] and [26], we have:

(1.13) Lξ(λ) ≡
[

d

dt
λt

]
|t=0

= Tλ ◦ ξλ − Ξ ◦ λ ,

where ξλ = Tπ ◦ Ξ ◦ λ is a vectorfield over the basis M (which depends
of course on the section λ).

Remark. As a consequence, the results of [22] and [26] hold true also
in this case, which is obtained by restoring the classical definition of the
action of a differentiable mapping on a “field”. In fact, let B = (B, M, π)
and B′ = (B′, M ′, π′) be two fiber bundles and F : B → B′ a differentiable
mapping between the total spaces of the two bundles (not necessarily a
bundle morphism). We set fF = π′ ◦ F : B → M ′ and call it the basic
map associated to F . We also say that a section λ : M → B is admissible
for F if and only if f̃F = fF ◦ λ : M → M ′ is a (local) diffeomorphism; in
this case, of course, M and M ′ have to be of the same dimension. Then
the classical action of F on the set of admissible sections is given by:

(1.14) F.λ = F ◦ λ ◦ (f ◦ λ)−1 ,

for any admissible section λ : M → B.
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1.4 – Second variation of Lagrangians

We will follow [16] for the second variation.

Definition 1.6. The first order perturbation L(1) : J2V B →
ΛmM of the Lagrangian L ≡ L(0) is the (unique and global) morphism
with local expression given by:

(1.15) L(1) ≡ L(1)ds = {paρ
a + pµ

aρa
µ + pµν

a ρa
µν}ds ,

where (ρa, ρa
µ, ρa

µν) are the local components of an element of V J2B

(canonically identified with J2V B).

The action functional associated to the Lagrangian L(1) is given by:

(1.16) Ã =
∫

D

L(1) ◦ (j2λ × j2v) ,

for any local section λ ∈ ΓD(π) and any vertical vectorfield v which
projects onto the section λ. We also set:

(1.17) eB(L(1)) = ẽadρa + Eadya .

Theorem 1.3. The following holds:

(1.18)
ẽa =[eB(L)]a = ea ,

Ea ≡[EB(L)]a = Pa − dµ[FB
(1)]

µ
a = Pa − dµP µ

a + dµdνP
µν
a ,

where

(1.19)
[FB

(1)]
µ
a ≡[FB

(1)(L)]µa = P µ
a − dνP

νµ
a

[FB
(2)]

µν
a ≡[FB

(2)(L)]µν
a = P µν

a ,

being

(1.20)

Pa ≡∂L(1)

∂ya

P µ
a ≡[PB(L)]µa =

∂L(1)

∂ya
µ

P µν
a ≡[PB(L)]µν

a =
∂L(1)

∂ya
µν

,

with ea defined by (1.5).
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Proof. See [16].

Remark. With the positions of Theorem 1.3 the non-covariant part
Ea represents the coefficients of the Jacobi morphism of L (as defined in
our previous paper [15]).

Definition 1.7. The Hessian mapping HessB(L):J2B×B J2V B×B

J2V B→ΛmM , where ×B denotes the fibered product over B, is given by:

(1.21)
HessB(L)(x,y)(ξ; ρ) = [Pa](x,y)(ρ)ξa + [P µ

a ](x,y)(ρ)ξa
µ+

+ [P µν
a ](x,y)(ρ)ξa

µν ,

where ξ = (ξa, ξa
µ, ξa

µν) are the local coordinates of a further point be-
longing to the fiber of J2V B over the point of B having local coordinates
(xµ, ya).

Equation (1.21) gives in fact the Hessian mapping of the variational
problem (see [17]).

1.5 – Basic categories

We finally list the basic categories used in this paper. We shall adopt
the following standard notation. If τ is any category , we shall denote
by τ(O, O′) the set of all morphisms in τ from O into O′, being O, O′

objects of τ .

i) The category Man having as objects the (C∞-differentiable) man-
ifolds and as morphisms the (C∞-differentiable) mappings between
manifolds.

ii) The category Bun whose objects are the fiber bundles B = (B, M, π)
over any manifold M (object of Man) and whose morphisms are
the usual bundle morphisms (i.e., the fiber preserving differentiable
mappings between fiber bundles).

iii) By VBun we denote the subcategory of Bun having as objects the
vector bundles and as morphisms the linear bundle morphisms.

iv) In this last category we will make use of the subcategory TMan

whose objects are the tangent bundles of the manifolds M of Man

and, if M and N are two manifolds of Man, a mapping F : TM →
TN belongs to the set of morphisms TMan(TM, TN) in this cate-
gory if and only if F = Tf is the tangent mapping of the mapping
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f ∈ Man(M, N). In the following, by an abuse of notation, we will
denote simply by TM the tangent bundle (TM, M, τM); moreover T

is the so called tangent functor .
v) Finally, Vec will denote the category of real vector spaces whose

morphisms are linear mappings between pairs of real vector spaces.

The basic functor we shall need between the category Man and the
category Vec, namely the functor which associates to any manifold M

its total de Rham cohomology group HdR(M), will be denoted by HdR.
Recently, (see, e.g., [6] and [9]), some new cohomological functors related
to the Calculus of Variations and/or to partial differential equations have
also been introduced in the literature.

A result which can be easily inferred by comparing [6] with [9] is
that the construction needed to obtain the cohomological groups related
to these functors is somehow standard. In fact, all these cohomological
groups are obtained by first choosing some graded ideal I(JkB) of the
graded exterior algebra Ω̂(JkB) ≡ Hor(Jk(B) ⊕ K(JkB) (k = ∞ is not
excluded) having the property

(1.22) d(I(JkB)) ⊆ I(JkB) .

One then takes the quotient of Ω̂(JkB) with respect to I(JkB), to obtain
a cochain complex, and then considers the cohomological groups of this
last complex. Notice that Ω(JkB) ⊆ Ω̂(JkB). Finally, the ideals of
Ω̂(JkB) verifying (1.22) will be called closed ideals.

In order to introduce the aforementioned functors (especially for the
functor defined in [6], which is far too general with respect to the case
considered here) we need some further construction. These will be given
in Section 2, where we shall introduce the “perturbation functor”, while
the relations of our new functor with the functors of [6] and [9] will be
shortly discussed in Section 3.

2 – The first order perturbation functor

Physicists make use of many “perturbation techniques”, which are
quite different among each other. Here we shall consider only those per-
turbations which were studied in an explicit way in [16], since they are
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the starting point from which many physical results are obtained through
the Calculus of Variations; we just quote [30] and [17] (where applications
to gravitational theories can be found, both in the case of General Rela-
tivity and in the case of non-linear gravitational Lagrangians) since these
two papers are more closely related to our present interest.

2.1 – Definition of the functor P
In a previous paper of ours [18] it was shown that the “complete lift”

used in differential geometry (see, e.g., [31]) is nothing but a particular
case of the perturbation technique recently introduced in [16]. The func-
tor we shall be dealing with can be deduced by using the perturbation
considered in the aforementioned papers and is in fact obtained by com-
posing the tangent functor with some other suitable functors, having the
same degree of naturality.

As is well known, adding any divergence to a given Lagrangian L does
not affect Euler-Lagrange equations eB(L)◦j4λ = 0, but several construc-
tions suffer changes: e.g., the Poincaré-Cartan form changes, giving then
rise to different boundary terms in the action, as well as a different but dy-
namically equivalent version of equation (1.10) (see, e.g., [32]). Therefore,
even in the class of “perturbations” considered here one can define many
different “perturbations” for the same “original” set of Euler-Lagrange
equations. We shall here propose a kind of a “canonical choice”. We think
in fact that our functor is the simplest possible one and, as an example,
we shall compare it with the one which could be deduced from Taub’s
paper [30]. In any case, all the functors obtained in this way would be
“equivalent in a suitable sense” from the viewpoint of the Calculus of
Variations.

Before going on, let us first notice that there is no substantial differ-
ence between mappings and sections from the viewpoint of the Calculus
of Variations. In fact, if the variational problem is defined on the set of
all mappings from M into a further manifold N , one can uniquely iden-
tify any mapping h : M → N with the section λh : M → M × N of the
trivial bundle pr1 : M × N → M , being pr1 the natural projection on
the first factor, defined by λh(x) = (x, h(x)). The converse is also true,
as any section λ : M → B is nothing but a mapping which satisfies the
constraint π ◦ λ = id. An analogous remark holds also for the groups of
diffeomorphisms.
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In order to define our perturbation functor we need some new cat-
egories and some new functors which are easily obtained from the ones
considered in Section 1. Because of our introductory remarks about con-
servation laws, the category Bun does not contain enough morphisms.
Hence, we denote by B the category having as objects all the bundles
B = (B, M, π) of Bun and as morphisms all the differentiable mappings
between the total spaces of pairs of bundles. If B = (B, M, π) and B′ =
(B′, M ′, π′) are two objects of B, we have then B(B,B′) = Man(B, B′).
Obviously, the category Bun is a full sub-category of this category B.

Recall that for any pair of objects B, B′ of B and for any F ∈ B(B,B′)
we have set fF = π′ ◦ F and we have called it the basic map associated
to F . It is obvious that F belongs to Bun(B,B′) if and only if the
basic map fF is constant along the fibers of B. In this case fF defines a
map f ′

F : M → M ′ which is called the “induced map” and is such that
fF ≡ π′ ◦ F = f ′

F ◦ π.
The second category we need is denoted by TB. Its objects are the

tangent bundles TB = (TB, TM, Tπ), i.e. the images under the tangent
functor T of all bundles B = (B, M, π) of B, while its morphisms are the
images by T of the morphisms of B.

A third category we shall need, denoted by RB, is defined as follows:
its objects are the fiber bundles of the trivial type RB = (IR × B, IR ×
M, idIR × π), where B = (B, M, π) is any object of B, and idIR × π :
IR × B → IR × M is defined by setting (idIR × π)(t, y) = (t, π(y)) for
any (t, y) ∈ IR × B. In this category a morphism F ∈ RB(RB, RB′),
being B = (B, M, π) and B′ = (B′, M ′, π′) objects of B, is a pair of
mappings (idIR, F̃ ) : IR×B → IR×B′. Hence we have typical morphisms
(idIR, F̃ )(ε, y) = (ε, F̃ (ε, y)), where F̃ : IR × B → B′ is the mapping
defining a homotopic variation Fε ∈ B(B,B′) of F0 : B → B′, with
ε ∈ IR; i.e., F̃ (ε, x) = Fε(x), for any ε ∈ IR and x ∈ M .

Remark. Since in the Calculus of Variations we are interested only
into a neighborhood of 0 ∈ IR, we can consider as homotopic varia-
tions (modulo a possible reparametrization on ε) only the families Fε ∈
B(B,B′), with ε varying in the whole of IR, identifying them with the mor-
phisms of the category RB. Since all objects M of the category Man

are objects of B via the trivial bundle structure (M, M, idM), also the
homotopic variations of local sections can be considered as morphisms in
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the previous category; in this last case we shall consider only homotopic
variations strongly preserving the boundary (see [17]).

Theorem 2.1. There exists a natural covariant functor from the
category B into the category RB, which, with an abuse of notation, will
be again denoted by R. This functor R will be called the canonical lift.

Proof. Immediate, by defining R as the functor which associates to
any bundle B = (B, M, π) of B the bundle RB = (IR×B, IR×M, idIR×π)
of RB and to any morphism F ∈ B(B,B′) between the objects B and B′

of B the morphism RF = (idIR × F ) ∈ RB(RB, RB′).

The canonical lift of F acts on a homotopic variation σ : IR × M →
IR × B in the following way. Let λε : M → B be the family of mappings
defining σ, i.e. σ(ε, x) = λε(x). We say that σ is admissible for RF

if and only if λε is admissible for F , for any ε ∈ IR. Then we can
consider the mapping τ : IR×M ′ → B′ defining the homotopic variation
F.λε = F ◦ λε ◦ (fF ◦ λε)−1 : M ′ → B′, for any ε ∈ IR, being fF the basic
map associated to F . By these remarks the action of RF is defined as
(RF ).σ = (idIR, τ) : IR × M → IR × B.

Finally we have the further category T RB whose objects are the
bundles T RB = (T IR × TB, T IR × TM, idT IR × Tπ), with B = (B, M, π)
any object of B, and whose morphisms are the mappings (idT IR, F̃ ) ∈
T RB(T RB, T RB′), where B = (B, M, π) and B′ = (B′, M ′, π′) are bundles
of B and F̃ : IR × TB → B′ is a mapping which defines a homotopic
variation Fε : TB → TB′ between linear bundle morphisms.

Definition 2.1. The evaluation functor E is the covariant functor
from the category T RB with values into the category B defined as follows:
the functor E associates to any object T RB of T RB the canonical lift
RTB of TB and to any morphism (idT IR, F̃ ) ∈ T RB(T RB, T RB′) the
morphism (idIR, F̃0) ∈ RB(RTB, RTB′), via the canonical identification
T IR = IR×IR obtained by means of the standard chart (IR, idIR), F̃0 being
defined by F̃0(z) = F̃ (0, z), for all z ∈ TB.

We set now E ◦ T = TE

Definition 2.2. The first order perturbation functor, is defined
on the category B and takes its values into the category RB. It is the
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covariant functor defined by

(2.1) P = E ◦ T ◦ R = TE ◦ R

and it associates to any bundle B = (B, M, π) the bundle PB = (IR ×
TB, IR × TM, idIR × Tπ).

It is now easy to see that the following holds:

Proposition 2.2. For any homotopic variation σ : IR × M → B,

which is assumed to be admissible for a morphism F ∈ B(B,B′), with B
and B′ objects in B, one has:

E(T ((RF ).σ)) = TE((RF ).σ) = (PBF ).(TEσ) .

Moreover, we have:

Proposition 2.3. The functor P is a true perturbation functor.

Proof. Let us consider two bundles B=(B, M, π) and B′=(B′, M ′,π′)
and a morphism F̃ ∈ RB(RB, RB′). We first notice that TE F̃ belongs
to W ≡ T ∗(IR × B) ⊗ T (IR × B′) ∼= (T ∗IR ⊗ T IR) ⊕ (T ∗B ⊗ T IR) ⊕
(T ∗IR⊗TB′)⊕(T ∗B⊗TB′); here ⊗ and ⊕ generically denote the product
bundles over the product of the bases with the natural vector bundle
structures given by pairwise operations in the product of the fibers. Since
the standard chart (IR, idIR) is fixed in IR, we have the mapping w :
W → TB′, which acts as follows: to any element of W it associates the
component belonging to TB′ ⊗ T ∗IR, considered as forming a vector of
B′. In fact, if X belongs to W , we have:

X = a
∂

∂t
⊗ dt + ω ⊗ ∂

∂t
+ dt ⊗ Y + P ,

where a is an arbitrary real number, Y a vector of B′, ω a 1-form of B

and P a tensor on T ∗B ⊗ TB′. Then it follows:

w(X) = Y .
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We have thence (with an obvious meaning of the symbols used):

(2.2) δλ = w((PBF ).(TEσ)) ,

with the obvious relation between the homotopic deformation λε and the
mapping σ. (We write δλ for the first variation of λε since it refers to the
value at ε = 0). This proves our claim.

2.2 – Coordinate expression of P
Some of the properties which will be useful in the sequel can now

be easily seen in terms of local coordinates. Hence we consider two fiber
bundles B = (B, M, π) and B′ = (B′, M ′, π′), a morphism F ∈ B(B,B′)
and a homotopic variation σ : IR × M → IR × B admissible for F . We
notice that M and M ′ have the same dimension, since we have assumed
that admissible sections exist; we denote by (xµ, ya) and (zµ, yA) natural
coordinate systems in B and B′, respectively, and by zµ = fµ(xν , ya) the
local representation of the basic map fF : B → M ′. Then we have:

(2.3) [w((PBF ).(TEσ))]A =

{
∂F A

∂yb
−
[
∂F A

∂xµ
+

∂F A

∂ya

∂σa

∂xµ

]
Cµ

ν

∂fν

∂yb

}
∂σb

∂ε
,

where the matrix ‖Cµ
ν ‖ ≡ ‖Cµ

ν (j1σ)‖ is the inverse of the matrix ‖C̄ν
µ‖

defined by:

(2.4) C̄ν
µ ≡ C̄ν

µ(j1σ) =
∂fν

∂xµ
+

∂fν

∂ya

∂σa

∂xµ
,

which has maximal rank since σ is an admissible homotopic variation.
Now we notice that Tσ is a section from the basis IR × M into the total
space T ∗(IR×M)⊗T (IR×B) ∼= (T 1

1 IR)⊕ (T ∗IR⊗TB)⊕ (T ∗M ⊗T IR)⊕
(T ∗M ⊗TB). Since σ is a section of a bundle and many of its derivatives
are hence constant, we can replace the previous vector bundle by the
simpler vector bundle (V B ⊗ T ∗IR) ⊕ (T ∗M ⊗ V B). Finally, when the
functor TE is considered, the previous bundle simplifies further to a bundle
diffeomorphic to J1B×B V B. Hence we can define the new action of PBF

by simply setting:

(2.5) [(PBF )∗(y, v)]A =

{
∂F A

∂yb
− (dµF A)Cµ

ν

∂fν

∂yb

}
vb ,
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for any (y, v) not belonging to the closed subset of J1B ×B V B having
local equation:

(2.6) det ‖C̄ν
µ‖ = det ‖dµfν‖ = 0 .

Equation (2.2) shows that the functor P defined by (2.1) is a true pertur-
bation functor, acting through the action (2.5) and defined everywhere
except a closed subset of the bundle (J1B×B V B, M, τ), where τ denotes
the obvious projection, determined by equation (2.6); the elements of the
domain of regularity for PBF will be called admissible for PBF . Luckily
enough, the use of this complicated form of the first order perturbation
functor can be avoided in most cases: we shall need it, in fact, only
to study the perturbation of the Noether equation in its classical form,
i.e. when the action of the 1-parameter group is defined by (1.12). In
the other cases the category Bun is enough for the study of variational
problems.

Proposition 2.4. In the category Bun, the first order perturbation
functor restricted to a simpler functor P̂ which does not depend any longer
on j1σ, but only on the ε-derivative of σ.

Proof. In fact, in this case (2.5) becomes

(2.7) [w((PBF ).(TEσ))] =
∂F A

∂ya
(δλ)a ∂

∂yA

and all the sections become admissible. Hence (PBF ) can be considered
as a fiberpreserving linear mapping defined on V B taking its values into
V B′. As a consequence, we can replace P with a new functor P̂, which
associates to any bundle B over M the bundle V B over M endowed
with the obvious projection and which transforms morphisms according
to (2.7). In other words, P̂ associates to any mapping F ∈ Bun(B,B′)
the mapping P̂BF ∈ Bun(V B, V B′) defined by:

(2.8) (P̂BF )(y,v) =
∂F A

∂ya
va ∂

∂yA
,

for any vertical vector v over y ∈ B, having local components va. This
ends our proof.
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Definition 2.3. The functor P̂ is called reduced first-order per-
turbation functor.

Remarks.

1). Equation (2.8) shows that in this case P̂BF : V B → V B′ is a bundle
morphism also with respect to the bundle structures V B → B and
V B′ → B′ and moreover F : B → B′ is the map induced by P̂BF .
Because of this, in the sequel we shall omit to write the induced maps
and diagrams, for the sake of brevity.

2). We remark that in this case P̂ can be alternatively defined as the
unique functor which associates to any object B in the category Bun

its vertical bundle V B and to any bundle morphism F ∈ Bun(B,B′),
with B and B′ objects of Bun, the unique bundle morphism P̂(F ) :
V B → V B′ defined by setting:

(2.9) δ(F ◦ λ) = P̂B(F )(δλ)

for all mappings σ : IR×M → B which define a homotopic variation
of a section λ : M → B.

Theorem 2.5. When the functor P̂ is restricted to curves, as in the
case of Riemannian Geometry, it essentially coincides with the tangent
functor T .

Proof. This follows easily from (2.4) and (2.8).

Many of the consequences of Theorem (2.5) existence are well known,
even if they were never explicitely introduced as a consequence of vari-
ational principles (this aspect of Riemannian Geometry includes more
properties than what people generally think; as an example of this fact
we just quote [17], where the curvature of general variational problems
of “harmonic type” is discussed in some detail). The results related to
the existence of the perturbation functor for curves are in fact known as
consequences of the complete lift (see [31]) and are related to our functor
in the following way. The fiber bundle IR×M → IR can be associated to
the Riemannian manifold (M, g) and curves can be thought as sections
of this bundle in an obvious way. Since we have V (IR × M) = IR × TM ,
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to any differentiable mapping f : M → M ′ one can associate the map-
ping Ff : IR × M → IR × M ′ defined by Ff (ε, x) = (ε, f(x)). Then
P̂IR×M(Ff ) = (id, Tf) : IR × TM → IR × TM ′ and the total differential
Tf of f is nothing but the complete lift of f . Most of the constructions
related to the variational aspects of Riemannian Geometry, e.g. those dis-
cussed in [31], will then coincide with our results (see also [18] for more
details).

2.3 – Some Lagrangian properties of the reduced first order perturbation

functor P̂
Let us now consider the tensor bundle τM = (TM, M, χM) with

total space T∗M =
⊕

(r,s)∈N2 T r
s M , where T r

s M is the bundle of tensors
of type (r,s), for any (r, s) ∈ IN2 and (r, s) �= (0, 0), while T 0

0 M = M × IR.
We set T 0

r M ≡ TrM , for any r ∈ IN. We stress that, if B, B′ are
two objects in Bun and F ∈ Bun(B,B′), then the reduced first order
perturbation functor P̂ determines the map P̂B(F ) which associates to
any vertical vector of the total space of the bundle V B a contravariant
vector of the total space of B′. Hence, at a first sight, this functor seems
to have nothing to do with Lagrangians which are instead determined
by mappings from J2B into ΛmM . However, this is not the case, since
it easy to see that each vertical bundle V TrM splits as follows with a
natural projection:

(2.10) pr1 : V TrM ∼= (TrM) ⊕M (TrM) → TrM , ∀r ∈ N .

Proposition 2.6. Let L : B → ΛmM be a Lagrangian. The follow-
ing holds:

(2.11) P̂J2BL=(L,L(1)) :V J2B∼=J2V B−→V ΛmM ∼=ΛmM ⊕M ΛmM ,

where L(1) is the first order perturbation of the Lagrangian L.

Proof. It is a straightforward consequence of results of [16] together
equation (1.15) of Section 1, since both the reduced first order perturba-
tion functor and the identification (2.10) preserve symmetries.

Remarks. A virtual application of a strictly analogous functor is due
to Taub, who explicitly introduced a Lagrangian previously used in an
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implicit way to study the stability of relativistic gaseous masses (see [30]
and the papers quoted therein). The perturbed Lagrangian used by Taub
is the following:

(2.12) L̃y(v) = {eB(L)}y(v) + {dH [fB
(1)(L) + fB

(2)(L)]}y(v) ,

for any y ∈ J2B and v ∈ V B, both projecting onto the same point of
B (see (1.4) of [30]). As a consequence, between Taub’s and our pertur-
bation there is only a “difference in simplicity”, since (2.12) is obtained
from (2.11) by means of a formal integration by parts, i.e. by adding to
the Lagrangian a divergence which does not affect the variational problem
(see [32]). This difference might however have some relevance, not only
because of the different complication in the calculations; in fact we know
that divergences determine those physical quantities which are pushed to
the boundary of the region considered and enter the conservation laws
through Stokes’ theorem, so that they cannot be arbitrarily changed.
This is true not only in classical physics, but also in General Relativity
(see [32] for an example related to the Komar superpotential).

We conclude this Section by noticing that the morphism P̂(L) con-
tains the first order “deformed” Lagrangian L(1) of L ≡ L(0) in the sense
of [16] and hence it contains informations on the Jacobi equations of the
variational problems.

2.4 – The reduced functor P
In order to consider all the other geometric objects related to the

Calculus of Variations, we need a more sophisticated construction than
(2.10). For this purpose we first recall some results of [31]. Let us de-
note by T r

s (M) the module of tensorfields of type (r,s) on M , being
T 0

0 (M) ≡ Ω0(M) ≡ F(M) the ring of smooth functions, and we set
T (M) ≡ ⊕

(r,s)∈IN2 T r
s (M). We also denote by (xµ, vν) the local coordi-

nates induced on the tangent bundle TM by a local coordinate system
(U, xµ) on M .

Proposition 2.7 (see, e.g., [31] for a proof). There exists an F(M)-
linear isomorphism from T (M) into T (TM), denoted by v and called
vertical lift, defined by :

(2.13a) (S⊗T )v =Sv⊗T v, ∀S ∈ T r
s (M),∀T ∈ T h

k (M),∀ r, s, h, k ∈ IN
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and

(2.13b)
(

∂

∂xµ

)v

=
∂

∂vµ
, (dxµ)v = dxµ ,

for any µ ∈ {1, . . . , m}).

We need a further definition:

Definition 2.4. The complete lift is the IR-linear map c : T (M) →
T (TM) defined by:

(2.14a) f c ≡ df : TM → IR , ∀f ∈ F(M) ,

(2.14b)
(S ⊗ T )c = Sc ⊗ T v + Sv ⊗ T c ,

∀S ∈ T r
s (M) , ∀T ∈ T h

k (M) , ∀r, s, h, k ∈ IN

and

(2.14c)
(

∂

∂xµ

)c

=
∂

∂xµ
, (dxµ)c = dvµ , ∀µ ∈ {1, . . . , m} .

Notice that if X and S are a vectorfield and a tensorfield defined
on M , respectively, then the following relation between Lie derivatives
exists:

(LX(S))c = LXc(Sc) .

Proposition 2.8. Let us fix (r, s) ∈ IN2, with r + s ≥ 1, and let
S ∈ T r

s (M) be a tensorfield. Consider the total differential TS : TM →
T (T r

s M) and the complete lift Sc : TM → T r
s (TM). Then there exists an

immersion ξ ≡ ξr
s(M) : T r

s (TM) → T (T r
s M) such that φr

s(M) ◦TS = Sc,

for any S ∈ T r
s (M).
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Proof. In fact, a tensor S ∈ T r
s M belonging to the fiber over x ∈ M

has local expression:

(2.15) S = Sµ1...µr
ν1...νs

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµr
⊗ dxν1 ⊗ · · · ⊗ dxνs .

Denoting by (xµ, Sµ1...µr
ν1...νs

) the local coordinate system of T r
s M induced by

the local coordinate system (U, xµ) of M , we can write the local expression
of a vector X ∈ TS(T r

s M), being S ∈ T r
s M a tensor over a point x ∈ U ,

as follows:

(2.16) X = Xµ ∂

∂xµ
+ Xµ1...µr

ν1...νs

∂

∂Sµ1...µr
ν1...νs

.

We can always find a tensorfield S̃ defined on U such that:

(2.17) (Xµ∂µS̃µ1...µr
ν1...νs

)x = Xµ1...µr
ν1...νs

, (S̃µ1...µr
ν1...νs

)x = Sµ1...µr
ν1...νs

,

where Y = Xµ ∂
∂xµ ∈ TxM and Sµ1...µr

ν1...νs
are the local components of S. We

stress that (2.17) is equivalent to (T S̃)Y = X. Then we set:

(2.18) ξr
s(X) ≡ (S̃c)Y ,

since the tensor on the right hand side does not depend on the local
coordinate system nor it depends on the tensorfield S̃. By using (2.13)
and (2.14) one can see that:

ξr
s(X) = Xµ1...µr

ν1...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dxνs+(2.19)

+
r∑

h=1

Sµ1...µh...µr
ν1...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂xµh
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dxνs+

+
s∑

h=1

Sµ1...µr
ν1...νh...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dvνh ⊗ · · · ⊗ dxνs .

This proves our claim.

Remark. We stress that, if B = (B, M, π) and B′ = (B′, M ′, π′)
are two fiber bundles and F ∈ Bun(B,B′) is a bundle morphism, then
equation (2.8) can be equivalently written as:

(2.20) P̂B(F ) = [(TF )|V B]⊥ ,
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where [. . . ]⊥ denotes the “vertical part” obtained by projection through
the natural projection of TB onto V MB.

When applied to vectorfields, equation (2.20) gives then rise to vec-
torfields which determine local 1-parameter groups having a trivial action
on the Lagrangians obtained by (2.11), since the the “horizontal” com-
ponents of the original vectorfields are lost. The existence of the family
ξr

s ≡ ξr
s(B) : T r

s (TB) → T (T r
s B) and equation (2.19) allow us to as-

sociate to the functor P̂ a new functor P in all the cases in which P̂
acts on tensorfields on the manifold B, considered as obvious bundle
morphisms. In fact, a tensorfield S ∈ T r

s (B) can be considered as a mor-
phism S : B → T r

s B, with respect to the bundle structure of B and the
obvious bundle structure T r

s B → M . Then, by using (2.17), we can set

(2.21) PB(S) = ξr
s(P̂B(S)) .

The local expression of PB(S) can be easily calculated by using the local
expression of ξr

s given by (2.16) for any tensorfield S of type (r,s) on B.
This gives quite complicated formulae in the general case, since several
terms are involved. We shall thence limit ourselves to write these formulae
only for vectorfields and 1-forms, because they will be needed below.
Hence, we set:

(
∂

∂xµ

)v

=
∂

∂vµ
,

(
∂

∂ya

)v

=
∂

∂va
,(

∂

∂xµ

)c

=
∂

∂xµ
,

(
∂

∂ya

)c

=
∂

∂ya
,

(2.22)

(dxµ)v = dxµ , (dya)v = dya ,

(dxµ)c = dvµ , (dya)v = dva .

Let X = Xµ ∂
∂xµ + Xa ∂

∂ya be the local expression of a vector field X and
ω = ωµdxµ + ωadya be the local expression of a 1-form, defined on B.
Then, for any vertical vector v = va ∂

∂ya , we have:

(2.23a) PB(X)v = Xµ ∂

∂xµ
+ Xa ∂

∂ya
+ vb ∂Xµ

∂yb

∂

∂vµ
+ vb ∂Xa

∂yb

∂

∂va
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and

(2.23b) [PB(ω)]v = ωµdxµ + ωadya + vb ∂ωµ

∂yb
dvµ + vb ∂ωa

∂yb
dva .

2.5 – The variational component of P̃

In order to determine the last functor into which we are interested
we need some further construction. Let (xµ′

, ya′
) (µ, µ′ ∈ {1, . . . , m})

be a further local bundle coordinate system whose domain intersects the
domain of the coordinate system (xµ, ya). We will denote by ϕµ′

(xµ) and
ψa′

(xµ, ya) the transition functions, together with their inverses φµ and
ψa. Let us consider the tangent bundle TB and let us recall that in the
charts induced on this manifold the following transformation laws hold:

(2.24)

i) xµ′
= ϕµ′

(xµ) ,

ii) ya′
= ψa′

(xµ, ya) ,

iii) vµ′
= vµϕµ′

µ

iv) va′
= vµψa′

µ + vaψ
a
a′ ,

for any v = vµ ∂
∂xµ + va ∂

∂ya ∈ TyB in a point y ∈ B belonging to the
intersection domain. Here and in the sequel we set ϕµ

µ′ = ∂µ′ϕµ, ψa
µ′ =

∂µ′ψa and so on. Now, we consider the subbundle πV B : (πTB)−1(V B) =
τ ∗V B → V B of the cotangent bundle (T ∗(TB), TB, πTB) and a 1-form
α = αµdxµ + αadya + βµdvµ + βadva ∈ τ ∗V B. Then, the transformation
laws (2.24) induce the following transformations on the local components
of α:

(2.25)

i) α′
µ′ = αµϕµ

µ′ + αaψ
a
µ′ + βaψ

a
a′µ′ψa′

b vb ,

ii) αa′ = αaψ
a
a′ + βaψ

a
a′b′ψ

b′
b vb ,

iii) βµ′ = βµ′ϕµ
µ′ + βaψ

a
µ′ ,

iv) βa′ = βaψ
a
a′ .

On the other hand, one obtains from (2.4) the transition functions on the
bundle V B by simply setting vµ = 0. The corresponding transformation
laws of the local components of a 1-form r = ρµdxµ + ρadya + σadva
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defined on V B are then given by:

(2.26)

i) ρ′
µ′ = ρµϕµ

µ′ + ρaψ
a
µ′ + σaψ

a
a′µ′ψa′

b vb ,

ii) ρa′ = ρaψ
a
a′ + σaψ

a
a′b′ψ

b′
b vb ,

iii) βa′ = βaψ
a
a′ .

Theorem 2.9. Let us consider the vector bundle T ∗B ⊕B T ∗V B →
V B, in which the fiber over a vector v ∈ VyB, with y ∈ B, is given by
T ∗

y ⊕ T ∗
v V B, with the obvious structure of real vector space. There exists

a bundle isomorphism η∗ : τ ∗V B → T ∗B ⊕B T ∗V B which associates
to any covariant vector α = αµdxµ + αadya + βµdvµ + βadva of τ ∗V B

over the vector v of V B the ordered pair (ω, ρ) of T ∗B ⊕B T ∗V B, being
ω = βµdxµ + βadya and ρ = αµdxµ + αadya + βadva, with the covariant
vector ρ belonging to the fiber of T ∗V B over v.

Proof. Immediate by comparing (2.25), (2.26) together with the
transformation laws of T ∗B.

Remark. The bundle T ∗B ⊕B T ∗V B → V B possesses a naturally
induced structure of vector bundle. Moreover, the bundle over V B of
covariant tensors of order r determined by the vector bundle structure on
T ∗B⊕B T ∗V B turns out to be isomorphic to TrB⊕B TrV B, for any r > 0.
Hence, if νrV B denotes the restriction of the bundle of covariant tensors
TrTB to V B, we can consider the power (η∗)r : νrV B → TrB ⊕B TrV B.

Definition 2.5. We set φr = ξ0
r ◦ (η∗)r, for any r ≥ 0 and Φ ≡

(φr)r≥1. Then we have the following covariant functor:

(2.27) P̃B ≡ pr2 ◦ φr ◦ PB ≡ pr2 ◦ ξ0
r ◦ PB : TrB → TrV B ,

where pr2 : TrB ⊕B TrV B → TrV B is the canonical projection. The
functor P̃ acts on the appropriate categories which can be easily deter-
mined and it is called the variational component of the reduced
first order perturbation functor.

In order to determine the action of the functor P̃ on the local com-
ponents of covariant tensorfields we need some more pieces of notation.
Let us denote by Ar(h) the set of multiple indices

Ar(h) = (µ1, . . . , µh, a1, . . . , ar−h) ,
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with h ∈ {1, . . . , r}. We make the convention that the multiple indices
in which the µ’s do not appear are of the type Ar(0) and the multiple
indices not having the a’s are of the type Ar(r). We shall call the pre-
vious multiple indices basic multiple indices. The standard action of the
permutation group Gr on the basic multiple indices determines all the
multiple indices needed to study the tensors of B. We consider now the
set of local covariant tensors of B defined by:

(2.28) dzσ(Ar(h)) = dzσ(µ1) ⊗ · · · ⊗ dzσ(µh) ⊗ dzσ(a1) ⊗ · · · ⊗ dzσ(ar−h) ,

for any Ar(h) ∈ Ar and σ ∈ Gr, having set dzµ = dxµ and dza = dya, for
any µ ∈ {1, . . . , r} and any a ∈ {1, . . . , p}, respectively. Then the family
(dzσ(Ar(h))), obtained when σ spans Gr and Ar(h) spans Ar, is a local
system of generators of TrB, which is obtained from the standard local
basis of TrB by repeating exactly h!(r−h)!-times each element dzσ(Ar(h)),
for any σ ∈ Gr and Ar(h) ∈ Ar, for any r > 0. Moreover, if S ∈ TrB,
we have:

(2.29) S =
r∑

h=0

∑
σ∈Gr

1
h!(r − h)!

Sσ(Ar(h))dzσ(Ar(h)) ,

where Sσ(Ar(h)) are the standard local components of S and the Einstein
convention on the multiple indices Ar(h) is used without any danger of
confusion.

Then, for all sections ω : B → TrB, having local expression:

(2.30) ω =
r∑

h=0

∑
σ∈Gr

1
h!(r − h)!

ωσ(Ar(h))dzσ(Ar(h)) ,

we have:

(2.31)

P̃B(ω) =
r∑

h=0

∑
σ∈Gr

1
h!(r − h)!

va∂a[ωσ(Ar(h))]dzσ(Ar(h)+

+
r−1∑
h=0

∑
σ∈Gr

1
h!(r − 1 − h)!

ωσ(Ar(h)â)dzσ(A1
r(h)â) ,

having set
A1

r(h)â ≡ (µ1, . . . , µh, a1, . . . , ar−h−1, â)
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and

dzσ(A1
r(h)â) = dzσ(µ1) ⊗ · · · ⊗ dzσ(µh) ⊗ dzσ(a1) ⊗ · · · ⊗ dzσ(ar−h−1) ⊗ dzσ(â) ,

being, in this case, dzâ = dvâ, for any â ∈ {1, . . . , p}. Obviously, the
functor P can be easily obtained from P̃ in these cases.

Remark. We conclude this part by noticing that, if Ξ is a vectorfield
and ω is a covariant tensorfield both defined on B, then from (2.14d) and
the definition of P̃ we easily obtain:

(2.32) LPB(Ξ)(P̃B(ω)) = P̃B(LΞ(ω)) .

3 – Relations of the functor P with the calculus of variations
and with some cohomological functors

3.1 – Action on forms of the perturbation functors

Let B = (B, M, π) be a fiber bundle. We shall denote by T ∗(B) =⊕
r∈IN Tr(B) the direct sum of the modules Tr(B) of tensorfields of type

(0,r), i.e. the sections of the bundle τ ∗B. We also recall that, if B, B′ are
objects in Bun, then the functor P̂ defines a map P̂B,B′ : Bun(B,B′) →
Bun(P̂(B), P̂(B′)) = Bun(V B, V B′), which transforms a morphism f ∈
B(B,B′) into the morphism P̂(f) ∈ B(V B, V B′), given by (2.8). This
holds also for the functor P̃.

A number of results holds becuase of (2.14):

Proposition 3.1. The variational component P̃ of the reduced first
order perturbation functor P̂ acts as a derivative on T ∗(B), considered as
a T ∗(M)-algebra, via the natural identification induced by pull-back along
π : B → M .

As a consequence, by using the simplified notation introduced in
Section 2, we have:

(3.1) P̃B(ω ⊗ ω′) = P̃B,T∗B(ω) ⊗ ω′ + ω ⊗ P̃B,T∗B(ω′)

and

(3.1′) P̃B,T∗B(α ⊗ ω) = α ⊗ P̃B,T∗B(ω) ,
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for all ω ∈ Tr(B), ω′ ∈ Ts(B), α ∈ Th(M) and r, s, h ∈ IN; i.e., in this
section we shall consider the vertical lift as an identification morphism.

Proposition 3.2. The variational component P̃B,T∗B of the reduced
first order perturbation functor preserves the symmetries of tensors.

Hence, when P̃B is reduced to the exterior algebra of B, we can
replace in (3.1) the tensor product with the exterior product, so that:

(3.2) P̃B(Ω(B)) ⊆ Ω(V B) .

Proposition 3.3. The functor P̃B is localizable; i.e., if N is an
open submanifold of M and if π : B′ → N defines a sub-bundle of B,

then:

(3.3) [P̃B(ω)]|B′ = P̃B′(ω|B′) ,

for any ω ∈ Ω(B).

Now we are ready to prove one of the main results of this paper.

Theorem 3.4. There exists a morphism P̃∗
B,ΛB : HdRB → HdRV B,

being HdR the de Rham (IR-valued) cohomology functor.

Proof. We first recall that a function f : B → IR can be identified
with a section f : B → B × IR of the bundle pr1 : B × IR → B. Since
we have the identification pr1 : V M(B × IR) ∼= (V B) × IR → V B, the
mapping P̃B(f) is a section of this bundle, and hence a function. For this
function we have locally:

(3.4)

P̃B

(
∂f

∂xµ

)
=

∂(P̃Bf)
∂xµ

,

P̃B

(
∂f

∂ya

)
=

∂(P̃Bf)
∂ya

,

∂(P̃Bf)
∂va

=
∂f

∂ya
;
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the above identities hold since, in virtue of (2.14) we have:

(3.5) [P̃B(f)](v) =
(

∂f

∂ya
(y)
)

va ,

for any v ≡ va ∂
∂ya ∈ V B projecting onto y ∈ B. From (2.14) and (3.4),

it also follows:

(3.6) P̃B(dω) = d(P̃Bω) ,

for all ω ∈ Ωr(B) and any integer r ∈ {1, . . . , m + p}. Hence, the map
P̃B,ΛB is a cochain morphism from Ω(B) into Ω(V B). As a consequence,
it defines a morphism P̃∗

B,ΛB : HdRD → HdR(V B), as we planed.

3.2 – Fundamental properties of P̃
Now, we consider the bundle J2V B together with its natural bun-

dle structure J2V B → V B and the local basis for the contact 1-forms,
given by:

(3.7) θ̃a = dva − va
σdxσ , θ̃a

µ = dva
µ − va

µσdxσ .

The family of 1-forms defined by combining (1.8) together with (3.7)
determines a local basis for the contact 1-forms with respect to the bundle
structure J2V B → B. Moreover, from (2.14) we have:

(3.8) P̃J2B(θa) = θ̃a , P̃J2B(θa
µ) = θ̃a

µ .

We need two technical lemmae:

Lemma 3.5. Let f : J2B → IR be a function, which induces the
mapping dV f : J3B → T ∗M and the perturbation P̃J2Bf : J2V B →
IR, where the obvious identifications with sections are used. Considering
the induced morphisms dV (P̃J2Bf) : J3V B → T ∗J3V B and P̃J3B(dV f) :
J3V B → T ∗J3V B, the following hold

dV (P̃J2Bf) = P̃J3B(dV f) ,(3.9a)

dH(P̃J2Bf) = P̃J3B(dHf) .(3.9b)
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Proof. The lemma follows easily from (2.14), (3.4) and (3.8). Equa-
tion (3.9b) holds because of (3.6) and (3.9a), being dH = d − dV .

Analogous calculations give the following lemma:

Lemma 3.6. Let ω ∈ Ω(J2B) be any form the following hold :

dV (P̃J2Bω) = P̃J3B(dV ω) ,(3.10a)

dH(P̃J2Bω) = P̃J3B(dHω) .(3.10b)

Using the previous lemmae, by simple calculations one obtains also
the following fundamental result:

Theorem 3.7. The variational component of the reduced first order
perturbation functor P̃ satisfies the following “naturality properties”:

(3.11)

P̃J3B(fB
(1)(L)) =fV B

(1) (P̃J2BL) ,

P̃J3B(fB
(2)(L)) =fV B

(2) (P̃J2BL) ,

P̃J4B(eB(L)) =eV B(P̃J2BL) ,

P̃J3B(ΘB(L)) =ΘV B(P̃J2BL) ,

P̃J3B(ΩB(L)) =ΩV B(P̃J2BL) .

Finally, from (1.17), (2.9), (2.11) and (3.11) we deduce that:

Theorem 3.8. The morphism P̃J4B(eB(L)) is the Jacobi morphism
of L and the following holds:

(3.12) δ2(L◦ j2λε)= P̃J4B(eB(L)) ◦ j4v+ δ[(dHfB
(1)(L)+ dHfB

(2)(L)) ◦ j4λε].
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Remark. Equation (3.12) gives the second variation of the Lagragian
L expressed by the variational component P̃ of the first order perturba-
tion functor P̂.

3.3 – The comparison between cohomologies

Now, we determine some relations among the variational component
of the first order perturbation functor P̃ and some of the functors de-
fined by other authors in various cohomological theories related to prob-
lems involving partial differential equations. Obviously, these relations
can be considered as a further measure of the naturality of the functors
P, P̂ and P̃ introduced here. To this purpose we consider two differ-
ent versions of the cohomological theory introduced by Anderson and
Duchamp (see [5]) and developed by many authors, among which we re-
call Vinogradov ([33]; see [6] and [9] for a more detailed bibliography).
We shall also introduce a third version of Vinogradov’s cohomological
theory, which better exploits the naturality of the functors introduceded
here and puts forward some problems which apparently were not consid-
ered in the previous literature known to us.

The cohomology considered in [6] is not extremely well suited to in-
clude the global versions of the Euler-Lagrange equations. In fact, the
only case known to us in which this cohomological theory works well for
variational problems is the case obtained by taking B = M × IRp (with p

any integer) and π = pr1 : B → M (see [34]). Moreover, the “tower
construction” of [7] does not seem to be suited to include the differential
equations ensuing from variational problems, as we shall shortly see be-
low. We shall thence suggest a “naive” solution for both problems. We
recall once again that the construction considered here has the unique
purpose of testing the naturality of the variational component of the first
order perturbation functor. Accordingly, “better for our purposes” will
not in general mean “better” (especially when one considers the impor-
tant results of [7] and [10]), even if we believe that it could be useful
to compare some of the possible constructions together with their ap-
plications. Finally, we stress that the variational methods involve many
more types of partial differential equations than people generally think,
as it will be pointed out by the examples of the Appendix (related to
“parabolic” systems of partial differential equations in the sense of [6],
heat equations and KdV equations included). This remark can be es-
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pecially useful for the cohomological groups considered here, since the
problems coming from the degeneracy of the Lagrangian and from the
signature of its associated Hessian do not seem to play an important role,
at least for the moment.

Let again B = (B, M, π) be a bundle. Let us denote by πh
k : JhB →

JkB the canonical projections, for any h, k ∈ N, with h > k and let us set
J0B = B. Then we have canonical inclusions (πh

k )∗ : T∗JkB → T∗JhB,
for any h, k ∈ N, with h > k; we shall use (πh

k )∗ as identification mor-
phisms. Then, more or less clearly, the specific construction of [9] suggests
to overcome the use of the bundle J∞B of infinite jet prolongations of
sections of B which has better “flatness” properties but has a complicated
topology (see, e.g., [34]), by just considering and suitably working on jet
bundles of order k+1, being k the highest order on which the r-forms used
depend. Since in our hypotheses deB(L) = dV eB(L) depends on the ele-
ments of J5B, for any Lagrangian L on J2B, we shall consider Ω(JkB) ⊆
Ω(J6B), for any k ≤ 5. We shall also consider Ω(M) ⊆ Ω(B) ⊆ Ω(J6B),
via the identification morphism π∗ : Ω(M) → Ω(J0B) = Ω(B). The pre-
vious identifications allow us to consider the ring of smooth functions
Ω0(JkB) as a sub-ring of the ring of smooth functions Ω0(J6B) which
are constant along the fibers of the bundle π6

k : J6B → JkB, with k < 6.
We shall denote by Ω̃h

r (JkB) the Ω0(JkB)-module of r-forms along the
canonical projection πh

k : JhB → JkB, for any h, k ≤ 5, with h > k. Fi-
nally, we denote by Ω̃r(M) the Ω0(JkB)-submodule of r-forms along the
canonical projection π̄k : π ◦πk

0 : JkB → M , for any k ≤ 5; also this mod-
ule will be considered as a sub-module of Ωr(J6B), for all r ∈ {1, . . . , m}.

We shall use the following known results (see [9]):

Proposition 3.9. The following contact forms:

(3.13)
θa

µνρ = dya
µνρ − ya

µνρσdxσ, θa
µνρσ = dya

µνρσ − ya
µνρστdxτ ,

θa
µνρσε = dya

µνρσε − ya
µνρσετdxτ ,

together with the contact forms defined by (1.8), the forms dxµ and the
forms dya

µνρσεη, determine a local basis C of the Ω0(J6B)-module Ω1(J6B)
and hence generate Ω(J6B). Moreover, the subset C ′ obtained from C by
removing only all the forms dxµ and dya

µνρετ generates an ideal of Ω(J6B),
known as the ideal of contact forms.
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One of the most substantial differences beetwen the viewpoint of [6]
and the viewpoint of [9] is the definition of “solution of a system of
differential equations”. In fact, let I be an ideal of Ω(J6B) and σ ∈ ΓD(π)
be a local section, being D a domain in M . In [6] the section σ is said
to be a solution of the system of partial differential equations defined by
I if and only if (j6σ)∗(I|J6E) = 0, being E = π−1(D) the total space
of the bundle over D naturally induced by the bundle structure of B
and (j6σ)∗ : Ω(J6E) → Ω(M) the total differential of j6σ : D → J6B.
In the Calculus of Variations a section σ is instead a solution of the
system of partial differential equations defined by I if and only if I ◦σ ≡
{ω ◦ j6σ/ω ∈ I} = 0. This alternative definition of solution can be easily
inferred from the general theory, since if ωi ◦ j6σ = 0 for a family (ωi)i∈I

where I �= ∅ is any set of indices, then ω ◦ j6σ = 0 for all ω belonging to
the ideal I generated by the family (ωi)i∈I .

The definition of solution used in [6] cannot be applied immediately
to the Euler-Lagrange equations, since they are globally defined by an
(m+1)-form which is locally of the type eaθ

a ∧ ds, while (j6σ)∗(θa) = 0
holds for all a ∈ {1, . . . , p} because of the very definition of the structure
forms θa. We stress moreover that the solution suggested in [34] for
variational problems defined on the trivial bundle B given by pr1 : M ×
IRp → M is however viable, only due to the fact that one can avoid the use
of the contact forms θa by fixing on IRp the standard atlas containing the
unique chart (IRp, idIRp). This obstacle can be overcame by first noticing
that all general constructions of [6] continue to hold if one replaces the
closed ideal Ivar of Ω(J∞B), used in [6], with any family of closed ideals
Ii∈I (I �= ∅). Then we make the following “naive” suggestion: instead
of considering the ideal generated by means of the Euler-Lagrange form
eB(L), we consider the family of ideals generated by the family of m-
forms (iv(Ω))v∈V(J3B) together with the family of contact forms already
considered in [6], where V(J3B) is the module of vertical vectorfields
defined on J3B. The elements of V(J3B) must be here considered as a
mere parameters; for this reason we shall use boldface letters to denote
them. This construction allows us to use the results of [6] also in the
variational case, since (1.10) holds as an equivalent of the Euler-Lagrange
equations. This suggestion could be useful out of the context of this
paper, since equation (A.5) of the Appendix shows that iv(Ω) belongs to
the closed ideal Ivar generated by the contact forms of the adapted basis
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and by the m-form ds, for any v ∈ V(J3B). Hence, the previous ideal
can be replaced by this last one, obtaining cohomological groups which
do not depend on the Lagrangian L.

Remark. By using a variant of the construction presented in [9],
one can avoid to introduce the notation needed when using the infinite
jet bundle J∞B by just noticing that the set C ′ ∪ {ds} generate a closed
ideal I ′

var(J
6B) of Ω(J6B). This fact allows us to consider the cohomolog-

ical groups H ′
var(J

6B) of the quotient cochain complex Ω̂(J6B)/I ′
var(J

6B)
(recall that Ω(JkB) ⊆ Ω̂(JkB) = Hor(JkB)⊕K(JkB)), having the total
differential modulo I ′

var(J
6B) as a coboundary operator. Then the coho-

mological group Hvar is obtained by considering the projective limit of
H ′

var(J
6B), in the obvious way.

Also the “tower construction” of [6] (in the following it will be called
BG-tower construction, because the variational component of the first
order perturbation functor will determine a further tower which will be
called here the Jacobi tower) is not well suited to include the Euler-
Lagrange equations of variational problems. In fact, the (m+1)-form
dH(iv(Ω)) vanishes, when v ∈ V(J3B) is considered as a mere parameter,
as in (1.10), and the BG-tower construction coincides essentially with the
horizontal derivative. In order to overcome this problem we shall assume
for simplicity that M is orientable and that a global volume form vol is
fixed on M . Then, there exists a unique 1-form Ω̃ on J6B such that:

(3.14) iv(Ω) = iv(Ω̃ ∧ vol) , ∀v ∈ V(J3B) .

Following an idea first developed in [17] one can now consider the family
of Lagrangians L1

v = iv(dHΩ̃)vol : J4B ×M TM → ΛmM , locally defined
by:

(3.15) L1
v(j4λ, X) = (j6λ)∗(dµ(Ω̃a)vaXµ)vol ,

being Ω̃a, va and Xµ the local components of Ω̃, v and X, respectively,
where λ is any section, X is a vectorfield defined on M and v an element
of V(J3B). The first variation of the family of Lagrangians (3.14) splits
into:

(j6λ)∗dµ(Ω̃) = 0 ,(3.16a)

[δ(j6λ)∗(dµ(Ω̃a))]vaXµ = 0 .(3.16b)
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As is well known, the inverse problem of the Calculus of Variations (i.e.,
the problem of finding a variational principle whose Euler-Lagrange equa-
tion is fixed a priori) is not at all trivial, while the same problem becomes
in a sense trivial if one allows the possibility of considering new variables
which are not a priori restricted to satisfy any further condition (even
if, in some cases, one can consider to be more important the advantages
coming from the introduction of variational methods than the problems
coming from the “triviality” of the new variables; see, e.g., [37]). Replac-
ing the original Euler-Lagrange equations with the new equations (3.16)
goes in fact in this “trivial” direction. However, the usefulness of this
alternative variational principle is garanteed by the results of [6] and [7],
which ensure that the solutions of the equation (3.16a) are of practical
importance, while the second equation (3.16b) does not eliminate any
solution of the first equation (3.16a), since it is always verified by the
vectorfield X = 0 and hence it preserves at least a copy of any solution
of the first equation. A second question is whether the relation between
Ω and Ω̃ preserves or not the informations on the variational problem
contained in the first (m+1)-form. A positive answer can be obtained by
remarking that being M orientable there exists an atlas of M in which
the local expression of Ω̃ coincides with the local expression of Ω. In
any case, most of the relations needed between Ω and Ω̃ can be easily
deduced from the results of [16].

Proposition 3.10. The following inlcusion holds:

(3.17) P̃J6B(I ′
var(J

6B)) ⊆ I ′
var(J

6V B)

and hence the corresponding homological construction can be easily iter-
ated.

Proof. This can be easily seen by using (2.7) together with the
appropriate extension of (3.8) to all the involved contact forms.

Remark. In particular equations (3.6) and (3.17) entail that P̃
induces a morphism between the corresponding cohomological groups,
which will be denoted by the same letter (with an abuse of notation).

The new tower construction obtained as in [6] by iterating the ap-
plication of P̃ to the equivalent Euler-Lagrange equations (1.10) of the
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Lagrangians which are obtained by iterating the action of P̃ on the orig-
inal Lagrangian L has a sure meaning, since it determines the “higher
order Jacobi fields” (the reasons for which those fields must be consid-
ered are strictly analogous to those well explained in [6], whereby they
refer to conservation laws rather than to higher order variations, as here).

Let us now notice that according to the method developed in [6]
and to (3.15) the other “levels” of the relevant BG-tower also determine
variational problems (in a sense “associated” to the original one we are
considering). Accordingly, the previous construction can also be iter-
ated for each level. For the other “levels” of the BG-tower construction
the problem of their usefulness comes from the “triviality” of the varia-
tional principle (3.15); again, because of (3.16), this problem is related to
the usefulness of “Jacobi fields” for generic systems of partial differential
equations, which does not seem to be clear to us, nor it has been con-
sidered in the existing literature. We limit ourselves to remark that, as
in the case of variational problems, also for generic differential equations
“Jacobi fields” determine the directions in which a homotopic variation
of a solution is still determined by means of solutions. This suggests us
to give the following definition:

Definition 3.1. We will call Jacobi tower the set of cohomological
groups so obtained by iterating the action of P̃ on L while the kth-Jacobi
tower will be the set of cohomological groups obtained by iterating the
action of P̃ on the Lagrangians constructed by iterating (3.15) till the
k-th term of the corresponding BG-tower. We shall call JBG-wall the
complete set of cohomological groups obtained in this way.

Let us now turn to consider the approach of “variational sequences”.
Differently from [6], the construction of [9] is explicitly worked out for
variational problems, hence it does not present the problems coming from
the definition of solutions of a differential partial equation we discussed
before. A further observation of [9] is that one does not need the struc-
ture of graded exterior algebra on a quotient cochain complex of Ω(J6B)
in order to define its cohomological groups, but simply an Abelian group
structure. Finally, a last observation can be obtained from the com-
parison of [6] and [9]. In fact, if I is a graded complex of closed mod-
ules and (Ir)1≤r≤N is its gradation, then Ir can be obtained by setting
Ir = Ĩr + dĨr−1, for 1 < r ≤ N and I1 = Ĩ1, where each of the mod-
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ules Ĩr can be chosen by using different criteria for each 1 ≤ r ≤ N .
As an example, in [9] the graded module IK , with gradation (Ir

K), is
obtained by taking the graded family of modules which are the ker-
nels of a suitable family of Ω0(J6B)-linear applications. This family
can be easily described in the following way. Let I1

K(J6U) = Ĩ1
K(J6U)

be the submodule of Ω1(J6U), generated by the set C ′, of all contact
forms on J6U , having set J6U ≡ (π ◦ π6

0)
−1(U), for any U open set of

M which is the domain of a local coordinate system. Let us also set
Ĩr

K(J6U) = I1
K(J6U) ∧ Ωr−1(J6U), for any r ∈ {2, . . . m}, for any open

set U of M , on which a local coordinate system is defined. Finally, we set
Ĩr

K(J6U) = (I1
K(J6U))r−m+1∧Ωm−1(J6U), where (I1

K(J6U))p denotes the
p-th power with respect to the wedge product, for any r ∈ {m+1, . . . N},
where N is the dimension of J6B. Then, Ĩr

K is the submodule of Ω(J6B)
of r-forms whose restrictions belong to Ĩr

K(U), for any r ∈ {2, . . . N} and
any open subset U of M which is the domain of a local coordinate sys-
tem and Ir

K = dĨr−1
K + Ĩr

K , for any r ∈ {2, . . . N}. Again, P̃J6B(IK) is
contained into the module obtained with the same criteria starting from
the variational problem P̃J6B(L). As a consequence the suitable Jacobi
tower can be constructed and analogous remarks hold, as in the previous
cohomological groups.

Let us now remark that the papers [9] and [10] were published be-
fore [6] and [7], so that they present problem analogous to those we al-
ready mentioned for the tower construction of [6]. In fact, the Euler-
Lagrange morphism eB(L) of a Lagrangian L is such that dHeB(L) = 0
holds. We overcome this problem by assuming that M is orientable and
that a volume form vol is fixed on M . Then, there exists a unique 1-form
ẽB(L) on J6(B) such that

(3.18) eB(L) = ẽB(L) ∧ vol .

Again, we have the family of Lagrangians L1v = (dH ẽB)v ⊗vol : J4B×M

TM → ΛM , v ∈ J6V B, defined by:

(3.19) L1v(j4σ, X) = ((dµea)vaXµ)vol .

Also in this case all the considerations already made for the BG-tower
construction will follow, so that at the end we have a second “wall con-
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struction” for the Euler-Lagrange differential equation (1.10) which dif-
fers from the standard BG-wall and contains other informations on the
same class of problems. These informations are obviously related to the
“Lepagean (equivalent) forms”, i.e. to the m-forms of J6B which are suit-
ably obtained from L to determine the same Euler-Lagrange equation
(see [10]).

Remarks. Let us finally make a couple of remarks, which in a sense
point towards suggestions which could be in contrast with each other. If
one chooses the family of modules Ĩ in such a way that it has a maximum
number of null spaces (as we shall suggest below), then the properties
of the cohomological groups obtained will be of course “closer” to the
properties of the full de Rham groups of the bundle. On the other hand,
when B coincides with the trivial bundle pr1 : [0, 1] × M → [0, 1], the
family (θa ∧ dt), where θa is now given by θa = dya − ẏadt, generates a
closed ideal of differential forms which determines cohomological groups
isomorphic to the de Rham cohomology of M , while the cohomological
groups of [6] and [9] considered here are necessarily trivial.

Example. As an example of a way to obtain cohomological groups
which are “close” to the de Rham ones, we consider the submodule Im+2

1

of Ωm+2(J6B) locally generated by the (m+2)-forms θa
µ1...µh

∧ θb
ν1...νk

∧ds
(h, k ≤ 6). Then, by taking Ĩr

1 = 0, for any r �= m + 2, one obtains
a closed graded module and hence a cohomological graded group. In
this complex (Ir

1)1≤r≤N , the Euler-Lagrange form eB(L) is a cochain in
Im+1

1 (see (A.5)) and hence it determines a non-trivial cohomology class.
What is important here is that the combined action of the k-jet extensions
and of the variational components of the first order perturbation functor
allows us to construct the corresponding JBG-wall: this possibilty is a
further sign of the naturality of the functors considered here. Finally, let
us denote by Î anyone of the graded modules IBG, IK and I1. Then,
the restriction of the total differential to Î determines a structure of
cochain complex, which in turn determines cohomological groups. Again,
the “Jacobi tower construction” can be performed for those groups since
P̃J6B(Î) ⊆ Î. These cohomological groups could be useful, as the case of
the trivial bundle [0, 1]×M (which is related to the variational aspects of
Riemannian Geometry) shows. We conclude this part by remarking that
one could try to find the “best” closed submodule I, if it exists, which



40 O. AMICI – B. CASCIARO – M. FRANCAVIGLIA [40]

would contain most of the informations encoded into the cohomological
groups considered here. These problems will be considered in [20].

Conclusive Remark. We conclude our paper by stressing that
in the general case the first order perturbation functor is compatible
with (1.11), via (2.18), so that the conserved Noether currents of the
original Lagrangian L are transformed by PB into the Noether currents
of the deformed Lagrangian P̃(L) ≡ L(1). More details will be given
in [21].

– Appendix

A.1 – Augmented variational principles and examples

The basic justification for the introduction of the BG-tower comes
from the KDV equation (see [6] and [7]), hence it seems important to
indicate methods which allow one to write this equation as the Euler-
Lagrange equation of a non-trivial variational principle. This problem
has an importance of its own for other reasons, which are well explained
in the Introduction to Chapter 2 of the book [36]. As a consequence,
many methods have been developed to solve the inverse problem of the
Calculus of Variations, even in those cases in which it is clear from the
beginning that Lagrangians which determine the system of partial differ-
ential equations considered do not exist (e.g., the case of heat equations
and KdV equations).

Unfortunately, people interested into this “generalized aspect of the
inverse problem” have paid more attention to the systems of partial dif-
ferential equations coming from technical applications rather than from
Mathematics and Physics. In this Appendix, instead of applying one of
the existing methods to the KdV equation we prefer to suggest a new
one, because this choice will require simple calculations and will suggest
that, if one does not find the existing Lagrangians to be satisfactory, one
can always try to find new ones. The method considered here belongs
to a larger class of methods in which the basic tool is the addition of
new variables to the original variables of the given system of partial dif-
ferential equations. The first example we mention is the method known
as “method of mirror variables”, explicitely introduced by Glansdorff
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and Prigogine (see [38]), following an earlier example of a hydrodynami-
cal principle stated by Bateman (see [39]) and elaborated by Morse and
Feshbach (see [40]) with some contributions (see, e.g., the papers quoted
therein and in [37]). This method consists in adding to the variables of
the problem, which will be subjected to variations, an identical number
of “mirror variables”, which are considered as mere parameters. Obvi-
ously, this addition implies in many cases that some new solutions are
added to the solutions of the system of partial differential equations one
started from.

The method proposed here consists instead in adding just one new
dependent variable to the original dependent variables of the problem by
requiring that a Lagrangian exists so that: (i) among its Euler-Lagrange
equations the equation for the new variable has a simple and possibly
“canonical” solution; (ii) in corrispondence with this solution, the re-
maining Euler-Lagrange equations reduce to the original system of the
original variables or, at least, have the same set of solutions. In this way,
it is easy to control the relations between the geometric objects related
to the “associated Lagrangian” with those related to the original system
of partial differential equations (e.g., one might require that the group
of gauge transformations of the system coincides with the sub-group of
gauge transformations of the associated Lagrangian which preserves the
chosen solution for the extra variable; and so on). For the heat equation
and the KdV equation the obvious choice for the new variable is what we
call admissible time measure.

Example A.1 - The heat equation: For the case of the heat
equation, let us consider the trivial bundle B = (IR × IRm × IR2, IR ×
IRm, pr), where pr is the canonical projection of IR× IRm × IR2 onto IR×
IRm and let us look for a first order Lagrangian L = L(t, xµ, τ, q, . . . )ds,
where t, xµ, τ and q the time coordinate, the spatial coordinate and
the admissible time measure, while ds is the standard volume form on
IR×IRm and “dots” replace the remaining variables, i.e. the partial space-
time derivatives of τ and q. Moreover, we require that one of the two
Euler-Lagrange equations of L is satisfied by the solution τ = t and that
in correspondence of this solution the remaining equation coincides with
the heat equation. There exists a large class of functions L determining
Lagrangians with this property. The whole class can be determined by
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using a procedure analogous to the one used in [37] to show that the heat
equation cannot be determined by a variational principle in the classical
sense (see [37] paragraph 2.6, pp. 65-66). The following function seems
to be the simplest function belonging to this class:

(A.1) L = q

(
1 − ∂τ

∂t

)
+ δij ∂τ

∂xi

∂q

∂xj
.

The Euler-Lagrange equations of the “associated” Lagrangian are in fact:

(A.2a)
∂q

∂t
− δij ∂2q

∂xi∂xj
= 0

and

(A.2b) 1 − ∂τ

∂t
− δij ∂2τ

∂xi∂xj
= 0 ,

with the obvious meaning of the symbols used. One sees immediately
that τ = t makes (A.2b) satisfied, so that (A.2a) reduces to nothing but
the heat equation ∂q

∂t
− ∆q = 0 in flat space IRm.

Example A.2 - The KdV Equation: In the case of KdV equation
we take m = 1, hence L = L(t, x, τ, u . . . )ds, with the obvious meaning of
the symbols used. Even in this case, the set of all functions L whose Euler-
Lagrange equations allow the solution τ = t so that in correspondence of
this solution the remaining equation becomes the KdV equation, is large.
The following function seems to be the simplest one belonging to this
class:

(A.3) L = 6u2 ∂τ

∂x
+ u

∂τ

∂t
+

∂τ

∂x

∂2u

∂x2
− u .

This is a second order Lagrangian, whose Euler-Lagrange equations are:

(A.4a) 12u
∂u

∂x
+

∂u

∂t
+

∂3u

∂x3
= 0

and

(A.4b) 6u
∂τ

∂x
+

∂τ

∂t
− 1 +

∂3τ

∂x3
= 0 .

It is immediate to see that equation (A.2b) is satisfied by τ = t so
that (A.4a) reduces to the standard KdV equation required.
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A.2 – Some technical formulae

We list in this Appendix some formulae used in this papers. Let
us consider the IR-linear mapping ΘB : Ω̃m

2 (M) → Ω̃m
3 (J1B), where Ω̃h

k

are the module introduced in Section 3, which associates to any second
order Lagrangian L over M its Poincaré-Cartan m-form. Then we can
express the Euler-Lagrange (m+1)-form eB(L) of any Lagrangian L on
M by means of the multiplectic form ΩB(L) = dΘB(L). In fact, a simple
calculation shows that:

(A.5)

eB(L) = ΩB(L)+
(
dν

∂2L

∂yb∂ya
µν

− ∂2L

∂yb∂ya
µ

)
θb ∧ θa ∧ dsµ+

+

(
dν

∂2L

∂yb
ρ∂ya

µν

+
∂2L

∂yb∂ya
ρµ

+
∂2L

∂ya∂yb
ρµ

− ∂2L

∂yb
ρ∂ya

µ

)
θb

ρ ∧ θa ∧ dsµ+

+

(
dν

∂2L

∂yb
ρσ∂ya

µν

+
∂2L

∂yb
ρ∂ya

σµ

− ∂2L

∂yb
ρσ∂ya

µ

)
θb

ρσ ∧ θa ∧ dsµ+

+
∂2L

∂yb
ρσ∂ya

µτ

θb
ρστ ∧ θa ∧ dsµ − ∂2L

∂yb
ρ∂ya

µν

θb
ρ ∧ θa

ν ∧ dsµ+

− ∂2L

∂yb
ρσ∂ya

µν

θb
ρσ ∧ θa

ν ∧ dsµ ,

where L = Lds holds locally. From the previous equation, by standard
calculations we get:

(A.6) d[eB(L)]={αabθ
b+αρ

abθ
b
ρ+αρσ

ab θb
ρσ+αρσµ

ab θb
ρσµ+αρσµτ

ab θb
ρσµτ}∧θa∧ds ,

being

αab = dµ

(
dν

∂2L

∂yb∂ya
µν

− ∂2L

∂yb∂ya
µ

)
,(A.7)

αρ
ab = 2

∂2L

∂y[a∂y
b]
ρ

+ 2dµ

(
∂2L

∂yb∂ya
ρµ

− ∂2L

∂yb
ρ∂ya

µ

+ dν

∂2L

∂yb
ρ∂ya

µν

)
,(A.8)

αρσ
ab = dµdν

∂2L

∂yb
ρσ∂ya

µν

+ 2
∂2L

∂y(b∂y
a)
ρσ

+ 2dν

∂2L

∂yb
r∂ya

σν

+(A.9)

− dν

∂2L

∂yb
ρσ∂ya

ν

− ∂2L

∂yb
ρ∂ya

σ

,
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(A.10) αρσµ
ab = 2dν

∂2L

∂yb
ρσ∂ya

µν

+
∂2L

∂yb
ρ∂ya

σµ

− ∂2L

∂yb
ρσ∂ya

µ

and

(A.11) αρσµτ
ab =

∂2L

∂yb
ρσ∂ya

µτ

.

The coefficients (A.7)-(A.11) are the relevant coefficients which enter the
Jacobi form of the given Lagrangian L; see [16], [17] for details.
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bona, 5 – 70125 Bari (Italia)
E-mail: amici@dm.uniba.it casciaro@dm.uniba.it

Mauro Francaviglia – Dipartimento di Matematica – Università di Torino – Via C. Alberto,
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Nodal curves and Brill - Noether theory

E. BALLICO

Abstract: Here we prove some existence theorems for special spanned line bundles
on the general nodal curve of genus g ≥ 2. We give counterexamples to similar questions
for curves with seminormal singularities.

1 – Introduction

In the first 3 sections of this paper we study the Brill - Noether
theory of special divisors on the general k-gonal curve with only ordi-
nary nodes as singularities. On an integral projective curve, Y , there
are at least 4 quite different Brill - Noether theories: one can study
spanned line bundles, line bundles, spanned rank 1 torsion free sheaves or
rank 1 torsion free sheaves. The Brill - Noether theory of rank 1 torsion
free sheaves is the only one in which the set of the solutions is always
a complete scheme. Passing to the spanned subsheaf, one can reduce
the Brill - Noether theory of rank 1 torsion free sheaves to the one for
spanned torsion free sheaves. The Brill - Noether theory of line bun-
dles is interesting because it concerns important closed subschemes of
the non-complete scheme Picd(Y ). For the relations between the last two
theories for curves with only ordinary nodes or ordinary cusps as sin-

Key Words and Phrases: Nodal curve – Irreducible curve – Brill - Noether theory –
Special line bundle – Special divisors – Seminormal singularity.
A.M.S. Classification: 14H51 – 14H20
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gularities, see 2.3. The Brill - Noether theory of spanned line bundles
is the more important one because it concerns the morphisms Y → Pr.
But we have an additional problem because we are interested in k-gonal
curves and their Brill - Noether theories depend very much on the sin-
gularities of the degree k pencil. For any rank 1 torsion free sheaf F

on Y , set Sing(F ) := {P ∈ Y : F is not locally free at P}. Thus
Sing(F ) ⊆ Sing(Y ). We introduce the following definition.

Definition 1.1. Fix integers g, x, k and y with k ≥ 2, g ≥ 2k +
x − y + 2, g ≥ x ≥ y ≥ 0 and x ≥ 0. Let X be a general smooth
(k − y)-gonal curve of genus g − x. Call M ∈ Pick−y(X) the degree k − y

spanned line bundle on X and hM : X → P1 the associated morphism
with deg(hM) = k − y. Take x + y general points Pi, 1 ≤ i ≤ x − y, Aj,
1 ≤ j ≤ y, and Bj, 1 ≤ j ≤ y, on Y . Fix points Qi, 1 ≤ i ≤ x − y, with
hM(Pi) = hM(Qi) for every i. Let π : X → Y be the birational morphism
obtained gluing together the points Pi and Qi for 1 ≤ i ≤ x− y, and the
points Aj and Bj for 1 ≤ j ≤ y. Hence Y is a nodal curve with pa(Y ) = g

and x nodes. Set F := π∗(M). Thus F is a rank 1 torsion free sheaf on Y

with deg(F ) = k, Sing(F ) = {π(A1), . . . , π(Ay)} and h0(Y, F ) = 2. We
will say that Y or the pair (Y, F ) is the general k-gonal curve of genus
g with x nodes and a pencil with y singularities or just a general nodal
k-gonal curve of genus g with type (x, y).

We work over an algebraically closed field K with char(K) = 0. As a
sample of our results we state here the following one which will be proved
in Section 2.

Theorem 1.2. Fix integers g, x, y, k and d with k ≥ 2 + y,

x ≥ y ≥ 0, x > 0, g ≥ 2k + 2x + 1 and 2d ≥ g + 2. Let Y be the general
k-gonal nodal curve of genus g with type (x, y) and F the degree k pencil
with card (Sing(F )) = y. Then there is an irreducible locally closed subset
Z of Picd(Y ) with Z �= ∅, dim(Z) = ρ(g−x+y, d, 1)−x := 2d−g+x−2−y

such that every R ∈ Z is spanned. If d ≤ g − x + y − 1, then we may find
Z such that h0(Y,Hom(F, R)) = 0 for every R ∈ Z.

The case y = x is the easier one. If y = x we obtain an existence
result for embeddings of Y into Pr, r ≥ 3 (see Theorem 3.1).

In the last section we will consider seminormal curves in the sense
of [17] and [9], i.e. curves with the simplest singularities compatible
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with their number of branches: if the singularity has r branches, then
it is formally equivalent to the germ at 0 ∈ Kr of the union of the r

coordinate axis. We will show that for non-nodal seminormal curves
the usual existence theorem for special line bundles (even non spanned
ones) are not always true if one uses only the Brill - Noether number
ρ(g, r, d) := g− (r+1)(g+r−d) in its statement as in the case of smooth
curves ([14] or [2]).

2 – Proof of 1.2

In the first part of this section we give several preliminary results
needed for the proof of 1.2 and of other related results. Let Y be an
integral projective curve, π : X → Y its normalization and F a rank 1
torsion free sheaf on Y . The sheaf G := π∗(F )/ Tors(π∗(F )) has rank 1
and no torsion. Hence G ∈ Pic(X). We claim that the natural map
α : H0(Y, F ) → H0(X, G) is injective; set x := h0(Y, F ) and take x

general points P1, . . . , Px of X; there is f ∈ H0(Y, F ) with f(π(Pi)) = 0
for i < x and f(π(Px)) �= 0; hence α(f)(Pi) = 0 for i < x and α(f)(Px) �=
0, proving the claim.We will call the integer δ − deg(F ) := deg(G) the
δ-degree of F . By [10], Lemma 1, we have deg(F ) + pa(X) − pa(Y ) ≤
δ−deg(F ) ≤ deg(F ) and δ−deg(F ) = deg(F ) if and only if F ∈ Pic(Y ).
Furthermore, deg(F ) − δ − deg(F ) ≥ card(Sing(F )). If F is spanned,
then π∗(F ) is spanned and hence G is spanned.

(2.1) Let R be the one-dimensional complete semilocal ring which is ei-
ther the completion of an ordinary node or an ordinary cusp. Let m
be the maximal ideal of R (cusp case) or the intersection of the two
maximal ideals (nodal case). Let M be a torsion free finitely gener-
ated R-module with rank(M) = 1; here we assume that if R is the
completion of an ordinary node, then M has constant rank on each
of the two branches of R. Since char(K) = 0, there is a complete
classification of all such M : there are uniquely determined integers
a, b with a ≥ 0, b ≥ 0, a + b = rank(M) such that M ∼= R⊕a ⊕m⊕b

[11]. We will need only the case rank(M) = 1.
(2.2) Let Y be an integral projective curve with only ordinary nodes

and ordinary cusps as singularities, π : X → Y its normalization
and F a rank 1 torsion free sheaf on Y . If P ∈ Sing(F ), then the
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completion of F at P is isomorphic either to the maximal ideal
(the cusp case) or the intersection of the two maximal ideals of the
completion of OY,P (the nodal case). Thus deg(F ) − δ − deg(F ) =
card(Sing(F )). Let Y be an integral projective curve with only ordi-
nary nodes and only ordinary cusps as singularities. The following
remark shows the relations between the Brill - Noether theory of
(not necessarly spanned) line bundles on Y and the Brill - Noether
theory of spanned rank 1 torsion free sheaves on Y .

Remark 2.3. Let Y be an integral projective curve and F a rank 1
torsion free sheaf such that for every P ∈ Sing(F ) the curve has at P

either an ordinary node or an ordinary cusp. By 2.1 for every P ∈ Sing(F )
the completion of the stalk of F at P is isomorphic to the maximal ideal of
the competion of the local ring OY,P . Thus there is a unique L ∈ Pic(Y )
with F ⊆ L, deg(L/F ) = card(Sing(F )) and Supp(L/F ) = Sing(F ). We
have h0(Y, F ) ≤ h0(Y, L) ≤ h0(Y, F ) + card(Sing(F )). Furthermore, the
integer h0(Y, L) − h0(Y, F ) is the number of points of Sing(F ) at which
L is spanned.

Remark 2.4. Let X be a smooth projective curve of genus q and h :
X → P1, f : X → P1 non-constant morphisms such that the associated
morphism j := (h, f) : X → P1 × P1 is birational. Set a := deg(h),
b := deg(f) and assume q < ab − a − b + 1. By the genus formula for
a divisor of type (a, b) on P1 × P1 the curve j(X) is singular. Assume
that j(X) has only nodal singularities; by [1], Proposition 2.4 and its
proof, this is the case if X is a general a-gonal curve and f is general
in the set of all degree b pencils on X not composed with h. Assume
that the monodromy group of a generic fiber of h is the full symmetric
group; since char(K) = 0 this is the case if the reduction of a fiber of
X has exactly a − 1 elements; this condition is always satisfied if X

is a general a-gonal curve and h is the associated degree a pencil. Set
z := ab−a−b+1−q. By our assumptions there is a non-empty set of 2z-
ples (P1, Q1, . . . , Pz, Qz) ∈ X2z with Pi �= Qi and j(Pi) = j(Qi) for every
i, i.e. h(Pi) = h(Qi) and f(Pi) = f(Qi) for every i. Take 3 general points
of P1, say B1, B2 and B3 and fix Ai ∈ X with j(Ai) = Bi, 1 ≤ i ≤ 3. Fix
an integer w with 0 < w ≤ z. Assume the existence of a quasi-projective
integral subvariety T of the scheme Homb(X,P1) of degree b morphisms
sending each Ai onto Bi, 1 ≤ i ≤ 3, with dim(T ) = w, j ∈ T and such
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that for every t ∈ T the pair jt := (h, ft) associated to the corresponding
morphism ft : X → P1 satisfies the previous conditions. We claim that
for a general (P1, . . . , Pw) ∈ Xw there is t ∈ T and (Q1, . . . , Qw) ∈ Xw

such that Pi �= Qi for every i and jt(Pi) = jt(Qi) for every i. Consider
the following statement T (k), 0 ≤ i ≤ w.

Statement T (k): for a general (P1, . . . , Pk) ∈ Xk there are a (w−k)-
dimensional irreducible subvariety T (P1, . . . , Pk) ⊆ T and (Q1, . . . , Qk)
∈ Xw with Pi �= Qi for every i with 1 ≤ i ≤ k such that for every
t ∈ T (P1, . . . , Pk) we have jt(Pi) = jt(Qi) for every i with 1 ≤ i ≤ k.
Furthermore, the set of all t ∈ T satisfying this condition has codimen-
sion k in T .

The first assertion of Statement T (w) is the claim we want to prove.
Statement T (0) is empty: just take T (∅) := T . Assume proved T (k) for
some integer k with k < w and take the corresponding points Q1, . . . , Qj.
Set J := {(P, Q, t) ∈ X2×T (P1, . . . , Pk) with P �=Q, ft(P ) /∈{ft(P1), . . . ,

ft(Pk), B1, B2, B3}, ft(P ) = ft(Q) and jt(Pi) = jt(Qi) for every i}. Call
π1 : J → X and π3 : J → T (P1, . . . , Pk) the projections on the first and
third factor. Since w ≤ z each fiber of π3 is finite and non-empty. Thus
every irreducible component of J has dimension w− k > 0. If J contains
a slice {P} × X × {t}, then ft(X) = ft(P ) and hence ft is constant; this
is impossible because deg(jt) = b by assumption. Since J is not union of
slices {P} × X × T (P1, . . . , Pk), π1 is dominant. By the assumption on
the monodromy group of the generic fiber of h, for any fixed t ∈ T and
for general P ∈ X either h−1(h(P )) ∩ f−1

t (ft(P )) = {P} or h−1(h(P )) is
contained in f−1

t (ft(P )), i.e. h = ft. We apply this observation to the
general element of T (P1, . . . , Pk) to obtain the first assertion of T (k + 1)
and to the general elements of similar codimension k irreducible com-
ponent of T to obtain the last assertion of T (k + 1). Hence we obtain
dim(T (P1, . . . , Pk, Pk+1)) < dim(T (P1, . . . , Pk)) for general Pk+1, i.e. we
obtain the last assertion of T (k + 1). We have T (P1, . . . , Pk+1) �=→ for
general Pk+1 because of π1 is dominant. Thus T (k + 1) holds. By induc-
tion we obtain T (w), proving the claim.

Remark 2.5. Let X be a smooth projective curve of genus q and h :
X → P1, f : X → P1 non-constant morphisms such that the associated
morphism j := (h, f) : X → P1 × P1 is birational. Set a := deg(h), b :=
deg(f) and assume q < ab− a− b + 1. Assume that j(X) has only nodal
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singularities and that the monodromy group of a generic fiber of h is the
full symmetric group. By our assumptions there is a non-empty set of 2z-
ples (P1, Q1, . . . , Pz, Qz) ∈ X2z with Pi �= Qi and j(Pi) = j(Qi) for every
i, i.e. h(Pi) = h(Qi) and f(Pi) = f(Qi) for every i. Take 3 general points
of P1, say B1, B2 and B3 and fix Ai ∈ X with j(Ai) = Bi, 1 ≤ i ≤ 3. Fix
an integer w with 0 < w ≤ z and an integer α > w. Assume the existence
a quasi-projective integral subvariety T of the scheme Homb(X,P1) of
degree b morphisms sending each Ai onto Bi, 1 ≤ i ≤ 3, with dim(T ) = w,
j ∈ T and such that for every t ∈ T the pair jt := (h, ft) associated to the
corresponding morphism ft : X → P1 satisfies the previous conditions.
By Remark 2.5 for a general (P1, . . . , Pw) ∈ Xw there is t ∈ T and
(Q1, . . . , Qw) ∈ Xw such that Pi �= Qi for every i and jt(Pi) = jt(Qi) for
every i. Take a general element (Pα−w+1, Qα−w+1, . . . , Pα, Qα) of X2α−2w.
Let Y be the nodal curve obtained from X gluing together each pair
(Pi, Qi), 1 ≤ i ≤ α. By construction Y is a nodal curve with α nodes and
with a degree b pencil of type (α, α − w).

Example 2.6. Fix an even integer g = 2b ≥ 6 and let X be a general
smooth curve of genus g−1. Thus X has no spanned line bundle, L, with
1 ≤ deg(L) ≤ [(g−1+3)/2] = b and a finite set, S, of line bundles, R, with
deg(R) = b + 1 and h0(X, R) = 2. Furthermore, every R ∈ S is spanned
and card(S) = (2b)!/(b − 1)!b!) �= 0 ([2], p. 211) . Fix P , Q ∈ X such
that for every R ∈ S the morphism hR : X → P1 has hR(P ) �= hR(Q).
Let Y be the curve obtained from X gluing P and Q. Thus Y is a curve
with pa(Y ) = g, a unique ordinary node as singularities and with X as
normalization. Call π : X → Y the normalization. Thus π(P ) = π(Q) is
the singular point. For every R ∈ S the rank 1 torsion free sheaf π∗(R)
has degree b+2 and h0(Y, π∗(R)) = h0(X, R) = 2. The condition hR(P ) �=
hR(Q) is equivalent to the fact that R is not the pull-back of a spanned
line bundle on Y . Thus the condition hR(P ) �= hR(Q) is equivalent to
the spannedness of π∗(R). We claim that there is no M ∈ Pic(Y ) with
1 ≤ deg(M) ≤ b + 1 and h0(Y, M) ≥ 2. Assume the existence of such M .
Thus h0(X, π∗(M)) ≥ h0(Y, M) ≥ 2. If deg(M) ≤ b this is impossible
because Y is general. Assume deg(M) = b+1. Then π∗(M) ∈ S. We just
saw that this is impossible by the choice of the pair {P, Q}. Notice that if
we choose {P, Q} general the curve Y is the general nodal curve of genus
g with exactly one node. However, if we fix X general of genus g−1 = 2b
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and take as Y ′ the curve obtained from X gluing together two points in
the same fiber of one of the morphisms, then we obtain a nodal curve Y ′

with one node, normalization with general moduli and L ∈ Pic(Y ′) with
deg(L) = b+1 and L spanned, while ρ(g, b+1, 1) = −1 < 0. Take a rank 1
torsion free sheaf F on Y with deg(F ) ≤ b + 2 and h0(Y, F ) ≥ 2. Since
F is not locally free, we have deg(π∗(F )/ Tors(π∗(F ))) < deg(F ) and
indeed deg(π∗(F )/ Tors(π∗(F ))) = deg(F ) − 1 ([10], Lemma 1). Since
π∗(F )/ Tors(π∗(F )) ∈ Pic(X) and h0(X, π∗(F )/ Tors(π∗(F ))) ≥ 2, we
obtain π∗(F )/ Tors(π∗(F )) ∈ S. Thus deg(F ) = b + 2 and there is a
natural bijection between S and the set of all such sheaves F .

Example 2.7. Take b, g, X and S as in Example 2.6. Fix a point
A ∈ X such that for every R ∈ S the morphism hR is étale at A. Let
π′ : X → Y ′ the birational and bijective morphism with pa(Y ′) = g, Y ′

with π′(A) as unique singular point and an ordinary cusp at π′(A). By
the choice of A we may apply the proof of Example 2.6 in our situation
just with notational modifications. Since as A we may take a general
point of X, this description of the rank 1 torsion free sheaves of degree
at most b + 2 is the description of such sheaves for the general cuspidal
curve of genus g with a unique singular point.

Examples 2.6 and 2.7 may be generalized in the following way. We
omit the easy proof.

Proposition 2.8. Let X be a smooth projective curve. Fix pos-
itive integers r and d such that for every integer z ≤ d − 2 and every
L ∈ Picz(X) we have h0(X, L) ≤ r, while the set S := {R ∈ Pic(X) :
deg(R) = d − 1 and h0(X, R) = r + 1} is finite. Fix P, Q ∈ X such
that for every R ∈ S the morphism hR : X → Pr has hR(P ) �= hR(Q).
Let Y be the curve obtained from X gluing P and Q. Then there is
no M ∈ Pic(Y ) with 1 ≤ deg(M) ≤ d and h0(Y, M) ≥ r + 1. Fur-
thermore, every rank 1 torsion free sheaf F on Y with deg(F ) ≤ d and
h0(Y, F ) ≥ r +1 has deg(F ) = d and h0(Y, F ) = r +1 and there is R ∈ S

such that F ∼= π∗(R).

Proposition 2.9. Let X be a smooth projective curve. Fix pos-
itive integers r and d such that for every integer z ≤ d − 2 and every
L ∈ Picz(X) we have h0(X, L) ≤ r, while the set S := {R ∈ Pic(X) :
deg(R) = d− 1 and h0(X, R) = r + 1} is finite. Fix A ∈ X such that for
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every R ∈ S the morphism hR : X → Pr is étale at A. Let Y be the curve
with π : X → Y as normalization map, pa(Y ) = pa(X)+1 and π(A) as an
ordinary cusp. Then there is no M ∈ Pic(Y ) with 1 ≤ deg(M) ≤ d and
h0(Y, M) ≥ r + 1. Furthermore, every rank 1 torsion free sheaf F on Y

with deg(F ) ≤ d and h0(Y, F ) ≥ r+1 has deg(F ) = d and h0(Y, F ) = r+1
and there is R ∈ S such that F ∼= π∗(R).

Remark 2.10. Fix an integer y > 0. Let X ′ be an integral projective
curve and L ∈ Pic(X ′) with h0(Y, L) ≤ y. Let α : X ′ → Y be a birational
morphism with Y obtained from X ′ creating y new nodes gluing together
y general pairs of points of X ′. The proof of 2.6 and 2.7 shows that there
is no R ∈ Pic(Y ) with α∗(R) ∼= L and R spanned.

Remark 2.11. Let X be a smooth curve and R ∈ Pic(X) with R

spanned and h0(X, L) = r + 1 ≥ 3. Let hR : X → Pr be the morphism
induced by R. Fix P , Q ∈ X such that hR(P ) �= hR(Q), i.e. such that
h0(X, R(−P − Q)) = r − 1; this condition is satisfied for a general pair
(P, Q) ∈ X × X. Let Y be the curve obtained gluing together P and Q,
i.e. let Y be the curve with π : X → Y as normalization map, pa(Y ) =
pa(X) + 1 and π(P ) = π(Q) as an ordinary node. Take a linear space V

with H0(X, R(−P − Q)) ⊂ V ⊂ H0(X, R), dim(V ) = r and V spanning
R; since r−1 > 0, R(−P −Q) has at most finitely many base points and
hence we may take as V a general linear subspace of H0(X, R) containing
H0(X, R(−P − Q)) and different from H0(X, R(−P − Q)); in particular
the set of all such linear spaces V is parametrized by an irreducible one-
dimensional variety. The morphism hV associated to V factors through
π and hence there is RV ∈ Pic(Y ) with π∗(RV ) = R, h0(Y, RV ) = r, RV

spanned and π∗(H0(Y, R)) = V . Hence if V �= V ′, then RV and RV ′ are
not isomorphic.

Remark 2.12. Let X be a smooth curve and R ∈ Pic(X) with R

spanned and h0(X, L) = r + 1 ≥ 3. Let hR : X → Pr be the morphism
induced by R. Fix A ∈ X such that hR is étale at P , i.e. such that
h0(X, R(−2P )) = r − 1; since char(K) = 0 this condition is satisfied by
a general A ∈ X. Let Y be the curve with π : X → Y as normalization
map, pa(Y ) = pa(X) + 1 and π(A) as an ordinary cusp. Take a linear
space V with H0(X, R(−2A)) ⊂ V ⊂ H0(X, R), dim(V ) = r and V span-
ning R; since r − 1 > 0, R(−2A) has at most finitely many base points



[9] Nodal curves and Brill - Noether theory 55

and hence we may take as V a general linear subspace of H0(X, R) con-
taining H0(X, R(−2A)) and different from H0(X, R(−2A)); in particular
the set of all such linear spaces V is parametrized by an irreducible one-
dimensional variety. The morphism hV associated to V factors through
π and hence there is RV ∈ Pic(Y ) with π∗(RV ) = R, h0(Y, RV ) = r, RV

spanned and π∗(H0(Y, R)) = V . Hence if V �= V ′, then RV and RV ′ are
not isomorphic.

From Remarks 2.11 and 2.12 and the existence part of Brill - Noether
theory on smooth curves we obtaing at once the following result.

Corollary 2.13. Let Y be an integral projective curve with only
ordinary nodes and only ordinary cusps as singularities. Set g := pa(X)
and x := card(Sing(Y )). Fix integers r, d with r ≥ 2 and ρ(g − x, r +
x, d) ≥ 0. Then there exists an integer b ≤ d and L ∈ Pic(Y ) with
deg(L) = b, h0(Y, L) ≥ r + 1 and L spanned.

Proof of Theorem 1.2. Let X be a general smooth (k − y)-gonal
curve of genus g − x. Call M ∈ Pick−y(X) the degree k − y pencil. First
assume d ≤ g−x+y−1. We apply [8], part (2) of Cor. 1 of Section 1, to
X with respect to the following data: g′ := g − x, k′ := k − y, r = f = 1,
d = deg(E) = y, γ = g′+1. Since (g−x+y+2)/2 ≤ d ≤ g−x+y−1, we
obtain the existence of a spanned T ∈ W 1

d (X) with h0(X, T ⊗ M∗) = 0.
Alternatively, we could quote here [6], Theorem 2.2.2. Thus there is an
irreducible component W of W 1

d (X) with W �= ∅, dim(W ) ≥ ρ(g−x, 1, d)
and such that a general N ∈ W is spanned and with h0(X, N ⊗M∗) = 0.
By our numerical assumptions we have ρ(g − x, 1, d) ≥ x. We claim that
for a general ordered set of x + y points (P1, . . . , Px−y, A1, . . . , By) there
is (Q1, . . . , Qx−y) ∈ Xx−y with Qi �= Pi for every i and a locally closed
irreducible subset Z of W with Z �= ∅, dim(Z) = dim(W ) − x and such
that for every R ∈ Z we have hR(Pi) = hR(Qi) for every i ≤ x − y.
The claim and 1.2 in this range follow from Remark 2.10, the proof of
Remark 2.4 (see in particular Statement T (k) and Remark 2.5. Now
assume g−x+ y ≤ d ≤ g−x+ y +k− 3. We apply [8], part (2) of Cor. 1
of Section 1, k − 4 times with respect to the integers g′ := g − x + y,
r = f with 2 ≤ f ≤ k − 3, γ = g′ + r = g − x + y + f , d = deg(E)
and conclude in the same way. Now assume d > g − x. By assumption
we have x − y < g/2 and hence dim(Picd(X)) ≥ x − y. For a general
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R ∈ Picd(X) we have h1(X, R) = 0 and R is spanned. We apply the
previous proof taking as Z a non-empty open subset of Picd(X).

3 – Embeddings in Pr and the Lüroth semigroup

By [5], Section 1, 2 and 3, for all integers d, g and r with r ≥ 3 and
either d ≥ g +r or d−r < g ≤ d−r+[(d−r−2)/(r−2)] there is an irre-
ducible component W (d, g, r) of the Hilbert scheme Hilb(Pr) of degree d

curves of Pr with arithmetic genus g such that a general C ∈ W (d, g, r) is
smooth, connected and non-degenerate and with h1(C, NC,r) = 0, where
NC,r is the normal bundle of C in Pr. In particular W (d, g, r) is generi-
cally smooth and of dimension h0(C, NC,r) = (r + 1)d− (r − 3)(g − 1). If
ρ(g, r, d) ≥ 0, then W (d, g, r) contains smooth curves with general moduli
([5], Proposition 3.1). If d ≥ g + r for a general C ∈ W (d, g, r) we have
h1(C,OC(1)) = 0 and hence h0(C,OC(1)) = d + 1 − g. If d ≤ g + r for a
general C ∈ W (d, g, r) we have h0(C,OC(1)) = r + 1.

Theorem 3.1. Fix integers g, k, x, r with x > 0, k ≥ 2 + x and
r ≥ 3; assume either d ≥ g + r or the existence of an integer t > 0
and an integer e ≥ 3x such that d = r + 2 + e + t(r − 2) and g =
r + 2 + e − 3x + t(r − 1). Let Y be a general k-gonal nodal curve of
genus g and type (x, x). Then there exists a very ample L ∈ Picd(Y )
with h0(Y, L) ≥ r + 1 and such that for a general embedding j : Y → Pr

associated to L we have j(Y ) ∈ W (d, g, r).

Proof. The (omitted) case x = 0 is [4], part (a) of Theorem 0.1.
The case d ≥ g + r is trival, taking non special embeddings. Hence from
now on we will assume d < g + r. We will modify the proof of [4],
Theorem 0.1, to obtain 3.1. For all integers d′, g′, x′ with 0 ≤ x′ ≤ k − 2
and d′ = r +2+ e′ + t′(r−2), g′ = e′−3x′ + t′(r−1) (as in the statement
of 3.1) call A(d′, g′, x′) the following assertion:

Assertion A(d′, g′, x′): there is a pair (C, T ) with the following properties:

(i) C ∈ W (d′, g′, r) and C satisfies the thesis of 3.1 for the parameters r,
k, d′, g′, x′ and h1(C, NC,r⊗IZ) = 0, where Z is the first infinitesimal
neighborhood of Sing(C) in C;
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(ii) T is a subset of Creg contained in a positive divisor, D, of the degree
k−x′ pencil of C with card(T ) = r +2 and such that T is in linearly
general position, i.e. such that every proper subset T ′ of T spans a
linear subspace 〈T ′〉 of Pr with dim(〈T ′〉) = card(T ′) − 1.

Notice that Z in condition (i) of A(d′, g′, r) is an effective Weil di-
visor of degree 3(card(Sing(C)). Assume A(d′, g′, x′) and take C, D, T

satisfying it. Fix an integer t with 0 ≤ t ≤ r + 1. We want to prove
A(d′ + r, g′ + t, x′). Since any r + 3 points of Pr in lineraly general posi-
tion are contained in a unique rational normal curve, it is easy to check
the existence of a rational normal curve D with D intersecting quasi-
transversally C, D ∩ C ⊂ T and card(D ∩ C) = t + 1. Set W := C ∪ E.
By [16], proof of Theorem 5.2, (or [12] and a dimensional count, or [5])
and [5], 2.3 and 3.1, we have h1(W, NW,r) = 0, W ∈ W (d′ + r, g′ + t, r)reg
and the nodal curve W is smoothable. If t ≥ 2 the nodal curve W is
stable, while if 0 ≤ t ≤ 1 it is only semistable. Fix a subset A of E with
A ∩ C = ∅ and card(A) = t + 1. Let V be the pencil of divisors on E

generated by D ∩ C and A. Using Knudsen - Harris - Mumford theory
of admissible coverings ([13], Section 4) we get that the stable reduction
of W in the moduli scheme M−

g′+t of stable curves of genus g′ + t of the
variety of smooth (k−x′)-gonal curves. We may even assume for general
C that W has no non-trivial automorphism, i.e. we may even assume that
M−

g′+t is smooth at the point corresponding to the stable reduction of W .
By [5], Theorem 3.1, or the proof of [16], 5.2, the rational map τ from
Hilb(Pr) to M−

g′+t is dominant. A dimensional count shows that near
W the fiber of τ over τ(W ) has the smallest a priori possible dimension.
Thus τ is flat at W and hence open at W . The proof of [5], Lemma 1.2,
gives also h1(W, NW,r ⊗ IZ) = 0 and this means that we may do the pre-
vious limit without smoothing the nodes in C, i.e. that W is a flat limit
inside Hilb(Pr) of a family of nodal gonal curves of type (x′, x′). Taking
A general, we see how to obtain the last condition of A(d′ + r, g′ + t, x′).
Hence we may continue and cover all triples (d, g, x′) claimed by 3.1 if we
may start the induction with some k-gonal curve of type (x′, x′). How-
ever, at the beginning we only know the case x′ = 0 (for instance from
part (a) of [4], Theorem 0.1). To start this procedure for the first x steps
we will increase by one the integer x′, i.e. we will pass from x′ to x′ + 1.
This is possible without modifying the proof of [5], Lemma 1.2, only if
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t ≤ r − 2. For simplicity we will use it and hence in the first x steps
will loose 3x in the upper bound of the genus with respect to the degree.
This explains the the term “−3x” in the expression of g in the statement
of 3.1. We fix P ∈ C ∩E and call B the union of Z and the first infinites-
imal neighborhood of P in W . Thus deg(B) = 3 + deg(Z) = 3 + 3x′.
As in [5], Lemma 2.1, using a Mayer - Vietoris exact sequence and the
description of NW,r we obtain h1(W, NW,r ⊗ IB) = 0. Then we may apply
a partial smoothing in which we may preserve x′ + 1 nodes (the ones of
Sing(C) ∪ {P}), obtaing the case x′ + 1 needed.

Remark 3.2. In the proof of 3.1 if d ≤ g + r, then we found L with
h0(Y, L) = r + 1.

Proposition 3.3. Fix integers g, x, k and d with k ≥ 2+x, x > 0,

g ≥ 2k+2x+1 and 2d ≥ 2g+6. There is a nodal k-gonal curve Y of genus
g and type (x, x) with as normalization a general (k−x)-gonal curve, X,

of genus g − x and with the following property. There is R ∈ Picd(Y )
with h0(Y, R) = 3, R spanned and such that the associated morphism
hR : Y → P2 is étale at every point of Sing(Y ), it is birational and the
curve h(Y ) has only ordinary nodes as singularities except one point, P ;
P is an ordinary point of multiplicity deg(R) − k, h−1

R (P ) ∩ Sing(Y ) = ∅
and the degree k − x pencil on X is induced by the pencil of lines in P2

passing through P .

Proof. Let X be a general smooth k-gonal curve of genus g − x.
Call M ∈ Pick−x(X) the degree k−x pencil. By [15] (or see [8], theorem
in part 2 of the introduction, or, for its statement, the introduction of [1]
or [7], 2.2) there is an irreducible component W of W 2

d (X) with W �= ∅,
dim(W ) = ρ(g−x, d, 2) such that a general N ∈ W is spanned, h0(X, N⊗
M∗) = 1, the corresponding morphism is birational, and its image, C,
with only ordinary nodes except one point, P , which is an ordinary point
of multiplicity d−k+x. Furthermore, M is induced by the pencil of lines
through P . Fix x of the singular points, say B1, . . . , Bx, of C and let Y

be the partial normalization of C in which we normalize all nodes except
the ones corresponding to the points B1, . . . , Bx. Y solves our problem.

Definition 3.4 Let Y be an integral projective curve. Set LS(Y ) :=
{d ∈ Z: there is a spanned line bundle L on Y with deg(L) = d} and
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LS(Y )′ := {d ∈ Z: there is a spanned rank 1 torsion free sheaf F on
Y with deg(F ) = d}. LS(Y ) will be called the Lüroth semigroup of Y .
LS(Y ) is a semigroup of the set, N, of non-negative integers. LS(Y )′

will be called the singular Lüroth set of Y . It is very easy to find a
nodal curve Y such that LS(Y )′ is not a semigroup (see the proof of
Example 2.6 and 1.2 for x = y = 1 � k � g).

Proposition 3.5. Fix integers g, k and x with x > 0, k ≥ 2 + x

and g ≥ 2k − x + 3. Let Y be a general k-gonal nodal curve of genus
g with type (x, x). Then the singular Lüroth set LS(Y )′ of Y contains
the integers t(k − x) + x for 1 ≤ t ≤ min{x, [(g − x)/(k − x)]}, t(k − x)
for min{x + 1, [(g − x)/(k − x)]} < t ≤ [(g − x)/(k − x)] and all integers
β ≥ [(g − x + 3)/2] + x.

Proof. Let π : X → Y be the normalization map. Thus X is a
general smooth (k−x)-gonal curve of genus g−x. Let M ∈ Pick−x(X) be
the degree k − x pencil. By [3] and [6], Theorem 2.2 (see the discussion
in [6], 0.2), the Lüroth semigroup LS(X) of X contains the integers
t(k−x) (induced by M⊗t) and all the integers α with [(g−x+3)/2] ≤ α ≤
g − x. If A ∈ Pic(X), then deg(π∗(A)) = deg(A) + x and h0(Y, π∗(A)) =
h0(X, A). Hence to show that t(k−x)+x ∈ LS(Y )′ it is sufficient to show
that π∗(M⊗t) is spanned, while to show that [(g − x + 3)/2] + x + e ∈
LS(Y )′ it is sufficient to find A ∈ Pic[(g−x+3)/2]+e(X), A spanned with
π∗(A) spanned, i.e. with π∗(A) spanned at each point of Sing(Y ). Move
Y keeping fixed X, i.e. move the 2x points π−1(Sing(Y )). Since any
symmetric product of X is irreducible and the type is (x, x), for a general
Y we obtain that either π∗(M⊗t) is spanned or it is not spanned at
each point of Sing(Y ). Assume that the second possibility occurs and
call B the subsheaf of π∗(M⊗t) spanned by H0(Y, π∗(M⊗t)). We may
even assume that t is the first integer for which this possibility occurs.
Again, by the irreducibility of the symmetric product we obtain that
π∗(M⊗t)/B has the same length, v, at each point of Sing(Y ). By [3] we
have h0(X, M⊗t) = t + 1 for t ≤ [(g−x)/(k−x)]. First assume t < x. X

and hence M are fixed. By Remark 2.10 for general Y there is no spanned
R ∈ Pic(Y ) with M⊗t ∼= π∗(R). If t ≥ x + 1 we have h0(X, M⊗t) ≥
x+2 and hence applying x times Proposition 2.7 we obtain the existence
of a spanned R ∈ Pic(Y ) with M⊗t ∼= π∗(R). Now take A ∈ Pic(X)
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computing one of the integers α of LS(X) with [(g−x+3)/2] ≤ α ≤ g−x

and A general. By [6], Theorem 2.2, and the generality of A we have
h0(X, A) = 2. Thus using Remark 2.10 we obtain easily that for general
Y and general A the corresponding sheaf π∗(A) has no subsheaf B with
length (π∗(A)/B) ≥ x and h0(Y, B) = 2, i.e. we obtain the spannedness
of π∗(A). Every integer u ≥ g+1 may be realized as an element of LS(Y )
and hence of LS(Y )′ just taking a general non-special R ∈ Picu(Y ).

Proposition 3.6. Fix integers g, k, x, y and t with x > 0, x ≥
y ≥ 0, k ≥ 2 + x and g ≥ 2k − x + 3 and t < (g − x)/2 + 1. Let Y be a
general k-gonal nodal curve of genus g with type (x, y). If t �= a(k − y)
for all integers a, then t /∈ LS(Y ). If t = a(k− y) for some integer a and
y > a, then t /∈ LS(Y ).

Proof. Let π : X → Y be the normalization map. Thus X is a
general smooth (k − y)-gonal curve of genus g − x. Let M ∈ Pick−y(X)
be the degree k − y pencil. By [1], Theorem 0.1, there is no L ∈ Pict(X)
with L spanned, unless t = a(k − y) for some integer a and in this case
we have L ∼= M⊗a. Hence t /∈ LS(Y ) if t �= a(k − y) for every integer
a. Assume t = a(k − y). By [3] we have h0(X, M⊗a) = a + 1. Apply
Remark 2.10 and the assuption y > a.

Lemma 3.7. Fix integers g, k and x with x ≥ 0 and g ≥ 2k +x+3.
Let Y be a general k-gonal nodal curve of type (x, 0) and M ∈ Pick(Y )
the degree k spanned line bundle on Y . Then for all integers t with
0 ≤ t ≤ [g/(k − 1)] we have h0(Y, M⊗t) = t + 1T .

Proof. Let π : X → Y be the normalization. Since h0(Y, M) ≥ 2
the value for h0(Y, M⊗t) is the minimal a priori possible and hence we
may use semicontinuity. By definition of general nodal curve of type
(x, 0), X is a general smooth k-gonal curve of type (x, 0). By [3] we
have h0(X, π∗(M⊗t)) = t + 1 for t ≤ [(g − x)/(k − 1)]. Thus we may
assume [(g − x)/(k − 1)] < t ≤ [g/(k − 1)]. We modify the proof of [3].
We need to find an integral nodal curve, T , of type (k, a) (some a) on
P1 × P1 with normalization of genus g − x, at least x nodes and such
that a subset, S, of Sing(T ) with card(S) = card(Sing(T ))− x satisfies a
certain cohomological condition (say h1(P1 × P1, IS(k − 2, b)) = 0 for a
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suitable b). The existence of an integral nodal curve in P1×P1 with that
numerical invariants follows from [1], Proposition 3.7 and Proposition 4.1.
By semicontinuity we may even choose as x “omitted” nodes for the
cohomological condition is any subset of Sing(T ) we prefer and hence it is
sufficient to have h1(P1×P1,ISing(T )(k−2,b)) ≤ x. This is even easier than
in [3] (case x = 0 with cardinality of the singular set card(Sing(T ))− x).

Proposition 3.8. Fix integers g, k and x with x ≥ 0 and g ≥
2k + x + 3. Let Y be a general k-gonal nodal curve of type (x, 0) and
M ∈ Pick(Y ) the degree k spanned line bundle on Y . For any integer z

with 1 ≤ z < (g − x + 3)/2 the following conditions are equivalent:

(i) z = tk for some integer t;
(ii) z ∈ LS(Y );

Furthermore, if z = tk < (g − x + 3)/2 the only rank 1 spanned line
bundle, L, with deg(L) = z is M⊗t.

Proof. Since M is spanned, tk ∈ LS(Y ) for every integer t. Thus
it is sufficient to show that every spanned line bundle L with deg(L) ≤
(g − x + 3)/2 is of the form M⊗t. Let π : X → Y be the normalization.
Since π∗(M) is a spanned line bundle on the general k-gonal curve X,
this is [1], Theorem 2.6.

4 – Seminormal singularities

In this section we will consider seminormal curves in the sense of [17]
and [9], i.e. curves with the simplest singularities compatible with their
number of branches: if the singularity has r branches, then it is formally
equivalent to the germ at 0 ∈ Kr of the union of the r coordinate axis.
A seminormal curve singularity is Gorenstein if and only if it is an ordi-
nary double point. The conductor of a seminormal one-dimensional local
ring R is the maximal ideal of R.

Definition 4.1. Let Y be a projective seminormal curve and π :
X → Y its normalization. Set g := pa(Y ) and q := pa(X). For every
P ∈ Sing(Y ), set s(P ) := card(π−1(P )). We may order the integers
s(P ), P ∈ Sing(Y ) in non-decreasing order, allowing repetitions. If K =
C the topological type of Y (C) is unique determined by the integers
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(g, q; card(Sing(Y ); s(P )P∈Sing(Y )). Notice that g = q +
∑

P∈Sing(Y ) s(P )−
card(Sing(Y )). We call this set the numerical data. The weight weight(τ)
of the numerical data τ or of the curve Y is the maximum of the integers
s(P ), P ∈ Sing(Y ). We will say that Y is general or that it is general
for a prescribed numerical data if X is a general smooth curve of genus q

and the set π−1(Sing(Y )) is general in X. We will say that Y is general
for the fixed normalization X if π−1(Sing(Y )) is general in X.

Remark 4.2. Let Y be a seminormal curve and π : X → Y its
normalization. Fix L ∈ Pic(Y ). For every f ∈ H0(Y, L) and P ∈ Sing(Y )
with f vanishing at P the section π∗(f) of π∗(L) vanishes at each point
of π−1(Sing(P )). Fix h ∈ H0(X, π∗(L)) and assume that for every P ∈
Sing(Y ) h has the same value for a fixed trivialization of L near P and
hence of π∗(L) around π−1(P ) at each point of π−1(P ). Then h is of the
form π∗(f) for some f ∈ H0(Y, L) because conductor of a seminormal
one-dimensional local ring R is the maximal ideal of R.

Remark 4.3. Let Z be an integral projective curve, L ∈ Pic(Z),
V ⊆ H0(Z, L) a linear subspace with dim(V ) ≥ 2. Then for every P ∈ Z

there is subspace V (P ) of V with dim(V (P )) ≥ dim(V )−1 and such that
every f ∈ V (P ) vanishes at P .

Remarks 4.2 and 4.3 and the definition of general seminormal curve
with fixed normalization give at once the following result.

Lemma 4.4. Let X be a smooth projective curve of genus q ≥ 0.
Fix an integer d and let x be the maximal dimension of an irreducible
component of Gr

d(X). Fix a type τ for seminormal curves with normal-
ization of genus q and weight(τ) > x. Let Y be the general seminormal
curve of type τ with X as normalization. Then for every L ∈ Pic(Y ) with
deg(L) ≤ d we have h0(Y, L) ≤ r.

Remark 4.5. Use the notation of Lemma 4.4. Notice that for a
fixed q and any genus q curve we may find a type τ with weight(τ) > d

but d < g. In this sense there is no hope just using the Brill - Noether
numbers ρ(g, r, d) to have on general seminormal curves the usual Brill -
Noether theory using line bundles, even if we do not require that the line
bundles considered are spanned.

The proof of Remark 2.4 and Remark 2.5 give the following result.
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Proposition 4.6. Fix integers g, q, d and e with 0 < e ≤ g − q.
Let X be a smooth curve of genus q and assume the existence of an
irreducible component, T, of G1

d(X) with dim(T ) ≥ g − q + e and such
that for a general pair (R, V ) ∈ T the line bundle R is spanned by V . Fix
a type τ for seminormal curves with genus g, normalization of genus q

and e singular points. Let Y be a general seminormal curve with Y as
normalization and type τ . Then there is a spanned line bundle of degree d

on Y .
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Einstein’s field equations in the light

of constrained hyperbolic systems

F. BORGHERO – S. PENNISI

Abstract: Results previously known in the literature, on the hyperbolicity of Ein-
stein’s equations, are here quoted and improved. This aim is reached by applying recent
techniques on constrained hyperbolic systems. The symmetric hyperbolic form is ob-
tained, also in the four-dimensional formalism using harmonic coordinates. The case
of sources due to the presence of matter is also considered, in particular from the view
point of Extended Thermodynamics

1 – Introduction

The importance of Einstein’s equations is outstanding and needs no
comments. The study of their hyperbolicity presents also some interesting
aspects. Obviously, we don’t have here the presumption to diminish
previously results obtained on this subject by authoritative experts. We
want only to show how a recent general theory on hyperbolic systems,
with differential and algebraic constraints, can be successfully applied also
to this important problem; indeed, the validity of the general theory is
strengthened because our results are comparable with those obtained in
other ways by the above mentioned experts.

Key Words and Phrases: Einstein’s field equations – Harmonic coordinates – Con-
strained Hyperbolic systems – Symmetric hyperbolic systems – Extended thermodynam-
ics.
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Let us start noticing that in [1] Strumia has shown how Einstein’s equa-
tions can be reduced to a first order system of partial differential equa-
tions, but one of the hyperbolicity conditions according to Friedrichs

(see ref. [2], [3]) seems to fail, the one referring to the possibility, roughly
speaking, to obtain the time derivatives as functions of the other quan-
tities; see also [4] for other details. Although apparently strange, this
result is just what we would expect from the covariance property; in fact,
if the metric tensor gµν is a solution of Einstein’s equations, then so is
gµ′ν′ = gαβ[xρ(xλ′

)]∂µ′xα∂ν′xβ i.e. the expression determined from gµν by
a general coordinate transformation x → x′. This consideration can be
found in papers such as [5]-[7].

In [8] this failure of Einstein’s equations to determine gµν uniquely is
compared to the failure of Maxwell’s equations to determine the vector
potential uniquely. Here we propose another comparison which will be
the thread of our subsequent arguments, i.e., the problem of determining
the geodesic curves of a surface Σ; for the sake of simplicity, we shall
consider Σ belonging to a 3-dimensional euclidean space. If P = P (u, v)
are the parametric equations of Σ and P (λ) = P [u(λ), v(λ)] the equations
of a geodesic curve γ, then

P ′(λ)
|P ′(λ)|

is the tangent unit vector and one has

d

dλ

[
P ′(λ)
|P ′(λ)|

]
=

1
ρ

n
ds

dλ
,

where ρ is the radius of curvature, n is the normal unit vector and s is its
arc-length parameter; therefore, the equations of γ can be obtained from
the system

(1.1)



∂P

∂u
· d

dλ

[
P ′(λ)
|P ′(λ)|

]
= 0,

∂P

∂v
· d

dλ

[
P ′(λ)
|P ′(λ)|

]
= 0.

These equations don’t determine u(λ), v(λ), because their linear com-
bination, through the coefficients u′ and v′, is an identity; as Einstein’s
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equations don’t determine gµν due to the arbitrariness of the coordinates
transformation, so the equations (1.1) fail to determine u and v because
the parameter λ is arbitrary. One may proceed in one of the following
ways:

1. Require |P ′(λ)| = 1, in addition to equations (1.1); in other words,
we require that λ is the arc-length parameter.

2. Require d|P ′(λ)|/dλ = 0, |P ′(λ0)| = 1, with λ0 initial value of λ.
Note that these conditions, together with (1.1), are equivalent to



∂P

∂u
· P ′′(λ) = 0,

∂P

∂v
· P ′′(λ) = 0,

|P ′(λ0)| = 1.

This last condition may also be omitted, being content with a λ which
is a linear function of the arc-length parameter, without assuming
λ = s.

In the same manner we will investigate the hyperbolicity of Einstein’s
equations in one of the following ways:

1. Require that the coordinates xα aren’t the most general ones, but
the harmonic coordinates defined by Γα = 0 (for the expression of Γα

see the equation (1.2)6 below). In this way, the Einstein’s equations
become equations with differential and algebraic constraints. In this
framework they will be studied in Section 2, by applying the gen-
eral methods outlined in ref. [4], where they have been successfully
applied to the equations of relativistic fluid dynamics. See also refs.
[9]-[13] for other examples of physical application, such as the rel-
ativistic magneto-fluid dynamics, the Maxwell electrodynamics, the
equations of the superfluid and those of ultra relativistic gases.
In ref. [4] it is shown also a method to eliminate the algebraic con-
straints, in a manner which corresponds to the following method (2).

2. Require ∂tΓα = 0, (Γα)Σ = 0, where (Γα)Σ is the value of Γα cal-
culated in the initial manifold Σ. This approach will be followed in
Section 3. We will see that these further assumptions are equivalent
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to ∂(βΓα) = 0, (Γα)Σ = 0, which have the advantage to be written in
4-dimensional notation.
Following the general methods of paper [4], we obtain the equations
found in [5]-[7] in another way; in ref. [5], Fischer and Marsden have
transformed these equations in the symmetric hyperbolic form, but
in 3-dimensional notation. Here we reach the same result, but in 4-
dimensional notation.
A third approach, which is present in literature, will be exploited in
Section 4.
The case of sources due to the presence of matter will be consid-
ered in Section 5, showing how the symmetric hyperbolic form can be
obtained also in this case, and also with the equations of relativistic
extended thermodynamics and similar [14]-[16].

We conclude this section reporting the Einstein’s equations.

(1.2) Gµν = χTµν ,

with χ the einsteinian gravitational constant, Tµν the energy tensor,

Gµν = Rµν −
1
2

gµνR (Einstein tensor),

R = gαβRαβ (scalar curvature),

Rµν =
1
2

gαβ[−∂2
αβgµν − ∂2

µνgαβ + ∂2
ανgµβ + ∂2

βµgνα]+

− gρσΓρ
µνΓ

σ
αβgαβ + gαβgρσΓρ

µαΓσ
νβ =

= ∂αΓα
µν − ∂νΓα

αµ + Γα
µνΓ

β
αβ − Γα

µβΓβ
να (Ricci tensor),

Γµ
αβ =

1
2

gµλ (∂βgλα + ∂αgλβ − ∂λgαβ) (Christoffel symbols),

Γµ = Γµ
αβgαβ (Lanczos symbols).

Obviously the Einstein’s equation (1.2) can also be written in the form

(1.3) Rµν = χ

(
Tµν −

1
2

Tαβgαβgµν

)
.
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When sources are not present, i.e. Tµν = 0, we have the so called “exterior
case” and equation (1.3) reduce to

(1.4) Rµν = 0.

2 – The Einstein’s equations in harmonic coordinates

The transformation equations of the contracted Christoffel symbols
Γµ, introduced by Lanczos, are

(Γ′)λ = Γρ∂ρ(x′)λ − gρσ∂2
ρσ(x′)λ .

Hence we can always find a coordinate system (x′)λ where (Γ′)λ vanishes;
such coordinates are called harmonic coordinates.

From now on, in this section, we will impose to be already in harmonic
coordinates, so that we have Γµ = 0. The Einstein’s equation (1.4)
in the exterior case can be reduced to a first order system by setting
∂αgµν = ωαµν ; one obtains

(2.1)



∂αgµν = ωαµν ,

1
2

gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα] = Fµν(gαβ, ωαβγ),

∂[βωα]µν = 0,

1
2

gαβ (2ωαβλ − ωλαβ) = 0 (i.e. Γλ = 0).

Equations (2.1)1-3 constitute a system of 110 equations in the 50 un-
knowns gµν, ωαµν, restricted by the four algebraic constraints (2.1)4, so
that we have only 46 independent variables; obviously, in the system
(2.1)1-3 there are also 66 differential constraints.

Now a general method to study the hyperbolicity of systems with
algebraic and differential constraints has been proposed in ref. [4] and
already applied with success to important physical problems.

Here we find another interesting example of physical application. In a
few words the method, applied to the present case, consists in multiplying
the system (2.1)1-3 on the left by a suitable matrix of rank 46 so that the



70 F. BORGHERO – S. PENNISI [6]

resulting system is hyperbolic in the time direction defined by tα, with
tαtα = −1.

Alternatively, this result may be obtained by taking suitable linear
combinations of the equations (2.1)1-3. A possible choice is to consider
the system

(2.2)



tα∂αgµν = tαωαµν ,

hµν
γδ

1
2

gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα] =

= hµν
γδ Fµν(gαβ, ωαβε),

tαhµν
γδ [∂[βωα]µν ] = 0,

1
2

gαβ(2ωαβλ − ωλαβ) = 0,

with

(2.3) hµν
γδ = g(µ

γ g
ν)
δ − 1

4
gµνgγδ .

We prove now that the system (2.2)1-3 is hyperbolic. Firstly, we con-
sider the system

(2.4)



tαtαdgµν = 0,

hµν
γδ

1
2

gαβ[−tαdωβµν − t(µdων)αβ + tαdωνµβ + tβdωµνα] = 0,

tαhµν
γδ [t[βdωα]µν ] = 0,

d

[
1
2

gαβ (2ωαβλ − ωλαβ)
]

= 0,

in the unknowns dgµν , dωαβγ . It is easy to see that this system has
only the solution dgµν = 0, dωαβγ = 0. In fact, equations (2.4)1,3 yield
dgµν = 0,

(2.5) dωβµν = −tβtδdωδµν + Xβgµν ,

for every Xβ such that

(2.6) Xβtβ = 0.
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After that, equation (2.4)4 gives

Xλ = −tβtδdωδβλ +
1
2
gαβtλtδdωδαβ.

By substituting in (2.5), (2.6), we obtain

(2.7) gαβtδdωδαβ = −2tδtβtλdωδβλ

and
dωβµν = −tβtδdωδµν − gµνt

δtρdωδργ(g
γ
β + tβtγ).

At last, equation (2.4)2 yields hγδ
µνt

βdωβµν = 0 from which and (2.7) the
relation dωβµν = 0 follows. This result proves that, from the system (2.2),
the time derivatives can be obtained as functions of the other quantities.

To prove the hyperbolicity of the system (2.2) it suffices now to see
that the following system

(2.8)



tαϕαdgµν = 0,

hµν
γδ

1
2

gαβ[−ϕαdωβµν − ϕ(µdων)αβ + ϕαdωνµβ + ϕβdωµνα] = 0,

tαhµν
γδ [ϕ[βdωα]µν ] = 0,

d

[
1
2

gαβ (2ωαβλ − ωλαβ)
]

= 0,

with ϕα = nα − λtα, has real eigenvalues λ and 46 linearly independent
(l.i.) eigenvectors dgµν , dωβµν , for every nα such that nαtα = 0, nαnα = 1.

Also this condition is satisfied: in fact in correspondence to the eigen-
value λ = 0, equation (2.8)1 is an identity, while equation (2.8)3 is equiva-
lent to tαhµν

γδ dωαµν = 0. Therefore, we have 22 equations for 50 unknowns
and, consequently, 28 l.i. eigenvectors.

In correspondence to λ = ±1 (from which ϕβϕβ = 0, λ �= 0) we
obtain the eigenvectors

dgµν = 0, dωβµν =
1
λ

(ϕβy<µν> + ϕδy<δβ>gµν),

where y<µν> is an arbitrary symmetric traceless tensor; therefore there
are 2 × 9 l.i. eigenvectors corresponding to λ = ±1. In this way, the
hyperbolicity of system (2.2) has been proved.
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In ref. [4] we find also a method to get rid of the algebraic constraints;
its application to our case leads, as a first step, to the system

(2.9)



tα∂αgµν = tαωαµν ,

hµν
γδ

1
2

gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα]+

+gµνgγδt
α∂αωµν = hµν

γδ Fµν ,

tαhµν
γδ (∂[βωα]µν) + tαhµν

γδ tβ∂αωµν + gγδt
α∂αψβ = 0,

for the determination of the variables gµν , ωβµν , ωµν = ωνµ, ψβ, con-
strained by (2.1)4. This system is also hyperbolic and has the advantage
to have an equal number of equations and of independent variables; when
ωµν = 0, ψβ = 0 it reduces to the system (2.2) and, moreover, if ωµν = 0,
ψβ = 0 on an initial hypersurface Σ, then ωµν = 0, ψβ = 0 will propagate
also off Σ.

The system (2.9) has been obtained from (2.2) by considering more
equations and more independent variables, an idea somehow similar to
that conceived in Extended Thermodynamics.

The second, and last, step leads to the system

(2.10)



tα∂αgµν = tαωαµν ,

hµν
γδ

1
2

gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα]+

+gµνgγδt
α∂αωµν = hµν

γδ Fµν ,

tαhµν
γδ (∂[βωα]µν) + tαhµν

γδ tβ∂αωµν+

+gγδt
α∂α

[
1
2

gµν(2ωµνβ − ωβµν)
]

= 0,

in the independent variables gµν , ωβµν , ωµν ; in this way all the constraints,
both differential and algebraic, have been eliminated still maintaining the
property to be hyperbolic and to have an equal number of equations and of
independent variables. Obviously, by setting ωµν = 0 in equations (2.10),
the differential constraints arising are only identity and one obtains a sys-
tem in the “old variables” but without algebraic constraints; this system
is hyperbolic and, moreover, if (2.1)4 holds on an initial hypersurface Σ,
then it will be satisfied also off Σ.

Another method to obtain this result is exposed in the next section.
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3 – The Einstein’s equations with the further condition
∂(αΓβ) = 0

We can easily see that the following relations hold

(3.1) Γβ = 0 ⇔
{

∂0Γβ = 0

(Γβ)
Σ

= 0
⇔

{
∂(αΓβ) = 0

(Γβ)
Σ

= 0,

where (Γβ)
Σ

is the value of Γβ on an initial space-like hypersurface Σ.
The first equivalence in (3.1) is trivial; the second one is based on the
fact that ∂0Γβ = 0, (Γβ)

Σ
= 0 implies ∂0(∂iΓβ) = 0, (∂iΓβ)

Σ
= 0, from

which ∂iΓβ = 0 follows. Vice versa, if the equations in the right hand
side of (3.1) hold, then we have

{
∂0Γ0 = 0 ⇒ ∂0 (∂iΓ0) = 0,

(∂iΓ0)Σ = 0,

and, consequently, ∂iΓ0 = 0; this result allows to obtain, from ∂(αΓβ) = 0,
for α, β = 0, . . . , i, that ∂0Γi = 0. In this way the second equivalence
in (3.1) has been proved.

This suggest to consider the equations

(3.2) ∂αgµν = ωαµν , Rµν = 0, ∂[βωα]µν = 0, ∂[µΓν] = 0.

This system has more differential constraints than the system (2.1), but
has no algebraic constraints because (2.1)4 has to be imposed only on the
initial manifold. The method in ref. [4] already applied in Section 2 to
equations (2.1), can now be applied to the system (3.2). One obtains

(3.3)
tα∂αgµν = tαωαµν , Rµν − ∂(µΓν) − 2gαβgγ

(µgδ
ν)∂[βωγ]δα = 0,

tα
(
∂[βωα]µν

)
= 0,

which is the new counterpart of system (2.2).
We note that the equations (3.3)2 substantially coincide with those

proposed by Fourès-Bruhat, Fischer and Marsden in refs. [5], [7], i.e.,

Rµν − gα(µ∂ν)Γα − 2gαβgγ
(µgδ

ν)∂[βωγ]δα = 0
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or, equivalently,

Rµν − ∂(µΓν) − 2gαβgγ
(µgδ

ν)∂[βωγ]δα + Γαω(νµ)α = 0;

the only difference is in the last term which doesn’t involve the derivatives
of the variables and, therefore, does not affect the study of hyperbolicity.

We retain very interesting to see how a general method such that of
ref. [4] leads to equations obtained in other ways in literature. These
equations (3.3)2 writes explicitly

(3.4) −1
2

gαβ∂αωβµν = Fµν −
1
2

gγ
(µgδ

ν)ω
αβ
γ (2ωαβδ − ωδαβ),

where we have used the relation ∂γg
ψη = −ω ψη

γ which comes from gψθ

contracted with the derivative with respect to xγ of the relation

gθδg
δη = δη

θ .

To prove the hyperbolicity of the system (3.3) is now an easy task because
the system

−dgµν = 0, −1
2

tβdωβµν = 0, tαt[βdωα]µν = 0,

imply dgµν = 0, dωβµν = 0, while the system

λdgµν = 0, −1
2

ϕβdωβµν = 0, tαϕ[βdωα]µν = 0,

has 50 l.i. eigenvectors, i.e.

• the 30 l.i. solutions of tβdωβµν = 0, nβdωβµν = 0, corresponding to
the real eigenvalue λ = 0,

• the 20 l.i. solutions of dgµν = 0, dωβµν = xµνϕβ, (with xµν an
arbitrary symmetric tensor) corresponding to the real eigenvalues
λ = ±1 (i.e., ϕβϕβ = 0).

But a more interesting aspect is that the system (3.3) can be put in the
symmetric form; this result has been obtained by Fischer and Marsden
for their system of equations, but in 3-dimensional formalism. Here we
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obtain in 4-dimensional notation the same result for our system (3.3). In
fact, it is equivalent to

(3.5)


tα∂αgµν = tαωαµν ,

tτ

(
−1

2
gαβ∂αωβµν

)
− tα∂[τωα]µν = tτKµν ,

where we have used the expression (3.4) for the equations (3.3)2 and we
have called Kµν the second member of (3.4).(1)

The system (3.5) is symmetric; in fact, if we take a linear combination
of its left-hand sides through the coefficients λµν , λτµν and substitute ∂α

with δ, we obtain(2)

tα

(
λµνδgµν +

1
2

λτµνδωτµν

)
+

− 1
2

(
tβgαβ′

λβ′µ′ν′δωβµν + tτλτµ′ν′gαβδωβµν

)
gµ′µgν′ν .

This expression doesn’t change if we exchange λµν with δgµν and λτµν

with δωτµν , thus proving the symmetric form of (3.5).
The result of this section has been achieved at the cost of dealing

with modified Einstein’s equations, i.e., (3.3)2. A more elegant result will
be obtained in the next section by introducing suitable equations for Γα.

4 – The unmodified Einstein’s equations

In ref. [7], Fischer et al. obtain equations involving Γα, drawing it
from a consequence of Bianchi identities, i.e., ∇αGαβ = 0 (where ∇ is the
operator of covariant derivation) or, in other words, from

(4.1) ∂µGµν + GρνΓµ
ρµ + GµρΓν

ρµ = 0.

It seems strange that an equation may be obtained from an identity!

(1)Note that (3.5)2 contracted with tτ gives (3.3)2 and, after that, it remains (3.3)3.
(2)Note that

tαλτµν∂τωαµν = tτλαµν∂αωτµν ⇒ tτλαµνδωτµν .
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The reason of this apparent paradox is that (4.1) is an identity when
applied to the whole Einstein tensor Gµν , while Fischer et al. apply it to

Gµν =
(

gµ(βgγ)ν − 1
2

gµνgβγ

)
gαβ∂γΓα,

i.e. the expression of Gµν calculated on a solution of Rµν −gα(µ∂ν)Γα = 0.
In this way they obtain a system of the form

(4.2)
1
2

gβν∂2
βνΓ

µ + Aβµ
α (gγδ, ∂λgγδ)∂βΓα = 0.

Therefore (4.2) is not a consequence of Einstein’s equations, but of their
“modified” expressions which are equivalent to them only under the fur-
ther assumption of harmonic coordinates; in this case, it is obvious that
also (4.2) is an identity! On the other hand, one may consider (4.2)
as further equations to consider jointly with Einstein’s ones, disregarding
their origin; assuming the validity of (4.2) is less restrictive than assuming
harmonic coordinates.

So, let us consider the system

(4.3)


Rµν = 0 (Einstein’s equations),

1
2

gβν∂2
βνΓ

µ = −Aβµ
α (gγδ, ∂λgγδ)∂βΓα (Fischer’s equations).

It is expressed in terms of gµν and of its first, second and third derivatives;
obviously, it can be reduced to a first order system considering gµν , ∂αgµν ,
∂2

αβgµν as independent variables.
But the third derivatives of gµν intervene only through the second

derivatives of Γµ; therefore, one can consider gµν , ∂αgµν , Γµ, ∂αΓµ as
independent variables except for the algebraic constraints

(4.4) Γµ =
1
2

gµλgαβ (2∂αgλβ − ∂λgαβ) .
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The system (4.3) can now be reduced to a first order one by defining
ωαβγ = ∂αgβγ , Sµ

β = ∂βΓµ, i.e.

(4.5)



∂αgµν = ωαµν ,

−1
2

gαβ∂αωβµν = Fµν(gγδ, ωλγδ)+

−1
2

gγ
(µgδ

ν)ω
αβ

γ (2ωαβδ − ωδαβ) − Sµν ,

∂[βωα]µν = 0,

∂αΓµ = Sµ
α,

1
2

gαβ∂αSµ
β = −Aβµ

α (gγν , ωλγν)Sα
β ,

∂[βSµ
α] = 0,

where we have used the identity

Rµν = Rµν − ∂(µΓν) − 2gαβgγ
(µgδ

ν)∂[βωγ]δα + Sµν + 2gαβgγ
(µgδ

ν)∂[βωγ]δα,

transformed by the expression (3.4) for Rµν − ∂(µΓν) − 2gαβgγ
(µgδ

ν)∂[βωγ]δα

and by the (4.5) for ∂[βωγ]δα. Moreover (4.5)6 is the integrability condition
on (4.5)4 such as (4.5)3 is the integrability condition on (4.5)1.

Now it can be easily seen that the system (4.5) is hyperbolic, without
considering the constraints (4.4); therefore, it is sufficient to impose (4.4)
only on the initial manifold Σ and then it will propagate off Σ. Also (4.5)
can be written in a symmetric form, i.e.,

(4.6)



tα∂αgµν = tαωαµν ,

tτ

(
−1

2
gαβ∂αωβµν

)
− tα∂[τωα]µν =

= tτ

[
Fµν −

1
2

gγ
(µgδ

ν)ω
αβ

γ (2ωαβδ − ωδαβ) − Sµν

]
,

tα∂αΓµ = tαSµ
α,

tτ

(
1
2

gαβ∂αSµ
β

)
+ tα∂[τS

µ
α] = −tτA

βµ
α Sα

β .
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Obviously, the system

− dgµν = 0, − tτ

1
2

tβdωβµν − tαt[τdωα]µν = 0,

− dΓµ = 0, tτ

1
2

tβdSµ
β + tαt[τdSµ

α] = 0,

has only the solution dgµν = 0, dωαµν = 0, dΓµ = 0, dSµ
α = 0. Moreover,

the eigenvectors are the solutions of the system

λdgµν = 0, − tτ

1
2

ϕβdωβµν − tαϕ[τdωα]µν = 0,

λdΓµ = 0, tτ

1
2

ϕβdSµ
β + tαϕ[τdSµ

α] = 0;

one obtains the eigenvalues

• λ = 0, to which correspond, as eigenvectors, the 42 l.i. solutions of
tβdωβµν = 0, nβdωβµν = 0, tβdSµ

β = 0, nβdSµ
β = 0;

• λ = ±1, and the corresponding 28 l.i. eigenvectors dgµν = 0, dωβµν =
xµνϕβ, dΓµ = 0, dSµ

α = Xµϕα, with xµν an arbitrary symmetric
tensor, and Xµ an arbitrary 4-vector.

In the next section will be considered the case where we have sources
due to the presence of matter.

5 – The case of interaction with matter

Let us consider now the expression (1.3) with χ �= 0, for Einstein’s
equations. Thanks to the identity ∇αGαβ = 0 and to (1.2)1, it yields

(5.1) ∇αT αβ = 0.

Usually, this equation doesn’t suffice to include the contribution of matter
and we have more equations; they can be written in the form

(5.2) ∇αT αA = P A, for A = 1, . . . , N.

Obviously, for some values of A the equation (5.2) coincide with (5.1);
T αA and P A are functions of the independent variables. In particular, in
Extended Thermodynamics (see for example, refs. [14]-[16]), the equa-
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tions (5.2) assume the symmetric hyperbolic form by taking suitable in-
dependent variables λA which define the so called “mean field”; more
clearly, the equations (5.2) become

(5.3)
∂T αA

∂λB

∇αλβ = P A,

with ∂TαA

∂λB
= ∂TαB

∂λA
, ∂TαA

∂λB
uα being a convex functions of λB.

But this result is achieved by considering constant the metric tensor
gµν ; if we avoid this assumption, let us see how the equations (5.3) mod-
ify. The equations (5.2) by taking λB and gµν as independent variables,
become

(5.4)
∂T αA

∂λB

∇αλβ = P A − ∂T αA

∂gµν

ωαµν .

Therefore, the only difference is in the second members which don’t in-
volve the derivatives of the field. We can now consider the system con-
stituted by (3.5) with tα = uα and by (5.4)(or, alternatively, by (4.6)
with tα = uα and by (5.4)) and see that it is symmetric hyperbolic in the
time direction uα; moreover, the characteristic velocities don’t exceed the
speed of light and therefore, for Strumia’s Lemma [1], they are hyperbolic
in any other time direction.

For the sake of simplicity, let us consider only the example given by
the equations of fluid dynamics

(5.5) ∇α(ρuα) = 0, ∇α[(e + p)uαuβ + pgαβ] = 0.

Here ρ, e, p can be considered functions of the entropy density s and of
the temperature T and they satisfy the Gibbs relation

(5.6) T ds =
1
ρ

de + (e + p) d

(
1
ρ

)
.

If we take λ = −s + e+p
ρT

, λα = uα

T
as independent variables, the Gibbs

relation gives dλ from which one obtains

(5.7)
∂p

∂λ
= ρT,

∂p

∂T
=

e + p

T
,

∂(ρT )
∂T

=
∂

∂λ

(
e + p

T

)
,

the last of which is the integrability condition on (5.7)1,2.
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Moreover, the above mentioned functions ρ, e, p satisfy the physical
conditions

(5.8)

∂ρ

∂λ
> 0,

∣∣∣∣∣∣∣∣
∂ρ

∂λ
T

∂ρ

∂T

T
∂ρ

∂T
T

∂

∂T

(
e + p

T

)
∣∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣∣∣

∂ρ

∂λ
T

∂ρ

∂T
ρ

T
∂ρ

∂T
T

∂

∂T

(
e + p

T

)
e + p

T

ρ
e + p

T

e + p

T

∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

The system (5.4), for this case, reads

(5.9)

∂ρ

∂λ
λα∂αλ +

(
ρgαδ + T 2 ∂(ρT )

∂T
λαλδ

)
∂αλδ =

= P (λ, λγ , gµν , ωδµν),
(

ρgαβ + T 2 ∂(ρT )
∂T

λαλβ

)
∂αλ+

+
[
3(e + p)Tλ(αgβδ) + T 2 ∂[(e + p)T 2]

∂T
λαλβλδ

]
∂αλδ =

= P β(λ, λγ , gµν , ωδµν),

which is manifestly symmetric.
Coupling it with (3.5) or with (4.6), one obtains the whole system of

equations, which is also symmetric and hyperbolic.
Obviously, many other situations may be considered, but here we are

satisfied with this one.
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Stability and controllability of an abstract evolution

equation of hyperbolic type and concrete applications

S. NICAISE

Abstract: We consider the stability of an abstract evolution equation using Liu’s
principle based on the exponential stability of the inverse problem with a linear feedback
and on an integral inequality. Russell’s principle also yields some exact controllability
results. Some concrete examples with new stability and controllability results illustrate
the interest of our approach.

1 – Introduction

Stability of different systems of partial differential equations of hyper-
bolic type with linear or nonlinear feedbacks has been recently the object
of several works. Let us quote the stability of the wave equation [18],
[19], [20], [23], [22], [43], [26], [10] and the references cited there, of the
Petrovsky system [11], [13], [15], [1], [4], of the elastodynamic system [1],
[4], [13], of Mawxell’s system [3], [21], [39], [7], [36] or combination of
them [17], [37]. We actually remark that the approach of recent works

Key Words and Phrases: Stability of partial differential equations of hyperbolic type
– Integral inequality – Evolution equations – Liu principle.
A.M.S. Classification: 37D35 – 35L10
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cited above has a similar structure, namely the use of Liu’s principle and
of some integral inequalities. Liu’s principle consists in estimating the
energy of the direct system by some terms related to the feedbacks using
a retrograde system with final data equal to the final data of the direct
system. These terms are then estimated using the exponential stabil-
ity of the inverse (retrograde) problem with a linear feedback (based on
Russell’s principle) and an appropriated integral inequality. Therefore
our goal is to present an abstract setting leading to the stability and
controllability (via Russell’s principle) of the abstract system, setting as
large as possible to include all examples of the aforementioned papers
and allowing even new applications.

More precisely we first present an abstract setting of hyperbolic type
and including the above systems. General assumptions guarantee exis-
tence results as well as dissipativeness of the system. In a second step we
show that the exponential decay of the energy of the solution is equiva-
lent to the validity of a stability estimate, estimate that can be checked in
some particular cases. In a third step we use the so-called Russell’s prin-
ciple “controllability via stability” to obtain controllability results for the
abstract system. Finally using Liu’s principle [28] and a new integral in-
equality from [7] we give sufficient conditions on a class of (quite general)
feedbacks which lead to an explicit decay rate of the energy. The strength
of our approach lies in the fact that the controllability and stability results
(with general feedbacks) are only based on the stability estimate with a
linear feedback, estimate that may be checked for an explicit problem
by different techniques, like the multiplier method, microlocal analysis or
any method entering in a linear framework (like nonharmonic analysis for
instance). This approach was successfully initiated in [36] for Maxwell’s
system and is here extended to an abstract system. We further illustrate
our approach by considering different examples for which new stability
and controllability results are even obtained.

The schedule of the paper is the following one: the abstract setting
and its well-posedness are analysed in Section 2. Section 3 is devoted to
the equivalence between the exponential stability and the stability esti-
mate. In Section 4 exact controllability results are deduced from Russell’s
principle. Section 5 is devoted to the stability results for a class of non-
linear feedbacks using Liu’s principle. Some applications are presented in
the last section.
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2 – Abstract setting

In this section we describe a general abstract setting of hyperbolic
type that will be used later on. It is motivated by the examples (and
other ones) given in Section 6 which all enter in this setting.

Let us fix two real separable Hilbert spaces H, V with respective
inner products (., .)H, (., .)V and such that V is densely and continuously
embedded into H. Identifying H with its dual H′ we have the standard
diagram:

V ↪→ H = H′ ↪→ V ′.

We suppose given a bounded linear operator A1 from V into V ′ and a
(nonlinear) mapping B from V into V ′. We now define two (nonlinear)
operators A+ and A− as follows

D(A±) = {v ∈ V|(±A1 + B)v ∈ H},(1)

A± = (±A1 + B)v,∀v ∈ D(A±).(2)

For shortness we often drop the superscript + at A+.
Motivated by the examples we introduce the following assumptions:

A+ is maximal monotone,(3)

A− is maximal monotone,(4)

D(A+) is dense in H,(5)

D(A−) is dense in H,(6)

〈A1u, u〉 = 0,∀u ∈ V,(7)

〈Bu, u〉 ≥ 0,∀u ∈ V,(8)

where hereabove and below 〈., .〉 means the duality pairing between V ′

and V.

Lemma 2.1. Under the assumptions (3), (5), (7) and (8), the
evolution equation

(9)


∂u

∂t
+ A1u + Bu = 0 in H, t ≥ 0,

u(0) = u0,
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admits a unique (weak) solution u ∈ C(IR+,H) for any u0 ∈ H. If
moreover u0 ∈ D(A), the problem (9) admits a unique (strong) solution
u ∈ W 1,∞(IR+,H) ∩ L∞(IR+, D(A)) and such that u(t) ∈ D(A), for all
t ≥ 0.

This system is dissipative since its energy

E(t) =
1
2
||u(t)||2H,

is non-increasing. Moreover for u0 ∈ D(A), we have

E(S) − E(T ) =
∫ T

S

〈Bu(t), u(t)〉 dt, ∀0 ≤ S < T < ∞,(11)

d

dt
E(t) = −〈Bu(t), u(t)〉,∀t ≥ 0.(12)

Under the assumptions (4), (6), (7) and (8), the same results hold for
A− (with the same expression for the energy and the same identities (11)
and (12) for u0 ∈ D(A−)).

Proof. The first assertions follow from nonlinear semigroup the-
ory [42]. For the second assertions it suffices to show (12) since D(A) is
dense in H. For u0 ∈ D(A), we have

d

dt
E(t) =

(
∂u

∂t
(t), u(t)

)
H

= −(Au(t), u(t))H,

by (9). From the definition of A and the fact that u(t) ∈ V, for all t ≥ 0,
we get

d

dt
E(t) = −〈A1u(t), u(t)〉 − 〈Bu(t), u(t)〉.

This yields (12) owing to (7).

Remark 2.2. The identity (11) remains valid for u0 ∈ H indeed for
a sequence u0n ∈ D(A) such that u0n → u0 in H, let un be the solution
of (9) with initial datum u0n, then they fulfill

En(S) − En(T ) =
∫ T

S

〈Bun(t), un(t)〉 dt.
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Since the left-hand side tends to E(S)−E(T )(because un→u inC(IR+,H)),
the right-hand side admits also a limit that we denote by

∫ T

S 〈Bu(t), u(t)〉dt.
This is the so-called hidden regularity of u.

3 – Exponential stability

In this section we find a necessary and sufficient condition which
guarantees the exponential stability of (9). This condition is the validity
of a stabilility estimate that will be checked in some particular cases in
Section 6. We closely follow the arguments of the beginning of Section 3
of [36] given in the case of Mawxell’s system and that can be easily
extended to our abstract setting. The proofs are nevertheless given for
the sake of completeness.

In the whole section we suppose that (3), (5), (7) and (8) hold.
We start with the following definition.

Definition 3.1. We say that the pair (A1, B) satisfies the stabilility
estimate if there exist T > 0 and two non negative constants C1, C2

(which may depend on T ) with C1 < T such that

(13)
∫ T

0

E(t) dt ≤ C1E(0) + C2

∫ T

0

〈Bu(t), u(t)〉 dt,

for all solution u of (9).

That property admits the following equivalent formulation:

Lemma 3.2. The pair (A1, B) satisfies the stabilility estimate if and
only if there exist T > 0 and a positive constant C (which may depend
on T ) such that

(14) E(T ) ≤ C

∫ T

0

〈Bu(t), u(t)〉 dt,

for all solution u of (9).
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Proof.

⇒: Since E(t) is non-increasing, the estimate (13) implies that

TE(T ) ≤ C1E(0) + C2

∫ T

0

〈Bu(t), u(t)〉 dt.

By Lemma 2.1 we get

TE(T ) ≤ C1E(T ) + (C1 + C2)
∫ T

0

〈Bu(t), u(t)〉 dt.

This yields (14) with C = C1+C2
T−C1

.
⇐: From the monotonicity of E we may write∫ T

0

E(t) dt ≤ TE(0).

Again Lemma 2.1 yields

∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2

(
E(T ) +

∫ T

0

〈Bu(t), u(t)〉 dt

)
.

Using the assumption (14) we obtain∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2
(1 + C)

∫ T

0

〈Bu(t), u(t)〉 dt,

which is nothing else than (13).

Examples of pairs (A1, B) satisfying the stabilility estimate may be
found in Section 6 below (see also Section 3 of [36]).

We now show that the stabilility estimate is equivalent to the expo-
nential stability of (9).

Theorem 3.3. The pair (A1, B) satisfies the stabilility estimate if
and only if there exist two positive constants M and ω such that

(15) E(t) ≤ Me−ωtE(0),

for all solution u of (9).
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Proof. Assume that the stabilility estimate holds, i.e., by the pre-
vious Lemma, (14) equivalently holds. The identity (11) of Lemma 2.1
then yields

E(T ) ≤ C(E(0) − E(T )).

This estimate is equivalent to

E(T ) ≤ γE(0),

with γ = C
1+C

which is < 1.
Applying this argument on [(m − 1)T, mT ], for m = 1, 2, · · · (which

is valid since our system is invariant by a translation in time), we will get

E(mT ) ≤ γE((m − 1)T ) ≤ · · · ≤ γmE(0), m = 1, 2, · · ·

Therefore we have

E(mT ) ≤ e−ωmTE(0), m = 1, 2, · · ·

with ω = 1
T

ln 1
γ

> 0. For an arbitrary positive t, there exists m = 1, 2, · · ·
such that (m − 1)T < t ≤ mT and by the nonincreasing property of E ,
we conclude

E(t) ≤ E((m − 1)T ) ≤ e−ω(m−1)TE(0) ≤ 1
γ

e−ωtE(0).

Let us now show the converse implication: from Lemma 2.1, for any
T > 0, we may write∫ T

0

〈Bu(t), u(t)〉 dt = E(0) − E(T ).

With the help of (15), we get

(16)
∫ T

0

〈Bu(t), u(t)〉 dt ≥ E(0)(1 − Me−ωT ).

The exponential decay (15) also implies∫ T

0

E(t)dt ≤ ME(0)
1 − e−ωT

ω
.
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Consequently for all C1 > 0, we may write

(17)
∫ T

0

E(t)dt ≤ C1E(0) +

(
M(1 − e−ωT )

ω
− C1

)
E(0).

Choosing T large enough so that 1−Me−ωT>0 and C1<min{M(1−e−ωT )

ω
, T},

(16) and (17) yield (13) with

C2 =

(
M(1 − e−ωT )

ω
− C1

)
(1 − Me−ωT )−1.

4 – Exact controllability results

Using the results of the previous section and Russell’s principle we
deduce exact controllability results for the evolution equation associated
with the operator −A1 with controls in L2(]0, T [;U), the control space U

being a given real Hilbert space such that V is continuously embedded
into U . We then denote by IU the embedding from V into U and IU the
mapping identifying U as a subspace of V ′, i.e.,

〈IUu, v〉 := (IUu, IUv)U ,∀u, v ∈ V.

The exact controllability problem may be formulated as follows: for all
u0 ∈ H, we are looking for a time T > 0 and a control J ∈ L2(]0, T [;U)
such that the solution u of

(18)


∂u

∂t
− A1u = J in V ′, t ≥ 0,

u(0) = u0,

satisfies

(19) u(T ) = 0.

Theorem 4.1. If the assumptions (3) to (8) hold for the pair
(A1, IU) and if the pair (A1, IU) satisfies the stabilility estimate, then
for T > 0 sufficiently large, for all u0 ∈ H there exist a control J ∈
L2(]0, T [;U) such that the solution u ∈ C([0, T ],H) of (18) is at rest a
time T, i.e., satisfies (19).
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Proof. For concrete problems the proof is quite standard. We adapt
it to our abstract setting as follows. For further purposes we prefer to
solve the inverse problem (so that the asumption “(A1, IU) satisfies the
stabilility estimate” is replaced by “(−A1, IU) satisfies the stabilility es-
timate”): Given p0 ∈ H, we are looking for K ∈ L2(]0, T [;U) such that
the solution p ∈ C([0, T ],H) of

(20)


∂p

∂t
+ A1p = K in V ′, t ≥ 0,

p(T ) = p0,

satisfies

(21) p(0) = 0.

Indeed if the above problem has a solution the conclusion follows by
setting

u(t) = −p(T − t).

We solve problem (20) and (21), using a backward and an inward system
with linear boundary feedbacks IU : First given f0 in H, we consider
f ∈ C([0, T ],H) the unique solution of

(22)


∂f

∂t
+ A1f − IUf = 0 in H, t ≥ 0,

f(T ) = f0.

Its existence following from Lemma 2.1 by setting ũ(t) = f(T − t). More-
over applying Theorem 3.3 to ũ(t) we get

(23) E(f(t)) ≤ Me−ω(T−t)E(f0).

Second we consider g ∈ C([0, T ],H) the unique solution of (whose exis-
tence and uniqueness still follow from Lemma 2.1)

(24)


∂g

∂t
+ A1g + IUg = 0 in H, t ≥ 0,

g(0) = f(0).
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We now take p = g − f . From (22) and (24), p satisfies (20) with

(25) K = −IUg − IUf.

Let us further consider the mapping Λ from H to H defined by

Λ(f0) = g(T ).

We show that for T > 0 such that d := Me−ωT < 1, the mapping Λ − I

is invertible by proving that ‖Λ‖
L(H,H) =
√

d. Indeed using successively
the definition of Λ, Lemma 2.1, the initial condition of problem (24) and
the estimate (23) we have

‖Λf0‖2
H = 2E(g(T )) ≤ 2E(g(0)) ≤
≤ 2E(f(0)) ≤ 2Me−ωTE(f0) = d‖f0‖2

H.

Since Λ − I is invertible for any p0 ∈ H, there exists a unique f0 ∈ H
such that

(26) p0 = p(T ) = g(T ) − f(T ) = (Λ − I)f0.

The proof will be complete if we can show that K ∈ L2(]0, T [;U). For
that purpose, we remark that Lemma 2.1 (identity (11) applied to ũ and
g which has a meaning thanks to the hidden regularity) yields

E(f(T )) − E(f(0)) =
∫ T

0

‖IUf(t)‖2
U dt,

E(g(0)) − E(g(T )) =
∫ T

0

‖IUg(t)‖2
U dt.

Summing these two identities and using the initial condition of prob-
lem (24), the final condition of (22) and the definition of Λ, we obtain∫ T

0

(‖IUf(t)‖2
U + ‖IUg(t)‖2

U) dt = E(f(T )) − E(g(T )) ≤ 1
2
‖f0‖2

H.

Using the identity (26) and the boundedness of (I−Λ)−1 we finally arrive
at the estimate

(27)
∫ T

0

(‖IUf(t)‖2
U+‖IUg(t)‖2

U)dt≤ 1
2
‖(I−Λ)−1p0‖2

H ≤ 1
2(1 −

√
d)2

‖p0‖2
H.

This proves that K given by (25) belongs to L2(]0, T [;U).
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Remark 4.2. Thanks to the assumptions (5) and (6) the (weak) solu-
tion p ∈ C([0, T ];H) of (20) and (21) can be approximated (inC([0, T ];H))
by a sequence pε ∈ W 1,∞(IR+,H)∩L∞(IR+,V), ε > 0, of (strong) solution
of (20) with Kε ∈ L2(]0, T [;U) and p0ε ∈ V such that

Kε → K in L2(]0, T [;U) as ε → 0,(28)

IUpε → IUp in L2(]0, T [;U) as ε → 0.(29)

Indeed as f0 = (Λ − I)−1p0, by (5), there exists f0ε ∈ D(A) such that

(30) ‖f0 − f0ε‖H ≤ ε.

Consider fε the strong solution of (22) with final datum f0ε. By the
dissipativeness of the energy, we get

(31) ‖f(t) − fε(t)‖H ≤ ‖f0 − f0ε‖H ≤ ε,∀t ∈ [0, T ].

Similarly since fε(0) belongs to H, by (6), there exists g0ε ∈ D(A−) such
that

(32) ‖g0ε − fε(0)‖H ≤ ε.

We then consider gε the strong solution of (24) with initial datum g0ε.
The dissipativeness of the energy yields

‖g(t) − gε(t)‖H ≤ ‖g(0) − g0ε‖H ≤
≤ ‖f(0) − fε(0)‖H + ‖fε(0) − g0ε‖H ≤ 2ε,∀t ∈ [0, T ],

by (31) and (32).
The estimates (31) and (33) show that pε := gε−fε tends to p = g−f

in C([0, T ];H) as ε goes to 0. Finally by Lemma 2.1 we may write∫ T

0

‖IU(f(t) − fε(t))‖2
U dt ≤ 2‖f0 − f0ε‖2

H∫ T

0

‖IU(g(t) − gε(t))‖2
U dt ≤ 2‖g(0) − gε(0)‖2

H.

These two estimates, the estimates (30), (33) and the definitions of Kε :=
−IUgε − IUfε, of pε, K and p lead to the properties (28) and (29).
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5 – Stability in the nonlinear case

Here we use Liu’s principle [28] and an integral inequality from [7] to
deduce decay rates of the energy using appropriate nonlinear feedbacks.
In view of the examples below we assume that the control space U is of
the form

(34) U =
J∏

j=1

Uj,

where for all j = 1, · · · , J ∈ IN� := IN \ {0}, Uj is a closed subspace of
L2(Xj, µj)Nj , when (Xj, �Aj, µj) is a measure space such that µj(Xj) <

∞ and Nj ∈ IN�. For all j = 1, · · · , J , we suppose given a mapping
gj : IRNj → IRNj such that

(gj(x) − gj(y)) · (x − y) ≥ 0,∀x, y ∈ IRNj (monotonicity),(35)

gj(0) = 0,(36)

|gj(x)| ≤ M(1 + |x|),∀x ∈ IR3,(37)

for some positive constant M . We finally suppose that B is given by

(38) 〈Bu, v〉 =
J∑

j=1

∫
Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj),

where we recall that IU is the embeding from V to U and therefore (IUu)j

is the jth component of IUu.
Remark that the conditions (35) and (36) guarantee the assump-

tion (8) on B, while (37) guarantees that B is well defined. In most
examples these conditions guarantee that the assumptions (3) and (4)
hold (see Section 6 for some illustrations). We further remark that these
conditions always hold for gj(x) = x, corresponding to linear controls,
i.e., B = IU .

We now recall the integral inequality obtained in [7] (compare with
Theorem 9.1 of [22] or its extension by P. Martinez [31], [32]).

Theorem 5.1. Let E : [0,+∞) → [0,+∞) be a non-increasing
mapping satisfying

(39)
∫ ∞

S

φ(E(t)) dt ≤ TE(S),∀S ≥ 0,
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for some T > 0 and some strictly increasing convex mapping φ from
[0,+∞) to [0,+∞) such that φ(0) = 0. Then there exist t1 > 0 and c1

depending on T and E(0) such that

(40) E(t) ≤ φ−1

(
ψ−1(c1t)

c1Tt

)
,∀t ≥ t1,

where ψ is defined by

(41) ψ(t) =
∫ 1

t

1
φ(s)

ds,∀t > 0.

Remark 5.2. Theorem 5.1 yields exactly the same decay rate as
in Theorem 9.1 of [22] when φ(t) = t1+α for some α > 0 (case leading
to polynomial decay). Note furthermore that the integral inequality of
P. Martinez [31], [32] is different from our integral inequality but gives
similar asymptotic behaviour for the energy.

We now give the consequence of this result to our system (9).

Theorem 5.3. Assume that the assumptions (3) to (8) hold for the
pairs (A1, B) and (A1, IU). Let gj, j = 1, · · · , J satisfy (35) to (37) as
well as

gj(x) · x ≥ m|x|2,∀x ∈ IRNj : |x| ≥ 1,(42)

|x|2 + |gj(x)|2 ≤ G(gj(x) · x),∀x ∈ IRNj : |x| ≤ 1,(43)

for some positive constant m and a concave strictly increasing function
G : [0,∞) → [0,∞) such that G(0) = 0. If the pair (−A1, IU) satisfies
the stabilility estimate, then there exist c2, c3 > 0 and T1 > 0 (depending
on T , E(0), µj(Xj), j = 1, · · · , J) such that

(44) E(t) ≤ c3G

(
ψ−1(c2t)

c2Tt

)
,∀t ≥ T1,

for all solution u of (9), where ψ is given by (41) for φ defined by

(45) φ(s) = TµG−1

(
s

c3

)
,

where µ = minj=1,··· ,J µj(Xj).
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Proof. By the density of D(A) into H, it suffices to prove (44)
for data in D(A). In that case let u be the (strong) solution of (9)
and consider p the solution of problem (20) and (21) with p0 = u(T ) ∈
D(A) with T > 0 sufficiently large (whose existence was established in
Theorem 4.1). Consider further a sequence pε of strong solution of (20)
with final data p0ε tending to p in C([0, T ],H) as ε goes to zero and
satisfying (28) and (29) (see Remark 4.2).

By (9) and (20) we may write

〈∂tu + A1u + Bu, pε〉V′,V + 〈∂tpε + A1pε − Kε, u〉V′,V = 0.

This may be written equivalently

(∂tu, pε)H + (∂tpε, u)H + 〈A1u, pε〉V′,V + 〈A1pε, u〉V′,V+

+ 〈Bu, pε〉V′,V − 〈Kε, u〉V′,V = 0

As the assumption (7) yields

〈A1u, pε〉V′,V + 〈A1pε, u〉V′,V = 0,

the above identity reduces to

(∂tu, pε)H + (∂tpε, u)H + 〈Bu, pε〉V′,V − 〈Kε, u〉V′,V = 0

Integrating this identity for t ∈ (0, T ), we get

(u(T ), pε(T ))H − (u(0), pε(0))H +
∫ T

0

(〈Bu, pε〉V′,V − 〈Kε, u〉V′,V) dt = 0.

By the definitions of Kε and B we arrive at

(u(T ), pε(T ))H − (u(0), pε(0))H =
∫ T

0

(Kε, IUu)U +

−
J∑

j=1

∫
Xj

gj((IUu)j(xj)) · (IUpε)j(xj) dµj(xj)

 dt
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Passing to the limit in ε and using the initial and final conditions on p,
we have obtained

2E(T )=
∫ T

0

(K, IUu)U −
J∑

j=1

∫
Xj

gj((IUu)j(xj)) · (IUp)j(xj) dµj(xj)

 dt

Cauchy-Schwarz’s inequality leads finally to

(46)

2E(T ) ≤ ‖K‖L2(0,T ;U)‖IUu‖L2(0,T ;U)+

+ ‖IUp‖L2(0,T ;U)

 J∑
j=1

∫ T

0

∫
Xj

|gj((IUu)j(xj))|2 dµj(xj)dt

1/2

.

Let us remark that the estimate (27) and the final conditions on p yield

∫ T

0

(‖IUf(t)‖2
U + ‖IUg(t)‖2

U) dt ≤ 1
(1 −

√
d)2

E(T ).

This estimate, the definition of K and p = g − f lead to∫ T

0

‖K(t)‖2
U dt ≤ 2

(1 −
√

d)2
E(T )∫ T

0

‖IUp(t)‖2
U dt ≤ 2

(1 −
√

d)2
E(T ).

Inserting these estimates in (46) we arrive at

(47)

E(T ) ≤ 1
(1 −

√
d)2

×

×

 J∑
j=1

∫ T

0

∫
Xj

{|(IUu)j(xj)|2+|gj((IUu)j(xj))|2} dµj(xj)dt

 .

We now estimate the right-hand side of (47) as follows: For all j =
1, · · · , J introduce

Σ+
j = {(x, t) ∈ Xj × (0, T )||(IUu)j(x, t)| > 1},

Σ−
j = {(x, t) ∈ Xj × (0, T )||(IUu)j(x, t)| ≤ 1}.
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Let us split up

∫ T

0

∫
Xj

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt = I+
j + I−

j ,

where

I+
j :=

∫
Σ+

j

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt,

I−
j :=

∫
Σ−

j

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt.

The assumptions (42) and (37) lead to

I+
j ≤ c4

∫
Σ+

j

(IUu)j(xj) · gj((IUu)j(xj)) dµj(xj)dt,

for some positive constant c4 (depending on m and M). By (11) and the
property

(48) gj(x) · x ≥ 0,∀x ∈ IRNj ,

following from (35) and (36) we arrive at

(49) I+
j ≤ c4(E(0) − E(T )).

Similarly by the assumption (43) and the monotonicity of G we have

I−
j ≤

∫
Σ−

j

G((IUu)j(xj) · gj((IUu)j(xj))) dµj(xj)dt ≤

≤
∫ T

0

∫
Xj

G((IUu)j(xj) · gj((IUu)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−
j ≤Tµj(Xj)G

(
1

Tµj(Xj)

∫ T

0

∫
Xj

(IUu)j(xj) · gj((IUu)j(xj))dµj(xj)dt

)
.
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By (11), we arrive at

(50) I−
j ≤ Tµj(Xj)G

(E(0) − E(T )
Tµj(Xj)

)
.

The estimates (49) and (50) into the estimate (47) and the monotonicity
of G give

E(T ) ≤ c5

{
E(0) − E(T ) + G

(E(0) − E(T )
Tµ

)}
,

for some positive constant c5 (depending on T and maxj µj(Xj)), where
we recall that µ = minj µj(Xj). This finally leads to

E(0)=E(0)−E(T )+E(T )≤max{1, c5}
{
(E(0)− E(T ))+G

(E(0)− E(T )
Tµ

)}
.

As E(0)−E(T )

Tµ
≤ E(0)

Tµ
, the concavity of G yields a constant c6 (depending

continuously on T , E(0) and µ) such that

E(0) − E(T )
Tµ

≤ c6G

(E(0) − E(T )
Tµ

)
.

These two estimates lead to

E(0) ≤ c3G

(E(0) − E(T )
Tµ

)
,

for some c3 > 0 (depending on T , E(0), maxj µj(Xj), and minj µj(Xj)).
Using this argument in [t, t + T ] instead of [0, T ] we have shown that

(51) E(t) ≤ c3G

(E(t) − E(t + T )
Tµ

)
= φ−1(E(t) − E(t + T )),∀t ≥ 0,

when we recall that φ was defined by (45).
We conclude by Theorem 5.1 since Lemma 5.1 of [7] shows that the

estimate (51) guarantees that E actually satisfies (39).
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The assumption (42) forbids the use of bounded functions gj which
could be a drawback for some applications. Our next purpose is to obtain
a variant of the above result when some mappings gj do not satisfy (42)
adapting the arguments of Theorem 9.10 of [22]. The price to pay is to
assume some regularity results for elements of D(A).

Theorem 5.4. Assume that the assumptions (3) to (8) hold for the
pairs (A1, B) and (A1, IU). Let gj, j = 1, · · · , J satisfy (35) to (37) as well
as (43) for some concave strictly increasing function G : [0,∞) → [0,∞)
such that G(0) = 0. Assume further that J = J1 ∪ J2 with J1 ∩ J2 = ∅,
that for all j ∈ J1, gj satisfies (42) and there exists c7 > 0 and α > 2
such that for all j ∈ J2 and all u ∈ D(A), (IUu)j belongs to Lα(Xj, µj)
with the estimate

(52)

(∫
Xj

|(IUu)j(xj)|α dµj(xj)

)1/α

≤ c7‖u‖D(A),

where we recall that ‖u‖D(A) = ‖Au‖H + ‖u‖H. If the pair (−A1, IU)
satisfies the stabilility estimate, then for every u0 ∈ D(A), the solution u

of (9) satisfies

(53) E(t) ≤ c3G1

(
ψ−1

1 (c2t)
c2Tt

)
,∀t ≥ T1,

for some c2, c3 > 0 and T1 > 0 (depending on T , E(0), µj(Xj), j =
1, · · · , J , α and ‖u0‖D(A)), where ψ1 is given by (41) for φ1 defined by (45)
with G1 instead of G, the function G1 being defined by

G1(x) = G(x) + xs,∀x ≥ 0,

with s = α−2
α−1

∈ (0, 1).

Proof. We repeat the proof of Theorem 5.3 except for the estimation
of I+

j when j ∈ J2, where we now obtain the following estimation: First
by (37) we remark that

(54) I+
j ≤ (1 + 4M 2)J+

j .
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where
J+

j :=
∫

Σ+
j

|(IUu)j(xj)|2 dµj(xj).

So it remains to estimate J+
j . For that estimation we remark that the

assumption (43) yields

(55) gj(x) · x ≥ mj|x|,∀x ∈ IRNj : |x| ≥ 1,

for some positive constant mj. Indeed we notice that (43) and the prop-
erty G(0) = 0 directly imply that

gj(ξ) · ξ > 0,∀|ξ| = 1.

Denoting by mj = min|ξ|=1(gj(ξ) · ξ) we have already proved (55) for
|x| = 1. For |x| > 1 let ξ = x/|x|, then by the monotonicity of gj we have

(gj(x) − gj(ξ)) · (|x| − 1)ξ ≥ 0,

which implies
gj(x) · ξ ≥ gj(ξ) · ξ ≥ mj.

Multiplying this inequality by |x|, we arrive at (55).
Now using (55) we may write

J+
j ≤ m−s

j

∫
Σ+

j

|(IUu)j(xj)|2−s((IUu)j(xj) · gj((IUu)j(xj))s dµj(xj).

By Hölder’s inequality we get

J+
j ≤ m−s

j

(∫
Σ+

j

|(IUu)j(xj)|
2−s
1−s dµj(xj)

)1−s

×

×
(∫

Σ+
j

(IUu)j(xj) · gj((IUu)j(xj)) dµj(xj)

)s

.

By (11) and the assumption (52) (since α = 2−s
1−s

) we conclude that

(56) J+
j ≤ c8(E(0) − E(T ))s,
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where c8 > 0 depends on T , α and ‖u0‖D(A) (since Komura-Kato’s theo-
rem (see for instance Proposition IV.3.1 of [42] and Lemma 2.1 guarantee
that ‖u(t)‖D(A) ≤ ‖u0‖D(A)).

As before the estimates (50), (54) and (56) into the estimate (47)
and the monotonicity of G give

E(T ) ≤ c9

{
E(0) − E(T ) + G

(E(0) − E(T )
Tµ

)
+ (E(0) − E(T ))s

}
,

for some positive constant c9 depending on T , µj(Xj), j = 1, · · · , J , α

and ‖u0‖D(A). The concavity of G and of the mapping x → xs yields

E(0) ≤ c3G1

(E(0) − E(T )
Tµ

)
.

The conclusion follows as previously.

Remark 5.5. In (42) (resp. (43)) the proviso |x| ≥ 1 (resp. |x| ≤ 1)
may be replaced by |x| ≥ η (resp. |x| ≤ η), for some η > 0 without
changing the conclusion of Theorem 5.3 or Theorem 5.4.

Examples of functions gj leading to an explicit decay rate (44) or (53)
are given in [7]. Let us give the following illustrations.

Example 5.6. Suppose that gj satisfies (35) to (37) and (42) as
well as

(57) x · gj(x) ≥ c0|x|p+1, |gj(x)| ≤ C0|x|α,∀|x| ≤ 1,

for some positive constants c0, C0, α ∈ (0, 1] and p ≥ α. Then gj satis-
fies (43) with G(x) = x

2
q+1 and q = p+1

α
− 1 (which is ≥ 1). If p = α = 1

(then q = 1) and under the other assumptions of Theorem 5.3 we get an
exponential decay (since ψ−1(t) = e−t). On the contrary if p + 1 > 2α

then we get the decay t−
2α

p+1−2α (since ψ−1(t) = t
2

1−q ). A function g

satisfying all these assumptions is given by

g(x) =

{
|x|α−1x if |x| ≤ 1,

x if |x| ≥ 1,

for some α ∈ (0, 1]. In that case (57) holds for p = α.
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In the setting of Theorem 5.4 it suffices to take gj satisfying (35) to

(37) and (57) to get the decay rate t
− 2

q′−1 with q′ = min{q, 2
s
− 1}. Such

a g is given by

g(x) =

 |x|α−1x if |x| ≤ 1,
x

|x| if |x| ≥ 1,

for some α ∈ (0, 1], which satisfies (57) for p = α.

Example 5.6 (Logarithmic decay). Take gj(ξ) = exp(− 1

|ξ|2pj
) ξ
|ξ|2

for |ξ| small enough and for pj > 0. Then by Example 2.4 of [7] (43)
holds with

G(x) =
C

| log x| 1p

and p = maxj pj and some constant C > 0. In the setting of Theorem 5.3
or Theorem 5.4 we will get the decay

E(t) ≤ C

| log t| 1p
,

since ψ−1 is bounded from below.

Example 5.8 (Log-Log decay). Take gj(ξ) = exp(− exp(1/|ξ|2p)) ξ
|ξ|2

for |ξ| small enough and for p > 0. Then by Example 2.5 of [7] (43) holds
with

G(x) =
C

| log | log x|| 1p

and some constant C > 0. In the setting of Theorem 5.3 or Theorem 5.4
we will get the decay

E(t) ≤ C

| log | log t|| 1p
.

Note that combinations of the above examples give rise to the worse
decay rate.
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6 – Examples

6.1 – Second order evolution equations

Some examples given below enter in the following framework: Let H

and V be two real separable Hilbert spaces such that V is densely and
continuously embedded into H. Define the linear operator A2 from V

into V ′ by

(58) 〈A2u, v〉V ′−V = (u, v)V ,∀u, v ∈ V,

and suppose given a (nonlinear) mapping B2 from V into V ′.
Consider now the second order evolution equation

∂2u

∂t2
+ A2u + B2

∂u

∂t
= 0 in V ′, t ≥ 0,

u(0) = u0,
∂u

∂t
(0) = u1.

This system is reduced to the first order system (9) using the standard
argument of reduction of order: setting H = V × H, V = V × V with
natural inner products,

x = (u, z),

with z = ∂u
∂t

(from now on we use the letter x for generic elements of H
since the letter u is already used in (59) as usual) and introducing the
operators

A1x = (−z, A2u), Bx = (0, B2z).

Under appropriate assumptions on B2, we can prove the

Theorem 6.1. If B2 is monotone, hemicontinuous, bounded and
satisfies B20 = 0, then the assumptions (3) to (8) hold for the pair
(A1, B).

Proof. In the above setting we see that

D(A±) = {x = (u, z) ∈ V| ± A2u + B2z ∈ H}.

To check the assumptions (3) and (4), from the definitions of A1, A2 and
the inner product in H we easily verify that

(A±(u, z) −A±(u′, z′), (u, z) − (u′, z′))H = 〈B2z − B2z
′, z − z′〉V ′−V .

The monotonicity of A± then follows from the same property on B2.
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Let us pass to the maximality of A±: for all (f, g) ∈ H we are looking
for (u, z) ∈ D(A±) such that

u ∓ z = f in V,

z ± A2u + B2z = g in H.

The first identity is equivalent to

u = ±z + f in V,

and eliminating u in the second identity we obtain

z + A2z + B2z = g ∓ f in V ′.

The solvability of this problem is equivalent to the surjectivity of the
operator

A : V → V ′ : z → z + A2z + B2z.

For that purpose we make use of Corollary 2.2 of [42] which proves that A

is surjective if A is monotone, hemicontinuous, bounded and coercive.
The first three properties easily follows from the same property of B2.
The coercivity also easily follows from the fact that

〈Az, z〉V ′−V = ‖z‖2
H + ‖z‖2

V + 〈B2z, z〉V ′−V ≥ ‖z‖2
V ,

this last inequality following from the property 〈B2z, z〉V ′−V ≥ 0 conse-
quence of the monotonicity of B2 and the property B20 = 0.

The assumptions (5) and (6) are reduced to the density of D(A) since
we easily check that (u, z) ∈ D(A) if and only if (−u, z) ∈ D(A−). Let
us now fix (u, z) in H, then let ũ ∈ V be the unique solution of

A2ũ = −B2z,

whose existence follows from Lax-Milgram’s lemma. Applying Theo-
rem III.2.B of [41] there exists a sequence of un ∈ D(A2) such that

un → u − ũ in V, as n → ∞,
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where A2 is the Friedrichs extension of A2. We conclude by remarking
that (ũ + un, z) belongs to D(A) and tends to (u, z) in H.

The assumption (7) follows from the identity

〈A1x, x〉 = −(z, u)V + 〈A2u, z〉V ′−V ,

and the definition of A2. Finally the assumption (8) follows from the
identity

〈Bx, x〉 = 〈B2z, z〉V ′−V ,

and the positiveness of B2.

In view of this theorem the assumptions (3) to (8) are reduced to the
verification of the above properties of B2 that we now check for different
systems.

In the rest of the section Ω is a bounded domain of IRn, n ≥ 2 with a
Lipschitz boundary Γ. Some restrictions will be specified later on when
they will be necessary. We further denote by ν the unit outward normal
vector along Γ.

6.2 – Nonlinear stabilization of the wave equation

Consider the wave equation

(60)


∂2

t u − ∆u + f(∂tu) = 0 in Q := Ω×]0, +∞[,

u = 0 on Σ0 := Γ0×]0, +∞[,

∂νu + au + g(∂tu) = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

where Γ0 is a open subset of Γ and Γ1 = Γ \ Γ̄0 is the remainder. The
functions f and g are two nondecreasing continuous functions from IR
into itself such that f(0) = g(0) = 0 and finally a is a nonnegative real
number. For the sake of simplicity we suppose that

(61) either Γ0 is not empty or a > 0,

and that

(62) Γ̄0 ∩ Γ̄1 = ∅.
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The stability of this problem was extensively studied in the litterature,
let us cite the papers [18], [19], [20], [23], [22], [43], [26], [10] and the
references cited there. Both papers are restricted to some particular
choices of Γ0, a, f and g leading to some exponential or polynomial decay
rates of the energy of the solution of (60). In [25], [29], [31], [32], [33],
[34], some arbitrary decay rates are obtained for different f and g (even
with degenerate or local dissipations). Using the results of the previous
sections, we also obtain arbitrary decay rates for a large class of f and g.

The first point is that problem (60) enters in the framework of prob-
lem (59) from Subsection 6.1 once we take:

H = L2(Ω),

V = {v ∈ H1(Ω)|v = 0 on Γ0},

(u, v)V =
∫

Ω

∇u · ∇v dx + a

∫
Γ1

u · v dσ,

〈B2u, v〉V ′−V =
∫

Ω

f(u)v dx +
∫

Γ1

g(u)v dσ, ∀u, v ∈ V.

Let us remark that the assumption (61) implies that the inner product
(·, ·)V induces a norm on V equivalent to the usual one. In order to give
a meaning to B2 we simply require

|f(x)| ≤ C(1 + |x|α),∀x ∈ IR,(63)

|g(x)| ≤ C(1 + |x|β),∀x ∈ IR,(64)

for some positive constant C, where α = n+2
n−2

and β = n
n−2

if n ≥ 3 and
α, β ≥ 1 if n = 2.

Now we readily check that these assumptions guarantee that B2 fulfils
all the assumptions of Theorem 6.1. Consequently the corresponding pair
(A1, B) satisfies the assumptions (3) to (8). In order to deduce stability
results for our system (60) we need to check that the pair (−A1, IU)
satisfies the stability estimate (note that we just check that the pair
(−A1, IU) satisfies the assumptions (3) to (8)), where the control space
U is clearly defined by

U = L2(Ω) × L2(Γ1).
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This stability estimate was proved in Theorem 1.2 of [10] under the as-
sumption that there exists x0 ∈ IRn such that

m · ν > 0 on Γ1, m · ν ≤ 0 on Γ0,(65)
1

R2
max{n − 2, n/3} ≤ a(m · ν) <

n

R2
on Γ1,(66)

where as usual m is the standard multiplier defined by

m(x) = x − x0,∀x ∈ IRn,

and R = maxx∈Ω |m(x)|. Under these assumptions, appropriated condi-
tions on f and g lead to exponential, polynomial, logarithmic or other
decays. Note that bounded feedbacks are allowed since D(A) ↪→ H1(Ω)×
H1(Ω) ↪→ Lα(Ω)×Lα(Γ1), for some α > 2 consequently Theorem 5.4 may
be applied.

For f = 0 or g = 0 similar results hold (changing the control space U)
with less restrictions on Γ0 and Γ1, using the exponential decay with linear
feedbacks established in [18], [19], [20], [23], [22], [43], [26].

6.3 – Nonlinear stabilization of the elastodynamic system

With the notation of the above subsection, we consider the following
elastodynamic system:

(67)


∂2

t u −∇σ(u) + F (∂tu) = 0 in Q,

u = 0 on Σ0,

σ(u) · ν + au + G(∂tu) = 0 on Σ1,

u(0) = u0, ∂tu(0) = u1 in Ω.

As usual u(x, t) is the displacement field at the point x ∈ Ω at time t and
σ(u) = (σij(u))3i,j=1 is the stress tensor given by (here and in the sequel
we shall use the summation convention for repeated indices)

σij(u) = aijklεkl(u),

where ε(u) = (εij(u))3i,j=1 is the strain tensor given by

εij(u) =
1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
,
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and the tensor (aijkl)i,j,k,l=1,2,3 is made of W 1,∞(Ω) entries such that

aijkl = ajikl = aklij,

and satisfying the ellipticity condition

aijklεijεkl ≥ αεijεij,

for every symmetric tensor (εij) and some α > 0. Hereabove and below
∇σ(u) is the vector field defined by

∇σ(u) = (∂jσij(u))3i=1.

The mappings F and G from IRn into itself satisfy the assumptions (35)
to (37). Finally a is a nonnegative real number.

As before we suppose that (61) and (62) hold, but here we further
assume that

(68) F = 0 or G = 0.

This last assumption means that we stabilizate our system either by
boundary feedback or by internal feedback.

The stability of the system (67) was considered in [11], [13], [15], [1],
[4] under some particular hypotheses on Γ0, Γ1, a, F and G leading to
exponential or polynomial decay of the energy of the solution of (67).

As in the above subsection problem (67) may be expressed in the
form (59) from Subsection 6.1 with the choices:

H = L2(Ω)n,

V = {v ∈ H1(Ω)n|v = 0 on Γ0},

(u, v)V =
∫

Ω

∇u · ∇v dx + a

∫
Γ1

u · v dσ,

〈B2u, v〉V ′−V =
∫

Ω

F (u) · v dx +
∫

Γ1

G(u) · v dσ, ∀u, v ∈ V.

The assumptions made on F and G imply that B2 fulfils the assumptions
of Theorem 6.1, consequently the corresponding pair (A1, B) satisfies the
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assumptions (3) to (8). For the stability results we need to check that the
pair (−A1, IU) satisfies the stability estimate, where the control space U

is defined by
U = L2(Γ1)n if F = 0,

U = L2(Ω)n if G = 0.

In the first case the stability estimate was proved in [4] under the as-
sumption (65) (a similar estimate was proved in [11], [1] under stronger
assumptions on Γ0 and Γ1). If the tensor (aijkl) corresponds to the Lamé
system, then the stability estimate was proved in Lemma 3.2 of [15] under
the weaker assumption

m · ν ≤ 0 on Γ0.

In the second case (i.e. G=0), the stability estimate for the pair (−A1, IU)
was proved in Lemma 3.6 of [13].

As in the previous subsection, these conditions (on Γ0, Γ1 and the
coefficients (aijkl)) and appropriated conditions on F and G lead to expo-
nential, polynomial, logarithmic or other decays. Bounded feedbacks are
also allowed due to the embedding H1(Ω) × H1(Ω) ↪→ Lα(Ω) × Lα(Γ1),
for some α > 2.

6.4 – Nonlinear stabilization of a coupled system

We consider the following coupled system in a bounded domain Ω
with a C4-boundary:

(69)


∂2

t u1 + ∆2u1 + au2 + g1(∂tu1, ∂tu2) = 0 in Q,

∂2
t u2 − ∆u2 + au1 + g2(∂tu1, ∂tu2) = 0 in Q,

u1 = ∂νu1 = u2 = 0 on Σ = Γ×]0,∞[,

ui(0) = u0i, ∂tui(0) = u1i in Ω, i = 1, 2.

Here gi are mappings from IR2 into IR such that the mapping G from IR2

into IR2 defined by

G(x, y) = (g1(x, y), g2(x, y)),

satisfies the assumptions (35) to (37). Finally a is a scalar function that
we assume to be in L∞(Ω).
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The above system was considered in [14] when g1 (resp. g2) only
depends on ∂tu1 (resp. ∂tu2). In that case this author proves exponential
or polynomial decay rates under appropriated conditions on a, g1 and
g2. Let us notice that if a = 0 and if g1 (resp. g2) only depends on ∂tu1

(resp. ∂tu2), then the above system is splitted up into the wave equation
considered in Subsection 6.2 and the standard Petrovsky system studied
in [12]. Our subsequent analysis then covers the analysis of this last
Petrovsky system.

First problem (69) is in the form (59) with the definitions (see [14]):

H = L2(Ω)2,

V = H2
0 (Ω) × H1

0 (Ω),

((u1, u2), (v1, v2))V =
∫

Ω

(∆u1∆u2 + ∇u2 · ∇v2) dx+

+
∫

Ω

a (u1v2 + u2v1) dσ,

〈B2(u1, u2), (v1, v2)〉V ′−V =
∫

Ω

(g1(u1, u2)v1 + g2(u1, u2)v2) dx,

∀(u1, u2), (v1, v2) ∈ V.

The assumptions made on g1 and g2 imply that B2 fulfils the assumptions
of Theorem 6.1, consequently the corresponding pair (A1, B) satisfies the
assumptions (3) to (8). For the stability results we need to check that the
pair (−A1, IU) satisfies the stability estimate when the control space U

is given by U = L2(Ω)2. This stability estimate was proved in Lemma 3.1
of [14] under the assumption

‖a‖L∞(Ω) <
1

c′c”
,

where c′, c” > 0 are the constants appearing in the above Poincaré type
inequalities:

‖u‖2
H2(Ω) ≤ c′

∫
Ω

(∆u)2 dx,∀u ∈ H2
0 (Ω),

‖u‖2
H1(Ω) ≤ c”

∫
Ω

|∇u|2 dx,∀u ∈ H1
0 (Ω).
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This condition and appropriated conditions on g1 and g2 lead to expo-
nential, polynomial, logarithmic or other decays. As before bounded
feedbacks are also allowed.

6.5 – Nonlinear stabilization of Maxwell’s equations

We consider Maxwell’s equations in Ω ⊂ IR3 with a smooth boundary
and a nonlinear internal feedback:

(70)



ε
∂E

∂t
− curlH + g(E) = 0 in Q := Γ×]0,+∞[,

µ
∂H

∂t
+ curlE = 0 in Q,

div(µH) = 0 in Q,

E × ν = 0, H · ν = 0 on Σ := Γ×]0,+∞[,

E(0) = E0, H(0) = H0 in Ω.

As usual ε and µ are real, positive functions of class C∞(Ω̄). The func-
tion g from IR3 into itself is assumed to satisfy the properties (35) to (37).

The stability of this system was studied in [39] with a linear feedback
g(E) = σE, with σ ≥ 0. In particular the exponential decay was shown
in that paper if σ ≥ σ0 > 0.

Contrary to the above examples this system is not a second order
system but (compare with [7]) it enters in the setting of (9) once we set

H = L2(Ω)3 × Ĵ(Ω, µ),

Ĵ(Ω, µ) = {H ∈ L2(Ω)3 :div(µH)=0 in Ω, H · ν = 0 on Γ},

((E, H), (E′, H ′))H =
∫

Ω

(εE · E′ + µH · H ′) dx,

V = V × Ĵ(Ω, µ),

V = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3, E × ν = 0 on Γ},

〈A1(E, H), (E′, H ′)〉 =
∫

Ω

(curlE · H ′ − H · curlE′) dx,

〈B(E, H), (E′, H ′)〉 =
∫

Ω

g(E × ν) · (E′ × ν) dσ.

One readily checks (as in [7, Section 3]) that the assumptions (3) and (4)



[31] Stability and controllability of an abstract evolution etc. 113

hold since the bilinear form∫
Ω

(µ−1curlE · curlE′ + εE · E′) dx

is clearly coercive on V . Moreover Lemma 2.3 of [35] implies that (5)
and (6) hold. Finally from the definition of A1 (7) clearly holds, while
from the definition of B and the properties (35) and (36) satified by g, (8)
holds. As the results of Section 5 of [39] imply that the pair (−A1, IU)
satisfies the stability estimate when the control space U is given by U =
L2(Ω)3, we may conclude exponential, polynomial, logarithmic or other
decays under appropriated conditions on g. Here bounded feedbacks are
not allowed since V is not embedded into Lα(Ω)3 for some α > 2.

Let us finally notice that Maxwell’s equations with a nonlinear bound-
ary feedback

(71)



ε
∂E

∂t
− curlH = 0 in Q := Γ×]0,+∞[,

µ
∂H

∂t
+ curlE = 0 in Q,

div(εE) = div(µH) = 0 in Q,

H × ν + g(E × ν) × ν = 0 on Σ := Γ×]0,+∞[,

E(0) = E0, H(0) = H0 in Ω,

was studied in [3], [21], [39], [7], [36]. Different decay rates are avalaible
under different conditions on ε, µ and Γ and appropriated assumptions
on g. It was shown in [7] that (71) enters in the setting of (9), where the
assumptions (3) and (5) are also checked under some conditions on Ω, ε

and µ (similar arguments actually imply that (4) and (6) hold as well).
The stability analysis following the point of view of our paper is given
in [36]. We then refer to that paper for the details.
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de Petrovsky , Bull. Belg. Math. Soc. S. Stevin, 5 (1998), 583-594.

[13] A. Guesmia: Existence globale et stabilisation frontière non linéaire d’un système
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Asymptotic behavior of convolution powers of

a probability measure on harmonic extensions

of H-type groups

F. TOLLI

Abstract: We give a local (central ) limit theorem and a renewal theorem for
radial probability measures on AN-groups.

– Introduction

Solvable extensions of H-type groups have been objects of inten-
sive studies in recent years, since the discovery made by E. Damek and
F.Ricci [4] of a counterexample to the Lichnerowicz conjecture. Indeed,
after E. Damek and F. Ricci have shown [5] that, despite the lack of
symmetry, it is possible to develop on these groups a harmonic analysis
similar to the one developed by Harish-Chandra for semisimple groups,
several authors have investigated the possibility to extend to these groups
analogous results known for rank one symmetric spaces: multipliers prob-
lems [2], Paley-Wiener theorems [6], asymptotic behavior of the heat ker-
nel [1], to mention just a few. In this paper we follow the mainstream, but
with a more probabilistic flavor. We first recall two well known results for

Key Words and Phrases: Local limit theorem – AN-groups.
A.M.S. Classification: 43A80 – 60BIS
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the convolution powers of a nonarithmetic probability measure µ on IR.
The local (central) limit theorem states that if µ has mean zero and vari-
ance σ then the sequence n1/2µ∗n converges weakly to a multiple, which
depends only on σ, of the Lebesgue measure on IR. The renewal theorem
deals with the potential U(f)(x) =

∑+∞
n=0 µ∗n ∗ f(x), where f is a con-

tinuous function with compact support. We have that limx→−∞ Uf(x) is
different from zero if and only if µ has finite positive mean and the mass
of f is different from zero; moreover, if this is the case, the value of the
limit is the reciprocal of the mean of µ multiplied by the mass of f .

Both these results have been extended to symmetric spaces by Bouge-
rol in [3] and in this paper we will show how Bougerol’s method can be
easily adapted to the setting of harmonic extensions of H-type groups. In
particular we consider a radial probability measure on an AN -group with
support not concentrated at the origin and we prove that the sequence
ρ−nn3/2µ∗n, where 0 < ρ < 1, converges weakly to a multiple of the
spherical function φ0. In particular, for any compact set K of the origin
µ∗n(K) decays exponentially. We should recall that the local asymp-
totic behavior of the convolution powers of a probability measure on any
(amenable) connected Lie group has been determined by N. Th. Varopou-
los [10]. According to Varopoulos’ classification our AN -groups are in
the category of NC groups and if µ is a symmetric (i.e. µ(A) = µ(A−1)
for every measurable set A) probability measure on such groups then
µ∗n(K) ≈ n−3/2; thus we do not have an exponential decay as for the the
radial measures. To clarify the reason of this difference consider the case
when the measure µ has a density f . Then µ is symmetric if and only if
f(x−1) = f(x)m(x) a.e., where m denotes the modular function. Since
radial densities are symmetric in the usual sense, i.e. f(x−1) = f(x), and
the modular function is trivial only at the origin, we have that probability
measures associated with radial densities are not symmetric.

– Preliminaries

Let n be a two-step nilpotent Lie algebra endowed with a scalar prod-
uct 〈·, ·〉. Denote by z the center of n and by p the orthogonal complement
of z in n. Let JZ : p → z the linear map defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 (X, Y ∈ p; Z ∈ z).
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Then n is a Heisenberg algebra if

J2
Z = −|Z|2I ∀ Z ∈ z,

and the corresponding simply connected group N is called of Heisenberg-
type or simply H-type group. If k = dim z and m = dim p we have
that m is always even so that Q = m

2
+ k is a positive integer called the

homogeneous dimension of N . Identifying the group with its Lie algebra
via the exponential map we have that the product on N is given by

(X, Z)(X ′, Z ′) =
(

X + X ′, Z + Z ′ +
1
2
[X, X ′]

)
.

The semidirect product G = N � IR+ defined by

(X, Z, a)(X ′, Z ′, a) =
(

X + a1/2X ′, Z + aZ ′ +
1
2
a1/2[X, X ′], aa′

)
is a solvable Lie group with Lie algebra g = p + z + IR. It is equipped
with the left invariant Riemannian metric induced by the scalar product

〈(X, Z, l), (X, Z ′, l′)〉 = 〈X, X ′〉 + 〈Z, Z ′〉 + ll′

on g. The associated left Haar measure is given by

dLg = dg = aQdXdZ
da

a

while the right Haar measure is given by

dRg = adXdZda

so that the group is not unimodular. We recall that if S = KAN is the
Iwasawa decomposition of semisimple connected Lie groups of real rank
one, then the solvable group AN = NA is an example of a harmonic
extension of an H-type group.

If g = an, a ∈ IR+, n ∈ N we denote by a(g) the element a and by
r(g) = d(g, e) the geodesic distance of g from the identity e. Furthermore
we denote by Sr = {g ∈ G : d(g, e) = r} the geodesic sphere of radius r.



120 F. TOLLI [4]

A function is said to be radial if it depends only on the geodesic
distance or equivalently if it is constant on every geodesic sphere. The
space of the continuous (resp. smooth) radial functions with compact
support is denoted by Cc(G)# (resp. C+∞

c (G)#). A (probability) measure
is said to be radial if χr∗µ = µ∗χr = µ ,where, for every r > 0, χr denotes
the normalized surface measure induced on Sr by the Haar measure dg.
Obviously if µ has a density f we have that µ is radial if and only if f is
a radial function. The spherical functions are the radial eigenfunctions of
the Laplace-Beltrami operator ∆ on G, normalized at the origin. They
are real analytic, since ∆ is elliptic, and have the following properties [5]:

• all the spherical functions are of the form

φz(g) = φz(r(g)) =
∫

Sr

a(y)Q/2−zdχr(y), z ∈ C;

• φz(r) = φ−z(r);
• φz(r) are holomorphic function of z uniformly bounded in z and r

for −Q
2
≤ "(z) ≤ Q

2
.

The Fourier transform of a radial measure µ is defined as

Fµ(z) =
∫

G

φz(g)dµ(g)

and obviously the Fourier transform of a radial function is defined as the
Fourier transform of the associated measure. If f ∈ C+∞

c (G)# then its
Fourier transform Ff is a symmetric entire function that decays expo-
nentially on every vertical line. Moreover the following inversion formula
holds true [9], [1]:

f(r) =
2k−3Γ

(
m + k + 1

2

)
π(m+k+3)/2

∫
IR

Ff(is)φis(r)|c(is)|−2ds

where c denotes the Harish-Chandra function i.e.

c(z) =
2Q−2zΓ(2z)Γ

(
m + k + 1

2

)
Γ
(

Q + 2z

2

)
Γ
(

m + 4z + 2
4

) , z ∈ C.
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In the following we will denote by C1 the constant in front of the integral
in the inversion formula.

– The Fourier transform of a measure

Lemma 1. Let µ be a nonsingular radial probability measure on G.
Then the Fourier Transform Fµ has the following properties:

1. Fµ(t + is) is continuous in the strip S = {t + is ∈ C : s ∈ IR,−Q
2
≤

t ≤ Q
2
} and holomorphic in its interior;

2. |Fµ(t + is)| < Fµ(t), s �= 0,−Q
2
≤ t ≤ Q

2

and Fµ(t) < Fµ(Q
2
) = 1, −Q

2
< t < Q

2
;

3. lim sup
s→∞

|Fµ(t + is)| < Fµ(t), −Q
2
≤ t ≤ Q

2
.

Proof.

1) The spherical functions φz(g) are holomorphic functions of z ∈ C that
are uniformly bounded in the strip S. This on the one hand implies
that the Fourier transform of µ is continuous on S and on the other
hand, by Cauchy’s formula, that also the derivatives of φz(g) are
uniformly bounded in any substrip −Q

2
+ ε ≤ "(z) ≤ Q

2
− ε. Thus the

integral
∫

G | dl

dz
φz(g)|dµ(g) is convergent and this guarantees that the

function Fµ(z) is smooth in the interior of S and that dl

dz
Fµ(z) =∫

G
dl

dz
φz(g)dµ.

2) We will first show that analogous inequalities hold for the spherical
functions. This has been proved in [5], but for us it is essential to
check that the inequalities are strict. If s ∈ IR\{0}, −Q

2
< t < Q

2

and |g| = r �= 0,

|φt+is(g)| =
∣∣∣∣∫

Sr

a(y)
Q
2 −t−isdχr(y)

∣∣∣∣ <
<

∫
Sr

a(y)
Q
2 −tdχr(y) <

<

(∫
Sr

a(y)Qdχr(y)
)Q/2−t

Q

=

= φ−Q
2
(g)

Q/2−t
Q = φQ

2
(g)

Q/2−t
Q = 1,
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where the first inequality follows from the passage of the absolute
value under the integral and the second one by Jensen’s inequality.
They are strict because the function a(y) is not constant on Sr, for
r > 0 and the first inequality also holds for t = ±Q

2
. Then 2) follows

from the fact that the support of µ is not concentrated at the origin.

3) This is an immediate consequence of the analogous property of the
spherical functions which, in turn, follows from the classical Riemann-
Lebesgue lemma.

Lemma 2. Let µ be as in the previous lemma and consider the
function of real variable h(s) = Fµ(is). Then

1. The first derivative of h vanishes at zero;
2. The second derivative of h at zero is strictly negative.

Proof. The first statement follows from the symmetry of the spher-
ical functions, namely φis(g) = φ−is(g). By the proof of the previous
lemma we have

d2

ds
h(0) =

∫
G

d2

ds
a(y)

Q
2 −is

∣∣∣∣
s=0

dµ(y) = −
∫

G

ln(a(y))2a(y)
Q
2 dµ(y)

which is clearly nonpositive. It is equal to zero if and only if a(y) = 1 µ

a.e. and this is not the case since the support of µ is not concentrated at
the identity.

Lemma 3. The Harish-Chandra function has the following properties:

1. For s ∈ IR we have

lim
n→+∞

n|c(is/
√

n)|−2 = 4s2

∣∣∣∣∣∣∣∣
Γ
(

Q

2

)
Γ
(

m + 2
4

)
Γ
(

m + k + 1
2

)
2Q

∣∣∣∣∣∣∣∣
2

= 4s2C2;

2. c(z)−1 is holomorphic in the region SQ = {z ∈ C : "(z) > −Q
2
} and

there exists k such that

|c(z)|−1 ≤ k(1 + |z|)k z ∈ SQ.
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Proof. Both statements are immediate consequence of the definition
of c and well known properties of the Gamma function. For instance 1
follows from the fact the Γ(z) is holomorphic and different from zero for
"(z) > 0 and that 1

Γ(2is)
≈ 2is for s in a neighborhood of the origin.

– The local limit theorem

Theorem 1. Let µ be a nonsingular radial probability measure on G

and f a continuous function with compact support. Then

lim
n→+∞

n3/2Fµ(0)−n

∫
G

f(g)dµ∗n(g) = C

∫
G

f(g)φ0(g)dg

where C = C1C2

∫
IR s2 exp(Fµ′′(0)s2

2Fµ(0)
)ds.

Proof. Let R be the operator of radialization [4], then
∫

G f(g)dµ∗n =∫
G Rf(g)dµ∗n(g), so we can suppose that f is radial. Since C∞

c (G)# is
dense in Cc(G)# [6], we can suppose that f is also smooth. Then, by the
Paley-Wiener theorem, the function f has an integrable Fourier transform
and thus, by the Fourier inversion formula, we have

Fµ(0)−nn3/2

∫
G

f(g)dµ∗n(g) =Fµ(0)−nn3/2f ∗ µ∗n(e) =

=C1Fµ(0)−nn3/2

∫
IR

Ff(is)Fµ(is)n|c(is)|−2ds.

Notice that for any positive η

lim
n→+∞

C1n
3/2

∫
|s|>η

(Fµ(is)
Fµ(0)

)n

Ff(is)|c(is)|−2ds = 0

since, by Lemma 1, there exists 0 < ε < 1 such that |Fµ(is)

Fµ(0)
|n ≤ εn,

for |s| ≥ η and the integrand is uniformly dominated by the integrable
function C|Ff(is)(1 + |s|k)|. Lemma 2 and Taylor’s formula give

Fµ(is) = Fµ(0) +
1
2

d2

ds2
Fµ(0)s2 + o(s2), |s| ≤ η,
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which implies that for |s| ≤ η
√

n, |Fµ(is/
√

n)| ≤ exp(−cs2/n) and

lim
n→+∞

(
Fµ(is/

√
n)

Fµ(0)

)n

= lim
n→+∞

(
1 +

Fµ′′(0)s2

2Fµ(0)n

)n

= exp
(Fµ′′(0)s2

2Fµ(0)

)
.

Performing a change of variable s→ s/
√

n and taking in account Lemma 3
we have

lim
n→+∞

C1n
3/2

∫
|s|≤η

(Fµ(is)
Fµ(0)

)n

Ff(is)|c(is)|−2ds =

= lim
n→+∞

C1

∫
|s|≤η

√
n

Fµ

(
is√
n

)
Fµ(0)


n

Ff

(
is√
n

)
n

∣∣∣∣c( is√
n

)∣∣∣∣−2

ds =

= C1C2

∫
IR

exp
(Fµ′′(0)s2

2Fµ(0)

)
s2Ff(0)ds =

= C1C2

∫
IR

exp
(Fµ′′(0)s2

2Fµ(0)

)
s2ds

∫
G

f(g)φ0(g)dg.

– The renewal theorem

We first recall the classical renewal theorem for the potential of a
probability measure on IR. Let µ be a nonarithmetic noncentered prob-
ability measure on IR, define the potential measure γ =

∑∞
n=0 µ∗n and

set U(f)(x) = γ ∗ f(x) for f ∈ Cc(IR). Notice that if µ̂ denotes the
Euclidean Fourier transform, and f is also smooth, we have, using the
Fourier inversion formula, that

(1) U(f)(x) =
∑

µ∗n ∗ f(x) =
1
2π

lim
b↑1

∫
IR

1
1 − bµ̂(ξ)

f̂(ξ)e−iξxdξ.

The asymptotic behavior of the function U(f)(x) is well known [8]:

• If µ does not have first moment, then lim
x→±∞

Uf(x) = 0;

• if µ has first moment and its mean m is positive, then lim
x→−∞

Uf(x) =∫
f(y)dy/m and lim

x→+∞
Uf(x) = 0;
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• if µ has first moment and its mean m is negative, then lim
x→+∞

Uf(x) =∫
f(y)dy/m and lim

x→−∞
Uf(x) = 0.

We consider the map π2 : G → IR that sends g = na(g) to ln(a(g)). This
induces a map on the space of measures by setting π2(ν)(B) = ν(π−1

2 (B))
for any Borel set in IR. In the following we will denote by µA the real
measure π2(µ). Notice that F(µ)(Q

2
+ is) = µ̂A(−s). In particular if µ

is a nonsingular probability measure on G we have, by Lemma 1, that
µA is a nonarithmetic probability measure on IR. We say that µ has
first moment if

∫
G | ln(a(g))|dµ(g) < +∞ and, if this is the case, we call

m =
∫

G ln(a(g))dµ(g) > 0 the mean of µ. Obviously µ has first moment
if and only if µA has (classical) first moment and if this is the case the
mean of µ coincides with the (classical) mean of µA.

Theorem 2. Let µ be a nonsingular radial probability measure on G.
Then if µ has mean m

lim
r→+∞

eQr
+∞∑
n=0

µ∗n ∗ f(r) =
4πC1

∫
G

fdg

c

(
Q

2

)
m

∀ f ∈ Cc(G)#,

while the above limit is zero if µ does not have first moment.

Proof. By the density of C∞
c (G)# in Cc(G)# we can suppose f

smooth. Then the Fourier inversion formula gives

(2) eQr
+∞∑
n=0

µ∗n ∗ f(r) = C1e
Qr

∫
IR

Ff(is)
1 −Fµ(is)

φis(r)|c(is)|−2ds

Recalling the asymptotic expansion of the spherical functions [2]

φis(r) = c(is)
+∞∑
l=0

Γl(is)e(is−l−Q
2 )r + c(−is)

+∞∑
l=0

Γl(−is)e(−is−l−Q
2 )r

where Γ0 ≡ 1 and Γl(·) are holomorphic functions on {z ∈ C : "(z) < 1
2
}

that satisfy the estimates [2]

(3) sup
�(z)≤0

|Γl(z)| ≤ d(1 + l)d
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for some constant d independent of z. Then, since |c(is)|2 = c(is)c(−is),
(2) equals

C1

∫
IR

Ff(is)
1 −Fµ(is)

c(−is)−1
+∞∑
l=0

Γl(is)e(is−l+
Q
2 )rds+

+ C1

∫
IR

Ff(is)
1 −Fµ(is)

c(is)−1
+∞∑
l=0

Γl(−is)e(−is−l+
Q
2 )rds.

The change of variable is → −is in the first integral allows us to write
the above sum as

2C1

∫
IR

Ff(is)
1 −Fµ(is)

c(is)−1
+∞∑
l=0

Γl(−is)e(−is−l+
Q
2 )rds.

Note that, by (3), limr→+∞
∑+∞

l=
Q
2 +1

Γl(−is)e(−is−l+
Q
2 )r = 0 for all s ∈ IR

and thus, applying the Lebesgue dominated convergence theorem, we are
left to estimate

(4)

lim
r→+∞

2C1

∫
IR

Ff(is)
1 −Fµ(is)

c(is)−1

Q
2∑

l=0

Γl(−is)e(−is−l+
Q
2 )rds =

= 2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫
IR

Ff(is)
1 − bFµ(is)

c(is)−1Γl(−is)e(−is−l+
Q
2 )rds

If 0 < b < 1 the function Fl(z) = Ff(z)

1−Fµ(z)
c(z)−1Γl(−z)e(−z−l+

Q
2 )r is holo-

morphic in {z ∈ C : 0 < "(z) < Q
2
} and continuous on its closure. Since

Fl(t+ is) is rapidly decreasing for s → ∞, we can use the Cauchy integral
formula to shift the contour of integration obtaining that (4) is equal to

2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫
IR

Ff

(
is +

Q

2

)
1−bFµ

(
is +

Q

2

)c

(
is +

Q

2

)−1

Γl

(
−is − Q

2

)
e(−is−l)rds.

If |s| > η for a fixed positive number η the quantity |1 − bFµ(is + Q
2
)| =

|1 − bµ̂A(−s)| is bounded from below uniformly in b and thus, by the
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classical Riemann Lebesgue lemma, we are reduced to estimate

(5)
2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫
|s|≤η

Ff

(
is +

Q

2

)
1 − bµ̂A(−s)

c

(
is +

Q

2

)−1

×

× Γl

(
−is − Q

2

)
e(−is−l)rds

The function gl(s) = Ff(is+ Q
2
)c(is+ Q

2
)−1Γl(−is− Q

2
), for η sufficiently

small, can be written, by Taylor’s formula, as

(6) gl(s) = gl(0) +
d

ds
gl(0)s + s2Ml(s), |s| ≤ η

where Ml(s) are bounded. On the other hand |1 − bµ̂A(is)| ≥ cb|s|2,
∀|s| ≤ η and thus, using again the Riemann Lebesgue lemma, we have

(7)

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫
|s|≤η

s2M(s)
1 − bµ̂A(is)

e(−is−l)rds = 0.

We can find smooth functions hl with compact support whose Fourier
transforms satisfy

ĥl(−s) = gl(0) +
d

ds
gl(0)s + o(s), |s| ≤ η,

so that, taking in account (6) and (7), we have that (5) is equal to

(8)

2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫
|s|≤η

ĥl(−s)
1 − bµ̂A(−s)

e(−is−l)rds =

= 4πC1

Q
2∑

l=0

lim
r→+∞

e−lr lim
b↑1

1
2π

∫
IR

ĥl(s)
1 − bµ̂A(s)

eisrds.

By (1) the limit in b is nothing but the potential Uhl(−r) associated with
the measure µA. By the classical renewal theorem we have that if µ and
thus µA, does not have first moment then

lim
r→+∞

e−rlUhl(−r) = 0, ∀ l = 0, 1, . . . ,
Q

2
.
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If the measure µ and thus µA has mean m then the above limit is zero
for all l �= 0 while

lim
r→+∞

Uh0(−r) =

∫
IR

h0(x)dx

m
=

ĥ0(0)
m

=

=
g0(0)
m

=
Fµ

(
Q

2

)
Γ0

(
−Q

2

)
c

(
Q

2

)−1

m
=

∫
G

f(g)dg

c

(
Q

2

)
m

which, in virtue of (8), concludes the proof of the theorem.
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Fonctions finement biharmoniques

dans un espace biharmonique

C. BENSOUDA – M. EL KADIRI – I. ROUCHDI

Abstract: We define and study a theory of finely biharmonic functions in a fine
domain of a biharmonic space in the sense of Smyrnelis satisfying the axion D

1 – Introduction

En théorie classique du Potentiel dans IRn, la topologie fine a été
définie par H. Cartan en 1940 comme étant la moins fine des topologies
rendant continues les fonctions surharmoniques. Cette topologie a été
ensuite étendue au cadre des diverses théories axiomatiques du Potentiel
et aux théories du Potentiel des processus de Markov.

La théorie du balayage des mesures a permis à Fuglede de dévelop-
per et étudier dans [12] une théorie des fonctions finement harmoniques
dans un ouvert fin (i.e., ouvert au sens de la topologie fine) d’un espace
harmonique de Bauer X vérifiant l’axiome de domination (ou Axiome
(D)), généralisant la notion classique de fonction harmonique dans un
ouvert ordinaire de X.

Smyrnelis [19], [20] a développé une théorie axiomatique des fonc-
tions biharmoniques s’appliquant à un opérateur obtenu par couplage de

Key Words and Phrases: Harmonic and biharmonic space – Finely harmonic and
superharmonic function – Finely biharmonic function – Fine open set.
A.M.S. Classification: 31B30 – 31D05
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deux opérateurs différentiels L1 et L2 du second ordre elliptiques ou pa-
raboliques dans un ouvert Ω de IRn, et a montré qu’on peut étendre à
ce nouveau cadre les méthodes et les résultats de la théorie classique ou
axiomatique des fonctions harmoniques. Dans cette théorie un espace
biharmonique (X,H) est la donnée d’un espace localement compact X

muni d’un faisceau d’espaces vectoriels de couples de fonctions réelles
continues sur les ouverts de X vérifiant certains axiomes. A un tel espace
sont associés deux espaces harmoniques de Bauer (X,H1) et (X,H2).

Bouleau [4] a ensuite montré que dans la théorie de Smyrnelis les
couples hyperharmoniques ≥ 0 sont exactement les couples excessifs d’une
résolvante triangulaire de noyaux boréliens sur l’espace de base. Boboc

et Bucur [2] ont montré que ces couples s’identifient aussi aux fonctions
excessives d’une famille résolvante de noyaux sur l’espace X ⊕ X.

Dans [11], le deuxième auteur a introduit et étudié la notion de fonc-
tion finement biharmonique dans un ouvert fin de la théorie classique du
Potentiel dans IRn. Outre le fait qu’elle soit l’extension naturelle de la
notion de fonction biharmonique aux ouverts fins, l’intérêt de cette notion
réside aussi dans le problème d’approximation des fonctions continues sur
un compact K par les restrictions à K de fonctions biharmoniques aux
voisinages de K.

Notre but dans ce travail est d’étendre les résultats de [11] au cadre
d’un espace biharmonique de Smyrnelis dont les espaces harmoniques
associés admettent la même topologie fine.

Les notations utilisées dans tout ce travail seront identiques à celles
des travaux de Fuglede et Smyrnelis cités dans la bibliographie, auquels
on renvoie pour plus de détails.

2 – Mesures biharmoniques

Tout au long de ce travail nous utilisons la théorie locale des fonctions
biharmoniques telle qu’elle est présentée par Smyrnelis dans [19] et [20],
dont nous rappelons ici quelques résultats nécessaires aux développements
qui suivent.

Soit (X,H) un espace biharmonique au sens de [19] d’espaces harmo-
niques associés (X,H1) et (X,H2). On note U+(X) le cône des couples hy-
perharmoniques positifs sur X. Par le mot fonction on entendra toujours,
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sauf mention expresse du contraire, une fonction à valeurs dans IR. L’or-
dre sur l’ensemble des couples de fonctions sur un ensemble M est l’ordre
produit usuel:

(f, g) ≤ (h, k) ⇐⇒ f ≤ h et g ≤ k,

(f, g) < (h, k) ⇐⇒ f < h et g < k;

on écrira aussi (h, k) ≥ (f, g) (resp. (h, k) > (f, g)) au lieu de (f, g) ≤
(h, k) (resp. (f, g) < (h, k)). Si (f, g) ≥ (0, 0), (resp. (f, g) > (0, 0))
on écrira tout simplement (f, g) ≥ 0 (resp. (f, g) > 0). Soient F =
(f, g) et G = (h, k) deux couples de fonctions; on pose min(F, G) =
(min(f, h),min(g, k)) (resp.max(F, G)=(max(f, h),max(g, k))), où, pour
deux fonctions u et v, la fonction habituellement notée min(u, v) (resp.
max(u, v)) est définie par min(u, v)(x)=min(u(x), v(x)) (resp. max(u, v)
(x) = max(u(x), v(x))).

Pour tout couple Φ = (f, g) de fonctions sur X, et toute partie E

de X, on note ΦE le couple réduit du couple Φ sur E. On rappelle que
ce couple est défini par

ΦE = inf{(u, v) ∈ U+(X); (u, v) ≥ Φ sur E},

où l’inf est pris au sens de l’ordre produit. Le couple balayé de Φ sur E

est noté Φ̂E et défini par Φ̂E = (Φ̂E
1 , Φ̂E

2 ), où, pour une fonction h sur X,
ĥ désigne la régularisée s.c.i. de h, i.e. la plus grande minorante s.c.i. de
h dans X. On remarquera que l’on a ΦE = (Φ+)E, où Φ+ = max(Φ, 0).

Si f est une fonction définie sur une partie A de X, on note jRA
f et

jR̂A
f , j = 1, 2, respectivement la réduite et la balayée de f sur A dans

l’espace harmonique (X,Hj).
Si A est une partie de X, on note A l’adhérence de A dans le com-

pactifié d’Alexandroff de X.
Comme en théorie des espaces harmoniques, c’est la notion de ba-

layée d’un couple de mesures qui va nous permettre de définir la notion
de couples finement hyperharmoniques, surharmoniques ou harmoniques.
A cet effet, nous rappelons le résultat suivant [20, Théorème 7.11 et
Théorème 7.12]:

Théorème 2.1. Pour tout couple (σ, τ) de mesures de Radon po-
sitives sur X et toute partie E de X, il existe trois mesures de Radon
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positives σE, ςE et τE sur X telles que, pour tout H-potentiel P = (p, q),
on ait ∫ ∗

P̂ E
1 dσ =

∫ ∗
pdσE +

∫ ∗
qdςE,∫ ∗

P̂ E
2 dτ =

∫ ∗
qdτE,

où P̂ E = (P̂ E
1 , P̂ E

2 ).

Lorsque σ = τ = εx, x ∈ X, on notera les mesures σE, ςE et τE

correspondantes dans le théorème précédent par σE
x , ςE

x et τE
x respecti-

vement. Ce sont ces mesures qui permettent de définir les notions de
couples finement harmoniques et finement hyperharmoniques.

On note P(X) (resp. P1(X), resp. P2(X)) le cône des H- (resp. H1-,
resp. H2-) potentiels et on pose

P ′
2(X) = {q ∈ P2(X)|∃p ∈ P1(X) : (p, q) ∈ P(X)}.

Lemme 2.2. Soit (X,H) un espace biharmonique fort. Alors, tout
H2-potentiel q est l’enveloppe supérieure d’une suite croissante (qn) d’élé-
ments de P ′

2(X).

Démonstration. Soit (p′, q′) un H-potentiel tel que p′ > 0 et q′ > 0.
Il est facile de vérifier que la suite (qn) définie par qn = min(q, nq′) répond
aux conditions du lemme.

Dans toute la suite de ce travail (X,H) est un espace biharmonique
fort au sens de Smyrnelis dont les espaces harmoniques associés (X,H1)
et (X,H2) vérifient l’axiome (D) et admettent la même topologie fine,
qu’on appelera topologie fine de X. Les ouverts de cette topologie seront
appelés les ouverts fins de X. On utilisera le mot fin (finement) pour
distinguer les notions relatives à la topologie fine de celle relatives à la
topologie initiale. Pour toute partie A de X, on note Ã et ∂fA l’adhérence
fine de A et la frontière fine de A, c’est-à-dire au sens de la topologie fine.

Exemple. Soit Ω un domaine de IRn, n ≥ 1. On note H∆ le faisceau
biharmonique défini sur Ω par le Laplacien:

H∆(ω) = {(u, v) ∈ [C2(ω)]2 : ∆u = −v,∆v = 0},
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pour tout ouvert ω de Ω. Le couple (Ω,H∆) est un espace biharmonique
dont les espaces harmoniques associés sont identiques à l’espace harmo-
nique classique défini par l’opérateur de Laplace sur Ω. On rappelle
d’après [10] que l’espace biharmonique (IRn,H∆) est fort si et seulement
si n ≥ 5. Par contre, si Ω est un domaine borné de IRn, l’espace bihar-
monique (Ω,H∆) est fort pour tout n ≥ 1.

Proposition 2.3. Pour tout ouvert fin ω de X, et tout x ∈ ω, on a
σCω

x = ε1,Cω
x et τCω

x = ε2,Cω
x , où εj,Cω

x , j = 1, 2, est la balayée de la mesure
εx sur Cω dans l’espace harmonique (X,Hj).

Démonstration. En appliquant le théorème précédent aux cou-
ples P = (p, 0), où p est un H1-potentiel quelconque sur X, on voit que
σCω

x = ε1,Cω
x . Pour établir l’égalité τCω

x = ε2,Cω
x , il suffit d’utiliser le

lemme précédent en observant que pour tout H-potentiel P = (p, q), la
fonction P̂ E

2 n’est autre que la balayée de q sur E dans l’espace harmo-
nique (X,H2).

Remarque. Plus généralement, si σ et τ sont deux mesures de
Radon ≥ 0 sur X et si E ⊂ X, les mesures σE et τE ne sont autres que
les balayées des mesures σ et τ relativement aux espaces harmoniques
associés (X,H1) et (X,H2).

Il est bien connu que pour tout ouvert fin ω de X, les mesures ε1,Cω
x

et ε2,Cω
x sont portées par ∂fω (voir [12]). Donc, d’après la proposition

précédente, les mesures σCω
x et τCω

x , x ∈ ω, sont portées par ∂fω.
Soit ω un ouvert fin de X. Pour tout x ∈ ω, on pose µω

x = σCω
x ,

νω
x = ςCω

x et λω
x = τCω

x .

Définition 2.4. Soient ω un ouvert fin de X. Pour tout x ∈ ω, le
triplet de mesures (µω

x , νω
x , λω

x) est appelé le triplet des mesures biharmo-
niques de ω au point x.

Remarque. Si ω est un ouvert H-régulier de X et si x ∈ ω, les
mesures µω

x , νω
x et λω

x , ne sont rien d’autres que les mesures biharmoniques
habituelles de ω au point x (voir [19]).

Pour quelques propriétés des mesures biharmoniques, utiles pour la
suite, nous avons besoin de rappeler deux résultats dûs à Bouleau [4]:
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Théorème 2.5. Il existe un noyau borélien unique V sur X ayant
les propriétés suivantes:

i) Pour toute fonction finie continue ϕ ≥ 0 à support compact sur X,

la fonction V(ϕ) est H1-surharmonique ≥ 0, finie, continue et H1-
harmonique dans le complémentaire du support de ϕ.

ii) Pour toute fonction H2-hyperharmonique v ≥ 0 sur X, V(v) est la
fonction hyperharmonique pure d’ordre 2 associée à v.

On rappelle (voir [21]) que la fonction hyperharmonique pure d’ordre
2 associée à une fonction H2-hyperharmonique v ≥ 0 dans X est la plus
petite fonction H1-hyperharmonique u ≥ 0 telle que le couple (u, v) ∈
U+(X); elle est donnée par

u = înf{s : (s, v) ∈ U+(X)}.

Remarque. Si f est une fonction borélienne ≥ 0 sur X, alors V(f)
est H1-hyperharmonique ≥ 0 dans X.

Théorème 2.6. Avec les notations du théorème précédent, on a,

pour tout couple (u, v) ∈ U+(X),

V(v) ≺ u,

i.e. il existe une fonction H1-hyperharmonique t ≥ 0 telle que u =
V(v) + t.

On va maintenant appliquer les Théorèmes 2.5 et 2.6 pour le calcul
du couple balayé sur une partie A de X d’un couple Φ = (u, v) ∈ U+(X)
au moyen du balayage relativement aux espaces harmoniques (X,H1) et
(X,H2).

Dans la suite, si s et t sont deux fonctions H1- surharmoniques ≥ 0
telles que s ≺ t, on note t − s la fonction u H1-surharmonique ≥ 0 telle
que t = u + s.

Proposition 2.7. Pour tout couple H-surharmonique (s, t) ≥ 0 dans
X et toute partie A de X, on a

(̂s, t)
A

= (1R̂A

s−V(2R̂A
t )

+ V(2R̂A
t ),2 R̂A

t ).
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Démonstration. Remarquons d’abord que l’on a

(̂s, t)
A

= (înf{u : u ≥ s sur A, (u,2 R̂A
t ) ∈ U+(X)},2 R̂A

t ).

Or, pour tout couple (u,2 R̂A
t ) ∈ U+(X), on a, d’après le Théorème 2.6,

u = V(2R̂A
t ) + r

où r est une fonction H1-hyperharmonique ≥ 0. D’autre part, comme
(s,2 R̂A

t ) ∈ U+(X), on a, d’après le Théorème 2.6,

s = V(2R̂A
t ) + k,

où k est une fonction H1-surharmonique ≥ 0 dans X. On en déduit que

(̂s, t)
A

= (V(2R̂A
t ) + 1R̂A

k , 2R̂A
t ) ,

d’où le résultat.

Corollaire 1. Pour tout couple H-surharmonique (s, t) ≥ 0
dans X et toutes les parties A et B de X telles que A ⊂ B, on a

̂
((̂s, t)

A

)
B

= (̂s, t)
A

.

Démonstration. On a, d’après la Proposition 2.7,

(̂s, t)
A

= (1R̂A

s−V(2R̂A
t )

+ V(2R̂A
t ),2 R̂A

t ).

En utilisant les relations 1R̂B
1R̂A

u
= 1R̂A

u et 2R̂B
2R̂A

v
= 2R̂A

v pour u H1-
hyperharmonique ≥ 0 et v H2-hyperharmonique ≥ 0 qui découlent aus-
sitôt du Théorème 9.1.1 et du Corollaire 9.2.3 de [7], on obtient

̂
((̂s, t)

A

)
B

= (̂s, t)
A

.

Corollaire 2. Soient ω un ouvert fin de X et x ∈ ω. Alors la
mesure νω

x est portée par la base b(Cω).
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Démonstration. D’après le Théorème 2.1, on a, pour tout H-
potentiel P = (p, q) dans X et tout x ∈ ω,

P̂ Cω
1 (x) =

∫ ∗
pdµω

x +
∫ ∗

qdνω
x .

Comme ̂̂
P Cω

Cω

= P̂ Cω, on a aussi, toujours d’après le Théorème 2.1,

P̂ Cω
1 (x) =

∫ ∗
P̂ Cω

1 dµω
x +

∫ ∗
P̂ Cω

2 dνω
x .

Comme P̂ Cω
2 = 2R̂Cω

q en vertu du corollaire précédent, on en déduit que∫
(q − 2R̂

Cω

q )dνω
x = 0,

soit ∫ ∗
qdνω

x =
∫ ∗

2R̂Cω
q dνω

x ,

pour tout q ∈ P ′
2(X). D’où, d’après le Lemme 2.2,∫ ∗

qdνω
x =

∫ ∗
2R̂Cω

q dνω
x

pour tout H2-potentiel q dans X. En prenant q strict, ceci montre bien
que νω

x est portée par b(Cω), grâce à [7, Proposition 7.2.2].

Comme b(Cω) ⊂ ∂fω, on déduit du corollaire précédent que, pour
tout x ∈ ω, la mesure νω

x est portée par ∂fω.

Proposition 2.8. Soit ω un ouvert fin de X. Alors, pour tout
x ∈ ω, la mesure νω

x ne charge pas les ensembles H-polaires.

Démonstration. Soit x ∈ ω. Comme la mesure νω
x est portée par

∂fω, il suffit de montrer que νω
x ne charge pas les H-polaires contenus

dans ∂fω. Soit A un ensemble H-polaire ⊂ ∂fω, on peut trouver un H-
potentiel P = (p, q) dans X tel que p = q = +∞ sur A et p(x) < +∞.
On a alors

∫
qdνω

x ≤ p(x) < +∞, d’où νω
x (A) ≤ νω

x ({q = +∞}) = 0.
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3 – Couples finement hyperharmoniques et couples finement
biharmoniques

On désigne par f-lim et f-lim inf respectivement les limites fine et
fine inférieure, c’est-à-dire au sens de la topologie fine. Pour un couple
F = (u, v) de fonctions sur U , on note f-lim infx→y F (x) le couple (f-
lim infx→y u(x),f-lim infx→y v(x)).

On rappelle d’abord qu’une fonction u sur un ouvert fin U de X est
dite Hj-finement hyperharmonique dans U , j = 1, 2, si u est finement
s.c.i., à valeurs dans ] − ∞,+∞], et si la topologie fine induite sur U

admet une base B formée d’ouverts fins ω tels que ω̃ ⊂ U et

u(x) ≥
∫ ∗

udεj,Cω
x

pour tout x ∈ ω ([12, p. 67]).
Par analogie avec cette définition on pose la

Définition 3.1. Un couple (u, v) de fonctions sur un ouvert fin U

de X est dit finement H-hyperharmonique dans U si u et v sont finement
s.c.i. à valeurs dans ]−∞,+∞], et si on peut trouver une base B d’ouverts
de la topologie fine dans U formée d’ouverts fins ω de X tels que ω̃ ⊂ U

et
u(x) ≥

∫ ∗
udµω

x +
∫ ∗

vdνω
x , v(x) ≥

∫ ∗
vdλω

x

pour tout x ∈ ω.

Ces inégalités sont appelées inégalités de la moyenne.
La définition a bien un sens puisque, pour tout x ∈ ω, les mesures

µω
x , νω

x et λω
x sont portées par ∂fω et ne chargent pas les polaires.

On note Uf (U) l’ensemble des couples finement H-hyperharmoniques
dans un ouvert fin U de X, et U+

f (U) celui des couples finement H-
hyperharmoniques ≥ 0 dans U .

Un couple (u, v) de fonctions sur un ouvert fin U de X est dit fi-
nement H-hypoharmonique dans U si le couple (−u,−v) est finement
H-hyperharmonique dans U .

Définition 3.2. Un couple (u, v) de fonctions sur un ouvert fin
U de X à valeurs dans IR est dit finement H-harmonique (ou simple-
ment finement biharmonique) dans U si (u, v) est à la fois finement H-
hyperharmonique et finement H-hypoharmonique.
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On dit qu’un H-potentiel P = (p, q) dans X est semi-borné si les
potentiels p et q sont semi-bornés.

Théorème 3.3. Soit (f, g) un couple de fonctions finement s.c.i.
sur Ũ et finement H-hyperharmonique dans U . Si de plus il existe un
H-potentiel semi-borné P = (p1, p2) dans X tel que (f, g) ≥ −P, alors
on a (f(x), g(x)) ≥ (

∫ ∗
fdµU

x +
∫ ∗

gdνU
x ,
∫ ∗

gdλU
x ) pour tout x ∈ U où P

est fini.

Démonstration. Il suffit d’adapter aux couples la démonstration
du Théorème 9.4 de [12].

Corollaire 1. Un couple (u, v) de fonctions sur un ouvert fin U

de X est finement H-hyperharmonique dans U si et seulement si u et
v sont finement s.c.i. > −∞, et si pour tout ouvert fin relativement
compact ω tel que ω̃ ⊂ U, sur lequel u et v sont bornées inférieurement,
et tout x ∈ ω, on a

u(x) ≥
∫ ∗

udµω
x +

∫ ∗
vdνω

x , v(x) ≥
∫ ∗

vdλω
x .

Corollaire 2. Un couple (u, v) de fonctions finement continues
sur U à valeurs dans IR est finement harmonique dans U si et seulement
si pour tout ouvert fin relativement compact ω tel que ω̃ ⊂ U, sur lequel
u et v sont bornées, et tout x ∈ ω, on a

u(x) =
∫

udµω
x +

∫
vdνω

x , v(x) =
∫

vdλω
x .

On déduit aussi du Théorème 3.3 les propriétés suivantes des couples
finement hyperharmoniques:

1. L’ ensemble Uf (U) est un cône convexe de sommet 0:
i) ∀u, v ∈ Uf (U), u + v ∈ Uf (U),
ii) ∀u ∈ Uf (U),∀λ ≥ 0 fini, λu ∈ Uf (U).
iii) De plus, le cône Uf (U) est inf-stable, c’est à dire,

∀F, G ∈ Uf (U),min(F, G) ∈ Uf (U).

U+
f (U) a les mêmes propriétés.
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2. Si U1 et U2 sont des ouverts fins de X tels que U1 ⊂ U2 et si F =
(u, v) ∈ Uf (U2), alors F |U1

= (u|U1
, v|U1

) ∈ Uf (U1).
3. Si (Ui)i∈I est une famille d’ouverts fins de X et si F est un couple de

fonctions sur U = ∪i∈IUi tel que F |Ui
∈ Uf (Ui) pour tout i ∈ I, alors

F ∈ Uf (U).

Ces propriétés de faisceau en topologie fine, vraies aussi pour les cou-
ples finement biharmoniques, permettent, quitte à se restreindre aux com-
posantes finement connexes de l’ouvert fin U , de se ramener au cas où U

est un domaine fin que l’on fixera dans la suite. On rappelle que la topo-
logie fine est localement connexe (voir [12, corollaire du Théorème 9.11]).
Quitte à ajouter à U l’ensemble polaire des points irréguliers de sa frontiè-
re fine, on le supposera, grâce au principe de prolongement par continuité
fine, régulier (donc un Kσ de X).

Lemme 3.4. Soit (h, k) un couple biharmonique ≥ 0 dans X et ω

un ouvert fin relativement compact de X. Alors on a

h(x) =
∫

hdµω
x +

∫
kdνω

x ,

et
k(x) =

∫
kdλω

x ,

pour tout x ∈ ω.

Démonstration. D’après la Proposition 2.7, on a

(̂h, k)
Cω

= (1R̂Cω

h−V(2R̂Cω
k

)
+ V(2R̂Cω

k ),2 R̂Cω
k ).

Or les fonctions h − V(k) et k sont respectivement H1-harmonique et
H2-harmonique dans X, donc 2R̂Cω

k = k et 1R̂Cω

h−V(2R̂Cω
k

)
= h−V(k), d’où

(̂h, k)
Cω

= (h, k) et le lemme découle alors du Théorème 2.1 et de la
Proposition 2.3.

Corollaire. Soit (h, k) un couple biharmonique dans un ouvert Ω
de X pour la topologie initiale. Alors (h, k) est finement biharmonique
dans Ω.
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Théorème 3.5. Soient Ω un ouvert de X pour la topologie initiale
et (u, v) un couple H-hyperharmonique dans Ω. Alors (u, v) est finement
H-hyperharmonique dans Ω.

Démonstration. Les fonctions u et v sont s.c.i., donc finement
s.c.i. dans Ω. Ces fonctions sont aussi localement bornées inférieurement.
Quitte à se placer localement on peut donc supposer qu’il existe un couple
biharmonique (h, k) > 0 dans Ω tel que (u, v) + (h, k) ≥ 0. Soit ω un
ouvert fin tel que ω̃ ⊂ Ω et sur lequel u et v sont bornées inférieurement
et soit x ∈ ω, alors on a

u(x) + h(x) =
∫ ∗

(u + h)dεx ≥

≥
∫ ∗

(u + h)dµω
x +

∫ ∗
(v + k)dνω

x .

Or on a d’après le lemme précédent

h(x) =
∫

hdµω
x +

∫
kdνω

x ,

et
k(x) =

∫
kdλω

x ,

d’où
u(x) ≥

∫ ∗
udµω

x +
∫ ∗

vdνω
x .

La fonction v est finement H2-hyperharmonique d’après [12, Théorè-
me 9.8]. On en déduit que le couple (u, v) est finement H-hyperharmoni-
que dans Ω.

Les quatres propositions qui suivent résultent immédiatement de la
Définition 3.1 et de celle des fonctions finement H-hyperharmoniques.

Proposition 3.6. Soit {(un, vn)} une suite croissante d’éléments
de Uf (U). Alors (supn un, supn vn) ∈ Uf (U).

Proposition 3.7. Soit (u, v) ∈ Uf (U), et soit v′ une fonction
finement H2-hyperharmonique dans U . Si v′ ≤ v, alors (u, v′) ∈ Uf (U).
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Proposition 3.8. Soient u et v deux fonctions respectivement
finement H1-hyperharmonique et H2-hyperharmonique ≥ 0 dans U . Alors
(u, 0) ∈ U+

f (U), et (+∞, v) ∈ U+
f (U).

Proposition 3.9. Soit (u, v) ∈ U+
f (U). Alors les fonctions u et v

sont respectivement finement H1-hyperharmonique et H2-hyperharmonique
dans U . En particulier le couple (u, 0) ∈ U+

f (U).

Corollaire. Pour tout couple (u, v) ∈ Uf (U), les fonctions u et v

sont finement continues dans U .

Démonstration. Quitte à se placer finement localement et ajouter
à (u, v) un couple biharmonique (h, k) > 0, on peut supposer (u, v) ≥
0. D’après la Proposition 3.9, les fonctions u et v sont respectivement
finement H1-hyperharmonique et H2- hyperharmonique, donc finement
continues.

Proposition 3.10. Soient V un ouvert fin contenu dans U,(u1, v1)∈
Uf (U) et (u2, v2) ∈ Uf (V ) tels que

f− lim inf
x→y

(u2, v2)(x) ≥ (u1(y), v1(y)),∀y ∈ ∂fV ∩ U.

Alors le couple (u, v) défini par

(u, v)(x) =

{
min((u1, v1), (u2, v2))(x) si x ∈ V,

(u1, v1)(x) si x ∈ U \ V

est finement H-hyperharmonique dans U .

Démonstration. On adapte aux couples la démonstration du Lem-
me 10.1 de [12].

Soit S ′
2(U) le cône des fonctions finement H2-surharmoniques positi-

ves majorées par un élément de P ′
2(X).

Lemme 3.11. Tout v ∈ S ′
2(U) est l’enveloppe supérieure d’une suite

croissante (pn − 2R̂CU
pn

), où (pn) est une suite d’éléments de P ′
2(X).
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Démonstration. Le lemme résulte immédiatement du Théorème 3
de [14].

Lemme 3.12. Toute fonction v finement H2-hyperharmonique ≥ 0
dans U est l’enveloppe supérieure d’une suite d’éléments de S ′

2(U).

Proposition 3.13. Pour toute fonction v finement H2-hyperharmo-
nique ≥ 0 dans U et tout ouvert fin ω⊂ ω̃⊂U, le couple (

∫ ∗
vdνω

. ,
∫ ∗

vdλω
. )

est finement H-hyperharmonique dans ω.

Démonstration. D’après les lemmes précédents, il suffit de démon-
trer la proposition lorsque v est de la forme (q − 2R̂CU

q ) où q est un
élément de P ′

2(X). Soit q ∈ P ′
2(X) et p un H1-potentiel fini continu tel

que P = (p, q) soit un H-potentiel fini continu dans X. On a, dans ω,

( ̂
P̂ CU

1 , P̂ CU
2 )Cω =

(∫ ∗
P̂ CU

1 dµω
. +

∫ ∗
P̂ CU

2 dνω
. ,

∫ ∗
P̂ CU

2 dλω
.

)
.

Pour compléter la preuve, il suffit d’utiliser les identités ( ̂
P̂ CU

1 , P̂ CU
2 )Cω =

(P̂ Cω
1 , P̂ Cω

2 ) et P̂ CU
2 = 2R̂CU

q , et le fait que 2R̂CU
q est finement H2-harmo-

nique dans ω.

Corollaire 1. Soient (u, v) ∈ U+
f (U) et ω un ouvert fin régulier

tel que ω̃ ⊂ U . Alors le couple de fonctions(∫ ∗
udµω

. +
∫ ∗

vdνω
. ,

∫ ∗
vdλω

.

)
est finement H-hyperharmonique dans ω.

Corollaire 2. Soient (u, v) ∈ U+
f (U) et ω un ouvert fin régulier

tel que ω̃ ⊂ U . Alors le couple de fonctions (u, v)ω défini par

(u, v)ω =


(∫ ∗

udµω
. +

∫ ∗
vdνω

. ,

∫ ∗
vdλω

.

)
dans ω,

(u, v) dans U \ ω

est finement H-hyperharmonique dans U .
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Démonstration. Comme le couple (u, v) est ≥ 0, les fonctions u

et v sont finement H-hyperharmoniques ≥ 0 dans U d’après la Proposi-
tion 3.9. Il en résulte alors d’après [12, Théorème 14.6 et Théorème 14.7]
que l’on a f−lim infx→y(

∫ ∗
udµω

x+
∫ ∗

vdνω
x )≥u(x)et f−lim infx→y(

∫ ∗
vdλω

x)
≥ v(y) pour tout y ∈ ∂fω (on rappelle que µω

x = ε1,Cω
x et λω

x = ε2,Cω
x ),

d’où le résultat en vertu du Corollaire 1 et de la Proposition 3.10.

4 – Réduction et balayage des couples finement
hyperharmoniques

Si f une fonction sur U , on note f̂ sa régularisée finement s.c.i. C’est
la plus grande minorante de f qui soit finement s.c.i. dans U , et elle est
donnée par

f(x) = f − lim inf
y→x

f(y), ∀x ∈ U.

Si F = (f, g) est un couple de fonctions sur U , on note F̂ le couple (f̂ , ĝ).
Ce couple est applelé le couple régularisé finement s.c.i. de F dans U .

Définition 4.1. Soient A ⊂ U et F = (f, g) un couple de fonctions
sur U . Le couple réduit de F sur A, noté F A, est le couple défini par

F A = inf{(u, v) ∈ U+
f (U); (u, v) ≥ (f, g) sur A}.

Le couple balayé de F sur A est le couple F̂ A régularisé finement s.c.i.
de F A.

Proposition 4.2. Soient A ⊂ U et F = (f, g) un couple de
fonctions sur U . Alors le couple F̂ A est finement H-hyperharmonique
dans U .

Pour toute partie A de U , on note j,U R̂A
f , j = 1, 2, la balayée sur A

d’une fonction f relativement à U dans l’espace harmonique (X,Hj).

Proposition 4.3. Soient (f, g) un couple de fonctions sur U, et

A ⊂ U . Posons F̂ A = (F̂ A
1 , F̂ A

2 ). On a alors (̂f, 0)
A

= (1,U R̂A
f , 0) et

F̂ A
2 = 2,U R̂

A

g .
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Démonstration. Le couple (1,U R̂A
f , 0) est finement H-hyperharmo-

nique ≥ 0 dans U et majore (f, 0) q.p. sur A, donc (1,U R̂A
f , 0) ≥ (̂f, 0)

A

.
D’autre part si (u, v) ∈ U+

f (U) majore le couple (f, 0) sur A, alors u est
une fonction finement H1-hyperharmonique ≥ 0 qui majore f sur A, donc

(̂f, 0)
A

≥ (1,U R̂A
f , 0), et par suite (̂f, 0)

A

= (1,U R̂A
f , 0). Soit maintenant

v une fonction finement H2-hyperharmonique ≥ 0 sur U telle que v ≥ g

sur A. Alors le couple (+∞, v) est finement H-hyperharmonique ≥ 0
et majore (f, g) sur A, d’où 2,U R̂A

g ≥ F̂ A
2 . L’inégalité inverse découle

facilement du fait que pour tout couple finement H-hyperharmonique
(u, v) ≥ 0 tel que (u, v) ≥ (f, g) sur A, la fonction v est finement H2-
hyperharmonique ≥ 0 et majore g sur A.

Proposition 4.4. Soient (u, v) ∈ U+
f (U) et A ⊂ U . Alors on a

(̂u, v)
A

= (u, v) q.p. sur A.

Démonstration. Cela résulte en effet du fait que, pour tout couple
finement H-hyperharmonique (u, v) ≥ 0, les fonctions u et v sont respecti-
vement finement H1-hyperharmonique et H2-hyperharmonique positives
et de [12, Théorème 11.8].

Remarque. Si (u, v) ∈ U+
f (U) majore q.p. un couple F de fonctions

sur A ⊂ U , alors (u, v) ≥ F̂ A.

5 – Ordre spécifique dans U+
f (U)

Remarquons d’abord que le cône U+
f (U) est réticulé pour l’ordre na-

turel, ce qui se démontre comme en théorie des fonctions finement har-
moniques.

L’ordre spécifique, noté ≺, est défini sur U+
f (U) par

(u, v) ≺ (s, t) ⇐⇒ ∃(u1, v1) ∈ U+
f (U) : (s, t) = (u1, v1) + (u, v).

Proposition 5.1. Soient F1 = (u1, v1), F2 = (u2, v2) ∈ U+
f (U). On

a alors ̂[(F1 − F2)+]
U

≺ F1.
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Démonstration. La proposition se démontre exactement comme
dans le cas des fonctions finement hyperharmoniques (voir [12], p.p. 129,
130 et 131).

Corollaire (Propriété de décomposition de Riesz). Soient F, G

et H trois couples de U+
f (U) tels que F ≤ G + H. Il existe alors deux

couples F1, F2 ∈ U+
f (U) tels que F = F1 + F2, F1 ≤ G et F2 ≤ H.

Théorème 5.2. Soient S, T ∈ U+
f (U) et A ⊂ U . On a alors

̂(S + T )
A

= ŜA + T̂ A.

Démonstration. L’inégalité ̂(S + T )
A

≤ ŜA+T̂ A découle immédia-
tement de la définition du balayage; l’inégalité inverse s’en déduit en
appliquant le corollaire précédent et en utilisant les propriétés des couples
et des fonctions finement hyperharmoniques.

On déduit aussi de la Proposition 5.1 que le cône U+
f (U) vérifie les

axiomes du Chapitre 4 de [7] quand U est muni de la topologie fine, d’où
le résultat suivant:

Proposition 5.3. Le cône U+
f (U) est un treillis complètement

réticulé pour l’ordre spécifique.

Si F, G ∈ U+
f (U), on note F ∨ G et F ∧ G respectivement le max

et le min au sens de l’ordre spécifique. Si {Fi; i ∈ I} est une famille
d’éléments de U+

f (U), on note
∧

iFi (resp.
∨

i Fi) l’enveloppe inférieure
(resp. supérieure) au sens de l’ordre spécifique de la famille {Fi; i ∈ I}.

Remarquons que, comme dans le cas harmonique, on a

F ∧ G + F ∨ G = F + G

et, pour une famille filtrante croissante (resp. décroissante), au sens de
l’ordre spécifique, {Fi; i ∈ I}, d’éléments de U+

f (U), on a

∧
i

Fi = înf
i

Fi

(
resp.

∨
i

Fi = sup
i

Fi

)
.
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6 – Couples finement surharmoniques et couples potentiels fins

Dans ce paragraphe on va se contenter d’énoncer seulement les défini-
tions et quelques propriétés essentielles des couples finement surharmo-
niques et des couples potentiels fins.

Définition 6.1. Un couple (u, v) finement H-hyperharmonique dans
un ouvert fin V de X est dit finement H-surharmonique dans V si les
fonctions u et v sont finies sur un ensemble dense dans V .

Il n’est pas difficile de voir que, d’après [12, Théorème 12.9], pour
qu’un couple (u, v) ∈ Uf (V ) soit finement H-surharmonique, il faut et il
suffit que les fonctions u et v soient finies en au moins un point de chaque
composante finement connexe de V .

On note Sf (U) l’ensemble des couples finement H-surharmoniques
dans U . Il est clair que cet ensemble est un cône convexe. On note
également S+

f (U) le sous-cône de Sf (U) formé des couples finement H-
surharmoniques ≥ 0, et Sj,+

f (U), j = 1, 2, le cône des fonctions finement
Hj-surharmoniques ≥ 0 dans U .

Définition 6.2. Un couple P = (p1, p2) ∈ S+
f (U) est appelé un

H-potentiel fin si tout couple (u, v) finement H-hypoharmonique dans U

qui le minore au sens de l’ordre naturel produit est ≤ 0.

On note Pf (U) l’ensemble des H-potentiels fins dans U . Alors Pf (U)
est un sous-cône de S+

f (U). C’est aussi une bande de S+
f (U), i.e.,

∀P, Q ∈ S+
f (U) : P + Q ∈ Pf (U) ⇒ P, Q ∈ Pf (U).

Proposition 6.3. Soit (s1,s2) un couple finement H-surharmonique
dans U de X. Alors

i) si s2 ≥ 0, la fonction s1 est finement H1-surharmonique;
ii) le couple (s1, s2) est un potentiel fin si et seulement si, pour tout

j = 1, 2, sj est un Hj-potentiel fin.
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Démonstration. Le i) résulte aussitôt de la Définition 6.1 et de celle
des fonctions finement H2-surharmoniques. Montrons le ii). Supposons
que sj soit un Hj-potentiel fin dans U pour tout j = 1, 2, et soit (u, v)
un couple finement H-hypoharmonique dans U tel que (u, v) ≤ (s1, s2).
Comme v est finement H2-hypoharmonique dans U , on a v ≤ 0, il résulte
alors de la définition des couples finement H-hypoharmoniques que u

est finement H1-hypoharmonique dans U , et donc u ≤ 0. Inversement,
supposons que le couple (s1, s2) soit un H-potentiel fin. Si u est une
fonction finement H-hypoharmonique dans U , telle que u ≤ s1, alors le
couple (u, 0) est finement H-hypoharmonique ≤ (s1, s2), d’où (u, 0) ≤ 0,
et par suite u ≤ 0. Donc s1 est un H1-potentiel fin dans U . De même, si
v est une fonction finement H2-hypoharmonique dans U telle que v ≤ s2,
le couple (−∞, v) est finement H-hypoharmonique et on a (−∞, v) ≤
(s1, s2), d’où v ≤ 0. Donc s2 est un H2-potentiel fin dans U .

Proposition 6.4 (Principe du maximum). Soient ω un ouvert
fin ⊂ U et (u, v) ∈ Uf (ω) tel que lim infx∈ω,x→y(u, v)(y) ≥ 0, pour tout
y ∈ ∂fω ∩U . S’il existe un H-potentiel fin P dans U tel que (u, v) ≥ −P

dans ω, alors on a (u, v) ≥ 0 dans ω.

On signale que la réstriction de l’ordre spécifique dans U+
f (U) à S+

f (U)
fait de ce dernier un treillis complètement réticulé.

Comme en théorie des fonctions finement harmoniques, un couple
H ∈ S+

f (U) sera dit H-invariant (ou tout simplement invariant) s’il est
orthogonal, pour l’ordre spécifique, à la bande des H-potentiels fins. On
note Hi(U) l’ensemble des couples H-invariants. Il est facile de voir que
Hi(U) est un cône convexe. C’est aussi une bande de S+

f (U). On a donc,

∀S ∈ S+
f (U),∃!P ∈ Pf (U),∃!H ∈ Hi(U) : S = P + H.

Il est clair aussi que tout couple finement biharmonique est invariant,
mais la réciproque est fausse en général. En effet, si h une fonction
invariante dans U qui ne soit pas finement H1-harmonique, le couple
(h, 0) est invariant qui n’est pas finement biharmonique.

Question. Le problème de savoir si une fonction invariante dans U

est la somme d’une suite de fonctions finement harmoniques positives
dans U a été posé par Fuglede dans [17]. A notre connaissance ce



150 C. BENSOUDA – M. EL KADIRI – I. ROUCHDI [20]

problème demeure toujours ouvert. Par analogie avec ce problème on
peut poser la question suivante:

Est-ce que tout couple invariant dans U est la somme d’une suite de
couples finement H-harmoniques ≥ 0?

Même si la réponse au problème de Fuglede est positive, il semble qu’il
n’est pas évident qu’il en soit de même pour les couples H-invariants. En
effet, comme on va le voir dans la suite, si H = (h, k) est un couple H-
invariant, on a h = h1 + V(k), où V est un noyau borélien sur U , et h1

est invariante. On voit donc que, même si h1 et k sont des sommes de
suites de fonctions finement H1-harmoniques ≥ 0 et H2-harmoniques ≥ 0
respectivement, il ne semble pas facile d’affirmer que le couple (V(k), k)
est la somme d’une suite de couples finement biharmoniques dans U .

7 – Couples finement hyperharmoniques purs

Proposition 7.1. Soit v une fonction finement H2-hyperharmonique
≥ 0 dans un ouvert fin V de X. Alors la fonction

uv = înf{u ≥ 0; (u, v) ∈ U+
f (V )}

est finement H1-hyperharmonique dans V et l’on a (uv, v) ∈ U+
f (V ).

Comme en théorie des fonctions biharmoniques, nous adoptons la
définition suivante:

Définition 7.2. La fonction uv de la proposition précédente est
appelée la fonction finement hyperharmonique pure d’ordre 2 associée
à v.

Soit (u, v) un couple finement H-hyperharmonique ≥ 0 dans U . On
dit que ce couple est pur si u est la fonction finement hyperharmonique
pure d’ordre 2 associée à v.

Pour alléger les écritures, on notera dans la suite V0(v) la fonction
finement hyperharmonique d’ordre 2 associée à une fonction finement
H2-hyperharmonique v ≥ 0 dans U . Cette notation sera justifiée par
la suite.
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Proposition 7.3. Soit (u, v) ∈ S+
f (U) un couple pur. Si la fonc-

tion v est finement H2-harmonique dans un ouvert fin V ⊂ U, et si u est
finie dans V, alors le couple (u, v) est finement biharmonique dans V .

Démonstration. Soit ω un ouvert fin relativement compact régulier
tel que ω̃ ⊂ V ; alors le couple (u, v)ω est finement H-hyperharmonique
dans U d’après le Corollaire 2 de la Proposition 3.13, et l’on a

(u, v)ω =
(∫

udµω
. +

∫
vdνω

. , v

)
dans ω, d’où u ≤

∫
udµω

. +
∫

vdνω
. , et, par suite, u =

∫
udµω

. +
∫

vdνω
.

dans ω. Comme le couple (u, v) est finement continu, on en déduit qu’il
est finement biharmonique dans V .

Proposition 7.4. Soient v1, v2 deux fonctions finement H2-hyper-
harmoniques ≥ 0 dans U . Alors, si v1 ≤ v2, on a V0(v1) ≤ V0(v2).

Démonstration. La proposition résulte immédiatement de la Défi-
nition 7.2 et de la Proposition 3.7.

Proposition 7.5. Soit (s1, s2) ∈ S+
f (U). On a alors V0(s2) ≺ s1,

i.e. il existe t ∈ S1,+
f (U) tel que V0(s2) + t = s1.

Démonstration. Posons s = V0(s2). Soit ω un ouvert fin re-
lativement compact régulier tel que ω ⊂ U et soient v ∈ −S1,+

f (ω),
bornée supérieurement, et u ∈ S1,+

f (ω), bornée inférieurement, telles que
f-lim supx→y,x∈ω v(x) ≤ s1(y) et f-lim infx→y,x∈ω u(x) ≥ s(y) pour tout
y ∈ ∂fω. Considérons la fonction

w =

{
inf(s1 + u − v, s) dans ω,

s dans U \ ω.

Alors, d’après les conditions ci-dessus sur u et v et la Proposition 3.10,
le couple (w, s2) est finement H-surharmonique dans U . On en déduit
s1 + u − v ≥ s dans ω. Les fonctions u et v étant arbitraires, on en
déduit donc d’après [12, Théorème 14.6] que, pour tout x ∈ ω, tel que
s(x) < +∞, on a

s1(x) − s(x) ≥
∫

(s1 − s)dε1,Cω
x .
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Le théorème de prolongement par continuité fine [12, Théorème 9.14] nous
assure alors que la fonction s1 − s se prolonge en une fonction finement
H1-surharmonique t ≥ 0 dans U et l’on a donc s1 = s + t.

Proposition 7.6. Pour tout j = 1, 2, soit vj une fonction finement
Hj-hyperharmonique ≥ 0 dans U . On a alors

V0(v1 + v2) = V0(v1) + V0(v2).

Démonstration. L’inégalité V0(v1 + v2) ≤ V0(v1) + V0(v2) découle
simplement de la Définition 7.1 et du fait que le couple(V0(v1)+V0(v2), v1+
v2) = (V0(v1), v1)+(V0(v2), v2) est finement H-hyperharmonique ≥ 0 dans
U . Montrons l’inégalité inverse. Le résultat est trivial si V0(v1) ≡ +∞ ou
V0(v2) ≡ +∞. Supposons donc que les fonctions V0(v1) et V0(v2) soient
finement H1-surharmoniques (on rappelle que l’ouvert fin U est sup-
posé finement connexe). Alors, d’après la propriété de décomposition de
Riesz des couples finement H-surharmoniques ≥ 0 appliquée à l’inégalité
(V0(v1 + v2), v1 + v2) ≤ (V0(v1), v1) + (V0(v2), v2), on peut trouver deux
couples finement H-surharmoniques dans U , (s1, t1) ≥ (0, 0) et (s2, t2) ≥
(0, 0), tels que (V0(v1 + v2), v1 + v2) = (s1, t1) + (s2, t2), et (s1, t1) ≤
(V0(v1), v1) et (s2, t2) ≤ (V0(v2), v2), ce qui entrâine t1 = v1 et t2 = v2

et donc s1 = V0(v1) et s2 = V0(v2), ce qui achève la démonstration de la
proposition.

Proposition 7.7. Soient (vn) une suite croissante de fonctions
finement H2-hyperharmoniques ≥ 0 dans U, et soit v = supn vn. On a
alors V0(v) = supn V0(vn).

Démonstration. On a (V0(v), v) ∈ U+
f (U), et v ≥ vn, donc

(V0(v), vn) ∈ U+
f (U) pour tout n d’après la Proposition 7.4, donc V0(v) ≥

V0(vn) pour tout n, et par suite V0(v) ≥ supn V0(vn). D’autre part, on a
(supn V0(vn), supn vn) ∈ U+

f (U) pour tout n, d’après la Proposition 3.6,
donc (supn V0(vn), v) ∈ U+

f (U), d’où V0(v) ≤ supn V0(vn).

Pour toute fonction H1-surharmonique s ≥ 0 sur X, la fonction s −
1R̂

CU

s , est bien définie et finement H1-surharmonique dans le complémen-
taire dans U d’un ensemble H1-polaire. Elle se prolonge donc, en vertu du
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principe du prolongement par continuité fine, en une fonction de S1,+
f (U),

notée sU .
Soit VU le noyau borélien sur U défini par

VU(f) = V(f) − 1R̂
CU

V(f)|U

pour toute fonction borélienne f ≥ 0 sur U , où f est le prolongement de f

à X, nul dans CU , et V est le noyau du Théorème 2.5. On remarquera
que si U = X, alors VU = V.

Si ω est un ouvert fin de U , on notera Vω le noyau égal à Vδ dans
chaque composante finement connexe δ de ω.

On note S+
j (X), j = 1, 2, le cône des fonctions Hj-surharmoniques

≥ 0.
Posons

S ′
2(X) = {t ∈ S+

2 (X) : V(t) ∈ S+
1 (X)}.

Remarquons que si t ∈ S ′
2(X), alors V(t)U = VU(t|U).

Proposition 7.8. Soit t ∈ S ′
2(X). Alors la fonction finement

hyperharmonique pure d’ordre 2 associée à la restriction de t à U est
égale à V(t)U .

Démonstration. Soit q0 un H2-potentiel > 0 tel que V(q0) < +∞.
On a V(t)U = supn V(t ∧ nq0)U . D’après la Proposition 7.7, il suffit
de montrer que la fonction hyperharmonique pure d’ordre 2 associée à
(t∧nq0)|U est égale à V(t∧nq0)U , ce qui permet de se ramener au cas où
V(t) est finie. Le couple (V(t)U , t) est H-finement hyperharmonique ≥ 0
dans U . En effet, on a, pour tout ouvert fin δ ⊂ δ̄ ⊂ U et tout x ∈ δ,

∫
V(t)Udµδ

x +
∫

tdνδ
x ≤ V(t)(x) −

∫
1R̂

CU

V(t)|Udµδ
x =

= (V(t) − 1R̂
CU

V(t))(x),

car le couple (V(t), t) est finement H-hyperharmonique dans U et la fonc-
tion 1R̂

CU

V(t) est finement H1-harmoniques dans U d’après [12, Théorè-
me 10.2]. Soit u une fonction finement H1-surharmonique ≥ 0 dans U
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telle que le couple (u, t) soit finement H-surharmonique dans U , et soit u1

la fonction définie par

u1 =

{
min(u + 1R̂

CU

V(t),V(t)) dans U,

V(t) dans X \ U.

Alors, d’après le Théorème 3.10, le couple (u1, t) est finement H-surhar-
monique dans X. Or, comme t ≥ 0, la fonction u1 est finement H1-
surharmonique dans X, donc elle est H1-surharmonique dans X en vertu
du Théorème 9.8 de [12]. Il en résulte, d’après la définition des couples fi-
nement H-surharmoniques que (u1, t) est H-surharmonique dans X, d’où
u + 1R̂

CU

V(t)≥ V(t) et donc le résultat.

Lemme 7.9. Pour toute fonction s∈S2,+1
f (U) majorée par un élément

de S ′
2(X), il existe une suite croissante (tn) de fonctions de V(X) telle

que s = supn(tn)U .

Démonstration. Le lemme résulte aussitôt du Théorème 3 de [14].

Théorème 7.10. Pour toute fonction finement H2-hyperharmonique
v ≥ 0 dans U, VU(v) est la fonction hyperharmonique pure d’ordre 2
associée à v.

Démonstration. Soit s ∈ S ′
2(X). On a alors

s|U = sU + 2R̂
CU

t |U ,

d’où, d’après la Proposition 7.6,

V0(s|U) = V0(sU) + V0(2R̂
CU

s |U),

et, par suite, d’après la Proposition 7.8,

V0(sU) = V0(s|U) − V0(2R̂CU
s |U) =

= V(s)U − V(2R̂CU
s )U ,

q.p. dans U . D’autre part, un calcul facile donne

V(s)U − V(2R̂
CU

s )U = VU(sU) q.p.,
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d’où V0(tU) = VU(tU). En vertu de la Proposition 7.7, le théorème
découle maintenant du Lemme 7.9 et du fait que tout élément de U2,+

f (U)
est l’enveloppe supérieure d’une suite croissante de fonctions de S2,+

f (U)
majorées par des éléments de S ′

2(X).

Remarque. Si v est une fonction finement H2-hyperharmonique ≥ 0
dans un ouvert fin ω de U , alors la fonction finement hyperharmonique
pure d’ordre 2 associée à v est égale à Vω(v).

Le théorème suivant est une application du précédent:

Théorème 7.11. Si (u, v) est un couple finement H-surharmonique
localement borné inférieurement dans X, alors (u, v) est un couple surhar-
monique dans X.

Démonstration. Quitte à se placer localement, on peut supposer
que(u, v)≥0 dansX. Alors la fonction v est finement H2-hyperharmonique
≥ 0, donc H2-hyperharmonique dans X d’après [12, Théorème 9.8]. D’au-
tre part on a, d’après ce qui précède, u = V(v)+t, où t est une fonction fi-
nement harmonique ≥ 0, donc hyperharmonique dans X toujours d’après
[12, Théorème 9.8]. Maintenant le théorème résulte du fait que, dans le
cas où U = X, le noyau VU cöıncide avec le noyau V du Paragraphe 2.

Proposition 7.12. Soit (u, v) ∈ S+
f (U) un couple pur. Si v est un

H2-potentiel fin, alors (u, v) est un H-potentiel fin.

Démonstration. Soit (h, k) un couple finement H-hypoharmonique
dans U tel que 0≤(h, k)≤(u,v). Alors k est finement H2-hypoharmonique
≥ 0 et minore v, donc k = 0. On en déduit que h est finement H1-
hypoharmonique, donc le couple (u−h,v) est finement H-hyperharmonique
≥ 0, de sorte que u − h ≥ u, et par suite h = 0.

Maintenant on peut donner également quelques applications de la
Proposition 7.13. aux couples invariants.

Proposition 7.13. Si (h, k) est un couple invariant dans U, alors
k est une fonction H2-invariante dans U .
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Démonstration. En effet, si p est un H2-potentiel fin qui minore
spécifiquement k, alors le couple (h, p) est finement H-surharmonique
dans U et donc le couple (V0(p), p) est, d’après la proposition précédente,
un H-potentiel fin qui minore spécifiquement (h, k) d’après la Proposi-
tion 7.5, donc il est nul.

Comme en théorie des fonctions finement harmoniques, nous avons la

Proposition 7.14. Soit H = (h, k) un couple invariant dans U .
Alors H est finement H-harmonique dans le domaine fin ω = {x ∈
U ;h(x) + k(x) < +∞}.

Démonstration. En effet, comme la fonction k est H2-invariante
d’après la Proposition 7.13, elle est finement harmonique dans ω d’après
[12, Théorème 10.2]. La proposition découle maintenant de la Proposi-
tion 7.3. appliquée au couple (V(k), k) et du fait que la fonction fine-
ment H1-hyperhamonique u ≥ 0 dans U telle que h = u + V(k), qui
est évidemment H1-invariante, est finement H1-harmonique dans ω pui-
squ’elle est finie dans ω.

Proposition 7.15. Soit (u, v) ∈ S+
f (U) un couple pur. Alors, si v

est H2-invariante dans U, le couple (u, v) est H-invariant. En particulier
si v est finement H2-harmonique dans U, et si u est finie dans U, alors
le couple (u, v) est finement H-harmonique dans U .

Démonstration. Soit (p, q) un H-potentiel fin tel que (p, q) ≺
(u, v). On a alors q ≺ v, et comme v est H2-invariante et q est un
H-potentiel fin, on a q = 0, et par suite (u, v) = (u1, v) + (p, 0), où
(u1, v) ∈ S+

f (U). Mais alors on aura u1 ≥ u et donc p = 0 et le couple
(u, v) est invariant. Le reste de la proposition est évident.

8 – Problème de Riquier fin

Soit ω un ouvert fin de X. On note U i
f (ω) l’ensemble des couples

finement hyperharmoniques (u, v) dans ω tels qu’il existe un H-potentiel
semi-borné fini P = (p, q) tel que (u, v) ≥ −P .

Si (f, g) un couple de fonctions sur ∂fω, on pose

H
ω

(f,g)=inf{(u, v) ∈ U i
f (ω) : f− lim inf

x∈ω,x→y
(u, v)(x)≥(f(y), g(y)),∀y∈ ∂f (ω)}.

On pose aussi H
ω

(f,g) = (H
ω,1

(f,g), H
ω,2

(f,g)) et Hω
(f,g) = −H

ω

(−f,−g).
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Il est clair que le couple H
ω

(f,g) (resp. Hω
(f,g)) est un couple finement

H-hyperharmonique (resp. finement H-hypoharmonique) dans ω.
On dit qu’un couple (f, g) de fonctions sur ∂fω est résolutif (pour

le problème de Riquier fin) si on a Hω
(f,g) = H

ω

(f,g) et si ces couples sont
finement H-harmoniques dans ω; on les notera alors par Hω

(f,g).
Pour tout j =1, 2, et toute fonction f sur ∂fω, on note jH

ω

f (resp. jHω
f )

la sursolution (la sousolution) du problème de Dirichlet fin dans l’espace
harmonique (X,Hj) pour la donnée frontière f sur ∂fω.

Il résulte de la définition et des propriétés des couples finement H-
hyperharmoniques que l’on a H

ω,1

(f,0) = 1H
ω

f et H
ω,2

(f,g) = 2H
ω

g , avec les
notations de [12], p. 173, relatives au problème de Dirichlet fin.

Théorème 8.1. Soit (f, g) un couple de fonctions sur ∂fω. On a
alors

H
ω,1

(f,g) =
∫ ∗

fdµω
. +

∫ ∗
gdνω

. et H
ω,2

(f,g) =
∫ ∗

gdλω
. .

Démonstration. Le théorème se démontre comme dans le cas
finement harmonique ([12], preuve du Théorème 14.6), en utilisant le
Théorème 3.3.

Corollaire 1. Pour tout couple (f, g) de fonctions sur ∂fω, on a

H
ω

(f,g) = (1H
ω

f + H
ω,1

(0,g),
2 H

ω

g ).

Corollaire 2. Un couple (f, g) de fonctions sur ∂fω est résolutif
si, et seulement si, pour tout x ∈ ω, f est µω

x -intégrable et g est νω
x -

intégrable et λω
x -intégrable.

Corollaire 3. Soit (u, v) ∈ U+
f (U) et ω un ouvert fin de X tel

que ω̃ ⊂ U, alors on a
H

ω

(u,v) = (u, v)ω|ω.
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On dit qu’un couple (f, g) de fonctions sur une partie A de X est
borné par un H-potentiel P si on a (|f |, |g|) ≤ P sur A.

Corollaire 4. Soit (f, g) un couple de fonctions boréliennes, borné
sur ∂fω par un H-potentiel semi-borné fini. Alors (f, g) est résolutif.

Théorème 8.2. Supposons que l’ouvert fin ω est H-régulier et soit
(f, g) un couple de fonctions finement continues sur ∂fω, borné par un
H-potentiel semi-borné fini. On a alors

f− lim
x∈ω→y

Hω
(f,g)(x) = (f(y), g(y))

pour tout y ∈ ∂fω.

Démonstration. Quitte à ajouter à (f, g) un H-potentiel semi-
borné fini, on peut supposer que le couple (f, g) est ≥ 0. D’après le
théorème précédent et le Théorème 14.6 de [12], on a Hω

(f,g) = (1Hω
f +

Hω,1
(0,g),

2Hω
g ). Or, on sait d’après [12, Théorème 14.7], que pour tout

y∈ ∂fω, f-limx∈ω,x→y
1Hω

f (x)= f(y) et f-limx∈ω,x→y
2Hω

g (x) = g(y), donc
f-lim infx∈ω,x→y Hω

(f,g)(x) ≥ (f(y), g(y)). Soit sirt P un H-potentiel semi-
borné fini tel que (f, g) ≤ P sur ∂fω, alors en appliquant ce qui précède
au couple P − (f, g), on obtient f-lim supx∈ω,x→y Hω

(f,g)(x) ≤ (f(y), g(y)),
et le théorème est donc démontré.

Proposition 8.3. Si g est une fonction ≥ 0 sur ∂fω, alors H
ω,1

(0,g)

est la fonction hyperharmonique pure d’ordre 2 associée à 2H
ω

g dans ω.

Démonstration. Si (u, v) ∈ U i
f (ω) tel que f-lim inf(u, v) ≥ (0, g)

sur ∂fω, alors v ≥ 2H
ω

g , et donc u ≥ Vω(2H
ω

g ), d’où l’inégalité H
ω,1

(0,g) ≥
Vω(2H

ω

g ). D’autre part, on peut trouver une suite décroissante (vn) de
fonctions de S2,+

f (ω) telle que infn vn = 2H
ω

g . On a alors H
ω

(0,g) ≤
infn(Vω(vn), vn) = (Vω(2H

ω

g ), 2H
ω

g ), donc H
ω,1

(0,g) ≤ Vω(2H
ω

g ).

Théorème 8.4. Soient ω un ouvert fin régulier tel que ω̃ ⊂ U, et

(u, v) ∈ U+
f (U). On a alors (u, v)ω = (̂u, v)

Cω

.
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Démonstration. Soit (s, t) ∈ U+
f (U) tel que (s, t) ≥ (u, v) sur

Cω. Alors, pour tout x ∈ ω, on a, d’après le Théorème 3.3, s(x) ≥∫ ∗
sdµω

x +
∫ ∗

tdνω
x et t(x) ≥

∫ ∗
tdλω

x , et donc s(x) ≥
∫ ∗

udµω
x +

∫ ∗
vdνω

x

et t(x) ≥
∫ ∗

vdλω
x , car les mesures µω

x , νω
x et λω

x sont portées par ∂fω.

Donc (̂u, v)
Cω

≥ (u, v)ω. L’inégalité inverse résulte du Corollaire 2 de la
Proposition 3.13.

9 – Fonctions finement biharmoniques

Lemme 9.1. Pour tout ouvert fin ω de X tel que ω ⊂ X et tout
x ∈ ω, on a

∫
dνω

x > 0.

Démonstration. D’après le Théorème 8.1, le couple (
∫

dνω
. , 1) est

finement surharmonique ≥ 0, non identiquement nul dans toute compo-
sante finement connexe de ω, donc

∫
dνω

x > 0 pour tout x ∈ ω.

Considérons maintenant la famille D(U) des fonctions f finies fine-
ment continues sur U telles que la limite

Lf(x) = lim
ω↓x

f(x) −
∫

f(y)dµω
x(y)∫

dνω
x (y)

existe et soit finie pour tout x ∈ U (la fraction
f(x)−

∫
f(y)dµω

x (y)∫
dνω

x (y)
est bien

définie lorsque ω ⊂ X d’après le lemme précédent).

Definition 9.2. Une fonction f finement continue sur U est dite
finement H-biharmonique (ou simplement finement biharmonique) dans
U si f ∈ D(U) et si Lf est finement H2-harmonique dans U .

La proposition suivante met en évidence le lien qui existe entre la
notion de fonction finement harmonique au sens de la Définition 9.1 et la
notion de couple finement biharmonique:

Proposition 9.3. Soit (u, v) un couple finement biharmonique
dans un ouvert fin U . Alors u ∈ D(U) et Lu = v.
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Démonstration. Soient x ∈ U et ε > 0. Comme v est finement
continue, il existe un ouvert fin ω0 ⊂ U , x ∈ ω0, tel que |v(x) − v(y)| < ε

pour tout y ∈ ω0. Alors, pour tout ouvert fin ω ⊂ ω ⊂ ω0, x ∈ ω, on a

|u(x) −
∫

udµω
x − v(x)

∫
dνω

x | < ε

∫
dνω

x ,

donc u ∈ D(U) et Lu = v.

Corollaire. Soit (u, v) un couple finement biharmonique dans un
ouvert fin U . Alors u et finement biharmonique dans U .
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A kinetic approach to studying the asymptotic

behaviour of convection-diffusion equations

R. CAVAZZONI

Abstract: We present a new approach to the study of the large time behaviour
of solutions to the Cauchy problem: ∂u

∂t
=

∂2u

∂x2
− up−1 ∂u

∂x
x ∈ IR, t > 0;

u(x, 0) = u0(x) x ∈ IR.

where p ≥ 2 and u0(x) ≥ 0.

1 – Introduction and main results

The aim of this paper is to show how kinetic methods can be used in
the study of the long time behaviour of the solution to Cauchy problems
for convection-diffusion equations having the form:

(1)


∂u

∂t
=

∂2u

∂x2
− up−1 ∂u

∂x
x ∈ IR, t > 0,

u(x, 0) = u0(x), x ∈ IR.

where p ≥ 2 and u0 is a nonnegative function from L1(IR). More precisely,

Key Words and Phrases: Large-time behaviour – Convection-diffusion equations –
Kinetic theory – Diffusion wave.
A.M.S. Classification: 35K55 – 35B40
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we prove that there exists a function u∞ such that, for every q ∈ [1,∞),

(2) lim
t→+∞

(2t + 1)1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0.

In 1950, Hopf [7] found an explicit regular solution to the viscous Burg-
ers equation, i.e. equation (1) with p = 2. His proof makes use of the so
called Hopf-Cole transformation, which turns the viscous Burgers equa-
tion into a linear heat equation. More recently, useful estimates on the
Lr-norm of the solution to (1) have been derived (see [11] or [5]). In
particular, the Lr(IR) to Lq(IR) smoothing properties of (1) have been
shown to be exactly the same as the standard heat equation. In 1987,
Chern and Liu [4] studied the large time behaviour of solutions of vis-
cous conservation laws. In 1991, Escobedo and Zuazua [5] analysed the
large time behaviour of solutions to the Cauchy problem for convection-
diffusion equations. The main result of [5] tells us that if p = 2, then the
general solution u = u(x, t) to (1) behaves like the self-similar solution as
t → +∞.

In the case where p > 2, it is proved in [5] that for every r ∈ [1,∞]

(3) ‖ u(·, t) − G(·, t) ‖Lr−→ 0 as t → +∞,

where G is the heat kernel. These results have been obtained by a di-
rect application of standard estimates for the heat kernel and by decay
estimates in the integral equation associated with (1).

Related results on the long time behaviour of nonnegative solutions
of nonlinear diffusion equations are contained e.g. in [6], [8], [11], [12],
[13].

Our main purpose here is the use of a completely different approach to
investigate the asymptotic behaviour of diffusion equations. The underly-
ing idea of our approach is derived from the H-theorem of kinetic theory
of rarefied gases [3]. In the last years the derivation of diffusion equa-
tions as a hydrodynamic limit of particles models has been a well studied
subject in kinetic theory [3]. In this paper we shall look for a suitable
functional to describe the evolution of the solution to problem (1), in a
similar way as for the solution of the Boltzmann equation (see [3] and
references cited in [3]). The kinetic approach has been recently applied
by Carrillo and Toscani [2] for the N -dimensional porous medium
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equation: they have obtained the rate of convergence to equilibrium, by
an analysis of the time evolution of the entropy production.

In the present paper we consider the asymptotic behaviour of the
solution to (1) by techniques different from those of [5]. In particular, we
do not make use of Lq-estimates for the derivatives of the solution. We
study separately the cases p = 2 and p > 2. In the case where p = 2, we
construct a suitable functional to prove the convergence to equilibrium
by using the monotonicity in time of the functional. The result on the
large time behaviour of equation (1) is proved in the following theorem.

Theorem 1.1. Assume that p = 2 and

(4)
u0 ∈ L1(IR),

∫
IR

u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IR.

Let u be the solution to the Cauchy problem (1). Then for every q ∈ [1,∞)

lim
t→+∞

(2t + 1)1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)1/2

e
− x2

2(2t+1)

(2π)
1
2 A − 1

2

∫ x

(2t+1)1/2

−∞
e−y2/2dy

,

and A = e1/2

2(e1/2−1)
.

A variant of the techniques involved in the proof of Theorem 1.1
enables us to describe the large time behaviour of the solution to (1)
when p > 2. Indeed, we perform the same time dependent scaling. Let
us emphasize that the equation obtained after scaling has coefficients
depending on t. The convex functional, which represents the physical
entropy for the viscous Burgers equation, will be used to study the large
time behaviour also for p > 2. However, in this case the functional is not
monotone in time. Nevertheless, the specific form of the time derivative
allows us to identify the limit as a stationary solution to the Fokker-
Planck equation.
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Theorem 1.2. Assume that p > 2 and

(5)
u0 ∈ L1(IR),

∫
IR

u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IR.

Let u be the solution to the Cauchy problem (1). Then for every q ∈ [1,∞)

lim
t→+∞

(2t + 1)1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)1/2
γ exp

(
− x2

2(2t + 1)

)
,

and γ = (
∫
IR exp(−x2

2
)dx)−1.

The paper is organized as follows. In Section 2, we recall some known
results on the initial value problem (1) and we derive some bounds on the
solution. Section 3 is devoted to the study of the functional to which we
alluded above and to the proof of convergence results. In Section 4, we
describe the asymptotic behaviour of (1) when p ≥ 2, and conclude the
proofs of Theorems 1.1 and 1.2. In the last section, we prove that our
method can be applied to study the long time behaviour of the solution
to a class of convection-diffusion equations in IRN , with N > 1.

2 – Preliminaries

In the present section we recall some known results on the solution
to the Cauchy problem (1) and we prove some technical Lemmas.

Let us consider the Cauchy problem (1). Thanks to the results by
Hopf [7], we know that the viscous Burgers equation (i.e. equation (1)
with p = 2) admits the following regular solution.

Theorem 2.1. Let u0 ∈ L1(IR). Then

(6) u(x, t) =

∫ +∞

−∞

x − y

t
exp

{
−1

2

[
(x − y)2

2t
+
∫ y

0

u0 (η) dη

]}
dy

∫ +∞

−∞
exp

{
−1

2

[
(x − y)2

2t
+
∫ y

0

u0 (η) dη

]}
dy

,
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is a solution to the viscous Burgers equation for t > 0 and satisfies the
initial condition:

(7)
∫ x

0

u (ξ, t) dξ −→
∫ a

0

u0 (ξ) dξ as x → a and t → 0;

for every a ∈ IR. If u0 ∈ C (IR), then u(x, t) −→ u0(a) if x → a, t → 0.
Moreover, given any T > 0, the function u defined by (6) is the unique
regular solution to the viscous Burgers equation in the strip 0 < t < T ,
satisfying (7) for every a ∈ IR.

The solution to (1) given by (6) belongs to the space C ((0,∞);L1(IR)).
We shall make use of the following result of [5], on the existence of the
solution together with decay rates, for the initial value problem (1).

Theorem 2.2. Given u0 ∈ L1(IR), there exists a unique classi-
cal solution u ∈ C ([0,∞) ;L1(IR)) to (1), which satisfies the following
properties:

(i) for every q ∈ (1,∞), u ∈ C ((0,∞);W 2,q(IR))
⋂

C1 ((0,∞);Lq(IR)).
(ii) For every q ∈ [1,∞) , there exists a constant Cq = C (q, ‖u0‖1) such

that for every t > 0:

(8)

{
‖u(t)‖q ≤ Cqt

−1/2(1−1/q),

‖u(t)‖1 ≤ ‖u0‖1.

(iii) Let t0 be a nonnegative real number. Then there exists a positive
constant C∞ such that for every t ≥ t0:

(9) ‖u(t)‖∞ ≤ C∞t−1/2.

If p = 2, then

‖u(t)‖∞ ≤ C∞t−1/2,

for every t > 0.
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One can easily verify that the unique solution in C ([0,∞);L1(IR))
provided by Theorem 2.2 satisfies condition (6) of Theorem 2.1. Then
the unique solution to the viscous Burgers equation in C ([0,∞);L1(IR))
is the function given by (6).

Remark 2.1. Integrating equation (1) over all of IR, we obtain that
the total mass of solutions is preserved for every t > 0:

(10)
∫

IR

u(x, t)dx =
∫

IR

u0(x)dx.

With no loss of generality we assume that
∫

IR

u0(x)dx = 1.

Lemma 2.1. Consider equation (1) with p = 2. Let u be defined
by (6).

Then a real constant δ exists such that

(11) u(x, t) ≥ e−1/2

2t1/2
exp

(
−δ2

2t

)
exp

(
−x2

2t

)
,

for every t > 0.

Proof. Since
∫
IR u0(y)dy = 1, there exists a compact interval I ⊂ IR

such that
∫

I u0(y)dy ≥ 1
2
.

We have

(12)

∫ +∞

−∞
u0(y) exp

{
−1

2

[
(x − y)2

2t
+
∫ y

0

u0 (η) dη

]}
dy ≥

≥
∫

I

u0(y) exp

{
−1

2

[
(x − y)2

2t
+
∫ y

0

u0 (η) dη

]}
dy.

Set I = [−δ, δ], with δ ∈ IR.
Then:

(13)

∫
I

u0(y) exp

{
−1

2

[
(x − y)2

2t
+
∫ y

0

u0 (η) dη

]}
dy ≥

≥ exp
(
−1

2

)∫
I

u0(y) exp

{
−1

2
(x − y)2

2t

}
dy ≥

≥ 1
2

exp
(
−1

2
− δ2

2t

)
exp

(
−x2

2t

)
.
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Thus:

(14) u(x, t) ≥ A

t1/2
exp

(
−δ2

2t

)
exp

(
−x2

2t

)
;

where A = 1
2
exp(− 1

2
).

In the case where p > 2, we derive a similar estimate under an addi-
tional assumption on the initial value.

Lemma 2.2. Let p > 2. Assume that u0(x) ≥ M exp(− |x|2
2

) for
some positive constant M and for a.e. x ∈ IR. Then there exist positive
constants B and C such that

(15) u(x, t) ≥ Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

)
,

for every t > 1.

Proof. Let us define f : IR × [0,+∞) → IR as

f(x, t) =
M

(2(t + 1))1/2
exp(−αt) exp

(
− |x|2

2(t + 1)

)
,

for (x, t) ∈ IR × [0,+∞), where α is a positive constant to be chosen
later. We prove that the function f is a subsolution to the equation (1)
in IR × (0, 1). We have

f(x, 0) ≤ u0(x),

for every x ∈ IR. It is not difficult to see that

(16)
∂f

∂t
− ∂2f

∂x2
− fp−1 ∂f

∂x
≤
(

1
2(t + 1)

− α + βe−(p−1)αt Mp−1

(t + 1)p/2

)
f ;

where β = 2 1
2 maxz∈IR[−

√
2ze−z2(p−1)]. Then, if α > 1

2
+ βMp−1,

∂f

∂t
− ∂2f

∂x2
− fp−1 ∂f

∂x
≤ 0,

for (x, t) ∈ IR × (0, 1). As a consequence of the comparison principle
proved in [10], we obtain that for every x ∈ IR, u(x, 1) ≥ B exp(− |x|2

4
),

with B = M
2

e−α.
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Let us define g : IR × (0,+∞) → IR as

g(x, t) =
Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

)
,

where the positive constant C will be fixed later and (x, t) ∈ IR× [1,∞).
We have that for every x ∈ IR, u(x, 1) ≥ g(x, 1). Moreover,

(17)

∂g

∂t
− ∂2g

∂x2
− gp−1 ∂g

∂x
=

=

−C(p − 2)

2t
p−2
2 +1

− x

2t

(
Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

))p−1
 g ≤

≤
(
−C(p − 2)

2t
p
2

+
Bp−1β̄

tp/2

)
g;

where β̄ = 2
p−2
2 β.

If we choose C sufficiently large, then we obtain the last expression
is negative.

Therefore, due to the comparison principle, inequality (15) follows.

3 – Convergence results

We now look for solutions to (1) having the form:

(18) u(x, t) =
1

R(t)
v

(
x

R(t)
, L(t)

)
=

1
R(t)

v (y, τ) ;

where R(t), L(t) are unknown functions. Let us impose that the pre-
vious function satisfies (1) and determine what functions R(t), L(t) are
admissible, in such a way that the initial values of u and v are the same.

The time-dependent scaling and the use of a suitable functional are
the main novelty of our approach. Instead of working directly with equa-
tion (1), we analyse the asymptotic behaviour of the solution v to the
problem

(19)


∂v

∂τ
=

∂

∂x

[
∂v

∂x
+ yv − e−(p−2)τvp

]
y ∈ IR, τ > 0,

v(y, 0) = v0(y) y ∈ IR.
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Indeed, it is easily seen that the solutions u and v to problems (1)
and (19), respectively, are related by

(20)
u(x, t) =

1

(2t + 1)1/2
v

(
x

(2t + 1)1/2
, log (2t + 1)1/2

)
,

v (y, τ) = eτu

(
yeτ ,

e2τ − 1
2

)
.

Let us notice that u0 = v0.
We shall prove below convergence results on studying separately the

following two cases: p = 2 and p > 2.

In Section 5, we shall extend the results for a class of convection-
diffusion equations in IRN .

3.1 – Case p = 2

We introduce a suitable functional for the Fokker-Planck type equa-
tion (19). We shall prove the time monotonicity of the functional and its
decay to zero as τ → +∞, in order to study the asymptotic decay to a
fixed equilibrium state v∞ of the solution to (19).

We first derive the equilibrium state v∞, by looking for a stationary
solution to (19):

(21)
∂v∞

∂y
+ yv∞ − v2

∞ = 0,

i.e.:

(22) v∞(y) =
e−y2/2

(2π)
1
2

e1/2

2 (e1/2 − 1)
− 1

2

∫ y

−∞
e−s2/2ds

,

where v∞ is positive and
∫

IR

v∞(y)dy = 1.

Notice that v∞ = v1, where, in accordance with the result proved
in [1], v1 is the unique self-similar solution to (1) with a smooth profile
verifying

(23)
∂

∂x′

[
∂v1

∂x′ + x′v1 − v2
1

]
= 0.
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Since u ∈ C ((0,∞);W 2,q(IR))
⋂

C1 ((0,∞);Lq(IR)) for every q ∈
(1,∞), by Theorem 2.2, the solution v to the Cauchy problem (19), be-
longs to the same class.

Moreover, ‖v(·, τ)‖∞ ≤ C∞ for every τ > 0. Thanks to Lemma 2.1,
we have, as τ > 0,

(24)


(P1)

∫
IR

v(y, τ)dy = 1;

(P2) v(y, τ) ≥ 2 1
2 eτe−1/2

2 (e2τ − 1)
1
2

exp
(
− 2δ2

e2τ − 1

)
exp

(
− y2e2τ

e2τ − 1

)
.

Let us prove the following preliminary result.

Lemma 3.1. Let v be the solution to (19). Then

(25)
∫

IR

(
v(y, τ)
v∞(y)

− 1 − log
v(y, τ)
v∞(y)

)
e−y2/2dy < +∞,

for every τ > 0.

Proof. Thanks to (P2), fixed any δ > 0, we have:

(26)
v(y, τ)
v∞(y)

≥ C(δ) exp
[(

− e2τ

e2τ − 1
+

1
2

)
y2

]
= C(δ) exp(−γy2),

for every τ > δ > 0, for some positive constant γ. Moreover,

(27) − log
v(y, τ)
v∞(y)

< − log
(
C(δ) exp(−γy2)

)
< γy2 − log C(δ).

Thus,

(28)
0 ≤

(
v(y, τ)
v∞(y)

− 1 − log
v(y, τ)
v∞(y)

)
e−y2/2 <

< C̄v(y, τ) +
(
−1 + γy2 − log C(δ)

)
e−y2/2,

where C̄ is a positive constant. Thus (25) follows.
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Let us introduce now the following functional, which represents the
physical relative entropy for the viscous Burgers equation.

Definition 3.1. For every solution v to (19), let L : IR+ → IR be
defined as

(29) L (τ) =
∫

IR

(
v(y, τ)
v∞(y)

− 1 − log
v(y, τ)
v∞(y)

)
e−y2/2dy.

The main property of L in connection with our discussion is that L

is a monotone non increasing function of τ when v is the solution to (19).

Lemma 3.2. Let v be the solution to (19). Then for every τ > 0,

(30) lim
|y|→+∞

(
1

ṽ∞
− 1

ṽ

)(
∂v

∂y
+ yv − v2

)
= 0,

where ṽ∞(y) = ey2/2v∞(y) and ṽ(y, τ) = ey2/2v(y, τ).

Proof.

Let us divide the proof in two steps.
1) We prove that

(31) lim
|y|→+∞

1
ṽ∞

(
∂v

∂y
+ yv − v2

)
= 0.

Since v(·, τ) ∈ W 2,q(IR), for every τ > 0 and for every q, with 1 < q < ∞,
then:

lim
|y|→+∞

v(y, τ) = lim
|y|→+∞

∂v

∂y
(y, τ) = 0.

Moreover, ṽ−1
∞ is bounded. Thanks to formula

(32) u(t) = G(t) ∗ u0 −
∫ t

0

∇G(t − s) ∗ u2(s)ds,

we have
lim

|x|→+∞
xu(x, t) = 0,

for t > 0.
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Hence,
lim

|y|→+∞
yv(y, τ) = 0.

2) Let us prove now that

(33) lim
|y|→+∞

1
ṽ

(
∂v

∂y
+ yv − v2

)
= 0.

Making use of the previous integral formula (32) for the solution to
(1) yields ∂u

∂x
:

(34)

∂u

∂x
=

1
(4πt)1/2

∫
IR

−x − y

2t
e−

(x−y)2

4t u0(y)dy+

+
∫ t

0

1
4π(t − s)

∫
IR

1
2(t − s)

e
− (x−y)2

4(t−s) u2(y, s)ds+

−
∫ t

0

1
4π(t − s)

∫
IR

(x − y)2

4(t − s)2
e
− (x−y)2

4(t−s) u2(y, s)ds.

Owing to the lower bound of Lemma 2.1, we have that

(35)
1
u

∣∣∣∣∂u

∂x

∣∣∣∣ exp
(
− x2

2(2t + 1)

)
≤
∣∣∣∣∂u

∂x

∣∣∣∣ t1/2e1/t exp
(

x2

4t(2t + 1)

)
.

Therefore,

(36) lim
|x|→+∞

1
u

∣∣∣∣∂u

∂x

∣∣∣∣ exp
(
− x2

2(2t + 1)

)
= 0.

Thus, on performing the time dependent scaling, we get the conclu-
sion.

Let us now prove the time monotonicity of the relative entropy L.

Lemma 3.3. Let v be the solution to (19) and let L be defined
by (29). Then

d

dτ
L (τ) ≤ 0,

for τ > 1.
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Proof. It is easily seen from formula (32) that ∂v
∂τ

∈ L1(IR).
Integration by parts yields:

(37)

d

dτ

∫
IR

(
v

v∞
− 1 − log

v

v∞

)
e−y2/2dy =

=
∫

IR

(
1

v∞
− 1

v

)
∂v

∂τ
e−y2/2dy =

=
∫

IR

(
1

ṽ∞
− 1

ṽ

)
∂ṽ

∂τ
e−y2/2dy =

=
∫

IR

(
1

ṽ∞
− 1

ṽ

)
∂

∂y

[
ṽ2e−y2/2 ∂

∂y

(
1

ṽ∞
− 1

ṽ

)]
dy =

=
(

1
ṽ∞

− 1
ṽ

)(
∂v

∂y
+ yv − v2

)∣∣∣∣+∞

−∞
+

−
∫

IR

ṽ2e−y2/2

(
∂

∂y

(
1

ṽ∞
− 1

ṽ

))2

dy.

Thus, thanks to Lemma 3.2, we have

(38)
dL

dτ
= −

∫
IR

ṽ2e−y2/2

(
∂

∂y

(
1

ṽ∞
− 1

ṽ

))2

dy ≤ 0,

for τ > 1.

Let I be the function from IR+ into IR given by

(39) I(τ) = − d

dτ
L (τ) .

Remark 3.1. Thanks to Lemma 3.3,

∫ +∞

δ

I(s)ds = L(δ) − L(∞) < +∞,

for any δ > 1. Since I(τ) ≥ 0 for τ > 1, then there exists a sequence
τk → +∞ such that I(τk) → 0 as k → +∞.
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Let us define vk : IR → IR as

vk(y) = v(y, τk), k ∈ N.

Proposition 3.1. A real constant c exists such that if w∞ is the
function defined by 1

w∞
= 1

v∞
+ c, then the sequence of functions (vk)k∈N

converges a.e. in IR to w∞ as k → +∞.

Proof. Thanks to the previous remark and to (P2)

lim
k→+∞

∫
IR

e−2y2
(

∂

∂y

(
1

ṽ∞
− 1

ṽk

))2

dy = 0.

Consequently,

∂

∂y

(
1
ṽk

− 1
ṽ∞

)
−→ 0, strongly in L2

loc(IR).

Since 1
ṽk

is a bounded sequence of functions in L2
loc(IR), then there

exists a function w∞ such that

1
ṽk

−→ 1
w̃∞

, strongly in W 1,2
loc (IR);

as k → +∞ and

∂

∂y

(
1

w̃∞

)
=

∂

∂y

(
1

ṽ∞

)
, a.e. y ∈ IR.

Hence,
1

w̃∞
=

1
ṽ∞

+ c;

for some constant c ∈ IR; therefore

(40) w∞(y) =
e−

y2

2

c + (2π)
1
2

e1/2

2 (e1/2 − 1)
− 1

2

∫ y

−∞
e−

s2

2 ds

.

Since vk > 0, we have w∞ > 0.
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3.2 – Case p > 2

After performing the time-dependent scaling (20) in equation (1) as
p > 2, we study the large time behaviour of the solution to (1).

As a consequence of the results in Theorem 2.2, we have that
‖v(·, τ)‖L∞ ≤ C∞, for every τ ≥ τ0 and thanks to Lemma 2.2,

(41)


(P1′)

∫
IR

v(y, τ)dy = 1;

(P2′) v(y, τ) ≥ 2 1
2 eτBe−C

(e2τ − 1)
1
2

exp

(
2(p−2)/2C

(e2τ − 1)(p−2)/2

)
exp

(
− |y|2e2τ

e2τ − 1

)
;

where the constants B, C have been defined in Lemma 2.2.
We shall prove in this case that the large time behaviour of the solu-

tion v is determined by the following equation:

(42)
∂v

∂τ
=

∂2v

∂y2
+

∂

∂y
(yv).

We refer to (42) as the Fokker-Planck equation associated to (1) in
the case where p > 2.

A stationary solution to (42) is given by the function:

(43) v̄∞(y) = γ exp
(
−y2

2

)
,

where γ is a constant. Let us choose γ in such a way

(44)
∫

IR

γ exp
(
−y2

2

)
dy = 1.

In the present section we prove that the large time behaviour of (1)
is given by the function v̄∞.

Similarly as the case of the viscous Burgers equation, we define the
following convex nonnegative functional.

Definition 3.2. Let v be the solution to (19). Let L be the function
from IR+ into IR given by

(45) L (τ) =
∫

IR

(
v(y, τ)
v̄∞(y)

− 1 − log
v(y, τ)
v̄∞(y)

)
e−|y|2/2dy.
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Lemma 3.4. If v is a solution to (19), then

L (τ) < +∞.

Moreover

Lemma 3.5. Let v be the solution to (19). Then

(46) lim
|y|→+∞

(
1

v̄∞
− 1

v

)(
∂v

∂y
+ yv − e−(p−2)τvp

)
e−|y|2/2 = 0,

for every τ > 0.

The proofs of Lemmas 3.4 and 3.5 follow the same lines as those of
Lemmas 3.1 and 3.2, respectively and will be omitted for brevity.

Lemma 3.6. Let L be defined as in (45). Then

(47)

dL

dτ
=

= −
∫

IR

(
v−2e−|y|2/2

(
∂v

∂y
+yv

)2
−v−2e−|y|2/2

(
∂v

∂y
+ yv

)
e−(p−2)τvp

)
dy,

for τ > 0.

Proof. Thanks to formula

(48) u(t) = G(t) ∗ u0 −
1
p

∫ t

0

∇G(t − s) ∗ up(s)ds,

we have on integrating by parts,

(49)

d

dτ

∫
IR

(
v

v̄∞
− 1 − log

v

v̄∞

)
e−|y|2/2dy =

=
∫

IR

(
1

v̄∞
− 1

v

)
∂v

∂τ
e−|y|2/2dy =

= e−|y|2/2

(
1

v̄∞
− 1

v

)(
∂v

∂y
+ yv − e−(p−2)τvp

)∣∣∣∣+∞

−∞
+

−
∫

IR

(
v−2e−|y|2/2

(
∂v

∂y
+yv

)2
+v−2e−|y|2/2

(
∂v

∂y
+yv

)
e−(p−2)τvp

)
dy.
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Lemma 3.7. Set v(y, τj) = vj(y), where j ∈ IN. Let v be the solution
to (19). Then there exists a sequence (vk)k∈IN such that:

(50) lim
k→+∞

∫
IR

vk
−2e−|y|2/2

(
∂vk

∂y
+ yvk

)2

dy = 0.

Proof. Let us suppose by contradiction it does not exist a sequence
(τk)k in such a way that

lim
k→+∞

∫
IR

vk
−2e−|y|2/2

(
∂vk

∂y
+ yvk

)2

dy = 0.

Let I be the function I : IR+ → IR defined by

(51)
I (τ) =

∫
IR

v−2e−|y|2/2

(
∂v

∂y
+ yv

)2

dy+

+
∫

IR

v−2e−|y|2/2

(
∂v

∂y
+ yv

)
e−(p−2)τvpdy.

On integrating by parts and making use of the L∞-norm estimates
for the function v, we deduce that the second integral in (51) tends to 0
as τ → +∞. Therefore, there exists T > 0 such that for every τ > T

I (τ) > 0.

Moreover, dL
dτ

≤ 0 as τ > T ; then∫ ∞

T

Ids = L(T ) − L(∞) < ∞.

Thus we can find a sequence (τj)j∈IN such that I(τj) → 0 as j → +∞ and
we have a contradiction.

The proof of the following result follows the same lines as the proof
of Proposition 3.1.

Proposition 3.2. A real constant C exists in such a way that if
w̄∞is the function defined by w̄∞ = Cv̄∞, then the sequence of functions
(vk)k∈N converges a.e. in IR to w̄∞.
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4 – Proofs of Theorems 1.1 and 1.2.

Let us begin with the proof of the following inequality, which allows
us to obtain the decay of the function v towards the equilibrium v∞ as
τ → +∞.

Lemma 4.1. Let v be the solution to (19) and w∞ be a positive
function. Assume there exist positive constants θ1, θ2 such that θ1e

−y2/2 <

w∞(y) < θ2e
−y2/2, a.e. y ∈ IR. Then for every τ > 0

(52) ‖v(·, τ)−w∞(·)‖2
L1(IR)≤B̃

∫
IR

(
v(y, τ)
w∞(y)

−1− log
v(y, τ)
w∞(y)

)
e−|y|2/2dx,

where B̃ = B̃(‖v‖1, θ1, θ2) is a suitable positive constant.

Proof. Let α ∈ IR, α > 2e2. Let us fix τ > 0 and define the
following set:

Aτ =
{

x ∈ IR :
v(y, τ)
w∞(y)

>
α

2

}
.

Let us denote by f the function:

f : [1,+∞) → IR, : f(z) = z − 1 − 2 log(z).

We have that f(z) > 0 for every z > α
2
.

Thus,

(53)

∫
Aτ

(v − w∞) dy =
∫

Aτ

(
v

w∞
− 1

)
w∞dy ≤

≤
∫

Aτ

(
v

w∞
− 1

)
θ2e

−y2/2dy ≤

≤
∫

Aτ

2θ2

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy .

Since

(54)
0 ≤

∫
Aτ

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy ≤

≤
∫

Aτ

v

w∞
e−y2/2dy ≤ 1

θ1

,
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we have that:

(55)
(∫

Aτ

(v − w∞) dy

)2

≤ 2θ2

θ1

∫
Aτ

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy.

Set Bτ = IR\Aτ and define the function

g : IR+ → IR, g(z) = (z − 1)2 − α(z − 1 − log z).

One can verify that g(z) ≤ 0 if 0 < z ≤ α
2
. Hence, for any given τ > 0,

(56)
(

v

w∞
− 1

)2

e−y2/2 ≤ α

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2,

for y ∈ Bτ , and

(57)

(∫
Bτ

(v − w∞) dy

)2

≤
∫

Bτ

θ2
2e

−y2/2dy

∫
Bτ

(
v

w∞
− 1

)2

e−y2/2dy ≤

≤ θ2
2 (2π)1/2

∫
Bτ

(
v

w∞
− 1

)2

e−y2/2dy.

Then

(58)
‖v(·, τ) − w∞(·)‖2

L1(IR) ≤

≤
(

θ2
2 (2π)1/2

α +
2θ2

θ1

)∫
IR

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy,

if τ > 0.

Let us prove now Theorem 1.1 to state the large time behaviour of
the solution to (1) in the case where p = 2.

Proof of Theorem 1.1. As a consequence of Proposition 3.1, we
obtain by Lebesgue theorem that as k → +∞,

(59)
∫

IR

(
v(y, τk)
w∞(y)

− 1 − log
v(y, τk)
w∞(y)

)
e−y2/2dy → 0.

Thanks to the result of Lemma 4.1 and Proposition 3.1, we have that
‖v(·, τk)−w∞(·)‖L1(IR) −→ 0, as k → +∞. It follows that ‖w∞(·)‖L1(IR) =1
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and w∞ = v∞. Since for every τ > 0, ‖v(·, τ)‖∞ ≤ C∞, we have by
interpolation that

lim
τ→+∞

‖v − v∞‖Lp(IR) = 0;

as 1 < p < ∞.
After performing the time-dependent scaling, we get the conclu-

sion.

We prove now the main result on the large time behaviour of the
solution to (1) as p > 2.

In contrast to the case where p = 2, we are not able to define a
suitable functional L, which is monotone non increasing in time. Never-
theless, one can prove that

∫
IR( v(y,τ)

v̄∞(y)
− 1− log v(y,τ)

v̄∞(y)
)e−y2/2dy converges to

zero as τ → +∞.

Proof of Theorem 1.2. Thanks to the inequality of Lemma 4.1
and to Proposition 3.2, we deduce that w̄∞ = v̄∞. Let us prove now that
the function L (τ) converges to zero as τ → +∞.

Step 1. The function I is continuous in τ , thanks to the results of
Theorem 2.1. We have to consider the following three cases:

1) there exists T > 0 such that I(τ) ≥ 0 for every τ ≥ T ; then L is a
Lyapunov functional and the conclusion follows as for the case where
p = 2.

2) There exists T > 0 such that I(τ) ≤ 0 for every τ > T . It follows
that:

(60)
0 ≤

∫
IR

v−2e−y2/2

(
∂v

∂y
+ yv

)2

dy ≤

≤ −
∫

IR

v−2e−y2/2

(
∂v

∂y
+ yv

)
1

e(p−2)τ
vpdy.

Thus, on integrating by parts in the last integral of (60), we have

lim
τ→+∞

∫
IR

v−2e−y2/2

(
∂v

∂y
+ yv

)2

dy = 0.

3) The function I(τ) changes the sign as τ ∈ [0,∞). Let (τi)i∈I ∈ [0,∞)
such that I(τi) = 0. Suppose I(τ) > 0 as τ ∈ [τi−1, τi) and I(τ) ≤ 0
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as τ ∈ [τi, τi+1]. Then L(τi−1) ≥ L(τ) ≥ 0 for τ ∈ [τi−1, τi) and
L(τi+1) ≥ L(τ) ≥ 0 as τ ∈ [τi, τi+1].

As a consequence of I(τi) = 0, we have that L(τi) → 0 as τi → +∞.
Thanks to the previous inequalities, L(τ) → 0 as τ → +∞.

Step 2. Thanks to the inequality proved in Lemma 4.1, we obtain
the result of Theorem 1.2 in a similar way as in the case where p = 2 if
the intial value u0 satisfies the assumption of Lemma 2.2.

By density argument the result can be proved in the general case.
The solution to the Cauchy problem (1) satisfies indeed the following
L1(IR)-contraction property proved in [5]:

‖u(·, t) − ū(·, t)‖1 ≤ ‖u0 − ū0‖1,

for every t ≥ 0. Consider now a nonnegative initial value u0 ∈ L1(IR) and
approximate u0 in L1(IR) by a sequence of functions (u0,n)n∈IN ⊂ L1(IR)
such that u0,n(x) ≥ Mn exp(−x2

2
), a.e. x ∈ IR, where Mn are positive

constants. Let un be the solution to (1) with initial value u0,n. Thanks
to the result on the long time behaviour of un and the L1(IR)-contraction
property, we get the conclusion.

5 – Concluding remarks

Consider the following class of convection-diffusion equations in IRN :

(61)


∂u

∂t
= &u − a · ∇(up) x ∈ IRN , t > 0,

u(x, 0) = u0(x), x ∈ IRN .

where p > 1 + 1
N

, N > 1; a ∈ IRN and u0 is a nonnegative function from
L1(IRN).

In the present section we will prove that our procedure can be used
in the study of the long time behaviour of the solution to Cauchy prob-
lem (61).

Given u0 ∈ L1(IRN ), there exists a unique classical solution u ∈
C([0,∞); L1(IRN)) to (61), which satisfies the following properties
(see [5]):
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(i) for every q∈(1,∞), u∈C((0,∞);W 2,q(IRN))
⋂

C1((0,∞);Lq(IRN));
(ii) for every q ∈ [1,∞), there exists a constant Cq = C(q, ‖u0‖1) such

that for every t > 0:

(62)

{
‖u(t)‖q ≤ Cqt

−N/2(1−1/q),

‖u(t)‖1 ≤ ‖u0‖1.

(iii) Let t0 be a nonnegative real number. Then there exists a positive
constant C∞ such that for every t ≥ t0:

(63) ‖u(t)‖∞ ≤ C∞t−N/2.

By studying the problem in a similar way as the case where p > 2
and N = 1, we can prove the following result.

Theorem 5.1. Assume that p > 1 + 1
N

and

(64)
u0 ∈ L1(IRN),

∫
IRN

u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IRN .

Let u be the solution to the Cauchy problem (61). Then for every
q ∈ [1,∞)

lim
t→+∞

(2t + 1)N/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IRN ) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)N/2
γ exp

(
− x2

2(2t + 1)

)
,

and γ = (
∫
IRN exp(−x2

2
)dx)−1.
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We just give an outline of the proof.
Proof. Let us divide the proof in the following four steps.

Step 1. Following the same procedure of the proof of Lemma 2.2,
we prove that if u0(x) ≥ M exp(− |x|2

2
) for some positive constant M and

for a.e. x ∈ IRN , then there exist positive constants B and C such that

(65) u(x, t) ≥ Be−C

tN/2
exp

(
C

t
N(p−1)−1

2

)
exp

(
−|x|2

4t

)
,

for every t > 1.

Step 2. After performing a time-dependent scaling, we study the
long time behaviour of the solution to the following problem:

(66)


∂v

∂τ
= ∇ · [∇v + yv − ae−(pN−N−1)τvp] y ∈ IRN , τ > 0,

v(y, 0) = v0(y) y ∈ IRN .

Notice that the solutions u and v to problems (61) and (66) respec-
tively, are related by

(67)
u(x, t) =

1

(2t + 1)N/2
v

(
x

(2t + 1)1/2
, log (2t + 1)1/2

)
,

v (y, τ) = eNτu

(
yeτ ,

e2τ − 1
2

)
.

The large time behaviour of the solution to (66) is determined by the
following equation:

(68)
∂v

∂τ
= &v + ∇ · (yv).

A stationary solution is given by the function:

(69) v̄∞(y) = γ exp
(
−|y|2

2

)
,

where γ is a constant. We fix γ in such a way that

(70)
∫

IRN
γ exp

(
−|y|2

2

)
dy = 1.
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Step 3. Similarly as the case of the viscous Burgers equation, we
define a nonnegative functional. Let v be the solution to (66). Let L be
the function from IR+ into IR given by

(71) L (τ) =
∫

IRN

(
v(y, τ)
v̄∞(y)

− 1 − log
v(y, τ)
v̄∞(y)

)
e−|y|2/2dy.

One can prove that if v is a solution to (66), then L (τ) < +∞.

Moreover, if v is the solution to (66), then

(72) lim
|yi|→+∞

(
1

v̄∞
− 1

v

)(
∂v

∂yi

+ yiv − aie
−(Np−N−1)τvp

)
e−|y|2/2 = 0,

for every τ > 0 and i = 1, ..., N .
Consider L defined above. On integrating by parts, we prove that

(73)

dL

dτ
= −

∫
IRN

N∑
i=1

(
v−2e−|y|2/2

(
∂v

∂yi

+ yiv

)2

+

− v−2e−|y|2/2

(
∂v

∂yi

+ yiv

)
aie

−(Np−N−1)τvp

)
dy,

for τ > 0.

Set v(y, τj) = vj(y), where j ∈ IN. Let v be the solution to (66).
Then there exists a sequence (vk)k∈IN such that:

(74) lim
k→+∞

N∑
i=1

∫
IRN

vk
−2e−|y|2/2

(
∂vk

∂yi

+ yivk

)2

dy = 0.

Let us suppose by contradiction that it does not exist a sequence
(τk)k in such a way that

lim
k→+∞

N∑
i=1

∫
IRN

vk
−2e−|y|2/2

(
∂vk

∂yi

+ yivk

)2

dy = 0.

Let I be the function I : IR+ → IR defined by

(75)

I (τ) =
N∑

i=1

∫
IRN

v−2e−|y|2/2

(
∂v

∂yi

+ yiv

)2

dy+

+
N∑

i=1

∫
IRN

v−2e−|y|2/2

(
∂v

∂yi

+ yiv

)
aie

−(Np−N−1)τvpdy.



[25] A kinetic approach to studying the asymptotic etc. 187

On integrating by parts and making use of the L∞-norm estimates
for the function v, we deduce that the second integral in (75) tends to 0
as τ → +∞. Therefore, there exists T > 0 such that for every τ > T

I (τ) > 0.

Moreover,
dL

dτ
≤ 0 as τ > T ; then

∫ ∞

T

Ids = L(T ) − L(∞) < ∞.

Thus we can find a sequence (τj) such that I(τj) → 0 as j → +∞ and
we get a contradiction.

Similarly as the cases studied in Section 3, we can prove that there
exists a real constant C in such a way that if w̄∞ is the function defined
by w̄∞ = Cv̄∞, then the sequence of functions (vk)k∈N converges a.e. in
IRN to w̄∞.

Step 4. The inequality proved in Lemma 4.1 holds true even in the
case where the functions v and w∞ are defined in IRN . Moreover, the
conclusion of the proof of Theorem 5.1 is achieved by following the same
procedure as for the proof of Theorem 1.2 in Section 4.

We have tried to apply the method to study the long time behaviour

of the solution to (61) in the case where p = 1 +
1
N

and N > 1. Un-
fortunately we are not able to conclude the proof because of technical
difficulties due to the lack of informations about the qualitative proper-
ties of the self-similar solution to (61) (see [1]).
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