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Optimal and approximate control of

finite-difference approximation schemes for

the 1D wave equation

ENRIQUE ZUAZUA

Abstract: We address the problem of control of numerical approximation schemes
for the wave equation. More precisely, we analyze whether the controls of numerical
approximation schemes converge to the control of the continuous wave equation as the
mesh-size tends to zero.
Recently, it has been shown that, in the context of exact control, i.e., when the control
is required to drive the solution to a final target exactly, due to high frequency spurious
numerical solutions, convergent numerical schemes may lead to unstable approximations
of the control. In other words, the classical convergence property of numerical schemes
does not guarantee a stable and convergent approximation of controls.
In this article we address the same problem in the context of optimal and approximate
control in which the final requirement of achieving the target exactly is relaxed. We
prove that, for those relaxed control problems, convergence (as the mesh-size tends to
zero) holds. In particular, in the context of approximate control we show that, if the
final condition is relaxed so that the final state is required to reach and ε-neighborhood
of the final target with ε > 0, then the controls of numerical schemes (the so-called ε-
controls) converge to the ε-controls of the wave equation. We also show that this result
fails to be true in several space dimensions.
Although convergence is proved in the context of these relaxed control problems, the fact
that instabilities occur at the level of exact control have to be considered as a serious
warning in the sense that instabilities may ultimately arise if the control requirement
is reinforced to exactly achieve the final target, i.e., as ε is taken smaller and smaller.
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1 – Introduction

In recent years important progress has been made on problems of obser-
vation and control of wave phenomena. Much less is known about numerical
approximation schemes.

The problems of observability and controllability can be stated as follows:

• Observability. Assuming that waves propagate according to a given wave
equation and with suitable boundary conditions, can one guarantee that
their whole energy can be estimated in terms of the energy concentrated on
a given subregion of the domain (or its boundary) where propagation occurs
in a given time interval?

• Controllability. Can solutions be driven to a given state at a given final time
by means of a control acting on the system on that subregion?

It is well known that the two problems are equivalent provided one chooses an
appropriate functional setting, which depends on the equation (see for, instance,
[53], [83]).

But several different variants are meaningful and possible. In particular,
at the level of the controllability problem, one can consider several degrees of
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precision on the requirement of reaching the given target. For instance, one
can require the control to drive the solution to the target exactly, this is the
so-called exact controllability problem, or only in an approximate way, the so
called approximate controllability one. One may also formulate the problem in
the context of optimal control, minimizing a functional measuring the distance
to the target in a suitable class of admissible controls.

Each of these control properties can be interpreted by duality as a suitable
observability property. Obviously, stronger the control property under consider-
ation is, stronger the corresponding observability property will be as well.

In this work we shall mainly focus on the issue of how these two proper-
ties behave under numerical approximation schemes for two particular control
problems: optimal and approximate control. More precisely, we shall discuss
the problem of whether, as the mesh-size tends to zero, the controls of numerical
approximation schemes converge to the controls of the continuous wave equation.

This article is devoted to the wave equation as a simplified hyperbolic prob-
lem arising in many areas of Mechanics, Engineering and Technology. It is indeed,
a model for describing the vibrations of structures, the propagation of acoustic
or seismic waves, etc. Therefore, the control of the wave equation enters in a way
or another in problems related with control mechanisms for structures, buildings
in the presence of earthquakes, for noise reduction in cavities and vehicles, etc.

By now it is well known that, in the context of the exact controllability
problem, the answer to the question is negative in the sense that exact con-
trols of numerical approximation schemes may diverge as the mesh-size tends
to zero. This is due to the classical numerical dispersion phenomena. Indeed,
it is well known that the interaction of waves with a numerical mesh produces
dispersion phenomena and spurious(1) high frequency oscillations [76], [74]. In
particular, because of this nonphysical interaction of waves with the discrete
medium, the velocity of propagation of numerical waves and, more precisely, the
so called group velocity(2) may converge to zero when the wavelength of solu-
tions is of the order of the size of the mesh and the latter tends to zero. As
a consequence of this fact, the time needed to uniformly (with respect to the
mesh size) observe (or control) the numerical waves exactly from the boundary
or from a subset of the medium in which they propagate may tend to infinity

(1)The adjective spurious will be used to designate any component of the numerical
solution that does not correspond to a solution of the underlying PDE. In the context
of the wave equation, this happens at the high frequencies and, consequently, these
spurious solutions weakly converge to zero as the mesh size tends to zero. Consequently,
the existence of these spurious oscillations is compatible with the convergence (in the

classical sense) of the numerical scheme, which does indeed hold for fixed initial data.
(2)At the numerical level it is important to distinguish the notions of phase and group
velocity. Phase velocity refers to the velocity of propagation of individual monocromatic
waves, while group velocity corresponds to the velocity of propagation of wave packets,
that may significantly differ from the phase velocity when waves of similar frequencies
are combined. See, for instance, [74].
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as the mesh becomes finer. This is the reason for the unstable behavior of the
control and observation properties of most numerical approximation schemes as
the mesh-size tends to zero.

But that happens, as mentioned above, for the problems of exact observa-
tion and control. Exact observation means that the total energy of solutions is
reconstructed from partial measurements uniformly, independently of the solu-
tion. Exact control means that one wishes to drive the solution exactly to a final
target.

The main goal of this article is to show that when these requirements are
relaxed, and one considers the problems of approximate and/or optimal control,
then instabilities disappear and classical numerical schemes provide convergent
approximations of controls.

In this paper we first briefly describe why numerical dispersion and spurious
high frequency oscillations are an obstacle for the convergence of exact controls.

We then address the problems of approximate and optimal control. We
prove, combining classical results on the convergence of numerical schemes and
Γ-convergence arguments, that controls converge for the relaxed optimal and
approximate control problems.

All we have said up to now concerning the wave equation can be applied
with minor changes to several other models that are purely conservative like
Schrödinger and beam equations (see the survey article [87] for a comparison
between these models and their behavior in what concerns numerics and control).

However, many models from physics and mechanics have some damping
mechanism built in. When the damping term is “mild” the qualitative proper-
ties are the same as those we discussed above. However, some other dissipative
mechanisms may have much stronger effects. This is for instance the case for the
thermal effects arising in the heat equation itself but also in some other more
sophisticated systems, like the system of thermoelasticity. Roughly speaking one
may say that the strong damping mechanisms help for the convergence of con-
trols of numerical schemes. There is actually an extensive literature on optimal
control of parabolic equations that confirms this fact [44], [68], [75], . . . . We also
refer to E. Casas [9] for the analysis of finite-element approximations of elliptic
optimal control problems and to [17] for an optimal shape design problem for
the Laplace operator. But this has been done mainly in the context of optimal
control and very little is known about the controllability issues that we address
in this paper (we refer to [87] for a discussion of this topic and for a list of related
open problems). For instance, as we shall see, in several space dimensions, the
problem of analyzing the behavior of approximate controls for the heat equation
is mainly open too.

Most of the analysis we shall present here has been also developed in the
context of a more difficult problem, related to the behavior of the conserva-
tion/control properties in homogenization. There, the coefficients of the wave
equation oscillate rapidly on a scale δ that tends to zero, so that the equation
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homogenizes to a constant coefficient one. In that framework the interaction of
high frequency waves with the microstructure produces localized waves at high
frequency. These localized waves are an impediment for the uniform observa-
tion/control properties to hold. But, once more, this impediments do not arise
if the control requirement is relaxed [12] and [48]. This was already observed
in the context of homogenization and approximate control of the heat equation
in [84]. The analogies between both problems (homogenization and numerical
approximation) are clear: the mesh size h in numerical approximation schemes
plays the role of the parameter δ in homogenization (see [85] and [14] for a dis-
cussion of the connection between these problems). Although the analysis of the
numerical problem is much easier from a technical point of view, it was only de-
veloped after the problem of homogenization was understood. This is due in part
to the fact that, from a control theoretical point of view, there was a conceptual
difficulty to match the existing finite-dimensional and infinite-dimensional theo-
ries. This article may also be viewed as a further step in that direction showing
that although the instabilities do arise at the level of exact control, optimal and
approximate control problems ate often well-behaved.

This paper is mainly concerned with finite-difference numerical approxima-
tion schemes for 1D wave equations but the results and techniques extend easily
to most common numerical approximation schemes, like finite-element methods,
and also to fully discrete approximations. As we shall see, however, interesting
open problems arise in several space dimensions where the questions under in-
vestigation exhibit new and not completely understood geometrical aspects. The
rest of this paper is organized as follows.

In Section 2 we recall the basic ingredients of the finite-dimensional theory
we will need along the paper. In particular we shall introduce the Kalman rank
condition.

Section 3 is devoted to presenting and discussing the problems of observabil-
ity and controllability for the constant coefficient wave equation. In Section 4
we discuss the finite-difference space semi-discretization of the 1D wave equa-
tion and recall the main results on the lack of controllability and observability.
We also comment on some remedies and cures that have been introduced in the
literature to avoid these instabilities.

In Section 5 and 6 we show that numerical approximation schemes are well
behaved if the control requirement is relaxed to an approximate or optimal con-
trol problem, respectively. In Section 7 we briefly discuss the problem of stabi-
lization. Finally, in Section 8 we formulate an interesting open problem related
with the extension of the results in this paper to several space dimensions.

The interested reader is referred to the survey articles [81] and [83] for a
more complete discussion of the state of the art in the controllability of partial
differential equations and to [87] for what concerns numerical issues.
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2 – Preliminaries on finite-dimensional systems

Most of this article is devoted to analyze the wave equation and its numerical
approximations. Numerical approximation schemes and more precisely those
that are semi-discrete (discrete in space and continuous in time) yield finite-
dimensional systems of ODE’s. There is by now an extensive literature on the
control of finite-dimensional systems and the problem is completely understood
for linear ones [50]. The problem of convergence of controls as the mesh-size in
the numerical approximation tends to zero is very closely related to passing to
the limit as the dimension of finite-dimensional systems tends to infinity. The
later topic is widely open and this article may be considered as a contribution
in this direction.

In this section we briefly summarize the most basic material on finite-
dimensional systems that will be used along this article (we refer to [59] for
more details).

Consider the finite-dimensional system of dimension N :

(2.1) x′ + Ax = Bv, 0 ≤ t ≤ T ; x(0) = x0,

where x is the N -dimensional state and v is the M -dimensional control, with
M ≤ N .

Here A is an N×N matrix with constant real coefficients and B is an M×N
matrix. The matrix A determines the dynamics of the system and the matrix B
models the way controls act on it.

Obviously, in practice, it would be desirable to control the N components
of the system with a low number of controls. The best would be to do it by
means of a scalar control, in which case M = 1. This is typically the situation
when dealing with the boundary control of numerical approximation schemes of
the 1D wave equation.

System (2.1) is said to be controllable in time T when every initial datum
x0 ∈ IRN can be driven to any final datum x1 in IRN in time T and, more
precisely, if for any x0, x1 ∈ IRN there exists v ∈ L2(0, T ; IRM ) such that the
solution of (2.1) satisfies

(2.2) x(T ) = x1.

It turns out that for finite-dimensional systems there is a necessary and sufficient
condition for controllability which is of purely algebraic nature. It is the so called
Kalman condition: System (2.1) is controllable in some time T > 0 iff

(2.3) rank[B, AB, . . . , AN−1B] = N.

According to this, in particular, system (2.1) is controllable in some time T
if and only if it is controllable for all time.
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There is a direct proof of this result which uses the representation of so-
lutions of (2.1) by means of the variation of constants formula. However, the
methods we shall develop along this article rely more on the dual (but completely
equivalent!) problem of observability of the adjoint system.

Consider the adjoint system

(2.4) −ϕ′ + A∗ϕ = 0, 0 ≤ t ≤ T ; ϕ(T ) = ϕ0.

It is not difficult to see that system (2.1) is controllable in time T if and only
if the adjoint system (2.4) is observable in time T , i.e. if there exists a constant
C > 0 such that, for all solution ϕ of (2.4),

(2.5) | ϕ0 |2≤ C

∫ T

0

| B∗ϕ |2 dt.

Before analyzing (2.5) in more detail let us see that this observability inequality
does indeed imply controllability of the state equation.

Assume the observability inequality (2.5) holds and consider the following
quadratic functional J : IRN → IR :

(2.6) J(ϕ0) =
1
2

∫ T

0

| B∗ϕ(t) |2 dt− < x1, ϕ0 > + < x0, ϕ(0) > .

It is easy to see that, if ϕ̃0 is a minimizer for J , then the control v = B∗ϕ̃,
where ϕ̃ is the solution of the adjoint system (2.4) with that datum at time
t = T , is such that the solution x = x(t) of the state equation satisfies the
control requirement (2.2). Indeed, it is sufficient to write down explicitly the
fact that the differential of J at the minimizer vanishes.

Thus, the controllability problem is reduced to minimizing the functional J .
Applying the Direct Method of the Calculus of Variations it can be shown that J
achieves its minimum since the functional J is continuous and convex and it is
also coercive according to the observability inequality (2.5). Indeed, note that
when (2.5) holds the following variant holds as well, with possibly a different
constant C > 0:

(2.7) | ϕ0 |2 + | ϕ(0) |2≤ C

∫ T

0

| B∗ϕ |2 dt.

This gives a constructive way of building the controls, as a minimum of J .
The coercivity of J requires the Kalman condition (2.3) to be satisfied. The

rank condition (2.3) turns out to be equivalent to the adjoint one

(2.8) rank[B∗, B∗A∗, . . . , B∗[A∗]N−1] = N.
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To see the equivalence between (2.7) and (2.8) let us note that, since we are
in finite-dimension, using that all norms are equivalent(3), the observability in-
equality (2.7) is equivalent to a uniqueness property:

(2.9) (UP) Does the fact that B∗ϕ ≡ 0 for all ≤ t ≤ T imply that ϕ ≡ 0?

And, as we shall see, this uniqueness property is precisely equivalent to the
adjoint Kalman condition (2.8).

Remark 2.1. Before proving this statement we note that B∗ϕ is only an
M -dimensional projection of the solution ϕ who has N components. Therefore,
in order for this property (UP) to be true the operator B∗ has to be chosen in
a strategic way, depending of the state matrix A. The Kalman condition is the
right test to check whether the choice of B∗ (or B) is appropriate.

Let us finally prove that the uniqueness property (UP) holds when the
adjoint rank condition (2.8) is fulfilled. In fact, taking into account that solutions
ϕ are analytic in time, the fact that B∗ϕ vanishes is equivalent to the fact that
all the derivatives of B∗ϕ of any order at time t = T vanish. But the solution ϕ
admits the representation ϕ(t) = eA∗(t−T )ϕ0 and therefore all the derivatives of
B∗ϕ at time t = T vanish if and only if B∗[A∗]kϕ0 ≡ 0 for all k ≥ 0. According to
the Cayley-Hamilton’s theorem this is equivalent to the fact that B∗[A∗]kϕ0 ≡ 0
for all k = 0, . . . , N − 1. Finally, the latter is equivalent to ϕ0 ≡ 0 (i.e. ϕ ≡ 0)
if and only if the adjoint Kalman rank condition (2.8) is fulfilled.

Remark 2.2. It is important to note that in this finite-dimensional context,
the time T of control plays no role. In particular, whether a system is controllable
(or its adjoint observable) is independent of the time T of control.

Remark 2.3. In the finite-dimensional context of this section we have only
considered the problem of exact controllability. This is so since, in this case,
approximate and exact controllability are equivalent properties. Approximate
controllability refers to the situation in which the set of reachable states is dense
in the space where solutions live. In this case, since we are in IRN , this is
equivalent to the fact that the set of reachable states in the whole IRN and this
is precisely when exact controllability holds. The dual version of this equivalence
property reads as follows: in finite-dimensions, the observability inequality (2.5)
holds if and only if the uniqueness property (UP) is satisfied. None of these
equivalences hold in general for infinite-dimensional dynamical systems.

The main task to be undertaken in order to pass to the limit in numerical
approximations of control problems for wave equations as the mesh-size tends
to zero is to explain why, even though at the finite-dimensional level the value

(3)This is the key point where finite and infinite dimensional systems behave so differ-
ently in what concerns controllability problems.
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of the control time T is irrelevant, it may play a key role for the controllabil-
ity/observability of the continuous PDE, as it is for instance the case in the
context of the wave equation due to the finite speed of propagation.

3 – The constant coefficient wave equation

3.1 – Problem formulation: Observability

Let us consider the constant coefficient 1D wave equation:

(3.1)


utt − uxx = 0, 0 < x < 1, 0 < t < T

u(0, t) = u(1, t) = 0, 0 < t < T

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1.

In (3.1) u = u(x, t) describes the displacement of a vibrating string occupying
the interval (0, 1).

The energy of solutions of (3.1) is conserved in time, i.e.

(3.2) E(t) =
1
2

∫ 1

0

[
|ux(x, t)|2 + |ut(x, t)|2

]
dx = E(0), ∀0 ≤ t ≤ T.

The problem of continuous boundary observability of (3.1) can be formulated,
roughly, as follows: to give sufficient conditions on the length of the time inter-
val T such that there exists a constant C(T ) > 0 so that the following inequality
holds for all solutions of (3.1):

(3.3) E(0) ≤ C(T )
∫ T

0

|ux(1, t)|2 dt.

This corresponds to the exact controllability property of the wave equation with
control on x = 1 we shall discuss in the next subsection.

Inequality (3.3), when it holds, guarantees that the total energy of a solution
can be “observed” or estimated from the energy concentrated or measured on
the extreme x = 1 of the string during the time interval (0, T ) uniformly in the
whole class of solutions of (3.1).

Here and in the sequel, the best constant C(T ) in inequality (3.3) will be
referred to as the observability constant.

Of course, one can formulate a weakened version of this observability prop-
erty which consists simply on the following uniqueness problem:

(3.4) If the solution u of (3.1) is such that ux(1, t)≡0 for 0≤ t≤T, then u≡0?

When this uniqueness property holds, we say that the system (3.1) is weakly
observable. Of course, since we are now dealing with a PDE and therefore we are
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necessarily in the context of an infinite dimensional dynamical system, unlike
in the previous section, the fact that this uniquenes property holds does not
automatically guarantee that the observability inequality (3.3) holds as well.

Remark 3.1. This is just an example of a variety of similar observability
problems. Among its possible variants, the following are worth mentioning: (a)
one could observe the energy concentrated on the extreme x = 0 or in the two
extremes x = 0 and 1 simultaneously; (b) the L2(0, T )-norm of ux(1, t) could be
replaced by some other norm, (c) one could also observe the energy concentrated
in a subinterval (α, β) of the space interval (0, 1) occupied by the string, etc.

3.2 – Exact controllability

As we mentioned above, the observability problem above is equivalent to a
boundary controllability one(4). More precisely, the observability inequality (3.3)
holds, if and only if, for any

(
y0, y1

)
∈ L2(0, 1) × H−1(0, 1) there exists v ∈

L2(0, T ) such that the solution of the controlled wave equation

(3.5)


ytt − yxx = 0, 0 < x < 1, 0 < t < T

y(0, t) = 0; y(1, t) = v(t), 0 < t < T

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1

satisfies

(3.6) y(x, T ) = yt(x, T ) = 0, 0 < x < 1.

Remark 3.2. Needless to say, in this control problem the goal is to drive
solutions to equilibrium at the time t = T . Once the configuration is reached at
time t = T , the solution remains at rest for all t ≥ T , by taking null control for
t ≥ T , i.e. v ≡ 0 for t ≥ T .

Remark 3.3. It is convenient to note that (3.1) is not, strictly speaking,
the adjoint of (3.5). The initial data for the adjoint system should be given at
time t = T . But, in view of the time-irreversibility of the wave equations under
consideration this is irrelevant. Obviously, one has to be more careful about this
when dealing with time irreversible systems as the heat equation.

Let us check first that observability implies controllability since the proof
is of a constructive nature and allows to build the control of minimal norm
(L2(0, T )-norm in the present situation) by minimizing a convex, continuous
and coercive functional in a Hilbert space. In the present case, given

(
y0, y1

)
∈

(4)We refer to J. L. Lions [53] for a systematic analysis of the equivalence between con-

trollability and observability through the so called Hilbert Uniqueness Method (HUM).
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L2(0, 1) × H−1(0, 1) the control v ∈ L2(0, T ) of minimal norm for which (3.6)
holds is of the form

(3.7) v(t) = u∗
x(1, t),

where u∗ is the solution of the adjoint system (3.1) corresponding to initial data
(u0,∗, u1,∗) ∈ H1

0 (0, 1) × L2(0, 1) minimizing the functional,

(3.8) J((u0, u1)) =
1
2

∫ T

0

|ux(1, t)|2dt +
∫ 1

0

y0u1dx− < y1, u0 >H−1×H1
0
,

in the space H1
0 (0, 1) × L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)×L2(0, 1) is guaran-

teed by the fact that the solutions of (3.1) satisfy the extra regularity property
that ux(1, t) ∈ L2(0, T ) (a fact that holds also for the Dirichlet problem for the
wave equation in several space dimensions, see [45], [53], [54]). More, precisely,
for all T > 0 there exists a constant C∗(T ) > 0 such that

(3.9)
∫ T

0

[
|ux(0, t)|2 + |ux(1, t)|2

]
dt ≤ C∗(T )E(0),

for all solution of (3.1).
Thus, in order to guarantee that the functional J achieves its minimum, it

is sufficient to prove that it is coercive. This is guaranteed by the observability
inequality (3.3).

Once coercivity is known to hold the Direct Method of the Calculus of
Variations (DMCV) allows showing that the minimum of J over H1

0 (0, 1) ×
L2(0, 1) is achieved. By the strict convexity of J the minimum is unique and
we denote it, as above, by (u0,∗, u1,∗) ∈ H1

0 (0, 1) × L2(0, 1), the corresponding
solution of the adjoint system (3.1) being u∗.

The functional J is of class C1. Consequently, the gradient of J at the
minimizer vanishes and this is equivalent to

(3.10)
∫ 1

0

y(T )wt(T )dx− < yt(T ), w(T ) >H−1×H1
0
= 0,

for all (w0, w1) ∈ H1
0 (0, 1)×L2(0, 1), w being the corresponding solution of (3.1).

Obviously, this condition is equivalent to the exact controllability one (y(T ) ≡
yt(T ) ≡ 0) since, whenever (w0, w1) covers the whole space H1

0 (0, 1) × L2(0, 1),
(w(T ), wt(T )) does it as well.

This argument shows that continuous observability implies controllability.
The reverse is also true.

The main difference with respect to finite-dimensional systems is that the
unique continuation property (3.4) does not imply the observability inequality
to hold.
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3.3 – Approximate controllability

Let us now discuss the control theoretical consequences of the weak observ-
ability or unique continuation property (3.4), a property that holds when T ≥ 2
too. When this property holds the system is approximately controllable which
means that, for all ε > 0 there is a control vε in L2(0, T ) such that the solution
satisfies

(3.11) [‖ yε(x, T ) ‖2
L2(0, 1) + ‖ yt(x, T ) ‖2

H−1(0, 1)]
1/2 ≤ ε.

The control satisfying (3.11) can be built as above but this time the functional
to be minimized has to be slightly perturbed(5):

(3.12)
Jε((u0, u1)) =

1
2

∫ T

0

| ux(1, t) |2 dt + ε ‖ (u0, u1) ‖H1
0 (0,1)×L2(0,1) +

+
∫ 1

0

y0u1dx −
∫ 1

0

y1u0dx.

In [21] it was proved, in the context of the approximate controllability of the heat
equation, that adding the ε-term in the functional Jε guarantess its coercivity as
a direct consequence of the weak observability property, without requiring the
observability inequality to hold.

The same is true in the present case: if weak observability holds then the
functional Jε satisfies the coercivity property

(3.13) lim
‖(u0, u1)‖

H1
0
(0, 1)×L2(0, 1)→∞

Jε(u0, u1)
‖ (u0, u1) ‖H1

0 (0,1)×L2(0,1)

≥ ε.

Moreover the functional Jε achieves its minimum at a single point (u0,∗, u1,∗) of
H1

0 (0, 1)×L2(0, 1). The control v = u∗
x(1, t) is then such that (3.11) is satisfied.

Remark 3.4. In the present 1D case both the unique continuation and ob-
servability inequality hold if and only if T ≥ 2. But, in several space dimensions,
the observability inequality requires of further geometric constrainst. More pre-
cisely, it is required that the so-called Geometric Control Condition (GCC) is
satisfied by the subset of the boundary where observation is being made (see
[4]). Recall that, roughly speaking, GCC consists on requiring that all rays of
Geometric Optics enter the control region in a time which is less than the control
time.

(5)Here and in the sequel −
∫ 1

0
y1u0dx denotes the duality pairing between u0 ∈ H1

0 (0, 1)

and y1 ∈ H−1(0, 1).
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3.4 – Observability

The following holds:

Proposition 3.1. For any T ≥ 2, system (3.1) is observable. In other
words, for any T ≥ 2 there exists C(T ) > 0 such that (3.3) holds for any solution
of (3.1). Conversely, if T < 2, (3.1) is not observable, or, equivalently,

(3.14) sup
u solution of (3.1)

 E(0)∫ T

0

| ux(1, t) |2 dt

 = ∞.

The proof of observability for T ≥ 2 can be carried out in several ways. The
simplest one uses the Fourier representation of solutions [87] but it is insufficient
to deal with multidimensional problems. In several space dimensions one may
use multipliers (Komornik, [45]; Lions, [53]), Carleman inequalities (Zhang,
[79]), and microlocal tools (Bardos et al., [4]; Burq and Gérard, [7]).

On the other hand, for T < 2 the observability inequality does not hold,
due to the finite speed of propagation (= 1 in the model under consideration).

Summarizing, Proposition 3.1 states that, in one space dimension, a neces-
sary and sufficient condition for the observability (both in its strong and weak
version) to hold is that T ≥ 2.

4 – 1D Finite-difference semi-discretizations

In this section we discuss the observability/controllability properties of a
semi-discrete finite-difference approximation of the wave equation. This problem
arises naturally in the numerical approximation of controls.

We describe the following results, of negative nature:

• The observability constant for the semi-discrete model tends to infinity for
any T as the mesh-size h tends to zero.

• There are initial data for the wave equation for which the exact controls of
the semi-discrete models diverge as h → 0, This proves that one can not
simply rely on the classical convergence (consistency + stability) analysis of
the underlying numerical schemes to design stable algorithms for computing
the controls.

We also briefly recall some of the basic cures that have been developed in
the literature to avoid this high frequency numerical pathologies.
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4.1 – Finite-difference approximations

Let us now formulate these problems and state the corresponding results in
a more precise way.

Given N ∈ N we define h = 1/(N + 1) > 0. We consider the mesh

(4.1) x0 = 0; xj = jh, j = 1, . . . , N ; xN+1 = 1,

which divides [0, 1] into N + 1 subintervals Ij = [xj , xj+1], j = 0, . . . , N.
Consider the following finite difference approximation of the wave equa-

tion (3.1):

(4.2)


u′′

j − 1
h2

[uj+1 + uj−1 − 2uj ] = 0, 0 < t < T, j = 1, . . . , N

uj(t) = 0, j = 0, N + 1, 0 < t < T

uj(0) = u0
j , u′

j(0) = u1
j , j = 1, . . . , N.

Observe that (4.2) is a coupled system of N linear differential equations of sec-
ond order. The function uj(t) provides an approximation of u(xj , t) for all
j = 1, . . . , N, u being the solution of the continuous wave equation (3.1). The
conditions u0 = uN+1 = 0 reproduce the homogeneous Dirichlet boundary con-
ditions, and the second order differentiation with respect to x has been replaced
by the three-point finite difference.

We shall use a vector notation to simplify the expressions. Then, sys-
tem (4.2) reads as follows

(4.3)
{

�u ′′(t) + Ah�u(t) = 0, 0 < t < T

�u(0) = �u0, �u ′(0) = �u 1

where the matrix A is given by:

(4.4) Ah =
1
h2


2 −1 0 0

−1
. . . . . . 0

0
. . . . . . −1

0 0 −1 2

 ,

and the column vector

(4.5) −→u (t) =

 u1(t)
...

uN (t)


represents the whole set of unknowns of the system.
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The solution −→u of (4.3) depends also on h but often this will not be made
explicit in the notation.

The energy of the solutions of (4.2),

(4.6) Eh(t) =
h

2

N∑
j=0

[
| u′

j |2 +
∣∣∣∣uj+1 − uj

h

∣∣∣∣2
]

,

is constant in time. It is a natural discretization of the continuous energy (3.2).
The problem of observability of system (4.2) can be formulated as follows:

to find T > 0 and Ch(T ) > 0 such that

(4.7) Eh(0) ≤ Ch(T )
∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt

holds for all solutions of (4.2).
Observe that | uN/h |2 is a natural approximation of | ux(1, t) |2 for the

solution of the continuous system (3.1). Indeed ux(1, t) ∼ [uN+1(t) − uN (t)]/h
and, taking into account that uN+1 = 0, it follows that ux(1, t) ∼ −uN (t)/h.

System (4.2) is finite-dimensional. Therefore, if observability holds for some
T > 0, then it holds for all T > 0 as we have seen in Section 2.

Inequality (4.7) does indeed hold for all T > 0 and h > 0. This can be seen
analyzing the Kalman rank condition.

4.2 – Non uniform observability

But the observability constant Ch(T ) diverges as h → 0. To see this let us
consider the eigenvalue problem

(4.8) − [wj+1 + wj−1 − 2wj ] /h2 = λwj , j = 1, . . . , N ; w0 = wN+1 = 0.

The spectrum can be computed explicitly in this case (Isaacson and Keller
[4.2]), the eigenvalues and eigenvectors being

(4.9) λh
k =

4
h2

sin2

(
kπh

2

)
and

(4.10) �w h
k = (wk,1, . . . , wk,N )T : wk,j = sin(kπjh), k, j = 1, . . . , N.

Obviously,

(4.11) λh
k → λk = k2π2, as h → 0
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for each k ≥ 1, λk = k2π2 being the k-th eigenvalue of the continuous wave
equation (3.1). On the other hand we see that the eigenvectors �w h

k of the discrete
system (4.8) coincide with the restriction to the mesh-points of the eigenfunctions
wk(x) = sin(kπx) of the continuous wave equation (3.1).

The main negative result on the lack of uniform (as h → 0) observability
inequality is as follows [39], [40]:

Theorem 4.1. For any T > 0 it follows that, as h → 0,

(4.12) sup
u solution of (4.2)

 Eh(0)∫ T

0

| uN/h |2 dt

 → ∞.

This negative result is a consequence of the following identity

(4.13) h

N∑
j=0

∣∣∣∣wj+1 − wj

h

∣∣∣∣2 =
2

4 − λh2

∣∣∣wN

h

∣∣∣2
and the fact that

(4.14) λh
Nh2 → 4 as h → 0.

But, the fact that isolated eigenvectors are badly observed on the boundary
is not the only obstacle for the boundary observability property to be uniform
as the mesh-size tends to zero. Indeed, let us consider the following solution of
the semi-discrete system (4.2), constituted by the last two eigenvectors:

(4.15) �u =
1√
λN

[
exp(i

√
λN t)�wN − exp(i

√
λN−1t)�wN−1

]
.

This solution is a wave packet obtained as superposition of two monochromatic
semi-discrete waves corresponding to the last two eigenfrequencies of the sys-
tem. The total energy of this solution is of the order 1 (because each of both
components has been normalized in the energy norm and the eigenvectors are or-
thogonal one to each other). However, the trace of its discrete normal derivative
tend to zero in L2(0, T ) as h → 0. This is due to two facts.

• First, the trace of the discrete normal derivative of each eigenvector is of
order h compared to its total energy.

• Second and more important, the gap between
√

λN and
√

λN−1 is of the
order of h.
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Thus, by Taylor expansion, the difference between the two time-dependent
complex exponentials exp(i

√
λN t) and exp(i

√
λN−1t) is of the order Th.

This construction makes it possible to show that, whatever the time T is, the
observability constant Ch(T ) in the semi-discrete system is at least of order 1/h.
In fact, this idea but combining an increasing number of high eigenfrequencies,
can be used to show that the observability constant has to blow-up at infinite
order. We refer to [58] for a precise analysis of the exponential blow-up of the
observability constant.

The careful analysis of this negative example is extremely useful when de-
signing possible remedies, i.e., to determine how one could modify the numerical
scheme in order to reestablish the uniform observability inequality, since we have
only found two obstacles and both happen at high frequencies. The first rem-
edy is very natural: to cut off the high frequencies or, in other words, to ignore
the high frequency components of the numerical solutions. This Fourier filtering
method will be discussed later in some more detail. But let us first state the main
consequences of the negative results above on the lack of uniform controllability.

4.3 – On the lack of uniform controllability

We have shown that the uniform observability property of the finite differ-
ence approximations (4.2) fails for any T > 0. In this subsection we explain the
consequences of this result in the context of controllability.

The corresponding control system is:

(4.16)


y′′

j − 1
h2

[yj+1 + yj−1 − 2yj ] = 0, 0 < t < T, j = 1, . . . , N

y0(0, t) = 0; yN+1(1, t) = v(t), 0 < t < T

yj(0) = y0
j , y′

j(0) = y1
j , j = 1, . . . , N,

and the question we consider is whether, for a given T > 0 and given initial data
(�y 0, �y 1), there exists a control vh ∈ L2(0, T ) such that

(4.17) �y(T ) = �y ′(T ) = 0.

System (4.2) being observable for all h > 0 and T > 0, system (4.16) is control-
lable for all h > 0 and T > 0, too.

However, this does not mean that the controls will be bounded as h tends to
zero. In fact they diverge, even if T ≥ 2. More precisely, we have the following
main results:

• Taking into account that for all h > 0 the Kalman rank condition is satisfied,
for all T > 0 and all h > 0 the semi-discrete system (4.16) is controllable.
In other words, for all T > 0, h > 0 and initial data (�y 0, �y 1), there exists
v ∈ L2(0, T ) such that the solution �y of (4.16) satisfies (4.17). Moreover, the
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control v of minimal L2(0, T )-norm can be built as in Section 3. It suffices
to minimize the functional

(4.18) Jh((�u 0, �u 1)) =
1
2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt + h

N∑
j=1

y0
j u1

j − h

N∑
j=1

y1
j u0

j

over the space of all initial data (�u 0, �u 1) for the adjoint semi-discrete sys-
tem (4.2).
Of course, in view of the observability inequality (4.7), this strictly con-
vex and continuous functional is coercive and, consequently, has a unique
minimizer.
Once we know that the minimum of Jh is achieved, the control is easy to
compute. It suffices to take

(4.19) vh(t) = u∗
N (t)/h, 0 < t < T,

as control to guarantee that (4.17) holds, where �u ∗ is the solution of
the semi-discrete adjoint system (4.2), corresponding to the initial data
(�u 0,∗, �u 1,∗) that minimize the functional Jh.
The control we obtain in this way is optimal in the sense that it is the one
of minimal L2(0, T )-norm. We can also get an upper bound on its size.
Indeed, using the fact that Jh ≤ 0 at the minimum (which is a trivial fact
since Jh((0, 0)) ≤ 0), and the observability inequality (4.7), we deduce that

(4.20) ||vh||L2(0,T ) ≤ 4Ch(T )||(y0, y1)||∗,h,

where || · ||∗,h denotes the norm

(4.21) ||(y0, y1)||∗,h = sup
(u0

j
,u1

j
)j=1,... ,N

[∣∣∣∣h N∑
j=1

y0
j u1

j − h

N∑
j=1

y1
j u0

j

∣∣∣∣/E
1/2
h (u0, u1)

]
.

It is easy to see that this norm converges as h → 0 to the norm in L2(0, 1)×
H−1(0, 1). This norm can also be written in terms of the Fourier coefficients.
It becomes a weighted euclidean norm whose weights are uniformly (with
respect to h) equivalent to those of the continuous L2 × H−1-norm.

The estimate (4.20) is sharp and the constant Ch(T ) blows-up as h tends
to zero. This has important consequences on the limit behavior of the control
problem.

Indeed, according to Theorem 4.1, for all T > 0 the constant Ch(T ) di-
verges as h → 0. This shows, by the Banach-Steinhaus theorem, that there
are initial data for the wave equation in L2(0, 1) × H−1(0, 1) such that the con-
trols of the semi-discrete systems vh = vh(t) diverge as h → 0. There are
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different ways of making this result precise. For instance, given initial data
(y0, y1) ∈ L2(0, 1)×H−1(0, 1) for the continuous system, we can consider in the
semi-discrete control system (4.16) the initial data that take the same Fourier
coefficients as (y0, y1) for the indices j = 1, . . . , N . It then follows that, because
of the divergence of the observability constant Ch(T ), there are necessarily some
initial data (y0, y1) ∈ L2(0, 1) × H−1(0, 1) for the continuous system such that
the corresponding controls vh for the semi-discrete system diverge in L2(0, T ) as
h → 0. Indeed, assume that for any initial data (y0, y1) ∈ L2(0, 1) × H−1(0, 1),
the controls vh remain uniformly bounded in L2(0, T ) as h → 0. Then, accord-
ing to the uniform boundedness principle, we would deduce that the maps that
associate the controls vh to the initial data are also uniformly bounded. But this
implies the uniform boundedness of the observability constant Ch(T ).

This lack of convergence is in fact easy to understand. As we have shown
above, the semi-discrete system generates a lot of spurious high frequency oscil-
lations. The control of the semi-discrete system has to take them into account.
When doing this it gets further and further away from the true control of the
continuous wave equation.

4.4 – Some remedies

Several remedies and cures have been proposed in the literature to avoid the
unstabilities that high frequency numerical spurious solutions introduce both at
the level of observation and control.

• Fourier filtering
Filtering consists on considering subclasses of solutions of the adjoint sys-
tem (4.2) constituted by the Fourier components corresponding to the eigen-
values λ ≤ γh−2 with 0 < γ < 4. This is equivalent to considering solutions
whose only nontrivial components are those corresponding to the indices
0 < j < δh−1 with 0 < δ < 1. In these subclasses of solutions the observ-
ability inequality becomes uniform, i.e. the observability constant does not
blow-up as h tends to zero. But for this to be true the time T of observability
needs to be taken large enough and the value of the optimal observability
time depends on the filtering parameters γ or δ. Note that these classes
of solutions correspond to taking projections of the complete solutions by
cutting off all frequencies with γh−2 < λ4h−2.
More precisely, solutions of (4.2) can be developed in Fourier series as fol-
lows:

(4.22) �u =
N∑

k=1

ak cos
(√

λh
kt

)
+

bk√
λh

k

sin
(√

λh
kt

) �w h
k
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where ak, bk are the Fourier coefficients of the initial data, i.e.,

�u 0 =
N∑

k=1

ak �w h
k , �u 1 =

N∑
k=1

bk �w h
k .

Given 0 < δ < 1, the classes of filtered solutions are of the form:

(4.23) Cδ(h)=
{
�u sol. of (4.2) s.t. �u=

[δ/h]∑
k=1

(
ak cos

(√
λh

kt

)
+

bk√
λh

k

sin
(√

λh
kt

))
�w h

k

}
.

The Fourier filtering is natural since the numerical scheme, which converges
in the classical sense, reproduces, at low frequencies, as h → 0, the whole
dynamics of the continuous wave equation. But, it also introduces a lot of
high frequency spurious solutions. The scheme then becomes more accurate
if we ignore the high frequency components and this makes the observability
inequality uniform provided the time is taken to be large enough.
To prove the uniform (as h → 0) observability result for filtered solutions
of system (4.2), it is sufficient to combine a sharp analysis of the spectrum
of the semi-discrete system under consideration and the classical Ingham
inequality in the theory of nonharmonic Fourier series (see Ingham [41]
and Young [77]). This analysis gives an explicit estimate of the optimal
observability time in the class Cδ(h) : T (δ) = 2/ cos(πδ/2). The minimal
time T (δ) of uniform observability in this subclasses of filtered solutions is
such that T (δ) → 2 as δ → 0 and T (δ) → ∞ as δ → 1, as one could expect.
At the level of control, these results imply the uniform controllability of the
projections of solutions of (4.16) over the subspace of the low eigenmodes
that have not been cutted-off. One can then pass to the limit and prove
the convergence towards the control of the continuous wave equation (3.5).
This is so because, as h tends to zero, regardless of the value of the filtering
parameter, one ends up recovering all the Fourier components of the state
on the controlled projection.
We refer to [87] for a more details on the algorithm of control based on
Fourier filtering.
In the context of the numerical computation of the boundary control for the
wave equation the need of an appropriate filtering of the high frequencies
was observed by R. Glowinski [29]. This issue was further investigated
numerically by M. Asch and G. Lebeau in [1]. There, finite difference
schemes were used to test the Geometric Control Condition in various ge-
ometrical situations and to analyze the cost of the control as a function
of time.
However, this method, which is natural from a theoretical point of view, can
be hard to implement in numerical simulations. Indeed, solving the semi-
discrete system provides the nodal values of the solution. One then needs
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to compute its Fourier coefficients and, once this is done, to recalculate the
nodal values of the filtered/truncated solution. Therefore, it is convenient
to explore other ways of avoiding these high frequency pathologies that do
not require going back and forth from the physical space to the frequency
one. Several other possibilities have been introduced and analyzed in the
literature. We mention them below.

• Tychonoff regularization
Glowinski et al. in [32] proposed a Tychonoff regularization technique that
allows one to recover the uniform (with respect to the mesh size) coercivity
of the functional that one needs to minimize to get the controls in the HUM
approach. The method was tested to be efficient in numerical experiments.
The convergence of the argument has been discussed in [87].

• A two-grid algorithm
Glowinski and Li in [31] introduced a two-grid algorithm that also makes
it possible to compute efficiently the control of the continuous model. The
method was further developed by Glowinski in [29].
The relevance and impact of using two grids can be easily understood in
view of the analysis above of the 1D semi-discrete model. In view of the
explicit expression of the eigenvalues of the semi-discrete system (4.9), all
of them satisfy

√
λ ≤ 2/h. We have also seen that the observability inequal-

ity becomes uniform when one considers solutions involving eigenvectors
corresponding to eigenvalues

√
λ ≤ 2γ/h, with γ < 1. Glowinski’s 2-grid

algorithm is based on the idea of using two grids: one with step size h and
a coarser one of size 2h. In the coarser mesh the eigenvalues obey the sharp
bound λ ≤ 1/h2. Thus, the oscillations in the coarse mesh that correspond
to the largest eigenvalues

√
λ ∼ 1/h, in the finer mesh are associated to

eigenvalues in the class of filtered solutions with parameter γ = 1/2. Then,
this corresponds to a situation where the observability inequality is uniform
for T large enough.
The convergence of this method has recently been proved rigorously in [64]
where the time of control was found to be T > 4, twice the control time for
the continuous wave equation.

• Mixed finite elements
An alternative approach consists in using mixed finite element methods
rather than finite differences or standard finite elements, which require some
filtering, Tychonoff regularization or multigrid techniques, as we have shown.
First of all, it is important to underline that the analysis we have developed
for the finite difference space semi-discretization of the 1D wave equation can
be carried out with minor changes for finite element semi-discretizations as
well. In particular, due to the high frequency spurious oscillations, uniform
observability does not hold [40]. It is thus natural to consider mixed finite
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element (m.f.e.) methods. This idea was introduced by Banks et al. [2] in
the context of boundary stabilization of the wave equation.
This method has been succesfully adapted in [11] for control purposes. It
provides a good approximation of the wave equation and converges in classi-
cal terms. For this scheme the gap between the square roots of consecutive
eigenvalues of its spectrum is uniformly bounded from below, and in fact
tends to infinity for the highest frequencies as h → 0. According to this
and applying Ingham’s inequality, the uniform observability property holds
(see [11]).
The idea of correcting the dispersion diagram by modifying the numerical
scheme has been previously explored in S. Krenk [46], for instance, where
this was done by adding higher order terms in the approximation of the
scheme. This approach has been also pursued by A. Munch [60] to enrich
the class of schemes introduced in [11].

5 – Robustness of approximate controllability

In the previous sections we have shown that the exact controllability prop-
erty behaves badly under most classical finite difference approximations. It is
natural to analyze to what extent the high frequency spurious pathologies do
affect other control problems and properties. In this section we focus on the
problem of approximate controllability.

The approximate controllability problem is a relaxed version of the exact
controllability one. The goal this time is to drive the solution of the controlled
wave equation (3.5) not exactly to the equilibrium as in (3.6) but rather to an
ε-state such that

(5.1)
[
||y(T )||2L2(0,1) + ||yt(T )||2H−1(0,1)

]1/2

≤ ε.

When for all initial data (y0, y1) in L2(0, 1) × H−1(0, 1) and for all ε there is a
control v such that (5.1) holds, we say that the system (3.5) is approximately
controllable. Obviously, approximate controllability is a weaker notion than
exact controllability and whenever the wave equation is exactly controllable, it
is approximately controllable too.

As we have seen in Section 3.3, although exact controllability requires an ob-
servability inequality of the form of (3.3) to hold, for approximate controllability
one only requires the uniqueness property (3.4).

This uniqueness property holds for T ≥ 2 as well and can be easily proved us-
ing Fourier series or d’Alembert’s formula. Its multidimensional version holds as
well, as an immediate consequence of Holmgren’s Uniqueness theorem (see [53])
for general wave equations with analytic coefficients and without geometric con-
ditions, other than the time being large enough. In 1D, because of the trivial
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geometry, both the uniqueness property and observability inequality hold simul-
taneously for T ≥ 2 but this is not longer true in several space dimensions.

Of course, the approximate controllability property by itself, as seen in
Section 3.3, does not provide any information of what the cost of controlling to
an ε-state as in (5.1) is, i.e. on what is the norm of the control vε needed to
achieve the approximate control condition (5.1)(6). But this issue will not be
addressed here.

In what follows we fix some ε > 0. As mentioned above and seen in Sec-
tion 3.3, once ε is fixed, we know that when T ≥ 2, for all initial data (y0, y1) in
L2(0, 1) × H−1(0, 1), there exists a control vε ∈ L2(0, T ) such that (5.1) holds.
Moreover, the control can be obtained minimizing a functional of the form (3.12).

The question we are interested in is the behavior of this property under
numerical discretization.

Thus, let us consider the semi-discrete controlled version of the wave equa-
tion (4.16). We also fix the initial data in (4.16) “independently of h”. This can
be done in several ways:

a) When the data (y0, y1) of the continuous wave equation are smooth enough,
for instance continuous, we may take the initial data for (4.16) as being the
restriction of (y0, y1) to the mesh-points.

b) One may also take as initial for (4.16) the projection of the Fourier coef-
ficients of (y0, y1) over the first N modes that can be represented on the
discrete model.

Of course, (4.16) is also approximately controllable(7). The question we
address is as follows: given initial data which are “independent of h”, as above,
with ε fixed, and given also the control time T ≥ 2, is the control vh of the semi-
discrete system (4.16) (such that the discrete version of (5.1) holds) uniformly
bounded as h → 0?

In the previous sections we have shown that the answer to this question
in the context of exact controllability (which corresponds to taking ε = 0) is
negative. However, we have also seen that relaxing the final requirement of
reaching the target exactly may help. The following result shows that this is the
case in the context of approximate control too.

Theorem 5.1. Assume that the initial data in (4.16) are essentially
independent of h.

(6)Roughly speaking, when exact controllability does not hold (for instance, in several
space dimensions, when the GCC is not fulfilled), the cost of controlling blows up
exponentially as ε tends to zero (see [66]). This type of result has been also proved in
the context of the heat equation in [24]. But there the difficulty does not come from

the geometry but rather from the regularizing effect of the heat equation.
(7)In fact, in finite dimensions, exact and approximate controllability are equivalent
notions and, as we have seen, the Kalman condition is satisfied for system (4.16).
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Assume that T ≥ 2.
Then, for ε > 0 fixed, the controls vh such that the solution of satisfies

(5.2) ‖ ( �yh(T ), �y ′
h(T )) ‖∗,h≤ ε,

are uniformly bounded in L2(0, T ) as h → 0.
Moreover, the controls vh can be chosen such that they converge in L2(0, T )

to a limit control v for which (5.1) is realized for the continuous wave equa-
tion (3.5).

This positive result on the uniformity of the approximate controllability
property under numerical approximation when ε > 0 does not contradict the fact
that the controls blow up for exact controllability (i.e. when ε = 0). These are in
fact two complementary and compatible facts. For approximate controllability,
one is allowed to concentrate an ε amount of energy on the solution at the final
time t = T . For the semi-discrete problem this is done precisely in the high
frequency components that are badly controllable as h → 0, and this makes it
possible to keep the control fulfilling (5.1) bounded as h → 0.

The approximate control of the semi-discrete system can be obtained by
minimizing the functional

(5.3) J∗
h(�u 0, �u 1)=

1
2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2dt+ε||(�u 0, �u 1)||H1×�2+h

N∑
j=1

y0
j u1

j −h

N∑
j=1

y1
j u0

j

over the space of all initial data (�u 0, �u 1) for the adjoint semi-discrete system
(4.2). In J∗

h , || · ||H1×�2 stands for the discrete energy norm, i.e. || · || =
√

2Eh.
Note that there is an extra term ε||(�u 0, �u 1)||H1×�2 in this new functional com-
pared with the one we used to obtain the exact control (see (4.18)). On the
other hand, the functional in (5.3) is a discrete version of the functional (3.12)
one needs to minimize to get the approximate control for the continuous wave
equation. In both cases, the controls one finds that way are those of minimal
L2(0, T )-norm.

Theorem 5.1 states the convergence of controls which are closely related to
the minimizers of these functionals. Indeed, while the control v of the continuous
wave equation (3.5) is defined as

(5.4) v(t) = u∗
x(1, t),

u∗ being the solution of the adjoint equation (3.1) with the initial data being
the minimizer of the functional in (3.12), the control vh of the semi-discrete
equation (4.16) is defined as

(5.5) vh(t) = u∗
N (t)/h,
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where u∗ is the solution of the semi-discrete adjoint equation (4.2) with the
minimizer of the functionals J∗

h, ε in (5.3) as initial data.
Therefore, roughly speaking, Theorem 5.1 can be viewed as a Γ-convergence

result [19] of the functional J∗
h, ε towards J∗

ε .
Similar results have been proved in several different but related problems:

a) The approximate control of parabolic equations with rapidly oscillating co-
efficients and perforated domains in any space dimension (see [84] and [20],
respectively) and the null control in 1D [55].

b) The exact controllability of the space semi-discretizations of the beam equa-
tion [51].

The key ingredient in the proof of Theorem 5.1 is the uniform (with respect
to h) coercivity of the functionals J∗

h, ε. The following holds;

(5.6) lim
||(�u 0,�u 1)||H1×�2→∞

J∗
h(�u 0, �u 1)

||(�u 0, �u 1)||H1×�2
≥ ε,

uniformly in h, provided T ≥ 2.
Once the uniform observability property (5.6) holds, the minimizers are

immediately uniformly bounded and the controls as well. Once this is done one
can proceed in two steps:

a) First one shows that the weak limit (in L2(0, T )) of the controls is a control
for the limit system;

b) one then shows by Γ-convergence arguments that the limit control is pre-
cisely the one associated with the minimization of the limit functional J∗

ε ;
c) finally one proves, using convexity and weak lower semicontinuity argu-

ments, that J∗
h, ε(�u

∗,0
h , �u ∗,1

h ) tends to J∗
ε (�u ∗,0, �u ∗,1) as h tends to zero. This,

together with the fact that the initial data to be controlled are essentially
independent of h allows concluding that the L2(0, T )-norms of the controls
converge to the L2(0, T )-norm of the limit controls. This guarantees that
convergence holds in the strong topology.

We refer to [51] for the details of the proof in the closely related problem of
the control of the beam equation.

Consequently, let us focus on the proof of the uniform coercivity prop-
erty (5.6). At this level, the fact that T ≥ 2 is essential. In order to show
that the coercivity property above is uniform in 0 < h < 1 we have to argue
as in [84]. Mainly, we have to consider the case where h → 0 and solutions
of the adjoint semi-discrete system (4.2) converge to a solution of the continu-
ous adjoint wave equation (3.1) such that ux(1, t) ≡ 0 in (0, T ). Of course, if
this happens with T ≥ 2 we can immediately deduce that u ≡ 0 by the well
known uniqueness property of the solutions of the wave equation discussed in
Section 3.3. This suffices to conclude the uniform coercivity property.
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This shows that the approximate controllability property is well-behaved
under the semi-discrete finite-difference discretization of the wave equation. But
the argument is in fact much more general and can be applied for other numerical
approximation schemes. The two assumptions that are needed on the numerical
scheme for this to hold are:

a) The scheme is convergent in the classical sense;
b) for all h the numerical scheme is controllable.

However, as we shall see, although these properties hold for most numerical
schemes in 1D, the second property may fail in several space dimensions unless
some filtering is introduced or some extra geometric assumptions are imposed
on the subset where the control is suppported.

6 – Robustness of optimal control

Finite horizon optimal control problems can also be viewed as relaxed ver-
sions of the exact controllability one.

Let us consider the following example in which the goal is to drive the solu-
tion of the wave equation (3.5) at time t = T as closely as possible to the desired
equilibrium state but penalizing the use of the control. In the continuous context
the problem can be simply formulated as that of minimizing the functional

(6.1) Lk(v) =
k

2
||(y(T ), yt(T ))||2L2(0,1)×H−1(0,1) +

1
2
||v||2L2(0,T )

over v ∈ L2(0, T ). This functional is continuous, convex and coercive in the
Hilbert space L2(0, T ). Thus it admits a unique minimizer that we denote by vk.
The corresponding optimal state is denoted by yk. The penalization parameter
establishes a balance between reaching the distance to the target and the use of
the control. As k increases, the need of getting close to the target (the (0, 0)
state) is emphasized and the penalization on the use of control is relaxed.

When exact (resp. approximate) controllability holds, i.e. when T ≥ 2, it
is not hard to see that the control one obtains by minimizing Lk converges, as
k → ∞, to an exact (resp. approximate) control for the wave equation (see [23]).

When the value of the parameter k > 0 is fixed, the optimal control vk

does not guarantee that the target ((0, 0) in this case) is achieved in an exact
way. One can then measure the rate of convergence of the optimal solution
(yk(T ), yk,t(T )) towards (0, 0) as k → ∞. When approximate controllability
holds but exact controllability does not (a typical situation in several space
dimensions when the GCC is not satisfied), the convergence of (yk(T ), yk,t(T ))
to (0, 0) in L2(0, 1) × H−1(0, 1) as k → ∞ is very slow (roughly spaking, of
logarithmic nature).
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But here, once again, we fix any k > 0 and we discuss the behavior of the
optimal control problem for the semi-discrete equation as h → 0.

It is easy to write the semi-discrete version of the problem of minimizing the
functional Lk. Indeed, it suffices to introduce the corresponding semi-discrete
functional Lk

h replacing the L2 × H−1-norm in the definition of Lk by the dis-
crete norm introduced in (4.21). It is also easy to prove by the arguments we
have developed in the context of approximate controllability, that, as h → 0,
the control vk

h that minimizes Lk
h in L2(0, T ) converges to the minimizer of the

functional Lk and the optimal solutions yk
h of the semi-discrete system converge

to the optimal solution yk of the continuous wave equation in the appropriate
topology(8) as h → 0 too.

In this case the proof of the uniform boundedness of the control is much
easier since the uniform coercivity of the functionals Lk

h is obvious as soon as
k > 0.

This shows that the optimal control problem is also well-behaved with re-
spect to numerical approximation schemes, like the approximate control problem.

The reason for this is basically the same: in the optimal control problem
the target is not required to be achieved exactly and, therefore, the pathological
high frequency spurious numerical components are not required to be controlled.

In view of this discussion it becomes clear that the source of divergence in
the limit process as h → 0 in the exact controllability problem is the requirement
of driving the high frequency components of the numerical solution exactly to
zero. As we mentioned in the introduction, taking into account that optimal and
approximate controllability problems are relaxed versions of the exact controlla-
bility one, even though they are theoretically well behaved under the numerical
approximation process as our results above show, this negative result should be
considered as a warning about the limit process as h → 0 in general control
problems.

7 – Stabilization

The problem of controllability has been addressed along this paper. The
connections between the problems of controllability and stabilization are well
known (see for instance [69], [78]) and similar developments could be carried out
in the context of stabilization.

In the context of the wave equation, it is well known that the GCC suffices
for stabilization and more precisely to guarantee the uniform exponential decay
of solutions when a damping term, supported in the control region, is added

(8)Roughly, in Lp([0, T ]; L2(0, 1)) ∩ W 1,p[0, T ]; H−1(0, 1)) for all 1 ≤ p < ∞, once the
solution of the semi-discrete problem has been extended to the interior conveniently
(as a piecewise linear and continuous function, for instance).
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to the system. More precisely, when the subdomain ω of the domain Ω where
the wave equation holds satisfies the GCC the solutions of the damped wave
equation

ytt − ∆y + 1ωyt = 0

with homogeneous Dirichlet boundary conditions are known to decay exponen-
tially in the energy space. In other words, there exist constants C > 0 and γ > 0
such that

E(t) ≤ Ce−γtE(0)

holds for every finite energy solution of the Dirichlet problem for this damped
wave equation.

It is then natural to analyze whether the decay rate is uniform with respect
to the mesh size for numerical discretizations. The answer is in general negative.
Indeed, due to spurious high frequency oscillations, the decay rate fails to be uni-
form, for instance, for the classical finite difference semi-discrete approximation
of the wave equation. This was established rigorously by F. Macià [56], [57]
using Wigner measures. This negative result also has important consequences
in many other issues related with control theory like infinite horizon control
problems, Riccati equations for the optimal stabilizing feedback ([65]), etc.

We shall simply mention here that, even if the most natural semi-discre-
tization schemes fail to be uniformly exponentially stable, the uniformity of the
exponential decay rate can be reestablished if we add an internal viscous damping
term to the equation (see [72], [73] and [61]).

In [72] we analyzed finite difference semi-discretizations of the damped wave
equation

(7.1) utt − uxx + χωut = 0,

where χω denotes the characteristic function of the set ω where the damping term
is effective. In particular we analyzed the following semi-discrete approximation
in which an extra numerical viscous damping term is present:

(7.2)


u′′

j − 1
h2

[uj+1 + uj−1 − 2uj ]− [u′
j+1 + u′

j−1 − 2u′
j ] − u′

jχω = 0,

0 < t < T, j = 1, . . . , N

uj(t) = 0, 0 < t < T, j = 0, N + 1
uj(0) = u0

j , u1
j (0) = u1

j , j = 1, . . . , N.

It was proved that this type of scheme preserves the uniform stabilization prop-
erties of the wave equation (7.1). To be more precise we recall that solutions of
the 1D wave equation (7.1) in a bounded interval with Dirichlet boundary con-
ditions decay exponentially uniformly as t → ∞ when a damping term as above
is added, ω being an open non-empty subinterval (see [80]). Using the numer-
ical scheme above, this exponential decay property is kept with a uniform rate
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as h tends to zero. The extra numerical damping that this scheme introduces
adding the term [u′

j+1 + u′
j−1 − 2u′

j ] damps out the high frequency spurious os-
cillations that the classical finite difference discretization scheme introduces and
that produce a lack of uniform exponential decay in the presence of damping.

The problem of whether this numerical scheme is uniformly observable or
controllable as h tends to zero is an interesting open problem.

Note that the system above, in the absence of the damping term lozalized
in ω, can be written in the vector form

(7.3) �u ′′ + Ah�u + h2Ah�u ′ = 0.

Here �u stands, as usual, for the vector unknown (u1, . . . , uN )T and Ah for the
tridiagonal matrix associated with the finite difference approximation of the
Laplacian (4.4). In this form it is clear that the scheme above corresponds to a
viscous approximation of the wave equation. Indeed, taking into account that Ah

provides an approximation of −∂2
x, the presence of the extra multiplicative factor

h2 in the numerical damping term guarantees that it vanishes asymptotically as h
tends to zero.

In [61] these results were extended to general domains in 2− d. The subdo-
main ω was assumed to be a neighborhood of a subset of the boundary satisfying
the classical multiplier condition, which constitutes a particular class of subdo-
mains satisfying the GCC [80]. Then, adding a numerical viscosity term the
uniform exponential decay was proved.

In the absence of geometric conditions on the subset ω, by only assuming
that it is an open non-empty subset of Ω, using La Salle’s invariance principle
with the energy of the system as Lyapunov function, one can show that all solu-
tions of the damped wave equation tend to zero as t goes to infinity without uni-
form exponential decay rate. This is true even in several space dimensions. This
results turns out to be false at the semi-discrete level in the multi-dimensional
case. Indeed, the property of decay relies on a unique continuation property sim-
ilar to those we discussed in the context of approximate controllability. In the
case of the continuous wave equation this property requires that whenever the
solution u of the wave equation vanishes in ω × (0, ∞), then it vanishes every-
where. This holds as a consequence of Holmgren’s uniqueness theorem if T >0 is
large enough. But it fails to be true for the semi-discrete equation without further
restrictions on the subdomain ω as we shall see in open problem #2 below.

If one adds a numerical viscosity term, obviously, these difficulties dissapear
and one recovers the decay of solutions of the semi-discrete system. But uniform
(with respect to h) exponential decay rates can only be expected under geometric
restrictions in ω as in [72] and [61]. Similar devepments have been carried out
in [73] in the context of boundary damping in one-space dimension. Very likely
similar results are true for boundary damping in several dimensions too. But a
complete analysis of this issue using the techniques in [61] and [73] is still to be
done.
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8 – Open problems

1. Moment problems techniques. We have considered finite difference space
semi-discretizations of the wave equation. We have addressed the problem of
boundary observability and, more precisely, the problem of whether the observ-
ability estimates are uniform when the mesh size tends to zero.

We have proved that the uniform observability property does not hold for
any time T . We have also described some possible remedies.

The main consequences concerning controllability have been mentioned.
In particular, we have shown that exact controls of numerical approximation
schemes may diverge.

By the contrary, we have proved that the problems of approximate and
optimal control are well-behaved and that the convergence of the semi-discrete
controls holds as the mesh-size h tends to zero.

It would be interesting to see if the moment problems techniques and the
sharp estimates in [58] on biorthogonal families allow giving an alternative proof
of these positive results with some explicit estimates on the size of the controls.

2. Discrete unique-continuation. As we mentioned above, the extension of
Theorem 5.1 to the multi-dimensional case is no completely obvious. In fact, the
results one gets change significantly.

Let us for instance discuss the simplest case of the constant coefficient wave
equation in a square of IR2. In [82] the instability of the controls was proved for
finite difference semi-discrete approximations in the context of exact controlla-
bility. But, in view of Theorem 5.1, one could expect this not to be the case at
the level of approximate controllability. But a new phenomena, producing new
instabilities, arises in several space dimensions that we describe now.

In several space dimensions, for the continuous wave equation, approximate
controllability holds from any open subset of the boundary if the control time
is large enough (twice the diameter of the square domain is enough although a
sharper estimate needs to take into account the geometry of the subset where the
control is located). This means that the support of the control can be taken to be
in any open subset of the domain or its boundary. But this fails to be true for the
semi-discrete equation. Indeed, in 2 − d the unique continuation or uniqueness
property that is needed for the controllability of the semi-discrete approximation
to hold is not satisfied automatically. In fact it is not even sufficient to assume
that h > 0 is small enough to guarantee that this uniqueness property is satisfied.

The following example due to O. Kavian [43] shows that, at the discrete
level, new phenomena arise in what concerns the uniqueness problem. It concerns
the eigenvalue problem for the 5-point finite difference scheme for the Laplacian
in the square. A grid function taking alternating values ±1 along a diagonal and
vanishing everywhere else is an eigenvector with eigenvalue λ = 4/h2. According
to this example, even at the level of the elliptic equation, the domain ω where the
solution vanishes has to be assumed to be large enough to guarantee the unique
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continuation property. In [16] it was proved that when ω is a “neighborhood
of one side of the boundary”, then unique continuation holds for the discrete
Dirichlet problem in any discrete domain. Here by a “neighborhood of one side
of the boundary” we refer to the nodes of the mesh that are located immediately
to one side of the boundary nodal points (left, right, top or bottom). Indeed,
if one knows that the solution vanishes at the nodes immediately to one side
of the boundary, taking into account that they vanish in the boundary too, the
5-point numerical scheme allows propagating the information and showing that
the solution vanishes at all nodal points of the whole domain.

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +
+1

+1

+1

+1

−1

−1

−1

Fig. 1 The eigenvector for the 5-point finite difference scheme for
the Laplacian in the square, with eigenvalue λ = 4/h2, taking
alternating values ±1 along a diagonal and vanishing everywhere
else in the domain.

Getting optimal geometric conditions on the set ω depending on the do-
main Ω where the equation holds, the discrete equation itself, the boundary con-
ditions and, possibly, the frequency of oscillation of the solution for the unique
continuation property to hold at the discrete level is an interesting and widely
open subject of research.

One of the main tools for dealing with unique continuation properties of
PDE are the so called Carleman inqualities. It would be interesting to develop
the corresponding discrete theory.

Now, returning to the wave equation in the square domain and its semi-
discrete approximations, we see that, in view of the explicit construction of
the eigenvector above, one can build solutions of the semi-discrete system in
separated variables that vanish everywhere in the domain except on the diagonal
for all time. This example shows that the controllability property of the semi-
discrete system fails for many open subsets of the boundary. Consequently,
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the 1D result in Theorem 5.1 showing that, whenever the wave equation is
approximately controllable, its semi-discrete approximations are controllable as
well and the convergence of controls is false in several space dimensions without
further geometric restrictions on the support of the controls.

The same pathology is an obstacle for the approximate controllability of the
semi-discrete approximations of other models like, for instance, the heat or the
Schrödinger equations. It is interesting to note that this obstacle of lack of unique
continuation does not arise in the context of the problem of homogenization
we mentioned in the introduction. Although, in principle, the later is more
difficult to deal with from a technical point of view it turns out that the problem
of approximate controllability is well-behaved in that context in several space
dimensions for parabolic equations too [84].

It would be interesting to analyze if a filtering mechanism allows reestablish-
ing the uniformity of the approximate controllability property without imposing
additional geometric restrictions on the supports of the controls.

Concerning the problem of decay of solutions of wave equations in the
presence of damping discussed in the previous section we emphasize that the
counterexample above to unique continuation allows showing that, at the semi-
discrete level, in contrast with what happens in the continuous case, the decay of
solutions may fail without further restrictions on the geometry of the subdomain
ω where the damping is effective.
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yse non-linéaire, 17 (5) (2000), 583-616.

[26] A. V. Fursikov – O. Yu. Imanuvilov: Controllability of evolution equations,
Lecture Notes Series # 34, Research Institute of Mathematics, Global Analysis
Research Center, Seoul National University, 1996.

[27] P. Gérard: Microlocal defect measures, Comm. P.D.E., 16 (1991), 1761-1794.

[28] P. Gervasio – M. G. Naso: Numerical approximation of controllability of tra-
jectories for Euler-Bernouilli thermoelastic plates, Math. Models Meth. Applied
Sciences, 14 (5) (2004), 701-734.

[29] R. Glowinski: Ensuring well-posedness by analogy; Stokes problem and boundary
control of the wave equation, J. Compt. Phys., 103 (2) (1992), 189-221.

[30] R. Glowinski – W. Kinton – M. F. Wheeler: A mixed finite element formula-
tion for the boundary controllability of the wave equation, Int. J. Numer. Methods
Engineering, 27 (1989), 623-635.

[31] R. Glowinski – C. H. Li: On the numerical implementation of the Hilbert unique-
ness method for the exact boundary controllability of the wave equation, C. R.
Acad. Sci. Paris Sr. I Math., 311 (2) (1990), 135-142.

[32] R. Glowinski – C. H. Li – J.-L. Lions: A numerical approach to the exact
boundary controllability of the wave equation (I). Dirichlet controls: Description
of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.

[33] R. Glowinski – J.-L. Lions: Exact and approximate controllability for distributed
parameter systems, Acta numerica, Cambridge Univ. Press, Cambridge, (1994),
269-378.
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A method for global approximation

of the solution of second order IVPs

F. COSTABILE – A. NAPOLI

Abstract: For the numerical solution of the second order initial value problem,
a family of global methods is derived by finding Galerkin approximations on a given
interval. For each n ≥ 1 a method is defined that uses a particular inner product in the
Galerkin equation. The methods are symmetric collocation on the zeros of Chebyshev
polynomials of the second kind and are related to implicit Runge-Kutta-Nyström meth-
ods. Order, stability and error analysis are here studied. Numerical examples provide
favorable comparisons with other existing methods.

1 – Introduction

In this paper we will consider the initial value problem in ordinary differen-
tial equations

(1)


y′′ (x) = f (x, y (x)) x ∈ [x0, b]
y (x0) = y0

y′ (x0) = y′
0 .

We suppose that f (x, y (x)) is a real function defined and continuous on the
strip S = [x0, b] × IR and a constant L exists so that the inequality

|f (x, y1) − f (x, y2) | ≤ L |y1 − y2|

Key Words and Phrases: Initial value problem – Chebyshev series.
A.M.S. Classification: 65L05 – 65L60
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holds over the strip S. Under these hypotheses the problem (1) has a unique
solution y (x).

Problems of this kind arise in a variety of physical contexts such as molec-
ular-dynamics calculations for liquid and gases, stellar mechanics, atomic and
nuclear scattering problems.

We assume that (1) represents a single scalar equation, but nearly all of
the numerical and theoretical considerations in this paper carry over systems of
second order equations, where (1) could be treated in vector form.

For higher order differential equations, one may solve them numerically by
first reducing them to systems of first order equations. However, for an equation
of the form (1), it is simpler to attack it directly and it is well known that several
advantages (substantial gain in efficiency, lower storage requirements, etc.) are
realized when the equations are treated in their original second-order form.

We develop a family of direct methods which produce smooth, global ap-
proximations to y (x) in the form of polynomial functions. The basic idea is to
approximate y′′(x) on [−1, 1] by a linear combination of Chebyshev polynomi-
als of second kind and then to require that it provides Galerkin approximation
(Section 2).

In Section 3 we show that these methods (GCM) are also collocation meth-
ods; we study the global approximation error in Section 4; then we propose two
algorithms to compute the numerical solution of (1) in the nodal points and
present some numerical examples in comparison with Dormand-Prince methods.

In Section 6 we illustrate the corresponding implicit Runge-Kutta-Nyström
form, we observe that these methods have even order and we compare them with
other Runge-Kutta-Nyström methods.

In Section 7 the study of stability of the method for n = 3 shows that it
compares quite favorably with other fourth-order methods.

Finally (Section 8), we show that GCM may be formulated as symmetric
hybrid two-step methods.

2 – Some polynomial Galerkin-type methods

We may approximate y′′ on [−1, 1] by an (n − 1)-th degree polynomial

(2) y′′
n(x) =

n∑
k=1

ck−1Uk−1 (x) , x ∈ [−1, 1]

where Uk(x) is the k-th degree Chebyshev polynomial of second kind, which
satisfies:

(3) Uk−1(x) =
sin kt

sin t

with x = cos t.
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The coefficients ck, k = 0, . . . , n − 1, are determined by a polynomial
Galerkin-type method: we require the residual function y′′

n − f to be orthog-
onal to all polynomials Uj−1, that is what this relation holds:

(y′′
n − f (x, yn) , Uj−1) = 0

j = 1, . . . , n, or equivalently

(4) (y′′
n, Uj−1) = (f (x, yn) , Uj−1)

j = 1, . . . , n.
By defining the discrete inner product [10]

(u, v) =
n∑

i=1

u

(
π − πi

n + 1

)
v

(
π − πi

n + 1

)
,

we have

(
sin2 t Uk−1, Uj−1

)
=

n∑
i=1

sin
kπi

n + 1
sin

jπi

n + 1
=

{ 0 j �= k
n + 1

2
j = k

and

(5) sin2 t (y′′
n, Uj−1) =

n + 1
2

cj−1 .

By multiplying the right term of (4) by sin2 t, it becomes:

(6)
(
sin2 t f (x, yn) , Uj−1

)
=

n∑
i=1

f (xi, yn (xi)) sin
πi

n + 1
sin

jπ(n + 1 − i)
n + 1

with

(7) xi = cos
(

π − πi

n + 1

)
= − cos

πi

n + 1
i = 1, . . . , n .

By equaling (5) and (6) we have:

cj−1 =
2

n + 1

n∑
i=1

sin
πi

n + 1
sin

jπ(n + 1 − i)
n + 1

f (xi, yn (xi)) .

Using the identity

(8) kUk−1 (x) = T ′
k (x) , k ≥ 1 ,
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and integrating (2) between −1 and x we have

(9) y′
n (x) = y′

0 +
n∑

i=1

nγi (x) f (xi, yn (xi))

where
nγi (t) =

2
n + 1

sin
πi

n + 1

n∑
k=1

pk (t)
k

sin
πk(n + 1 − i)

n + 1

with
pk (x) = Tk (x) − (−1)k

and Tk (x) are the Chebyshev polynomials of first kind of degree k.
If f (x, y(x)) does not depend on y(x), the (9)

(10)
∫ x

−1

f(t)dt =
n∑

i=1

nγi (x) f (xi)

coincides with the modified Filippi Clenshaw-Curtis quadrature formula [10].
Hence, for x ∈ [−1, 1], (10) is a positive quadrature procedure which converges
for every f ∈ C0[−1, 1].

Integration of (9) gives

(11) yn (x) = y0 + (x + 1) y′
0 +

n∑
i=1

nβi (x) f (xi, yn (xi))

where

nβi(x) =
1

n + 1
sin

πi

n + 1

{
sin

πi

n + 1
(x + 1)2+

+
n∑

k=2

1
k

sin
kπ(n + 1 − i)

n + 1

[
Tk+1(x)
k + 1

− Tk−1(x)
k − 1

− 2
(

x +
k2

k2 − 1

)
(−1)k

]}
.

Thus we obtain:
y(x) ≈ yn(x) = y0 + (x + 1)y′

0 +
n∑

i=1

nβi(x)f(xi, yn(xi))

y′(x) ≈ y′
n(x) = y(x0) = y′

0 +
n∑

i=1

nγi(x)f(xi, yn(xi)).
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3 – Chebyshev-Galerkin methods as collocation methods

Theorem 1. Let us consider the initial value problem (1) with x0 = −1,
[x0, b] = [−1, 1]. If xi, i = 1, . . . , n are defined as (7), then the polynomial (11)
of degree n + 1 satisfies the relations

(12)
yn (−1) = y0

y′
n (−1) = y′

0

y′′
n (xj) = f (xj , yn (xj)) , j = 1, . . . , n

i.e. it is a collocation polynomial for (1) [11].

Proof.
nβi (x) =

∫ x

−1

nγi (t) dt.

Hence, ∀i, n ∈ IN, we have
nβi (−1) = 0

and
nβ′

i (x) = nγi (x) =⇒ nβ′
i (−1) = 0.

It follows that
yn (−1) = y0 ;

y′
n (−1) = y′

0 +
n∑

i=1

nβ′
i (−1) y′′

n (xi) = y′
0.

Moreover, for the polynomial nγi (x), we get

nγ′
i (x) =

2
n + 1

sin
πi

n + 1

n∑
k=1

T ′
k (x)
k

sin
πk(n + 1 − i)

n + 1
.

Putting x = cos t, we have

nγ′
i (cos t) =

2
n + 1

sin
πi

n + 1

n∑
k=1

sin kt

sin t
sin

kπ(n + 1 − i)
n + 1

and for t = tj = arccos xj , from the orthogonality of the system of functions
sinmt ([10]), it follows that

nγ′
i (xj) = nγ′

i (cos tj) = δij .

for j = 1, . . . , n. Hence we have

y′′
n (xj) =

n∑
i=1

nβ′′
i (xj) f (xi, yn (xi)) = f (xi, yn (xi)) .
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From Theorem 1 we give the following definition

Definition 1. The polynomial (11) is a global approximation method for
the solution of (1) in [−1, 1]. It is a symmetric collocation method.

Observation. Now an alternative representation for the nβi(x), i = 1, . . . , n
can be derived by observing from (12) that, since y′′

n(x) interpolates f (x, y(x))
at xi, using Lagrangian interpolation we have

(13) w′′
n(x) =

n∑
k=1

lk(t)f (xk, yn (xk)) .

After two integrations and comparing with (11), we obtain

(14) nβi(x) =
∫ x

−1

(∫ s

−1

li(t)dt

)
ds =

∫ x

−1

(x − t)li(t)dt

where li(t) is a polynomial of Lagrange interpolation on the set of points {xi}:

li(t) =
n∏

k=1 k �=i

t − xk

xi − xk
.

4 – Global error

For the global error

Ln (y, x) = y (x) − yn (x) .

the following theorem holds:

Theorem 2. For all fixed x ∈ [−1, 1]

y(x) − yn(x) =
1
n!

[∫ x

−1

(x − t)n+1y(n+2)(t)dt +

− n

n∑
k=1

nβk(x)
∫ x

xk

(xk − t)n+1y(n+2)(t)dt

]
.
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Proof. We observe that for all fixed x ∈ [−1, 1]

Ln (y, x) =
∫ x

−1

(∫ s

−1

y′′(l)dl

)
ds −

n∑
k=1

nβk (x) y′′ (xk)

is a linear functional vanishing if y (t) is a polynomial of degree less than or equal
to n+1. In fact, if y (t) is a polynomial, it can be written in the Lagrange form:

y′′
n(x) =

n∑
k=1

lk(t)y′′
n (xk) ,

and from (14)

Ln (y, x) =
∫ x

−1

(∫ s

−1

y′′(l)dl

)
ds −

n∑
k=1

∫ x

−1

(∫ s

−1

lk(t)dt

)
ds y′′ (xk) = 0.

Hence from Peano’s Lemma [8],

y (x) − yn (x) =
∫ x

−1

K (t, x) y(n+2) (t) dt

where

K (t, x) =
1

(n − 1)!

[∫ x

−1

(∫ s

−1

(l − t)n−1
+ dl

)
ds −

n∑
k=1

nβk (x) (xk − t)n−1
+

]
.

The thesis follows after some calculations.

Observation. If y(n+2) (t) is continuous in [−1, 1], then there exist η0, ηk,
k = 1, . . . , n in [−1, 1] such that

y(x) − yn(x) =
1

n!(n + 2)

[
(x − 1)n+2y(n+2)(η0) +

+ n

n∑
k=1

nβk(x)(xk − x)n+2y(n+2)(ηk)

]
.
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5 – Algorithms and numerical examples

In order to calculate the approximate solution of the initial value problem
by (11) at x ∈ [−1, 1] we need the values yn (xi), i = 1, . . . , n. For this aim we
propose two algorithms:

A1. Solve the system

yn (xi) = y0 + (xi + 1)y′
0 +

n∑
k=1

nβk (xi) f (xk, yn (xk)) i = 1, ..., n.

by iterative methods, particularly a modified Newton-type method for general
non linear case. For linear problems the computational cost is considerably lower.

A2. An alternative way to calculate yn (xj) is the iterative algorithm
G0

n,j = y0 + (xj + 1) y′
0 + (xj + 1)2 f (−1, y0) /2

Gν
n,j = y0 + (xj + 1)y′

0 +
n∑

k=1

akjf
(
xk, Gν−1

n,k

)
ν = 1, 2, ...

j = 1, . . . , n, akj = nβk (xj) and Gν
n,j = Gν

n,j (xj) where G0
n,j are the first three

terms of Taylor approximation of yn (xj) used to initialize the iterations.
We apply A1 to find numerical approximations of the solutions of some test

problems. Similar results are obtained by algorithm A2.
Results are compared with the ones obtained by applying the Matlab ODE

solver based on Dormand-Prince formula. We consider the following problems:

i)


y′′ = y + 2ex

y (−1) = 0

y′(−1) =
1
e

with solution y(x) = (x + 1)ex

ii)


y′′ = −y + 2 cos x

y(−1) = − sin(−1)
y′(−1) = sin(−1) − cos(−1)

with solution y(x) = x sin(x).
The figures (Fig. 1) and (Fig. 2) present the error function in the interval

[−1, 1] in the case of Dormand-Prince approximation (dotted line) and in the
case of approximation by GCM (solid line), algorithm A1.

In the first case (ode45) 85 function evaluations are needed for problem 1 and
67 for problem 2, while A1 requires 32 function evaluations if we use a modified
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Fig. 1: Problem i.

Newton-type method and only 16 evaluations of functions of one variable if we
use a direct method.

We can observe the smoothness of the error function in the case of approx-
imation by A1.
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Fig. 2: Problem ii.
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Moreover, with no additional cost, we have the approximation of the first
derivative (Fig. 3 and 4).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
× 10−7

Fig. 3: Error function |y′(x) − y′
n(x)| of problem i.
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Fig. 4: Error function |y′(x) − y′
n(x)| of problem ii.



[11] A method for global approximation etc. 249

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5 × 10−7

Fig. 5: Problem iii.

Now we consider the following non-linear problem:

iii)


y′′ = −

(
1 + 0.01y2

)
y + 0.01 cos3 x

y (−1) = cos(−1)
y′(−1) = − sin(−1).

The differential non-linear equation is a particular case of the undamped Duff-
ing’s equation, with a forcing term chosen so that the exact solution is
y (x) = cos x. Figure 5 show the error function in [−1, 1] when we use ode45
(dotted line) and when we approximate by algorithm A1 (solid line).
The approximation by ode45 requires 67 function evaluations, algorithm A1 64.
Figure 6 presents the approximation of the first derivative using algorithm A1.

6 – Chebyshev-Galerkin methods as implicit Runge-Kutta-Nyström
methods

Any one-step collocation method is equivalent to some implicit Runge-Kutta
methods, where of course “equivalent” here means “matches the discrete values”.
Let χ : tk = t0 + kh be a uniform mesh with t0 = x0. On each subinterval we
apply GCM (11), so that we have a collocation method on the points tk+cj

=
tk + cjh, j = 1, . . . , n, with cj = 1

2 (xj + 1), which are the images of the xj under
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Fig. 6: Error function |y′(x) − y′
n(x)| of problem iii.

a linear transform mapping [−1, 1] onto [0, 1]:

y (ti+1) = y (ti) + hy′ (ti) + h2
n∑

j=1

bjf
(
ti+cj

, y
(
ti+cj

))
where bj = 1

4βj(1). Putting

(15) kj = f

(
ti + cjh, yi + cjhy′

i + h2
n∑

m=1

bjmkm

)
,

with bjm = 1
4βm (xj) ,we have:

(16) yi+1 = yi + hy′
i + h2

n∑
j=1

bjkj

and from (9)

(17) y′
i+1 = y′

i + h

n∑
j=1

ajkj

with aj = 1
2γj(1). Equations (15), (16) and (17) gives rise to an n-stage implicit

Runge-Kutta-Nyström method (CRK) with
n∑

j=1

bj =
1
2

n∑
j=1

aj = 1.
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Using Butcher’s notation ([1]), the first three of these methods are presented in
Tables 1,2 and 3.

Table 1.
1
2

1
4

1
2

1

Table 2.
1
4

1
24 − 1

96
3
4

9
32 0
5
12

1
12

1
2

1
2

Table 3.

2−
√

2
4

1
64

5−4
√

2
96

23−16
√

2
192

1
2

3+2
√

2
48 0 3−2

√
2

48

2+
√

2
4

23+16
√

2
192

5+4
√

2
96

1
64

2+
√

2
12

1
6

2−
√

2
12

1
3

1
3

1
3

Note that the cj have the symmetry property

(18) cn+1−j = 1 − cj , j = 1, . . . ,
[n

2

]
.

A Runge-Kutta-Nyström method has order p [11] if for sufficiently smooth
problems (1)

y (xi+1) − yi+1 = O
(
hp+1

)
y′ (xi+1) − y′

i+1 = O
(
hp+1

)
.

Being the method (11) a collocation method, ∀x ∈ [−1, 1] the following
estimates hold [11]:

y(x) − yn(x) = O
(
hn+2

)
, y′(x) − y′

n(x) = O
(
hn+1

)
.

So the method (11) has order at least n. We may prove that for odd n the order
is n + 1. In fact, putting

M(t) =
n∏

i=1

(t − ci) ,
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if n = 2k + 1, we have

(19)
∫ 1

0

M(t)dt = 0

and this condition is equivalent to orthogonality to polynomials of degree q = 0,
so the method has order [11] p = n + q + 1 = n + 1.

The (19) follows from the fact that M(t) = (−1)nM(−t), hence, if n is odd,
M(t) is an odd function.

Coleman and Booth in [5], starting from Panovsky-Richardson method [13],
derived a class of Runge-Kutta-Nyström methods for differential equations of
the form y′′(x) = f (x, y) which uses in each interval [xk, xk+1] the set of n + 1
collocation points {xk + cjh, j = 0, . . . , n} where cj = 1

2 (xj + 1) and xj are the
extrema of Chebyshev polynomials of first kind Tk(x) of degree k.

In this context CRK method can be compared with other similar methods,
among which the Coleman and Booth Runge-Kutta-Nyström one [5], which we
indicate by CBRKN.

Thus we make a comparison between the forth order CBRKN, and the CRK
method of order four derived in this section.

6.1 – Harmonic oscillator

Let’s now solve the initial value problem
(20) y′′ = −y, y(0) = 1, y′(0) = 0
using the forth order CBRKN and CRK methods. The results in Figures 7 and 8,
produced by a MatLab code, show the absolute errors for the two methods (dot-
ted line for the CBRKN) applied to problem (20) with steplengths respectively
h = 0.01 and h = 0.05. Both methods have the same cost and are based upon
the zeros of Chebyshev polynomials but of different degrees so their coefficients
are different.

The maximum absolute errors on intervals [0, x] with steplength h = 0.01
are displayed in Table 4.

Table 4.

x CBRKN CRK

1 4.4 · 10−12 1.1 · 10−12

2 9.5 · 10−12 2.4 · 10−12

5 2.5 · 10−11 6.2 · 10−12

10 4.1 · 10−11 7.1 · 10−12

20 9.5 · 10−11 2.4 · 10−11

50 2.5 · 10−10 1.7 · 10−11

100 5.1 · 10−10 6.6 · 10−11
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Table 5 illustrates the effects of different steplengths used over a given num-
ber of steps.
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Table 5.

h steps CBRKN CRK

0.1 500 2.5 · 10−6 1.7 · 10−7

0.1 1000 5.1 · 10−6 6.6 · 10−7

0.005 500 5.9 · 10−13 1.2 · 10−13

0.005 1000 1.6 · 10−12 3.9 · 10−13

0.002 500 8.1 · 10−15 1.5 · 10−15

0.002 1000 1.5 · 10−14 3.5 · 10−15

0.001 500 1.9 · 10−15 2.0 · 10−15

0.001 1000 3.1 · 10−15 2.8 · 10−15

Table 6 shows the maximum absolute errors on intervals [0, x] for the same
methods of order six applied to problem (20) with steplength h = 0.01:

Table 6.

x CBRKN CRK

1 5.6 · 10−16 3.3 · 10−16

2 9.4 · 10−16 1.1 · 10−16

5 1.1 · 10−15 1.1 · 10−16

10 2.7 · 10−15 2.4 · 10−15

20 4.4 · 10−15 1.2 · 10−15

50 7.9 · 10−15 4.2 · 10−15

70 1.1 · 10−14 7.8 · 10−16

100 1.2 · 10−14 3.9 · 10−14

Values of column 2 are the ones which appear in [5].
Figure 9 illustrates absolute errors when h = 0.05, in the case of order six.

6.2 – Two-body problem

A non-linear example frequently used to test numerical methods (see, e.g.
[5]) is provided by the two-body problem:

(21)


y′′ +

y

r3
= 0, y (0) = 1 − e, y′ (0) = 0

z′′ +
z

r3
= 0, z (0) = 0, z′ (0) =

√
1 + e

1 − e
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with r2 = y2 + z2. The exact solution is

y = cos E − e, z =
√

1 − e2 sinE,

where e is the eccentricity of the orbit and E is implicitly defined as x = E −
e sinE.

In Table 7 we compare the maximum absolute errors on [0, x] for the two
fourth order methods, CRK and CBRKN, applied to (21) when e = 0.1 and
steplength h = 0.01.

Table 7.

x CBRKN CRK

1 2.9 · 10−11 7.4 · 10−12

2 4.0 · 10−11 9.9 · 10−12

5 1.2 · 10−10 2.9 · 10−11

10 2.8 · 10−10 7.1 · 10−11

20 8.4 · 10−10 2.1 · 10−10

50 2.1 · 10−9 5.4 · 10−10

100 4.2 · 10−9 1.0 · 10−9

These results were produced by MatLab programs on a microcomputer and
show that CRK method is favourably comparable to CBRKN one.
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7 – Stability and periodicity

Now we investigate the numerical stability of method (11) for n = 3. To-
wards this aim we consider its equivalent implicit Runke-Kutta-Nyström form
(CRK) and then we compare results with other forth-order methods.

We apply CRK to the test equation

y′′ = −αy

where α is a real number, and after some calculation we obtain:

(22)



yi+1 =
−B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)
yi+

−hB

A

(
36864 + 4992h2α + 136h4α2 + h6α3

)
y′

i

y′
i+1 =

−hαB

A

(
36864 + 4992h2α + 120h4α2

)
yi+

−B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)
y′

i

where

A = (17 + 12
√

2)[4608 − 72h2α + (1 + 2
√

2)h4α2]·
·
(
−36864 + 1152h2α − 8h4α2 + h6α3

)
B = 4608

(
17 + 12

√
2
)
− 72

(
17 + 12

√
2
)

h2α +
(
65 + 46

√
2
)

h4α2

The equations (22) written in matrix notation are

(23) ui+1 = Mui

in which ui = [yi, y
′
i]

T , M = (mij),

m11 = −B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)
m12 = −hB

A

(
36864 + 4992h2α + 136h4α2 + h6α3

)
m21 = −hαB

A

(
36864 + 4992h2α + 120h4α2

)
m22 = m11

We treat the cases α = k2 and α = −k2.
In the following we set H = hk and denote the eigenvalues of the matrix M

by µ1,2.
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In the first case we get oscillating solutions, so it is important to have
eigenvalues of M on or inside the unit circle.

In general the eigenvalues of the amplification matrix M are the roots of
the characteristic equation

λ2 − 2R
(
H2

)
λ + P

(
H2

)
= 0

where R
(
H2

)
= 1

2 trace (M) and P
(
H2

)
= det(M) are rational functions of

H2; numerator and denominator of R are polynomials of degree ≤ n in H2. It is
known that for polynomial collocation P

(
H2

)
= 1 when the collocation nodes

are symmetric [12]. In this case, R
(
H2

)
is a rational approximation for cosH,

called stability function of the method.
Stability means that the numerical solutions remain bounded moving further

away from the starting point.

Definition 2. A method is weakly stable in an interval (0, r) if, for each
H in (0, r), |µ1| = |µ2| = 1.

Weak stability prevents the numerical solution ui to spiral into the origin.
Every symmetric collocation method is weakly stable in an interval of the form
(0, r) [12].

We have that the eigenvalues µ1,2 are complex when 0 ≤ H2 < 9.6 and
|µ| = 1 ∀H in (0, 9.6).

The stability of method CRK compares quite favorably with other one-
step fourth-order methods, for example, Runge-Kutta, Runge-Kutta-Nyström
methods [9] and Chang-Gnepp method [2]. The stability range of the Runge-
Kutta method is 0 ≤ H2 ≤ 7.756, of the Runge-Kutta-Nyström method is
0 ≤ H2 ≤ 6.690 and of the Chang-Gnepp method is 0 ≤ H ≤ 8.0722.

Definition 3. An interval
(
0, H2

p

)
is said to be an interval of periodicity

for a method (23) if, for all H2 ∈
(
0, H2

p

)
, µ1,2 are distinct, complex and of

modulii one.

If conditions of definition 3 are satisfied for all H2 > 0, the method is P-
stable, but one-step polynomial collocation does not provide any P-stable meth-
ods [4].

For method CRK, n = 3, the interval of periodicity is (0, 9.6). The interval
of stability of the fifth-order Nyström method in [3] is (0, 8.46).

Let’s now consider the case α = −k2. In the previous case we have oscillating
solutions, here the solutions are exponential. We’ll study the relative error of
method CRK for the equation under discussion, in the case of small h, that is a
large number of integration intervals, following the idea of Rutishauser [14].

The maximum eigenvalue of matrix M is

µ = 1 + hk +
1
2
h2k2 +

1
6
h3k3 +

1
24

h4k4 +
13

1536
h5k5 + O

(
h6k6

)



258 F. COSTABILE – A. NAPOLI [20]

Thus the relative error is

F ≈hk − lnµ

h
=

ln
(
ehk

)
− lnµ

h

=
1
h

(
ehk − µ

µ

)
≈ h4k5

1536
for large x and small h. The relative error for the Runge-Kutta method is
F ≈ h4k5

120 , for the Runge-Kutta Nyström method is F ≈ h4k5

320 and for the method
proposed by Chang and Gnepp ([3]) it is F ≈ h4k5

720 .

8 – Chebyshev-Galerkin methods as hybrid symmetric two-step
methods

Now we show that methods (11) may be formulated as symmetric two-step
hybrid methods in which the position of the off-step points are determined by
the xi defined in (7). In [5] it was proved that a collocation method on the
points tk+ci

= tk + cih, i = 1, . . . , n + 1 with ci = 1
2 (xi + 1) is symmetric (that

is the nodes are such that (18) holds). Then the approximations yi ≈ y (ti) and
zi ≈ y′ (ti) satisfy the equations

(24) cihzk+1 = yk+1 − yk+cn+1−i
+ h2

n∑
j=1

bijfk+cn+1−j

for i = 1, . . . , n, k = 0, 1, . . . , where fk+cn+1−j = f
(
tk + cn+1−jh, yk+cn+1−j

)
.

(Using the 18) and replacing k + 1 by k in (24), we have:

(25) cihzk = yk − yk−ci
+ h2

n∑
j=1

bijfk−cj

which, for i = n + 1, may be written as

(26) hzk = yk − yk−1 + h2
n∑

j=1

bn+1,jfk−cj

and bn+1,j =
1
4
βj (xn+1) = bj .

Equations (15), (16), (17) may be put in the form:

(27)



yk+1 = yk + hzk + h2

n∑
j=1

bjfk+cj

yk+cj
= yk + hcjzk + h2

n∑
i=1

bjifk+ci

zk+1 = zk + h

n∑
i=1

aifk+ci
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so the method becomes:

(28)


yk+1 = 2yk − yk−1 + h2

n∑
j=1

bj

(
fk−cj

+ fk+cj

)
yk+cj = 2yk − yk−cj + h2

n∑
i=1

bji (fk−ci + fk+ci)

which is a symmetric, hybrid two-step method with 2n off-step points between
tk−1 and tk+1 for each k.

If xi = cos
(n − i)π

n
, i = 0, . . . , n, (28) coincides with Panovsky-Richardson

implicit method [13]. In this case CRK method may be seen as an alternative
formulation of Panovsky-Richardson method.

Equations (28) require starting values at x0, x1 and at any off-step points
between x0 and x1. If these starting values provided by (28) are the approxi-
mations generated by CRK method on [t0, t1], then, in exact arithmetic the two
methods would yield identical results at all subsequent steps [13].

9 – Conclusions

This paper provides a family of numerical collocation methods for initial
value problems of the form (1). For each positive integer n two polynomials, one
of degree n + 1, which approximates the exact solution of (1), and the other, of
degree n, which approximates its first derivative, are given explicitly.

Numerical tests show that these methods perform as well as other existing
methods in terms of stability, of magnitude of the absolute error, and of function
evaluations.
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Some applications of new spline spaces

in computer aided geometric design

PAOLO COSTANTINI – CARLA MANNI

Abstract: Aim of this paper is to describe how the so called Variable Degree
Polynomial Spaces can be used for the construction of C3 spatial curves, approximating
or interpolating a given set of data. Their main advantages rely in the easy control
on their shape, provided by the variable degrees, and in the low computational cost,
comparable with that of standard quintic splines.

1 – Introduction

Geometric continuous curves and surfaces based on polynomial or rational
splines constitute the main tool of Computer Aided Geometric Design because
of their simplicity and because of the easy and intuitive control on their shape
provided by the so-called shape parameters. However, in some CAD/CAM ap-
plications, as, for instance, in the description of the motion of a milling machine,
the physical meaning of the parameter is not negligible and a certain order of
analytic continuity is often required; therefore new tools which encompass the
new and the old requests would be highly desirable.

Aim of this paper is to describe the properties and some applications of new
quintic-like spline spaces (called Variable Degree Polynomial Spaces, VDPS for
short) which permit the construction of C3 polynomial (or rational) curves and
surfaces with the same simplicity, computational cost and ease of shape control
as the classical quintics. Indeed, these spaces are isomorphic to the spaces of C3

Key Words and Phrases: Spline curves – Interpolation – Best approximation – Shape
preservation – Tension property.
A.M.S. Classification: 65D05 – 65D07 – 65D10 – 65D17
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quintic splines and possess a control polygon (called pseudo Bézier control net)
with all the usual geometric properties. Therefore, all the geometric construction
that are used in CAGD can be repeated. Additionally, the degrees play the role
of tension parameters, since their large values force the curve to have a piecewise
linear appearance.

This paper is divided in five sections. In the next one the structure of VDPS
will be briefly recalled and in Section 3 we will describe a simplification of the
geometric construction for C4 quintic splines, which is suitable for our purposes.
Section 4 is devoted to show applications of VDPS in the interpolation and
approximation of ordered spatial data. In the last section are reported some
concluding remarks and open problems.

It is worthwhile to say that this paper has a structure very similar to [5];
in that paper an analogous geometric construction, also derived from C4 quintic
splines, is used to produce C2 quintic splines with a third order Frenet continuity
(C2 − FC3) – that is curvature and torsion continuous – splines. The advan-
tages and disadvantages of [5] and of the present paper are, roughly speaking,
symmetric and with an equivalent comprehensive effect: here, we have an higher
continuity order (C3 implies FC3) at the price of the more complex space struc-
ture induced by the degrees; there, a lack in the continuity with the advantage
of low degree splines, which so far constitute the standard mathematical engines
of CAD/CAM environments.

2 – The spline space

In this section we want to briefly introduce the main properties of the C3

quintic-like VDPS, referring for details to [4] and [7]. Let {u0, u1, . . . , um} be
an ordered knot sequence, let hi, i = 0, . . . , m− 1, be the knot spacing, and let

k = {ki; i = 0, 1, . . . , m},

with ki ≥ 5 be a given sequence of integers. For each interval [ui, ui+1] we
consider the six dimensional polynomial space:

V Pki,ki+1 := span{(1 − v), v, (1 − v)ki , v(1 − v)ki−1, vki+1−1(1 − v), vki+1}

with v = (u−ui)/hi, called quintic-like variable degree polynomial space. Denot-
ing by IPn the space of algebraic polynomials of degree less than or equal to n,
we remark that V Pki,ki+1 is isomorphic to IP5 and, in particular, V P5,5 = IP5.
Moreover, as it is shown in [4], V Pki,ki+1 admits a pseudo Bernstein-Bézier basis

{B0,B1,B2,B3,B4,B5}
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that is a basis with the usual properties – positivity, partition of unity – as the
Bernstein-Bézier basis for IP5. Therefore, for any b ∈ V Pki,ki+1 , we have

b =
5∑

j=0

bi,jBi,j , Bi,j(u) = Bj((u − ui)/hi),

where the bi,j are called pseudo Bézier ordinates (the suffix i refers to the in-
terval [xi, xi+1]) and play the same role as the usual control points for quintic
polynomials. In particular, setting

ξi,0 := ui, ξi,1 := ui +
hi

ki
, ξi,2 := ui + 2

hi

ki
,

ξi,3 := ui+1 − 2
hi

ki+1
, ξi,4 := ui+1 −

hi

ki+1
, ξi,5 := ui+1.

we have

u =
5∑

j=0

ξi,jBi,j(u).

For details we refer to [4].
Now, let us consider

V Sk := {s ∈ C3[u0, um] s.t. s|[ui,ui+1] ∈ V Pki,ki+1}

the space of quintic-like VDPS.
In [7] it is shown that V Sk admits a basis,

{N2i, N2i+1; i = −1, 0, . . . , m}

defined, as usual, on an extended knot sequence

u−2 < u−1 < u0 < u1 < · · · < um < um+1 < um+2,

having the classical properties of the B-spline basis.
The tension effect achieved with large degree values clearly appears from

the plots of the B-spline basis functions shown in Figure 1; indeed, if the degrees
tend simultaneously to infinity, the B-splines tend to the normalized piecewise
linear B-splines.
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Fig. 1: Some B-spline basis functions.

3 – Geometric construction

We consider in this section variable degree spline curves in IR3, that is

VSk = {s s.t. s : [u0, um] → IR3, has components in V Sk} .

For explaining our ideas, we start with standard C4, quintic spline curves which
can be seen as a particular case of VDPS with k0 = k1 = . . . = km = 5. If
we denote with {Ñi, i = −2,−1, . . . , m + 2} the sequence of normalized quintic
B-splines of class C4 and take a sequence of coefficients (often referred to as de
Boor control points) {Di, i = −2,−1, . . . , m+2}, a C4 quintic spline curve can
be expressed as

s =
m+2∑
i=−2

DiÑi, Di ∈ IR3.

Obviously, si := s|[ui.ui+1] can be expressed in the Bernstein-Bézier form

si =
5∑

n=0

bi,nBi,n ,

the coefficients bi,j are called Bézier control points.
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One of the most attractive features of spline curves is their geometric con-
struction, that is the possibility of constructing the Bézier control points bi,n

directly from the de Boor control points Dj via a corner-cutting process. This
geometric construction can be schematically divided in two main steps (explained
in Figures 2.a and 2.b ). In the first one (see Figure 2.a) the polygonal legs
DiDi+1, i = −2,−1, . . . , m + 1 are divided in three segments proportional to
hi−2 +hi−1, hi and hi+1 +hi+2 and the additional points F+

i , F−
i+1 are inserted;

then for i = −1, 0, . . . , m+1 the segment F−
i F+

i is divided in three subsegments
proportional to hi−2, hi−1+hi, hi+1 and the points pi, ri are placed on it. In the
second step (see Figure 2.b) the segments ripi+1, i = −1, 0, . . . , m+1 are subdi-
vided with proportionality hi−1, hi, hi+1 and the Bézier control points bi,2, bi,3

are inserted; then, for i = −1, 0, . . . , m + 1 the point qi is inserted in piri with
proportionality hi−1 and hi; finally, the same factors are used to insert the con-
trol points bi−1,4, bi,1 in the segments bi−1,3qi, qibi,2 and bi−1,5 = bi,0 in the
segment bi−1,4bi,1 respectively. Note that this procedure (which is mathemati-
cally proved using the subdivision scheme given by the De Casteljau algorithm)
automatically constructs C4 curves. We refer to to [13], [8], [19] for the formal
details.

Now let us consider curves in the more general space VSk. A spline curve
s ∈ VSk can be expressed as

s = r−1N−2 +
m∑

i=0

(piN2i−1 + riN2i) + pm+1N2m+1 .
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Fig. 2a: Geometric construction of C4 quintic splines. First step.
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Fig. 2b: Geometric construction of C4 quintic splines. Second step.

Obviously, si := s|[ui.ui+1] can be expressed in the Bernstein-Bézier form

si =
5∑

n=0

bi,nBi,n ,

the coefficients bi,j are called pseudo Bézier control points.
In [4] it is shown that a geometric construction similar to that one illustrated

in Figure 2.b holds also for the general case. More specifically it is possible to
construct a C3 curve belonging to VSk starting from a control polygon connect-
ing the control points pi, ri as specified in Figure 3. The remarkable fact of this
construction is that, for a large value of the degree ki, both the points pi, ri

and the pseudo Bézier control points bi−1,3, . . . ,bi,2 are attracted by the central
point qi. In other words, the degrees play the role of tension parameters and
the shape of the curve can be easily modified to reach a piecewise linear appear-
ance; in practice we have the same shape control as for the geometric continuous
([13]) splines with the advantage of maintaining the analytical continuity. It is
worthwhile to recall that the computational cost does not depend on the degrees
and is approximately the same as the quintic one. See [4] for details.

However, in this construction we have two control points associated to each
knot and, instead of being an advantage, this flexibility implies the additional
difficulty of choosing the slope of the segment piri.

The idea of this paper is very simple: to consider the points ri, pi as obtained
from the first corner-cutting step embedding the construction of C3 VDPS of
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Fig. 3: Geometric construction of C3 VDPS splines.

Figure 3 in the quintic C4 scheme of Figures. 4. Thus, only one control point is
associated to each knot. Of course in this way we are dealing with a subspace
of VSk. The simplified geometric construction of the elements of this subspace
is a consistent advantage both for their use in interpolation/approximation of
spatial data and in free form design. We refer to [4], [7] for a comparison. More
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Fig. 4a: Geometric construction of C3 VDPS. First step.
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Fig. 4b: Geometric construction of C3 VDPS. Second step.

specifically, the second step of the corner-cutting remains unchanged (see Fig-
ures. 3 and 4.b) while in the first step we introduce at each knot a new shape
parameter, λi (see Figures. 2.a and 4.a). Obviously, we have again quintic C4

splines for the choice λi = 1, ki = 5, all i.
Since the polygonal legs DiDi+1 are divided in three segments proportional

to λi(hi−2 + hi−1), hi and λi+1(hi+1 + hi+2) it is clear that the points F−
i and

F+
i are attracted by Di for small values of λi. Therefore, the combined effect of

small λi and large ki produces a tension effect on the final curve. See Figure 5
for a graphical example, where we have chosen λi = 1/ki (obviously this is just
one among the possible choices: λi and ki can be chosen independently).

4 – Applications

The researches described in this paper have been mainly motivated by the
necessity of constructing interpolating (for CAD/CAM applications) or approxi-
mating (for some reverse engineering applications) curves capable of maintaining
the geometric characteristics (discrete curvature and discrete torsion [20]) of the
data set.

4.1 – Interpolation of spatial data

We start with a brief description of the interpolation problem, referring to
[1], [2], [3], [4], [10], [11], [12], [15], [16], [17] for related papers.
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Fig. 5: Left: an example of C4 quintic spline curve. Right: an example of C3 VDPS curve.
The numbers indicate the degree ki associated to each de Boor control point

Let
Ii ∈ IR3, i = 0, . . . , m,

be the interpolation points with Ii �= Ii+1. For a given matrix M let |M | :=
det(M). Define, for all admissible indices,

Li =Ii+1 − Ii , i=0, . . . , m−1,

Bi :=


Li−1 × Li

‖Li−1‖ ‖Li‖
, if ‖Li−1‖ ‖Li‖ > 0,

0, elsewhere,

i=1, . . . , m−1,

∆i :=


|Li−1 Li Li+1|

‖Li−1×Li‖ ‖Li× Li+1‖
, if ‖Li−1× Li‖‖Li×Li+1‖>0,

0, elsewhere,

i=1, . . . , m−2,

The vectors Bi are the discrete binormals and the scalars ∆i are the discrete
torsion of the data ([20]).

Given a spline curve s = s(u), we consider the corresponding curvature
vector K(u) and the torsion τ(u):

K(u) :=
s′(u) × s′′(u)

‖s′(u)‖3
, if s′(u) �= 0 ,

τ(u) :=
|s′(u) s′′(u) s′′′(u)|
‖s′(u) × s′′(u)‖2

, if s′(u) × s′′(u) �= 0,
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and following the usual definitions (see, e.g., [1], [11], [7]), we formally define
the shape-constraints (for a geometric interpretation the reader is referred, for
example, to [1]). Let us denote with I the polygonal line connecting the data
points {I0, . . . , Im}.

Definition 1. Let s(u) be a spline curve defined for u ∈ [u0, um] and let
ε1, ε2 two real, positive tolerances. We say that s(u) is I-shape preserving if the
following criteria are satisfied:

(i) Weak collinearity criteria

If ‖Bi‖ ≤ ε1 and Li−1 · Li > 0 then
∥∥∥ s′(u)
‖s′(u)‖ × Lj

‖Lj‖

∥∥∥ ≤ ε2,

j = i − 1, i, in each arbitrary but fixed closed subinterval of (ui−1, ui+1)
where ‖s′(u)‖ �= 0.

(ii) Convexity criteria
(ii.1) If ‖Bi‖ �= 0, then K(ui) · Bi > 0.

(ii.2) If Bi · Bi+1 > 0, then K(u) · Bj > 0, j = i, i + 1,
u ∈ (ui, ui+1).

(iii) Weak coplanarity criteria

If |∆i| ≤ ε1 then
∥∥∥ s′(u) × s′′(u)
‖s′(u) × s′′(u)‖ ×Bi

∥∥∥ ≤ ε2, u ∈ [ui, ui+1], if ‖K(u)‖ �= 0.

(iv) Torsion criteria
(iv.1) If ∆i−1∆i > 0 then τ(ui)∆j > 0, j = i − 1, i.

(iv.2) If ∆i �= 0 then τ(u)∆i > 0, n each arbitrary but fixed closed subinterval
of (ui, ui+1).

Our goal is to construct an I-shape preserving interpolating spline, that is

s ∈ VSk such that s(ui) = Ii , i = 0, . . . , m

which satisfies conditions (i)-(iv) of Definition 1.
To uniquely solve the problem, four conditions must be added. Following

[5], in the case of closed curves, we assume that I0 = Im and we impose

D−2 = Dm−2 , D−1 = Dm−1 ;Dm+1 = D1 , Dm+2 = D2 .

The problem is more complex in the case of open curves; there are indeed
many possible solutions which strictly depend on the applications and on the
user desires. Very simple equations are

D−2 = D−1 = D0 ;Dm+2 = Dm+1 = Dm ,
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which imply that the shape of the curve at the end points is not influenced by
extraneous conditions, but only depend on the first interpolation points, or

D−1 = D0 + α0(D1 − D0) ,

D−2 = D0 + α0(D1 − D0) + β0(D2 − D1) ;
Dm+1 = Dm + αm(Dm − Dm−1) ,

Dm+2 = Dm + αm(Dm − Dm−1) + βm(Dm−1 − Dm−2) ,

which produces natural-like end conditions, that is vanishing curvature and tor-
sion at end points.

The theoretical aspects are grounded on the results of [4] and are completely
similar to those of [5]; we limit therefore to sketch the main points, avoiding
useless duplications.

Let us consider the augmented set of control points {D−2, . . . ,Dm+2} (given
by proper end conditions). The pseudo Bézier control points b0,0,b1,0, . . . ,
bm−1,0,bm,0 := bm,5, play a particular role, since bi,0 = s(ui), i = 0, . . . , m
and therefore the interpolation conditions can be rewritten as bi,0 = Ii, i =
0, . . . , m. Now, if we use the corner cutting process described in Figures 4 for
their computations, we have linear equations of the form

bi,0 =
i+2∑

j=i−2

αi,jDj .

The coefficients αi,j can be computed using the Maple instructions reported in
the appendix; the explicit expressions are extremely cumbersome and are not
reported here for reasons of space. Let us denote with A the matrix obtained
augmenting the collocation matrix (αi,j)0≤i≤m,−2≤j≤m+2 with the four rows
given by one of the boundary conditions. We have the following result.

Theorem 1. For λi sufficiently small and ki sufficiently large, the matrix
A is strictly diagonally dominant.

The proof can be obtained running the Maple program of the appendix.
Obviously we have the following corollary.

Corollary 1. For λi sufficiently small and ki sufficiently large, there
exists one and only one interpolating spline s ∈ VSk
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We observe that, as in other interpolation problems with geometric contin-
uous curves, we have not a formal proof for the existence of a solution for all
λi, ki. Additional results could be obtained, for specified boundary conditions,
using a geometric analysis of the null space similar to those presented in [2] and
[4]. We remark, however, that in the huge amount of numerical experiments
singular matrices have never occurred. Therefore we safely conjecture that A is
non-singular for any choice of λi, ki, also supported by the consideration that
the geometric structure of the corner cutting described in Figures. 4 – which
produces the matrix elements – is not dependent on λi and ki.

Using the same arguments of [5] we have the following asymptotic result.

Theorem 2. Let λi → 0 and ki → ∞. Then bν,µ → Di , for ν = i−1, µ =
3, 4, 5 and ν = i, µ = 0, 1, 2.

The above theorem says that, for proper values of the shape parameters λi,
ki, the pseudo Bézier control net has the same shape of the pseudo De Boor
control net, that is the polygonal line connecting the Di. This can be restated
saying that both the pseudo Bézier and the pseudo De Boor control nets tend
to the polygonal interpolating the data points. Taking a well-known result of [9]
and repeating the same considerations of [4] we claim the following proposition.

Proposition 1. For λi sufficiently small and ki sufficiently large the shape
induced by the curvature and the torsion of s is the same as the shape induced
by the discrete curvature and torsion of the pseudo Bézier control polygon.

Summarizing we have the following result.

Theorem 3. It is possible to find sequences λ0, . . . , λm and k0, . . . , km

such that the interpolating spline curve s is I-shape preserving.

Figure 6. (left) shows the plot of the C4 quintic curve interpolating the
so called chair data, [15]. For emphasizing the shape effect we have used the
uniform, instead of the centripetal arc-length, parameterization. The choice
k1 = k11 = 27 (I0 is the highest point) reduces the unwanted inflections, as
shown in Figure 6 right.

4.2 – Approximation of spatial data

Now let us turn to shape preserving approximation of spatial data. Despite
its practical importance, this argument has received much less attention. For
planar data the only papers seems to be [14] and [18] and, for the spatial case,
[6], [7] and, partially, [5].

Let {(tj , Ij), j = 0, . . . , N}, with Ij ∈ IR3 be a set of data points. The first
problem we must solve is the definition of the shape of the data. Again, for reason
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Fig. 6: Chair data. Left: C4 quintic interpolating spline curve. Right: C3 interpolating
VDPS curve.

of space, we refer to [6] for details. The basic idea goes as follows. We extract
from the data parameters a sequence of significant knots {u0, u1, . . . , um} with
u0 = t0, um = tN and we define the space

LLL := {� ∈ C[u0, um] s.t. �|[ui,ui+1] has components in IP1}.
We then take ψ ∈ LLL, the best least squares approximation to data and we simply
use the discrete curvature and torsion of ψ for defining the shape of the data;
see Figure 7 for a planar example taken from [14].
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Approximating Piecewise Linear with Data

Fig. 7: The shape of a data set.
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Our goal is to compute the spline curve of best approximation, that is s∗

such that
|s∗ − I| ≤ |s − I|, ∀ s ∈ VSk ,

where |v|2 :=
∑N

j=0 ‖v(tj)‖2. Since we are mainly interested in CAD applica-
tions, our splines will be constrained to satisfy the boundary conditions of the
previous section. However, following the same ideas of [6] and [7], we will not
use constrained least square techniques but we simply perform an unconstrained
minimization in the subspace

VΣk := {s ∈ VSk such that s satisfies boundary conditions} ,

seeking for σ∗ ∈ VΣk such that

|σ∗ − I| ≤ |σ − I|, ∀ σ ∈ VΣk .

Again, the theoretical aspects are grounded on the results of [7] and are similar
to those of [5].

Obviously, Proposition 1 and Theorems 1 and 2 still hold; since for λi → 0
and ki → ∞, all i, the space VΣk approaches LLL, we state the following result.

Theorem 4. Let λi → 0, ki → ∞ for i = 0, 1, . . . , m. Then σ∗ → ψ.

Note that the above theorem implies that also the pseudo Bézier and de
Boor control polygons tend to ψ; therefore we have the following result

Corollary 2. It is possible to find sequences λ0, . . . , λm and k0, . . . , km

such that the approximating spline curve σ∗ is ψ-shape preserving.

The main drawback of the above result is that it is global in nature; if only
some shape parameters tend to the limit values the space VΣk does not tend
to LLL and the asymptotic shape preserving properties vanish. The consequence
is that all the segments of the curve are simultaneously stretched and the curve
can assume an unpleasant appearance. In [7] is presented a solution which uses
a weighted approximation, which can be here adopted. The basic idea is that we
accept a compromise, obtaining the convergence at the price of a reduction in the
approximation power. In order to force the spline to locally approach ψ when a
local increase is applied, we work with an extension of the approximation prob-
lem. Let w = {w0, . . . , wm} be a sequence of positive weights. In the following
we use the notation σ = σk,w and use θk,w and �k,w = �(σk,w) to denote, respec-
tively, the piecewise linear curves interpolating the control points {D0, . . . ,Dm}
and the spline at the knots {σ(u0), . . . ,σ(um)} = {b0,0, . . . ,bm,0}. The ba-
sic idea is to push σ∗

k,w(ui) towards ψ(ui), by inserting ψ(u0), . . . ,ψ(um) as
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weighted points in the approximation problem. The approximation points be-
come:

{(tj , Ij) : j = 0, . . . , N} ∪ {(ui,ψ(ui)) : i = 0, . . . , m},

and we find σ∗
k,w ∈ VΣk which is the best weighted least squares approximation,

that is which minimizes the following functional

N∑
j=0

||σk,w(tj) − Ij ||2 +
m∑

i=0

wi||σk,w(ui) − ψ(ui)||2, s.t. σk,w ∈ VΣk.

We can use the values of the weights wi to control behavior of the curve at ui; in
particular if wi = 0, i = 0, . . . , m we have the old approximation problem, and

lim
wi→∞

σ∗
k,w(ui) → ψ(ui).

To be more precise, we use the weights for imposing that �k,w has the same
shape of ψ and the degrees for stretching the curve, that is for imposing that
σ∗

k,w has the same shape of �k,w. Obviously, the larger are the weights, the more
the approximation to the true data I0, . . . , IN deteriorates, and we want to keep
the weights as small as possible. We refer to [7] for details on the algorithm.

We limit ourselves to Figure 8 for a graphical comparison. In Figure 8 (left)
are reported the data set (random perturbations of equally spaced points over
an helix), ψ and σ∗

k obtained using the global scheme; in Figure 8 (right) have
been depicted similar plots for the local scheme.

Fig. 8: Left: the global approximant. Right: the local approximant.

5 – Closure

We have presented a new class of C3 functions which can be used for solving
some important problems of CAGD. Their main advantage relies in the simple
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geometric construction which, in turn, permits an easy description of the shape
constraints and an easy choice of the optimal shape parameters.

It is worthwhile to remind that many CAD/CAM systems are based on
standard NURBS with low degrees. The structure of Figures. 4 can be adapted
to produce FC3 (Frenet-frame continuous [13]) quintic curve; the corresponding
results are reported in [5]. However, it is important to point out that, even if
C2 − FC3 is a reasonable smoothness property both from the mechanical point
of view (the motion of a point on the curve has a continuous acceleration) and
from the geometric point of view (the tangent and curvature vectors and the
torsion are continuous), the C3 continuity is sometimes required. For instance,
if the physical meaning of the parameter is time and the spline curve is used
to control the motion of a robot, a smooth (C1) acceleration will preserve the
engines from harsh stresses.

We conclude the paper observing that the tensor-product extension seems
straightforward; the non-obvious problems are to extract the information on the
shape of the data, especially in the approximation case, and to assign to the data
a parameterization suitable for our purposes. The corresponding researches are
under study.

– APPENDIX – Maple instructions

Explicit expression of the points obtained in the corner cutting process de-
scribed in Figures 4; check of the corresponding limits; explicit computation of
the coefficients of the i-th row of the interpolation matrix M and check of its
asymptotic diagonal dominance.

For notational simplicity we have set: delta[i]:=1/k[i] .

> Fp[i-2]:=((h[i-2]+lambda[i-1]*(h[i-1]+h[i]))*D[i-2]
> +lambda[i-2]*(h[i-4]+h[i-3])*D[i-1])/(lambda[i-2]*(h[i-4]+
> h[i-3])+h[i-2]+lambda[i-1]*(h[i-1]+h[i]));

> Fm[i-1]:=((lambda[i-2]*(h[i-4]+h[i-3])+h[i-2])*D[i-1]+
> lambda[i-1]*(h[i-1]+h[i])*D[i-2])/(lambda[i-2]*(h[i-4]+h[i-3])+
> h[i-2]+lambda[i-1]*(h[i-1]+h[i]));
> Fp[i-1]:=((h[i-1]+lambda[i]*(h[i]+h[i+1]))*D[i-1]+
> lambda[i-1]*(h[i-3]+h[i-2])*D[i])/(lambda[i-1]*(h[i-3]+h[i-2])+
> h[i-1]+lambda[i]*(h[i]+h[i+1]));

> Fm[i]:=((lambda[i-1]*(h[i-3]+h[i-2])+h[i-1])*D[i]+
> lambda[i]*(h[i]+h[i+1])*D[i-1])/(lambda[i-1]*(h[i-3]+h[i-2])+
> h[i-1]+lambda[i]*(h[i]+h[i+1]));
> Fp[i]:=((h[i]+lambda[i+1]*(h[i+1]+h[i+2]))*D[i]+
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> lambda[i]*(h[i-2]+h[i-1])*D[i+1])/(lambda[i]*(h[i-2]+h[i-1])+
> h[i]+lambda[i+1]*(h[i+1]+h[i+2]));

> Fm[i+1]:=((lambda[i]*(h[i-2]+h[i-1])+h[i])*D[i+1]+
> lambda[i+1]*(h[i+1]+h[i+2])*D[i])/(lambda[i]*(h[i-2]+h[i-1])+
> h[i]+lambda[i+1]*(h[i+1]+h[i+2]));
> Fp[i+1]:=((h[i+1]+lambda[i+2]*(h[i+2]+h[i+3]))*D[i+1]+
> lambda[i+1]*(h[i-1]+h[i])*D[i+2])/(lambda[i+1]*(h[i-1]+h[i])+
> h[i+1]+lambda[i+2]*(h[i+2]+h[i+3]));

> Fm[i+2]:=((lambda[i+1]*(h[i-1]+h[i])+h[i+1])*D[i+2]+
> lambda[i+2]*(h[i+2]+h[i+3])*D[i+1])/(lambda[i+1]*(h[i-1]+h[i])+
> h[i+1]+lambda[i+2]*(h[i+2]+h[i+3]));

> p[i-1]:=collect(((h[i-2]+h[i-1]+h[i])*Fm[i-1]+h[i-3]*Fp[i-1])/
> (h[i-3]+h[i-2]+h[i-1]+h[i]),[D[i-2],D[i-1],D[i]]);
> r[i-1]:=collect((h[i-3]*Fm[i-1]+(h[i-2]+h[i-1]+h[i])*Fp[i-1])/
> (h[i-3]+h[i-2]+h[i-1]+h[i]),[D[i-2],D[i-1],D[i]]);

> p[i]:=collect(((h[i-1]+h[i]+h[i+1])*Fm[i]+h[i-2]*Fp[i])/
> (h[i-2]+h[i-1]+h[i]+h[i+1]),[D[i-1],D[i],D[i+1]]);
> limit(p[i],lambda[i]=0);
> r[i]:=collect((h[i-2]*Fm[i]+(h[i-1]+h[i]+h[i+1])*Fp[i])/
> (h[i-2]+h[i-1]+h[i]+h[i+1]),[D[i-1],D[i],D[i+1]]);
> limit(r[i],lambda[i]=0);

> p[i+1]:=collect(((h[i]+h[i+1]+h[i+2])*Fm[i+1]+h[i-1]*Fp[i+1])/
> (h[i-1]+h[i]+h[i+1]+h[i+2]),[D[i],D[i+1],D[i+2]]);
> r[i+1]:=collect((h[i-1]*Fm[i+1]+(h[i]+h[i+1]+h[i+2])*Fp[i+1])/
> (h[i-1]+h[i]+h[i+1]+h[i+2]),[D[i],D[i+1],D[i+2]]);

> b[i-1,3]:=collect((delta[i]*h[i]*r[i-1]+
> (delta[i-1]*h[i-2]+(1-2*delta[i-1]-2*delta[i])*h[i-1])*p[i])/
> (delta[i-1]*h[i-2]+(1-2*delta[i-1]-2*delta[i])*h[i-1]+
> delta[i]*h[i]),
> [D[i-2],D[i-1],D[i],D[i+1]]);

> simplify(limit(b[i-1,3],lambda[i]=0,delta[i]=0));

> b[i,2]:=collect((((1-2*delta[i]-2*delta[i+1])*h[i]+
> delta[i+1]*h[i+1])*r[i]+
> delta[i]*h[i-1]*p[i+1])/
> (delta[i]*h[i-1]+(1-2*delta[i]-2*delta[i+1])*h[i]+
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> delta[i+1]*h[i+1]),
> [D[i-1],D[i],D[i+1],D[i+2]]);
> simplify(limit(b[i,2],lambda[i]=0,delta[i]=0));

> q[i]:=collect((h[i]*p[i]+h[i-1]*r[i])/(h[i-1]+h[i]),
> [D[i-2],D[i-1],D[i],D[i+1],D[i+2]]);
> simplify(limit(q[i],lambda[i]=0,delta[i]=0));

> b[i-1,4]:=collect((h[i]*b[i-1,3]+h[i-1]*q[i])/
> (h[i-1]+h[i]),[D[i-2],D[i-1],D[i],D[i+1],D[i+2]]);
> simplify(limit(b[i-1,4],lambda[i]=0,delta[i]=0));

> b[i,1]:=collect((h[i]*q[i]+h[i-1]*b[i,2])/
> (h[i-1]+h[i]),[D[i-2],D[i-1],D[i],D[i+1],D[i+2]]);
> simplify(limit(b[i,1],lambda[i]=0,delta[i]=0));

> b[i,0]:=collect((h[i]*b[i-1,4]+h[i-1]*b[i,1])/
> (h[i-1]+h[i]),[D[i-2],D[i-1],D[i],D[i+1],D[i+2]]);

> row:=coeffs(b[i,0],D[i-2],D[i-1],D[i],D[i+1],D[i+2]);
> limit(row[1],lambda[i]=0,delta[i]=0);
> limit(row[2],lambda[i]=0,delta[i]=0);
> simplify(limit(row[3],lambda[i]=0,delta[i]=0));
> limit(row[4],lambda[i]=0,delta[i]=0);
> limit(row[5],lambda[i]=0,delta[i]=0);
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[14] B. Jüttler: Shape preserving least-squares approximation by polynomial para-
metric spline curves, Computer Aided Geometric Design, 14 (1997), 731-747.

[15] P.D. Kaklis – M.T. Karavelas: Shape preserving interpolation in IR3, IMA J.
Numer. Anal., 17 (1997), 373-419.

[16] M.I. Karavelas – P.D. Kaklis: Spatial shape preserving interpolation using
ν–splines, Numer. Alg., 23 (2000), 217-250.

[17] V.P. Kong – B.H. Ong: Shape preserving interpolation using Frenet frame con-
tinuous curve of order 3 , preprint, 2001.

[18] R. Morandi – D. Scaramelli – A. Sestini: A geometric approach for knot
selection in convexity-preserving spline approximation, in Curve and Surface De-
sign: Saint-Malo 1999, Pierre-Jean Laurent, Paul Sablonniere and L.L. Schumaker
(eds.), Vanderbilt University Press, Nashville, TN, 2000, pp. 287-296.
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Application of cardinal radial basis

interpolation operators to numerical

solution of the Poisson equation

GIAMPIETRO ALLASIA – ALESSANDRA DE ROSSI

Abstract: We consider the application of a new scattered data approximation
scheme to numerically solving the Dirichlet problem for the Poisson equation. This
collocation method, which is mesh-free and substantially independent on the space di-
mension, makes use of interpolation operators with cardinal radial basis and differs
from the well-known discretization approach introduced by E. J. Kansa in 1990 and
then extensively developed, based on Hardy’s multiquadrics or others radial basis func-
tions. In our method the discretization matrix, whose dimension equals the number of
internal points in the domain, is symmetric and strictly diagonally dominant, so that
the discrete problem is well-posed and also well-conditioned, since the matrix condition
number is small. Numerical experiments show that the performance of our method is
comparable in many cases with that of Kansa’s method; moreover, the former works
well even if the number of collocation points is large.

1 – Introduction

In early the 1990s E. J. Kansa [13], [14] proposed a method to solve hy-
perbolic, parabolic and elliptic partial differential equations using Hardy’s mul-
tiquadric radial basis functions (MQ-RBFs). Then several authors extended
Kansa’s idea applying MQ-RBFs and other radial basis functions (RBFs) to the
numerical solution of various types of PDEs (see recent developments in [16]).

Key Words and Phrases: Elliptic partial differential equations – Approximation
scheme – Scattered data – Cardinal radial basis.
A.M.S. Classification: 65N35 – 65N22 – 65D10 – 41A63
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Two useful features of Kansa’s method immediately appeared: it gives a truly
mesh-free algorithm and its computational complexity does not increase consis-
tently with spatial dimension. Mesh-free radial basis functions provide powerful
discretization representations to simulate problems not merely in bidimensional
domains, but in arbitrary n-dimensional domains with irregular boundaries, and
they can be implemented wisely on massively parallel computers. There are
also some well known disadvantages: MQ-RBFs (and in general RBFs) are glob-
ally supported and the discretization matrix is full and ill-conditioned. Several
remedies have been proposed to circumvent the ill-conditioning, but this is yet
a relevant and open problem in the resolution of PDEs by RBFs (see, e.g. [15]).

A seemingly new scheme for discretization of the Poisson equation and some
other elliptic PDEs, which recalls Kansa’s method but differs in some notewor-
thy aspects, has been proposed [4]. This collocation method, which is mesh-free
and substantially independent on the space dimension, makes use of interpo-
lation operators with cardinal radial basis (CRBIs). A suitable choice of the
basis function type yields a discretization matrix, that is symmetric and strictly
diagonally dominant, and has a dimension equal to the number of collocation
points internal to the domain. So the discrete problem is well-posed and also
well-conditioned, since the matrix condition number is small.

Numerical experiments show that the method considered gives solutions
whose accuracy is in many cases comparable with that achieved by the MQ-
RBF method. Furthermore, it appears clear that our method does not stop
working well even if the set of collocation points is large.

2 – The CRBI Scheme

In order to investigate computational properties of our scattered data ap-
proximation scheme, we start outlining it and, for simplicity, focusing on the
consideration of the Dirichlet problem for the Poisson equation.

Let Ω ⊂ Rs, (s ≥ 2), be an open, simply connected point set, bounded by
a piecewise regular hypersurface Σ, and let h(x) ∈ C(Ω ∪ Σ) and k(x) ∈ C(Σ)
be given real functions with x = (x1, x2, . . . , xs). The Dirichlet problem for the
Poisson equation is that of finding a real function u(x) in the space U = {u ∈
C2(Ω) ∩ C(Σ)} such that

(1) −∆u(x) ≡ −
s∑

k=1

∂2u(x)
∂x2

k

= h(x), x ∈ Ω, and u(x) = k(x), x ∈ Σ.

To build up the discrete problem associated with (1), we consider a set of distinct
points SN = {ξi, i = 1, . . . , N}, in general arbitrarily distributed in the domain
Ω, and a suitable family of cardinal basis functions gk ∈ C2(Ω) ∩ C(Σ), (k =
1, . . . , N), or rather gk ∈ C2(Ω ∪ Σ), such that

(2) gk(ξi) = δki,
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where δki is the Kronecker delta. Each element F of the set FN = span{gk,
k = 1, . . . , N}, which is a linear space of dimension N and a subset of U , is
uniquely represented in the form

(3) F (x) =
N∑

k=1

ckgk(x).

An approximate solution F of the problem (1) must satisfy the linear system

−
N∑

k=1

ck∆gk(ξi) = h(ξi), ξi ∈ Ω, and
N∑

k=1

ckgk(ξi) = k(ξi), ξi ∈ Σ,

that is for (2)

(4) −
N∑

k=1

ck∆gk(ξi) = h(ξi), ξi ∈ Ω, and ci = k(ξi), ξi ∈ Σ.

If we suppose for k = 1, . . . , N

wk ∈ C2(Ω ∪ Σ), wk(x) =
{

0, for x = ξi, i �= k,

> 0, for x = ξk,

then we can set

(5) gk(x) =
wk(x)

N∑
j=1

wj(x)

,

and these gk(x) can be interpreted as the basis functions in (3). Properties of
the interpolation operator F (x) are discussed in detail in [1], [2].

3 – The Basic Weight

The values of the second derivative of F (x) at the nodes, which are needed
in (4), depend from (5) on the choice of the weight wk(x). In a first approach,
we choose a simple and classical weight setting for k = 1, . . . , N , and ξi =
(ξi1, ξi2, . . . , ξis)

(6) wk(x) =
N∏

i=1,
i�=k

d2(x, ξi), with d2(x, ξi) =
s∑

j=1

(xj − ξij)2.
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Consequently, from (5) gk(x) takes the form

(7) gk(x) =
wk(x)

N∑
j=1

wj(x)

=

N∏
i=1,
i�=k

d2(x, ξi)

N∑
j=1

N∏
i=1,
i�=j

d2(x, ξi)

.

However, different choices are possible and worthy of careful consideration, in
view of their numerical performance in applications.

As a result of rather tedious algebraic manipulations detailed in [4], we get
for p = 1, . . . , s

(8)
∂2F (ξi)

∂x2
p

=
1

wi(ξi)

(
N∑

m=1,
m�=i

cm
∂2wm(ξi)

∂x2
p

− ci

N∑
k=1,
k �=i

∂2wk(ξi)
∂x2

p

)
,

where

(9) wm(ξi) =
N∏

j=1,
j �=m

d2(ξi, ξj), if m = i; wm(ξi) = 0, if m �= i;

and

(10)

∂2wm(ξi)
∂x2

p

=
N∑

k=1,
k �=m

[
2

N∏
j=1,

j �=m,k

d2(ξi, ξj) + 4(ξip − ξkp)
N∑

h=1,
h�=m,k

(ξip − ξhp)×

×
N∏

j=1,
j �=m,k,h

d2(ξi, ξj)

]
, if m = i;

∂2wm(ξi)
∂x2

p

= 2
N∏

j=1,
j �=m,i

d2(ξi, ξj), if m �= i.

Note that
∂2wm(ξi)

∂x2
p

=
∂2wm(ξi)

∂x2
1

, p = 1, . . . , s.

From (4) and (8) we have that the condition to be satisfied by F (x) at any
node ξi ∈ Ω is given by

−1
wi(ξi)

{
N∑

m=1,
m�=i

cm s
∂2wm(ξi)

∂x2
1

− ci

N∑
k=1,
k �=i

s
∂2wk(ξi)

∂x2
1

}
= h(ξi),
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whereas at any node ξi ∈ Σ the Dirichlet condition yields

F (ξi) = ci = k(ξi).

Hence, the system of linear equations Ac = b, obtained by discretization of the
Dirichlet problem, is

(11)
N∑

m=1

aimcm = bi, i = 1, . . . , N,

where
(a) for ξi ∈ Ω: bi = h(ξi) and

(12) aim =


−s

1
wi(ξi)

∂2wm(ξi)
∂x2

1

, if m �= i,

s
1

wi(ξi)

N∑
k=1,
k �=i

∂2wk(ξi)
∂x2

1

, if m = i;

(b) for ξi ∈ Σ: bi = k(ξi) and aim = δim.
If A is nonsingular, the solution of the N × N system Ac = b is a vector c

whose components ci, (i = 1, . . . , N), approximate the quantities appearing in
the expression (3) of the interpolation operator F .

4 – Properties of Discretization Scheme

If N1 nodes belong to Ω and N2 to Σ, with N = N1 +N2, it is convenient to
order the equations of the system (11) such that the first equations correspond
to the first N1 nodes. Thus, taking into account the point (b) above, the system
can be rewritten as

N1∑
m=1

aimcm +
N∑

n=N1+1

aincn = h(ξi), for i = 1, . . . , N1,

cj = k(ξj), for j = N1 + 1, . . . , N,

which is equivalent to

N1∑
m=1

aimcm = h(ξi) −
N∑

n=N1+1

aink(ξn), for i = 1, . . . , N1.
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This relation shows that the initial N × N system Ac = b can be reduced to an
N1 × N1 system Ãc̃ = b̃, namely

(13)
N1∑

m=1

ãimc̃m = b̃i, for i = 1, . . . , N1,

where

(14)

ãim = aim, for i, m = 1, . . . , N1,

c̃m = cm, for m = 1, . . . , N1,

b̃i = h(ξi) −
N∑

n=N1+1

aink(ξn), for i = 1, . . . , N1.

We note that the dimension of the system depends only from the N1 internal
nodes. Nevertheless, the N2 nodes on the boundary increase a little the compu-
tational effort to obtain the terms b̃i in (14).

For i, m = 1, . . . , N1, i �= m,

(15) ãim =
−s

wi(ξi)
∂2wm(ξi)

∂x2
1

=
−s

N∏
j=1,
j �=i

d2(ξi, ξj)

2
N∏

j=1,
j �=m,i

d2(ξi, ξj) =
−2s

d2(ξi, ξm)
,

which shows the symmetry of Ã.
The matrix Ã is strictly diagonally dominant. In fact, the expression of the

ith diagonal element ãii of Ã can be rewritten by (9) and (10), in the form

(16) ãii =
1

N∏
j=1,
j �=i

d2(ξi, ξj)

N∑
k=1,
k �=i

2s

N∏
j=1,
j �=k,i

d2(ξi, ξj) = 2s

N∑
k=1,
k �=i

1
d2(ξi, ξk)

.

On the other hand, the sum of entries in the ith row, omitting the diagonal term,
is

(17)
N1∑

k=1,k �=i

ãik = −

N1∑
k=1,k �=i

2s

N∏
j=1,j �=k,i

d2(ξi, ξj)

N∏
j=1,j �=i

d2(ξi, ξj)

= −2s

N1∑
k=1,k �=i

1
d2(ξi, ξk)

.
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Comparing the quantities in (16) and (17), we have the inequalities

|ãii| >

N1∑
k=1,k �=i

|ãik| for all i = 1, . . . , N1,

because we sum N terms in (16) but only the first N1 of them in (17).
Since a strictly diagonally dominant matrix is nonsingular, the system Ãc̃ =

b̃ has a unique solution.

5 – A More Localizing Weight

A crucial point in the considered scheme is the choice of the weight. Actually,
the approximation accuracy obtained by using (6) is unsatisfactory, at least
considering small domains, since the root mean square error (RMSE) and the
maximum absolute error (MAE) are quite high in comparison with those arising
from approximation with MQs. The reason is to be searched in the behavior of
the basis function gk(x) in (7), which is not sufficiently localyzing. In fact, gk(x)
can be rewritten as

gk(x) =


1/d2(x, ξk)

N∑
j=1

1/d2(x, ξj)

, if x �= ξk,

1, if x = ξk,

that shows the connection between the behaviors of gk(x) and

φ(d2(x, ξk)) = 1/d2(x, ξk).

Now, the latter is too sensitive to the effects of any node ξk relatively far from
the interpolation point x and, in particular, it happens when the considered
distances are less than one. From a practical viewpoint, it is easier to consider
the function φ(t) = 1/t2 instead of φ(d2(x, ξk)).

As a matter of fact, if the number N of nodes is large in comparison with the
domain extension, it may be deemed expedient to strongly localize the weight
so that more distant points do not work. A possible solution would consist in
introducing in (3) localizing factors with reduced compact supports, but in such
a way as to conserve the continuity of the second derivatives of the weights.
Otherwise, one could consider beside (6) other weights which are strongly de-
caying as distance increases. Up to now, we have mainly explored functions of
the second type.
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A weight to be considered to improve the scheme is

(18) ŵm(x) =
N∏

j=1,
j �=m

{exp[αd2(x, ξj)] − 1}, α ≥ 1,

related to the function φ̂(t) = 1/[exp(αt2) − 1], whose localizing effect increases
with α. The discretization scheme by using the weight (18) still enjoys all
the properties discussed above. In particular, relations (12) (remembering (15)
and (16)) become

aim =


− 1

ŵi(ξi)
s

∂2ŵm(ξi)
∂x2

1

=
−2sα

d2(ξi, ξm)
, if m �= i,

1
ŵi(ξi)

N∑
k=1,
k �=i

s
∂2ŵk(ξi)

∂x2
1

= 2sα

N∑
k=1,
k �=i

1
d2(ξi, ξk)

, if m = i.

It must be noted that a drawback of using parameters in the weights is due to
the requirement of determining their optimal values.

6 – Solving the Linear System

Since the system matrix Ã is strictly diagonally dominant, Gaussian elimi-
nation algorithm can be applied to solve the system (13) without row or column
interchanges, and the computations are stable with respect to the growth of
roundoff errors [[12], pp. 181-182]. Since all the reduced matrices Ã(k) given
by the algorithm are symmetric, the amount of work for the decomposition is
approximately halved, that is, O(n3/6) multiplications/divisions and as many
additions/subtractions are required.

Gaussian elimination ensures the factorization Ã = LU , where L is a lower
triangular matrix with ones on the main diagonal and U is an upper triangular
matrix. Other factorization methods can also be considered as the factorization
LDLT , where L is lower triangular with ones on its diagonal and D is the
diagonal matrix with a11, a22, . . . , ann on its diagonal, and, since the matrix is
positive definite, Choleski’s factorization LLT , where L has positive diagonal
elements. They require computational efforts of the same order as Gaussian
elimination, but the last is more easily handled in order to apply the iterative
refinement [11], [9], [12].

The numerical stability allows to handle large systems and, in case of very
large systems, Gaussian elimination can be efficiently performed in a parallel
processing environment [10]. This feature is very important when the space
dimension s is larger than two.
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For the direct solution of linear systems we used subroutines given in LA-
PACK, because it represents a standard benchmark and enjoys an excellent
documentation. Moreover, accompanying LAPACK is the set of lower-level op-
erations called BLAS which has to be considered for implementation on both
shared and local memory multiprocessors. Up to now, however, considering
equations in two variables, we have done only serial computations.

7 – Smoothing Resulting Surfaces

After solving the system Ãc̃ = b̃ and obtaining the values of all the coeffi-
cients cm, (m = 1, . . . N), in the expression of the approximation operator F (x),
one can proceed to obtain those values of F (x) which are of interest or, rather,
to give an approximate representation (possibly graphical) of the solution of the
Dirichlet problem.

A computational problem arises from the very definition of F (x) which is
from (3) and (7)

(19) F (x) =
N∑

k=1

ckgk(x) =
N∑

k=1

ck

N∏
i=1,
i�=k

d2(x, ξi)

n∑
j=1

N∏
i=1,
i�=j

d2(x, ξj)

.

The question is if the product form (19) of the operator achieves more numerical
stability than the equivalent barycentric form

(20) F (x) =



N∑
k=1

ck
1/d2(x, ξk)

N∑
j=1

1/d2(x, ξj)

, if x �= ξk,

ck, if x = ξk,

or viceversa. Schneider and Werner [18] at first observe that the operator
in one dimension may be considered for p = 2 a rational Hermite interpolation,
i.e., the derivative is approximated (rather arbitrarily) by 0 at the data sites.
Then they state that the barycentric form offers the advantage of a remarkable
numerical stability: even in the presence of rounding errors, which may occur
during the computation of ck, the interpolation property is maintained.

As a matter of fact, in the practice of numerical calculation, the barycentric
formula is definitely preferred (see more considerations in [1]). Obviously suitable
tricks must be adopted to control the growth of rounding and truncation errors
when x is very close to ξk.
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In the graphical representation of F (x) a drawback is given by the appear-
ance of flat spots at the data points, since the partial derivatives of F (x) vanish
there (see [3]).

To avoid this generally undesirable property, we construct local approxi-
mants Qk(x) to F (x) at ξk, obtained by means of the moving weighted least-
squares method using weight functions with reduced compact support. These
local approximations are to be used instead of the coefficients ck in order to get
a smoother surface. So the operator F (x) is expressed as a convex combination
of the local approximants

F (x) =
N∑

k=1

Qk(x)
wk(x)

N∑
j=1

wj(x)

.

Best performance is achieved by using for every node ξk a paraboloid Qk(x)
which interpolates at the node.

8 – Boundary Effects

A common feature in all RBF approximations is how relatively inaccurate
they are at boundaries. This accuracy degradation near boundaries in many cases
severely limits the utility of methods based on RBFs. Actually, large boundary-
induced errors of this type will contaminate less or more the solution everywhere
across the domain [8]. In applying MQ-RBFs to the solution of PDEs the residual
error is typically largest by one or two orders near the boundary compared to
the residual error in the domain far from the boundary. An improvement has
been proposed which consists in adding an additional set of nodes, lying inside or
outside of the domain, and correspondly in adding an additional set of collocation
equations obtained via collocation of the PDE on the boundary [7]. This PDE
collocation on the boundary reduces dramatically the residual.

Our scheme allows to increase considerably the number of nodes collocated
on the boundary, and this is done in a simple way with a very reduced compu-
tational cost. This feature could be particularly useful to control the difficulties
possibly arising near the domain boundary.

9 – Numerical Results

In the following test examples we restrict ourselves to two dimensional Pois-
son and Laplace problems whose analytic solution are available. In all cases
we use both MQ-RBF and CRBI approximations of the unknown function u.
In particular CRBI method is applied both with the basic weight (6) and the
localizing exponential weight (18).
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Example 1. We consider the Poisson problem studied in [6]

∆u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = g(x, y), (x, y) ∈ Σ,

where Ω ∪ Σ = [1, 2] × [1, 2], the inhomogeneous term f(x, y) is given by

f(x, y) = −751π2

144
sin

πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
+

7π2

12
cos

πx

6
cos

7πx

4
×

× sin
3πy

4
sin

5πy

4
+

15π2

8
sin

πx

6
sin

7πx

4
cos

3πy

4
cos

5πy

4
,

and
g(x, y) = sin

πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
.

The exact solution u(x, y) to this problem coincides with the boundary condition
g(x, y).

For this test we selected various uniform distributions of collocation points
in the domain [1, 2] × [1, 2]. Fig. 1 shows a uniform distribution on a grid of 81
collocation points. We solved the above problem using the MQ-RBF method
with a shape parameter c = 1 and the CRBI method. The resulting algebraic
systems were solved using Gauss elimination. Due to uncertainty of how to
choose the values of the parameters for RBFs and CRBIs, we do not looked for
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Fig. 1: Uniform distribution of 81 collocation points.
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their optimal values. Simply, in this preliminary investigation, we set c = 1 as
in [17] and α roughly proportional to the number of collocation points.

In Table 1 are listed the dimensions and the approximate condition numbers
of discretization matrices. The subscripts K, C and Ce refer to Kansa’s scheme
and to CRBI based schemes with the two different weights, respectively.

Table 1: Matrix dimensions (MD) and condition numbers (CN) for some uniform
distributions.

N 6 × 6 8 × 8 10 × 10 12 × 12

MDK 36 64 100 144
CNK 9.6026e07 1.8021e11 2.8824e14 5.7559e17

MDC 16 36 64 100
CNC 3.2483e00 4.6815e00 6.1136e00 7.5405e00

MDCe 16 36 64 100
CNCe 8.2780e00 1.5853e01 2.8020e01 4.2069e01

Table 1 shows the well-known disadvantage of ill-conditioning of the dis-
cretization matrices arising from the MQ-RBFs method and, on the contrary,
how the matrices for the CRBI method have much smaller condition numbers.
Moreover, as already pointed-out, the matrix dimension in CRBI approach is
equal to the number of internal collocation points in the domain.

Table 2: Root mean square errors (RMSE) and maximum absolute errors (MAE)
for some uniform distributions.

N 6 × 6 9 × 9 11 × 11 16 × 16 21 × 21

RMSEK 5.4416e−3 2.8910e−4 4.4902e−5 9.3432e−7 1.7773e−5
MAEK 1.2663e−2 8.8215e−4 1.6874e−4 2.9001e−6 5.2733e−5

RMSEC 8.5317e−2 1.1795e−1 1.3046e−1 1.5005e−1 1.6212e−1
MAEC 3.3857e−1 4.5457e−1 4.7875e−1 5.1510e−1 5.4705e−1

RMSECe 6.8051e−3 2.8701e−3 1.8761e−3 8.5708e−4 4.9346e−4
MAECe 1.7341e−2 7.1686e−3 4.8149e−3 2.0704e−3 1.3317e−3

In order to test accuracy, we increased the number of collocation points
considering several uniform grids in the domain. In Table 2 we list some of
the results obtained. The root mean square errors and the absolute maximum
errors, computed on the set of the collocation points, are better for the MQ-
RBF method, but they begin to make worse as the number of collocation points
increases starting from the 41 × 41 grid. For example, considering the uniform
51 × 51 grid (2601 collocation points) the RMSE goes down to 2.5025e−3 and
the MAE to 5.7033e−3.
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Fig. 2: The numerical solutions on the 33×33 grid obtained with MQ-RBF method and
CRBI method with localizing weight using 81 collocation points.

Concerning the CRBI method, we observe that in this test example it is not
accurate as MQ-RBF method, but it slowly improves when we use the exponen-
tial localizing weight. Instead, the accuracy of the numerical solution of CRBI
with the basic weight is not satisfying. We must say that for this test problem is
not necessary to consider a large set of collocation points (as show the plots in
Fig. 2 and Fig. 3) but these remarks are important if we will consider a problem
which require a large number of points to be numerically solved.

Fig. 2 shows the approximations obtained with the MQ-RBF method and
the CRBI method with the localizing weight. We used 81 collocation points and
the approximations are computed on a 33×33 grid. Considering the accuracy of
the numerical solutions, the plot of the exact solution is not given. In Fig. 3 are
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Fig. 3: The absolute errors computed on the 33 × 33 grid obtained with MQ-RBF
method and CRBI method with localizing weight.
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plotted the absolute errors in the two cases. Comparing the plots, we observe
that the error is more uniformly distributed in the domain when CRBI method
is used, while the error is more localized on the boundary for MQ-RBF method.

Example 2. Let us consider the Laplace equation which models the steady
state temperature distribution in a thin plate [5]

∆u(x, y) = 0, (x, y) ∈ (0, 1) × (0, 1)

with the Dirichlet boundary conditions

u(x, 0) = 1, u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0.

The analytic solution of this problem is given by

u(x, y) =
( 4

π

) ∞∑
i=0

{[ 1
2i + 1

]
sin[(2i + 1)πx]×

× sinh[(1 − y)(2i + 1)π] · cosh[(2i + 1)π]
}

.

For this test we selected various gridded and scattered data sets in the domain
[0, 1] × [0, 1]. Some of the data sets used are plotted in Fig. 4 and Fig. 5. The
scattered data sets were generated randomly, selecting some of the points on the
boundary.
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Fig. 4: Gridded data set of 121 collocation points.
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Fig. 5: Scattered data set of 100 collocation points.

In Table 3 we report the matrix dimensions and the approximated condition
numbers for some uniform distributions. We remark again that the matrices
arising from our approximation scheme are smaller and better conditioned in
comparison with those from MQ-RBF scheme.

Table 3: Matrix dimensions (MD) and condition numbers (CN) for some gridded
data sets.

N 5 × 5 7 × 7 9 × 9 11 × 11

MDK 25 49 81 121
CNK 1.9153e06 4.0658e09 7.0456e12 7.4703e15

MDC 9 25 49 81
CNC 2.5342e00 3.9645e00 5.3981e00 6.8281e00

MDCe 9 25 49 81
CNCe 5.8284e00 1.3922e01 2.5233e01 3.9137e01

Tables 4 and 5 show the values of the root mean square and absolute max-
imum errors computed on the nodes, obtained with gridded data sets and scat-
tered data sets, respectively. The number of boundary data points of the scat-
tered data sets is indicated in brackets. Both tables show that in this example
the CRBI method performs better than the MQ-RBF one. In particular, in-
creasing the number of collocation points the errors increase for the latter, while
on the contrary our scheme slowly improves.
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Table 4: Root mean square errors (RMSE) and absolute maximum errors (MAE)
for some gridded data sets.

N 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14

RMSEK 1.4017e−2 1.6773e−2 1.9210e−2 2.6067e−2 7.4839e−2
MAEK 3.3644e−2 4.7334e−2 5.8919e−2 9.4331e−2 3.5157e−1

RMSEC 6.5439e−2 8.3554e−2 9.8267e−2 1.0984e−1 1.1944e−1
MAEC 2.1083e−1 2.6841e−1 3.0426e−1 3.3161e−1 3.5143e−1

RMSECe 3.2226e−3 2.5500e−3 2.0659e−3 1.6933e−3 1.5749e−3
MAECe 1.0400e−2 7.5742e−3 6.6763e−3 6.4897e−3 5.2316e−3

Table 5: Root mean square errors (RMSE) and absolute maximum errors (MAE)
for some scattered data sets.

N(N2) 60(28) 100(36) 140(44) 240(60) 400(80)

RMSEK 6.2720e−1 2.3253e−2 1.6883e+0 1.0566e−1 3.6538e−1
MAEK 2.0397e+0 1.3569e−1 1.8115e+1 7.7725e−1 9.8808e−1

RMSEC 6.3918e−2 8.8239e−2 1.1258e−1 1.2086e−1 1.2542e−1
MAEC 2.6953e−1 4.7216e−1 3.6631e−1 3.8096e−1 5.2064e−1

RMSECe 4.7033e−2 5.3307e−2 5.3559e−2 5.8081e−2 5.6451e−2
MAECe 1.7072e−1 3.8215e−1 1.5142e−1 4.6622e−1 3.7112e−1

Fig.6 shows the plot of the exact solution. In Fig.7 and Fig.8 are plotted the
numerical approximations obtained with the MQ-RBF method and the CRBI

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 6: Exact solution computed on the 26 × 26 grid.
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Fig. 7: Approximation with the MQ-RBF method using 121 collocation points and
absolute error.

method with localizing weight using 121 collocation points and the related ab-
solute errors computed on a 26 × 26 grid. We remark that, in comparison with
the solution of the Poisson equation in Example 1, this solution has a behaviour
difficult to be captured near the boundaries, where the values of the solution
are prescribed equal to zero and one by the Dirichlet conditions. A comparison
between the two plots points out that the CRBI method is more accurate near
the boundaries where the solution is constrained to zero, while the MQ-RBF
method is better approximating near the boundary y = 0, when the number of
collocation points used is equal for the two scheme.

To improve the performance of the CRBI method we increase the number
of collocation points. Fig. 9 shows the approximation obtained with 441 points
and absolute errors. Extending data set of collocation points is justified by the
properties of the discretization scheme and by the numerical stability.
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Fig. 9: Approximation with the CRBI method with the localizing weight using 441
collocation points and absolute error.

In order to test accuracy near the boundaries, we computed the local relative
error (ut − un)/ut where ut and un are the analytical and numerical values,
respectively, at the internal collocation points.

Fig. 10 and Fig. 11 show the relative error between the analytical and the
numerical solutions when we used 81 uniformly distributed collocation points.
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Fig. 10: Relative error obtained with the MQ-RBF method on the uniform distribution
of 81 collocation points.
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Fig. 11: Relative error obtained with the CRBI method with the localizing weight on
the uniform distribution of 81 collocation points.

The numerical solutions were computed with MQ-RBF and the CRBI with lo-
calizing weight, respectively. In Fig. 10 we observe that the maximum relative
errors are on the lines y = 0.500, y = 0.750, y = 0.875 and near the bound-
aries where the solution values were prescribed equal to zero; vice versa they
decrease in the middle regions. Fig. 11 shows as the approximation with the
CRBI method has a different behaviour. In fact the maximum relative error is
more uniformly distributed in the domain. As already pointed-out in the lit-
erature on functional approximation of scattered data, the MQ function seems
more appropriate to approximate rapidly varying functions, while CRBI method
performs better when approximating slowly varying functions.

10 – Conclusions

Based on a theoretical establishment, a new method has been constructed
to give a numerical solution to the Poisson equation. The method, which makes
use of Cardinal Radial Basis Intepolation operators (CRBI), enjoys the following
special features:
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1. It is well-posed and numerically stable.
2. The discretization matrix is symmetric and strictly diagonally dominant

(hence, positive definite).
3. Both error and sensitivity are reasonably small, that is, the method is not

affected from the so-called uncertainty principle.
4. Being mesh-free and insensitive to dimension, it is particularly suitable for

irregular domains and 3D problems.
5. Boundary effects can be controlled by increasing the number of collocation

points on the boundary at the cost of a little computational effort.
Obviously, there are some factors affecting the accuracy of the proposed method:

1. First derivatives of the approximation operator at internal collocation points
vanish so that flat spots appear on the rendered surface.

2. In general, when applied on a reduced number of collocation points (of the
order of tens or hundreds), it does not work as well as MQ-RBF method.

3. The choice of the weight and the determination of optimal values of the
possible parameters play important roles in the accuracy.

4. Numerically the method converges slowly and the rate of convergence has
not yet been investigated theoretically.
Additional theoretical and numerical characteristics of the method as well as

the application in solving other type of PDEs are currently under investigation
by our research group.
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A perturbative method for direct scattering problems

NADANIELA EGIDI – PIERLUIGI MAPONI

Abstract: We present a numerical method to compute the solution of direct scat-
tering problems, that is boundary-value problems for the Helmholtz equation in un-
bounded domains of the three dimensional real Euclidean space. Such problems arise,
for example, from wave equation problems when the solution is assumed to be time-
harmonic. We consider the T -matrix method for the solution of the direct scattering
problems, which is a very classical numerical method for such a kind of problems. This
method is based on the explicit construction of an operator T mapping the data of the
problem to the solution of the problem. We propose a perturbative approach for the
numerical approximation of the operator T . Finally we report the results of our numer-
ical experience on a large number of test problems using the numerical method proposed
here. This numerical experience shows very interesting results and it justifies further
theoretical investigations.

1 – Introduction

Let us begin with some basic definitions. Let IN, IR, C be the set of natural
numbers, real numbers and complex numbers, respectively. Let n ∈ IN, we denote
with IRn, Cn the n-dimensional real Euclidean space and the n-dimensional
complex Euclidean space, respectively. We denote with (·, ·) the Euclidean scalar
product in IRn, with ‖ · ‖ the corresponding Euclidean norm. Let Sn = {x ∈
IRn+1 : ‖x‖ = 1}. Let ı be the imaginary unit. Let z ∈ C, we denote with
|z| the modulus of z and with Re(z), Im(z) the real and imaginary part of z
respectively.

Key Words and Phrases: Acoustic scattering – T -matrix method – Perturbative
method.
A.M.S. Classification: 65N35 – 65-04 – 35P25 – 35J05
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Let D ⊂ IR3 be a bounded simply connected open set with boundary ∂D
and let D be its closure. We suppose that 0 ∈ D. From the physical point of
view we consider D as the position of an obstacle, or equivalently a scatterer,
for the acoustic waves propagating in IR3 \ D, in particular we suppose this
scatterer contained in a homogeneous isotropic medium filling IR3 \D. Moreover
for such a medium we suppose a constant pressure field P . Let U i(x, t), x ∈ IR3,
t ∈ IR be an incident acoustic wave, where x ∈ IR3 denotes the space variables
and t ∈ IR denotes the time variable. Let Us(x, t), x ∈ IR3 \ D, t ∈ IR be the
scattered acoustic wave generated by the interaction of U i and the obstacle D.
These waves can be considered as perturbations for the pressure field P ; when
such perturbations are small compared to P we have that U i and Us solve the
wave equation, see [1], page 243 for details.

We suppose that U i and Us are time-harmonic, that is:

U i(x, t) = ui(x)eiωt, x ∈ IR3, t ∈ IR,(1)

Us(x, t) = us(x)eiωt, x ∈ IR3 \ D, t ∈ IR,(2)

where ui, us are suitable functions of the space variables and ω > 0 is the
time-frequency.

From the wave equation for U i, Us and from formulas (1), (2) we obtain
the Helmholtz equation for ui and us, that is

∆ui(x) + k2ui(x) = 0, x ∈ IR3,(3)

∆us(x) + k2us(x) = 0, x ∈ IR3 \ D,(4)

where ∆ is the Laplace operator with respect to the x variables, k = ω
c > 0 is

the wave number and c > 0 is the wave propagation velocity. We assume that
D is an impenetrable acoustically soft obstacle, so that us satisfies the following
boundary conditions:

(5) us(x) = −ui(x), x ∈ ∂D,

see [2] page 67 for details. We note that impenetrable acoustically hard obstacles
satisfy Neumann boundary condition, and obstacles having more complicated
acoustic behaviour satisfy a boundary condition that can be given in terms of an
acoustic surface impendance. Moreover we assume that the scattered acoustic
wave us has the asymptotic behaviour of an outgoing spherical wave, so that us

satisfies the Sommerfeld radiation condition, that is

(6)
∂us

∂x̂
(x) − ıkus(x) = o

(
1

‖x‖

)
, ‖x‖ → ∞,
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where x̂ = x
‖x‖ ∈ S2, ‖x‖ �= 0 and o(·) is the Landau symbol, see [3] page 189

for a more detailed discussion on the radiation condition.
Boundary-value problem (4)-(6) is uniquely solvable provided ui in (5) is

a continuous function and D is a class C2 domain with connected complement,
see [2] page 83, [4] pages 13 and 262 for details. Let us consider the following
problem: from the knowledge of D, k and ui compute the solution us of problem
(4)-(6).

We consider the numerical approximation of such a problem. Many different
methods for the solution of problem (4)-(6), or similar scattering problems, have
been proposed in the scientific literature, see for example [5], [6], [7], for finite
difference approaches or [8], [9], [10], [11] for finite element approaches. We
note that these general purpose methods cannot be applied directly to problem
(4)-(6) being this problem defined on an unbounded domain. A quite common
technique to avoid this difficulty is to consider this problem in a domain D \ D,
where D ⊂ IR3 is a bounded open domain containing D, and to substitute
the Sommerfeld radiation condition with an auxiliary condition on the artificial
boundary ∂D. This condition is usually called transparent boundary condition
or absorbing boundary condition, see [12] and the references therein. However
some specialized numerical methods allow to deal with the unbounded domain of
problem (4)-(6), see for example [2], [13], [14], [15], [16], [17], [18], [19], [20], [21]
for integral equation approaches and [22], [23], [24], [25], [26], [27] for T -matrix
approaches.

We study the T -matrix method which is a very classical method for the
solution of scattering problems. This method consists in the construction of an
operator T = T (D, k), depending only on D and k, such that:

(7) us = T ui

for every continuous function ui : ∂D → C. Usually functions ui and us are
expanded with respect to particular bases of functions defined in terms of the
spherical harmonics, so that the operator T looks like a matrix with an infinite
number of rows and an infinite number of columns. In practical situations we
consider only a finite number of entries of T , whose computation foresees the
solution of several linear systems where the entries of the coefficient matrix are
obtained by the evaluation of several surface integrals on ∂D. We denote with
Q = Q(D, k) the matrix coefficient of this linear system. Usually Q is a dense
matrix and, depending on D and k, it can be quite ill-conditioned, so that the
solution of the corresponding linear system can produce a large error in the final
solution. Moreover having in mind an efficient implementation of this method
via parallel computations the step of the solution of such a linear system is an
unpleasant step since it lowers considerably the parallel efficiency of the whole
method.

To avoid a linear system solution in the T -matrix method we propose a
perturbative method for the computation of the operator T , where the pertur-



306 NADANIELA EGIDI – PIERLUIGI MAPONI [4]

bation is made with respect to the boundary ∂D of the obstacle D. As base
point of this perturbation is considered the boundary ∂B of a generic obstacle
B; in such a case for the construction of the operator T we have to solve sev-
eral linear systems where the matrix coefficient is Q(B, k). So that also in the
perturbative method we really have to solve some linear systems, but now the
matrix coefficient Q(B, k) can be chosen in terms of B. We note that when the
base point B is chosen as an axial-symmetric obstacle the matrix Q(B, k), aris-
ing in the construction of the operator T , has a particular block-structure; when
B is chosen as a sphere the matrix Q(B, k) is a diagonal matrix, so that the
solution of the corresponding linear system can be performed accurately, quickly
and efficiently in a sequential computation as well as in a parallel computation.
However in general we can compute, for example, the LU factorization of the
matrix Q(B, k) and we can use this factorization everytime the boundary ∂B of
B is used as base point in the perturbative procedure.

Finally we report some of the results of our numerical experience obtained
using the numerical method proposed here. We consider a large number of test
problems, where we take into account axial-symmetric and non-axial-symmetric
obstacles, convex and non-convex obstacles. In the numerical results convergence
and stabilization features of the perturbative method proposed are outlined. This
numerical experience shown very interesting results, so that we deserve further
theoretical investigations to this introductory study.

The paper is organized as follows. In Section 2 we provide a brief introduc-
tion to the T -matrix method and we give some useful formulas for the devel-
opment of the method proposed here. In Section 3 we present the perturbative
method. In Section 4 we report some results of our numerical experience us-
ing the method presented in the previous section. In Section 5 we give some
conclusions and the possible developments of the work.

2 – The T -matrix method

The construction of the operator T is usually given in terms of suitable bases
of functions for the expansion of ui, i.e. the datum of problem (4)-(6), and us,
i.e. the unknown solution of problem (4)-(6). We denote with:

(8) Y σ
l,m(x̂(θ, φ))=γl,m

{
Pm

l (cos θ) cos(mφ), σ=0, l=0, 1, . . . , m=0, 1, . . . , l,

Pm
l (cos θ) sin(mφ), σ=1, l=1, 2, . . . , m=1, 2, . . . , l,

the spherical harmonics, where x̂(θ, φ) = (sin θ cos φ, sin θ sinφ, cos θ)t ∈ S2,
θ ∈ [0, π], φ ∈ [0, 2π), and for l = 0, 1, . . . , m = 0, 1, . . . , l, Pm

l are the Legendre
functions of order m and degree l and γl,m are normalization coefficients, that
is we have:

(9)
∫

S2
(Y σ

l,m(x̂))2ds(x̂) = 1,
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where ds is the surface measure on S2, see [28] page 331 for details. In the sequel
we denote with ν the multi-index (σ, l, m) and we denote with I the set of all
possible values of ν given by formula (8), i.e. I = {ν = (σ, l, m): σ = 0, 1,
l = σ, σ + 1, . . . , m = σ, σ + 1, . . . , l}. We note that the spherical harmonics
verify an orthogonality property, that can be seen as a generalization of property
(9), that is we have:

(10)
∫

S2
Y σ

l,m(x̂)Y σ′

l′,m′(x̂)ds(x̂) = δσ,σ′δl,l′δm,m′ , ν, ν′ = (σ′, l′, m′) ∈ I,

where δ denotes the kronecker delta.
In the construction of the operator T , introduced in (7), we use two bases

of functions {ψν , ν ∈ I}, {Re ψν , ν ∈ I}, which are defined as follows:

ψν(kx) = h
(1)
l (k ‖x‖)Y σ

l,m(x̂), x ∈ IR3 \ {0}, ν ∈ I,(11)

Re ψν(kx) = jl(k ‖x‖)Y σ
l,m(x̂), x ∈ IR3, ν ∈ I,(12)

where jl denotes the spherical Bessel function of order l, h
(1)
l denotes the spherical

Hankel function of first kind and order l, see [28] page 435 for details. We note
that for each ν ∈ I the complex-valued function ψν is singular at the origin
of the coordinate system, while the real-valued function Reψν is regular at the
origin of the coordinate system. Moreover from the separation of the Helmholtz
operator in spherical coordinates it is easy to see that, for each ν ∈ I, function
Re ψν satisfies the Helmholtz equation in IR3, function ψν satisfies equation (4),
being 0 ∈ D, and it satisfies equation (6), for a detailed discussion see [29] page
1462.

Supposing that the functions ui and us have the following expansion:

ui(x) =
∑
ν∈I

aν Re ψν(kx), x ∈ IR3,(13)

us(x) =
∑
ν∈I

fνψν(kx), x ∈ IR3 \ D,(14)

we obtain that the operator T = Tν;ν′(D, k), ν, ν′ ∈ I, depending on the obstacle
D and the wave number k, can be rewritten in a more practical way than formula
(7), that is

(15) fν =
∑
ν′∈I

Tν;ν′(D, k)aν′ , ν ∈ I.
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We briefly recall the formulas useful for the computation of operator T . Let
us define the following operator:

(16)
Qν;ν′(D, k) = − ı

2
δσ,σ′δl,l′δm,m′+

+
k

2

∫
∂D

∂

∂n̂(x)
(ψν(kx) Re ψν′(kx))dσ(x), ν, ν′ ∈ I,

where n̂(x) denotes the unit outward normal to ∂D at the point x ∈ ∂D and
dσ denotes the surface measure on ∂D. Let Re Qν;ν′(D, k) = Re(Qν;ν′(D, k)),
ν, ν′ ∈ I. The operator T is defined as the solution of the following equation:

(17)
∑
ν′∈I

Tν;ν′(D, k) Qν′;ν′′(D, k) = −Re Qν;ν′′(D, k), ν, ν′′ ∈ I.

Formula (16) and equation (17) are the results of simple but quite involved math-
ematical manipulations, which are mainly based on a representation formula for
the solutions of the Helmholtz equation and on an expansion formula, with re-
spect to the bases {ψν , ν ∈ I}, {Re ψν , ν ∈ I}, of the free space Green’s function
of the Helmholtz operator with the Sommerfeld radiation condition at infinity,
see [22] for a complete derivation of these formulas.

We note that in practical situations we consider only a finite number of
elements for the operators Q and T previously defined. Given Lmax ∈ IN we
define the following finite set of multi-indices ILmax = {ν = (σ, l, m): σ = 0, 1,
l = σ, σ + 1, . . . , Lmax, m = σ, σ + 1, . . . , l} and in (16), (17) we consider ILmax

in place of I. So that, in particular, from (17) we have:

(18)
∑

ν′∈ILmax

Tν;ν′(D, k) Qν′;ν′′(D, k) = −Re Qν;ν′′(D, k), ν, ν′′ ∈ ILmax .

We abuse the notations Q and T for the matrices obtained from the cor-
responding operators. We note that the rows of matrix T can be computed as
solutions of the linear system (18), where we have multiple right-hand sides, that
is each row of matrix T corresponds to a different row of matrix ReQ through
linear system (18).

We note that the T -matrix method is an interesting technique to solve prob-
lem (4)-(6), in fact matrix T depends only on D and k. Thus once matrix T is
computed the solution of problem (4)-(6) can be easily obtained from formulas
(14), (15) for every different incident acoustic wave ui using the same matrix T .

Usually in problem (4)-(6) is considered an acoustic plane wave as the inci-
dent acoustic wave ui, that is

(19) ui(x) = eık(x,α), x ∈ ∂D,
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where α ∈ S2 is the wave propagation direction. We note that function ui given
in (19) is a solution of equation (3) for every α ∈ S2. When the choice (19) is
made the expansion (13) can be given explicitely, that is we have:

(20) eık(x,α) = 4π
∑
ν∈I

ılY σ
l,m(α) Re ψν(kx), x ∈ IR3, α ∈ S2, k > 0,

see [29] page 1466 for details.

3 – The perturbative method

For the computation of matrix T we must perform two different steps: (i)
computation of the entries of matrix Q using formula (16), (ii) solution of the
linear system (18). Step (i) can be performed accurately and efficiently using
parallel computations, in fact it consists in the approximation of several integrals
that are independent one from the other. On the contrary step (ii) must be
performed with special care since the ill-conditioning of the matrix Q can make
the computation of matrix T not well accurate. We note that the condition
number of Q depends on D, k and the value chosen for the truncation parameter
Lmax. Moreover we note that step (ii) is not well suited for parallel computations,
being the solution of a linear system with, in general, a dense matrix coefficient.

We propose a perturbative method to avoid the solution of the linear system
(18). We note that similar perturbative techniques have been already used for the
solution of Fredholm integral equations of the first kind that formulate problem
(4)-(6), or similar problems. In such cases it has been noted that perturbative
techniques take care of the ill-posedness of the corresponding problem, solving
the difficulty of the problem at the various perturbative orders, see for example
[13], [14], [15], [16], [17], [21].

We limit our discussion to star-like obstacles, that is we suppose there exists
a function r : S2 → IR, such that:
(21) ∂D = {x ∈ IR3 : x = r(x̂)x̂, x̂ ∈ S2},
so that from (16) we have that the entries of matrix Q can be rewritten as follows:

(22)

Qν;ν′(D, k) = − ı

2
δσ,σ′δl,l′δm,m′+

+
1
2

∫ 2π

0

dφ

∫ π

0

dθ sin θ

(
ρ2 d(jl′(ρ)h(1)

l (ρ))
dρ

Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− ∂ρ

∂θ
jl′(ρ)h(1)

l (ρ)
∂

∂θ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+

− 1
sin2 θ

∂ρ

∂φ
jl′(ρ)h(1)

l (ρ)
∂

∂φ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))

, ν, ν′∈ILmax ,

where ρ(x̂) = kr(x̂), x̂ ∈ S2.
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In the perturbative approach we consider the obstacle D as a perturbation of
a given obstacle B, where we suppose that there exists a function rB : S2 → IR,
such that:

(23) ∂B = {x ∈ IR3 : x = rB(x̂)x̂, x̂ ∈ S2}.

Let ε ∈ IR with 0 ≤ ε ≤ 1, let

(24) R(x̂, ε) = rB(x̂) + εH(x̂), x̂ ∈ S2,

where H(x̂) = r(x̂) − rB(x̂), x̂ ∈ S2. Let Dε be the star-like obstacle having
boundary ∂Dε parametrized by the function R(·, ε). We note that rB(x̂) =
R(x̂, 0), r(x̂) = R(x̂, 1), x̂ ∈ S2, so that we have B = D0 and D = D1 and a
similar relation for the matrices Q defined in (22), that is Q(B, k) = Q(D0, k),
Q(D, k) = Q(D1, k).

Now, given N ∈ IN, we consider the approximation of Q(Dε, k) given by a
series in powers of ε truncated to the order N -th, that is:

(25) Q(Dε, k) ≈ Q(0) + Q(1)ε + · · · + 1
N !

Q(N)εN , 0 ≤ ε ≤ 1,

where, for n = 0, 1, . . . , N , Q(n) denotes the formal derivative of order n-th of
Q(Dε, k) with respect to ε and evaluated at ε = 0. Moreover for the matrix
T (Dε, k) we suppose a similar approximation, that is

(26) T (Dε, k) ≈ T (0) + T (1)ε + · · · + 1
N !

T (N)εN , 0 ≤ ε ≤ 1,

where T (n), n = 0, 1, . . . , N are suitable square matrices having the same order
as of matrix T . So that substituting the approximations (25), (26) in equation
(18) we obtain:

(27)

(
T (0) + T (1)ε + · · · + 1

N !
T (N)εN

)(
Q(0) + Q(1)ε + · · · + 1

N !
Q(N)εN

)
=

= −Re
(

Q(0) + Q(1)ε + · · · + 1
N !

Q(N)εN

)
,

which is an equation for matrices T (n), n = 0, 1, . . . , N . Solving this equation
order by order with respect to the powers of ε, for matrices T (n), n = 0, 1, . . . , N
we obtain the following expression:

(28)

T (0) = −Re(Q(0))(Q(0))−1

T (n) = −
(

Re(Q(n)) +
n∑

l=1

(
n

l

)
T (n−l)Q(l)

)
(Q(0))−1, n = 1, 2, . . . , N,



[9] A perturbative method for direct scattering problems 311

where
(
n
l

)
= n!

(n−l)!l! , n, l ∈ IN, l ≤ n, is the binomial coefficient. Formula (28)
gives an explicit expression for T (n), n = 0, 1, . . . , N . More precisely, from the
knowledge of Q(0) we can compute matrix T (0), then from the knowledge of Q(0),
Q(1) and T (0) we can compute matrix T (1); we can compute the generic matrix
T (n) from the knowledge of Q(0), Q(1), . . . , Q(n) and T (0), T (1), . . . , T (n−1) com-
puted previously. The approximation of matrix T (D, k) is obtained evaluating
in ε = 1 the truncated power series given in formula (26), where the matrices
T (n), n = 0, 1, . . . , N are computed by formula (28) as explained.

Let us consider the computation of matrices Q(n), n = 0, 1, . . . , N . The
entries of these matrices are given by the derivatives of order n with respect
to ε of the corresponding entries of matrix Q(Dε, k) and these derivatives are
evaluated at ε = 0, that is

Q
(0)
ν;ν′ = Qν;ν′(Dε, k)

∣∣∣
ε=0

, ν, ν′ ∈ ILmax ,(29)

Q
(n)
ν;ν′ =

dn

dεn
Qν;ν′(Dε, k)

∣∣∣∣
ε=0

, ν, ν′ ∈ ILmax , n ≥ 1.(30)

When the differentiation operator with respect to ε can be exchanged with the
integral operators appearing in the expression of Q(Dε, k) and when also the
limit as ε → 0 can be exchanged with these integral operators we obtain a more
practical expression for the entries of matrices Q(n), n = 0, 1, . . . , N , in fact we
have:

Q(0) =Q(B, k),(31)

Q
(n)
ν;ν′ =

1
2

∫ 2π

0

dφ

∫ π

0

dθ sin θ
dn

dεn

(
η2 d(jl′(η)h(1)

l (η))
dη

Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− ∂η

∂θ
jl′(η)h(1)

l (η)
∂

∂θ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+(32)

− 1
sin2 θ

∂η

∂φ
jl′(η)h(1)

l (η)
∂

∂φ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))∣∣∣∣∣

ε=0

,

ν, ν′ ∈ ILmax , n ≥ 1,

where η = kR(·, ε), 0 ≤ ε ≤ 1, is the unique function in (32) that depends on ε.
From formulas (31), (32) we can easily seen that the computation of the entries of
matrices Q(n), n = 0, 1, . . . , N can be performed accurately and efficiently by a
parallel computation being these entries defined as integrals of functions that are
independent one from the other. But now also the computation of matrices T (n),
n = 0, 1, . . . , N can be performed accurately, in fact from formula (28) we can
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easily see that it consists in sums and products of matrices. However formula (28)
foresees also the computation of (Q(B, k))−1, but this matrix does not depend
on the particular obstacle D. We note that the computation of (Q(B, k))−1

can be quite easier than the computation of (Q(D, k))−1; for example, when B
is chosen as an axial-symmetric obstacle the matrix Q(B, k) is a 2 × 2 block-
diagonal matrix, so that (Q(B, k))−1 can be given in terms of the inverses of its
two diagonal blocks, see [22] for details. However the computation of (Q(B, k))−1

can be performed only one time since (Q(B, k))−1 can be stored and it can be
used back for all the obstacles D that we decide to express in terms of B in
the perturbative procedure. Moreover formula (28) is well suited for parallel
computations, in fact for n = 0, 1, . . . , N the computation of T (n) consists in n+1
matrix-matrix multiplications, where n of these multiplications are independent
one from the other. Finally we note that the choice of B cannot be completely
independent from D, in fact we expect that fast and accurate approximations of
T (D, k) can be obtained from formula (26) when B is close to D in a suitable
normed space. This normed space, essential for an eventual investigation of the
convergence properties of the approximation (26), is useless for the purpose of
the present paper thus its definition is omitted.

We conclude describing the computational consequences of a particular
choice for B, that seems quite interesting. In fact when B is chosen as a sphere
of radius rS > 0, that is rB(x̂) = rS , x̂ ∈ S2, the matrix Q(B, k) becomes a
diagonal matrix. More precisely, we have:

Q
(0)
ν;ν′ =

− ı

2
+

ρ2
S

2
d(jl(ρ)h(1)

l (ρ))
dρ

∣∣∣∣∣
ρ=ρS

 δσ,σ′δl,l′δm,m′ , ν, ν′ ∈ ILmax ,(33)

Q
(n)
ν;ν′ =

1
2

dn

dρn

(
ρ2 d(jl′(ρ)h(1)

l (ρ))
dρ

)∣∣∣∣∣
ρ=ρS

·

·
∫ 2π

0

dφ

∫ π

0

dθ sin θHn(x̂(θ, φ))Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− n

2
dn−1

dρn−1

(
jl′(ρ)h(1)

l (ρ)
) ∣∣∣∣∣

ρ=ρS

∫ 2π

0

dφ

∫ π

0

dθ sin θ · Hn−1(x̂(θ, φ))·(34)

·
(

∂H(x̂(θ, φ))
∂θ

∂

∂θ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+

+
1

sin2 θ

∂H(x̂(θ, φ))
∂φ

∂

∂φ

(
Y σ

l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))

,

ν, ν′ ∈ ILmax , n ≥ 1,
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where ρS = krS . We note that (33) follows from straightforward calculations
using formulas (10), (22), (31) and formula (34) follows from formula (32). This
is an interesting case since the fact that Q(0) is a diagonal matrix can be used
effectively in formula (28) for the computation of (Q(0))−1, and besides the
evident gain in the accuracy and in the computational cost of (Q(0))−1 we have
that it improves the parallel efficiency of formula (28).

Finally, we note that the actual validation of the perturbative method pro-
posed in this paper needs a rigorous convergence analysis of series

(35)
∞∑

n=0

T (n)

n!
εn, 0 ≤ ε ≤ 1,

generated by formulas (28)-(30). This theoretical analysis deserves to be consid-
ered with further investigations, so, at present we provide only some convincing
numerical results for the experimental validation of the proposed method.

4 – Numerical results

We present some results extracted from our numerical experience using the
perturbative method proposed in the previous section. The numerical results
are relative to ten different obstacles and they show mainly the convergence and
the stabilization features of the perturbative method. In particular, we consider
star-like obstacles whose boundary is parametrized by the following functions:

Oblate Ellipsoid : r1(x̂(θ, φ)) =
1√

( 2
3 sin θ)2 + cos2 θ

,(36)

Prolate Ellipsoid : r2(x̂(θ, φ)) =
1√

sin2 θ + ( 2
3 cos θ)2

,(37)

Pseudo Apollo : r3(x̂(θ, φ)) =
3
5

√
17
4

+ 2 cos(3θ) ,(38)

Reverse Platelet : r4(x̂(θ, φ)) = 1 +
1
2

sin2 θ,(39)

Short Cylinder : r5(x̂(θ, φ)) =
1

10

√
( 2
3 sin θ)10 + cos10 θ

,(40)

Long Cylinder : r6(x̂(θ, φ)) =
1

10

√
sin10 θ + ( 2

3 cos θ)10
,(41)

Vogel’s Nut : r7(x̂(θ, φ)) =
3
2

√
1 − 3

4
sin2 θ,(42)
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Generic Ellipsoid : r8(x̂(θ, φ))=
1√((

3
2 sinφ

)2+cos2 φ
)
sin2 θ+

(
2
3 cos θ

)2 ,(43)

Corrugated Sphere : r9(x̂(θ, φ)) =
(

1 +
1
20

cos(4θ) +
1
40

cos(8θ)
)
·(44)

·
(

1 +
1
20

cos(4φ) +
1
40

cos(8φ)
)

,

Cuboid : r10(x̂(θ, φ)) =
1

10

√
(sin10 φ + cos10 φ) sin10 θ + cos10 θ

,(45)

where θ ∈ [0, π], φ ∈ [0, 2π). We note that obstacles (36)-(42) are axial-
symmetric obstacles, that is the corresponding parametrization of the boundary
is a function independent from variable φ, obstacles (43)-(45) have not particular
symmetry properties; all the obstacles are convex excepting (38), (42), (44) that
are non-convex obstacles. In Figure 1 are shown the ten obstacles defined in
(36)-(45). Finally, in problem (4)-(6) we always consider k = 1, and in equation
(5) we choose function (19) with α = x̂(π

3 , π
6 ).

The numerical results corresponding to obstacles (36)-(45) are reported in
Table 1. For the computation of these results we have performed the sum in
formula (26) using the arithmetic mean methods for the summation of divergent
series. The simpler arithmetic mean method is the usual Cesàro means. This
method can be generalized in several different ways obtaining, for example, the
method of Hölder, the method of Cesàro, the method of Riesz; all these methods
depend on a parameter usually called order of the method and they reduce to
the usual Cesàro means when the order is equal to one, see [30] page 94 for a
more detailed discussion. In particular for the results reported in Table 1 we
have considered the Riesz method, that is given τ ∈ IN we define Σ(N,τ) to be
the sum of the matrices T (n), n = 0, 1, . . . , N according to the Riesz method of
order τ , that is

(46) Σ(N,τ) =
N∑

n=0

(
1 − n

N + 1

)τ
T (n)

n!
.

The Riesz method is regular, that is, it does not modify the sum of convergent
series. Thus, supposing that (35) is a convergent series we can compute T (D, k)
using either series (35) or Σ(N,τ), as N → ∞. In practice methods for the
summation of divergent series are usually used for transforming slowly convergent
into rapidly convergent series. From numerical results not reported in this paper
series (35) seems to be convergent for all the considered obstacles, but the rate of
convergence is quite dependent on the difficulty of the particular obstacle taken
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Fig. 1: The obstacles defined in (36)-(45).
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into account. This unpleasant property of approximation (26) is attenuated by
using the above mentioned methods for the summation of divergent series; in
particular, we have that the method of Cesàro gives results similar to the ones
obtained with the method of Riesz. The method of Hölder gives usually better
results with respect to the method of Riesz when we consider hard obstacles,
such as for example Reverse Platelet, but it gives much worse results when we
consider easy obstacles, such as for example ellipsoids. So that given N, τ ∈ IN
matrix Σ(N,τ) is the computed approximation of the matrix T (D, k); Table 1
shows the convergence properties of the sum Σ(N,τ) to the matrix T (D, k). We
define the following performance index:

(47) E
(N,τ)
T =

∥∥Σ(N,τ) − T (D, k)
∥∥
∞

‖T (D, k)‖∞
.

where ‖ · ‖∞ denotes the operator matrix norm associated with the vector max-
imum norm. Moreover the approximation ũs,(N,τ) of the solution us of problem
(4)-(6) is computed from formulas (14), (15) substituting T (D, k) with Σ(N,τ).
Table 1 also shows a comparison between the approximation ũs of the solution
us of problem (4)-(6) obtained using the usual T -matrix method and the ap-
proximation ũs,(N,τ) obtained using the perturbative method. As a consequence
of the discussion following formula (12) this comparison takes into account only
the error in the approximation of condition (5), so that we consider the following
two performance indices:

Eu =
1
92

(∣∣∣ũs(ξ
0,0

) + ui(ξ
0,0

)
∣∣∣ +

∣∣∣ũs(ξ
10,0

) + ui(ξ
10,0

)
∣∣∣+

+
9∑

i=1

9∑
j=0

∣∣∣ũs(ξ
i,j

) + ui(ξ
i,j

)
∣∣∣),(48)

E(N,τ)
u =

1
92

(∣∣∣ũs,(N,τ)(ξ
0,0

) + ui(ξ
0,0

)
∣∣∣ +

∣∣∣ũs,(N,τ)(ξ
10,0

) + ui(ξ
10,0

)
∣∣∣+

+
9∑

i=1

9∑
j=0

∣∣∣ũs,(N,τ)(ξ
i,j

) + ui(ξ
i,j

)
∣∣∣),(49)

where ξ
i,j

= r(x̂( π
10 i, π

5 j))x̂( π
10 i, π

5 j), j, i = 0, 1, . . . , 10, and r is the parametriza-
tion of the boundary ∂D of the obstacle D under consideration. The indices Eu,
E

(N,τ)
u can be seen as relative errors computed on a regular grid of ∂D; note

that number 92, appearing in formulas (48), (49), represents the sum of the
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absolute values of ui, defined in (19), on such a grid. We note that the results
shown in Table 1 are relative to the following choice of the parameters previ-
ously described: Lmax = 6, τ = 5, 10, N = 5, 10. For a generic obstacle D the
choice of the base point B in the perturbative procedure is given by the sphere
having the nearest boundary ∂B to ∂D in the least-squares sense. Moreover
the integrals appearing in formulas (22), (34) are approximated by a composite
Gauss-Legendre formula and the solution of equation (18) is computed by the
LU factorization of matrix Q with partial pivoting.

Table 1. The numerical results for the ten obstacles (36)-(45). For each ob-
stacle the performance indices E

(N,τ)
T , E

(N,τ)
u , N = 5, 10, τ = 5, 10 and Eu are

reported.

E
(N,τ)
T E

(N,τ)
u Eu

N = 5 N = 10 N = 5 N = 10

Oblate ellipsoid
τ = 5

τ = 10

2.29(−2)

2.29(−2)

3.94(−2)

3.94(−2)

7.24(−2)

7.41(−2)

9.34(−2)

9.38(−2)
9.26(−2)

Prolate ellipsoid
τ = 5

τ = 10

2.88(−2)

2.88(−2)

4.94(−2)

4.94(−2)

5.33(−2)

5.32(−2)

7.90(−2)

7.90(−2)
4.31(−2)

Pseudo apollo
τ = 5

τ = 10

4.75(−2)

4.65(−2)

7.36(−2)

7.36(−2)

1.31(−1)

1.54(−1)

1.03(−1)

1.04(−1)
2.01(-1)

Reverse platelet
τ = 5

τ = 10

3.45(−1)

3.33(−1)

3.69(−1)

3.67(−1)

3.30

4.61

1.74

1.90
5.08

Short cylinder
τ = 5

τ = 10

2.90(−2)

2.93(−2)

5.16(−2)

5.17(−2)

2.59(−1)

2.66(−1)

2.13(−1)

2.18(−1)
3.24(−1)

Long cylinder
τ = 5

τ = 10

4.69(−2)

4.78(−2)

8.63(−2)

8.64(−2)

2.36(−1)

2.33(−1)

1.91(−1)

1.90(−1)
3.03(−1)

Vogel’s nut
τ = 5

τ = 10

1.34(−1)

1.27(−1)

1.67(−1)

1.66(−1)

1.81(−1)

3.46(−1)

1.43(−1)

1.58(−1)
1.89(−1)

Generic ellipsoid
τ = 5

τ = 10

4.77(−2)

4.81(−2)

8.11(−2)

8.13(−2)

2.77(−1)

2.52(−1)

2.02(−1)

1.97(−1)
4.69(−1)

Corrugated sphere
τ = 5

τ = 10

7.86(−3)

7.85(−3)

1.18(−2)

1.18(−2)

5.17(−2)

5.17(−2)

5.35(−2)

5.35(−2)
5.45(−2)

Cuboid
τ = 5

τ = 10

3.01(−2)

2.93(−2)

4.53(−2)

4.51(−2)

1.30(−1)

1.31(−1)

9.11(−2)

9.14(−2)
1.88(−1)
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From Table 1 we can see very interesting results. In particular, we can note
a quite rapid convergence, also due to the Riesz method, of the sum (46) to the
matrix T (D, k), in fact the indices E

(5,τ)
T , E

(10,τ)
T are quite similar. Moreover,

comparing E
(5,τ)
u , E

(10,τ)
u we can see that high values of N need for obstacles

having shape far from the sphere, such as for example Long Cylinder, Vogel’s
Nut and Cuboid, see Figure 1. We can also note that the use of a high value
for parameter τ is usually useless and sometimes spoils the accuracy of the final
approximation of T (D, k). Moreover, comparing the indices Eu, E

(N,τ)
u reported

in Table 1 it can be noted a quite general improvement of the solution obtained
by the perturbative technique with respect to the one obtained by the usual T -
matrix method. We can also note that the sensitivity of E

(N,τ)
u with respect to

τ is larger than the one of E
(N,τ)
T ; furthermore it seems that the value of τ must

be chosen according to the difficulty of the obstacle D, in fact for easy obstacles
like ellipsoids we obtain better results for low values of τ , instead for the other
obstacles we obtain better results for high values of τ .

5 – Conclusions

We consider the solution of direct scattering problems. These problems can
be seen as boundary-value problems for the Helmholtz equation in unbounded
domains. For the solution of these problems we study the so called T -matrix
method, which is a very classical method for the solution of direct scattering
problems. We propose a perturbative method based on the T -matrix method.
From a large number of numerical experiments we have discussed the improve-
ment in the accuracy of the T -matrix method due to the perturbative technique
presented. In particular the numerical results shown in Section 4 are very inter-
esting, so that we deserve further investigations of the method presented. The
main question is, of course, the settlement of classes of obstacles for which the
perturbative procedure proposed generates convergent approximations (see for-
mula (26)) of the matrix T (D, k). This investigation, unavoidable for a rigorous
validation of the proposed method, can be integrated and completed with the
study of the connection of formula (35) and the well known methods for the sum-
mation of divergent series. Another interesting question is also the development
of versions of formulas (28), (31), (32), (33), (34) that are efficient for sequential
computations and for parallel computations.

We conclude describing a possible very interesting application of the method
proposed. The perturbative procedure presented here can deal in a natural
way with the problem of scattering by random rough surface obstacles. This
problem has been initially considered for the study of water waves on the ocean
surface, but now it finds application in several different fields of engineering and
natural sciences, such as for example detection of small defects in manufacturing
processes or the study of the variations in height in natural ground surfaces, see
[31], [32], [33] for a detailed discussion.
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On the stability of the first eigenvalue of

Apu + λ g(x)
∣∣ u

∣∣p− u = 0 with varying p

A. El KHALIL – P. LINDQVIST – A. TOUZANI

Abstract: The stability with respect to p of the nonlinear eigenvalue problem

N∑
i,j=1

∂

∂xi

( N∑
m,k=1

am,k(x)
∂u

∂xm

∂u

∂xk

) p−2
2

ai,j(x)
∂u

∂xj

+ λg(x) | u |p−2 u = 0,

is studied.

1 – Introduction and notations

In this paper we study the continuity (stability) of the eigenvalue problem

(1.1)
{ −Apu = λg(x) | u |p−2 u in Ω

u ∈ W 1,p
0 (Ω),

with respect to p which varies continuously in (1,∞). Here Ω is a bounded
domain in IRN and g ∈ L∞

loc(Ω) ∩ Lr(Ω) is an indefinite weight function. The
exponent r = r(N, p) satisfies the following conditions

(1.2)
{

r ≥ Np
p−1 when 1 < p ≤ N

r = 1 when p > N,

Key Words and Phrases: Ap-Laplacian – Indefinite weight – Stability – Nonlinear
eigenvalue problem – Segment property.
A.M.S. Classification: 35B35 – 35B32 – 35J70
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and g can change its sign in Ω, we assume only that Ω+ = {x ∈ Ω, g(x) > 0}
has positive measure. The so-called Ap-Laplacian operator is defined by

Apu =
N∑

i,j=1

∂

∂xi


 N∑

m,k=1

am,k(x)
∂u

∂xm

∂u

∂xk


p−2
2

ai,j(x)
∂u

∂xj

 .

Where A = (ai,j)i,j is a matrix satisfying the conditions

(1.3)


(i) ai,j ≡ aj,i ∈ L∞(Ω) ∩ C1(Ω)

(ii) | ξ |2a ≡
N∑

i,j=1

ai,j(x)ξiξj ≥| ξ |2 when x ∈ Ω for all ξ ∈ IRN .

We will use the norm

‖ v ‖1,p=‖ | ∇v |a‖p=
(∫

Ω

| ∇v |pa dx

) 1
p

.

We also define an inner product

〈ξ, ζ〉a ≡
N∑

i,j=1

ai,j(x)ξiζj .

The Ap-Laplacian operator defined above was studied by Yu. G. Reshetnyak
[13] and J. Mossino [11] and used in [8]. Many elliptic operators are particular
cases of the Ap-Laplacian operator. For example, the p-Laplacian

∆pu = div (| ∇u |p−2 ∇u)

and the linear operator

A2u =
N∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xi

)
.

These operators,with p �= 2, are used for non-Newtonian fluids (dilatant fluids
have p > 2, pseudo-plastics have 1 < p < 2 ), and appear in some reaction-
diffusion problems as well as in nonlinear elasticity, and in glaciology (p = 3

4 ).
Under various conditions the simplicity of the first eigenvalue for the above

case ∆p were obtained by various authors. When g ≡ 1 the first eigenvalue for
the Ap-Laplacian is simple as in the case of the ordinary p-Laplacian, see [3,
12, 14] for more general g. These results were extended to our problem in [15].
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Recently, for g ≡ 1 and without any assumptions of regularity on the domain Ω,
the simplicity of the first eigenvalue was proved in [9] for the p-Laplacian ∆p. Its
stability (continuity) with respect to p was studied in [10]. In some other cases,
it was studied in [6].

The principal eigenvalue λp(g) of the Ap-Laplacian with indefinite weight
g is here defined as the least positive real number λ > 0 for which the problem
(1.1) has a nontrivial solution.

We now describe some main results of this paper. We study the convergence
of the first eigenfunctions in connection with the inequalities

lim
s→p−

λs(g) ≤ λp(g) = lim
s→p+

λs(g),

proved in Theorem 3.2 and Corollary 3.1. In other words we explore the be-
havior of the principal eigenfunction us ∈ W 1,s

0 (Ω) (required to be positive and∫
Ω

g(x)|us|s dx = 1) to the equation

Asus + λs(g)|us|s−2us = 0,

as s varies continuously in (1,∞). This is why we are interested in the stability
to the right.

In very irregular domains with p ≤ N , the situation lims→p− λs(g) < λp(g)
is possible. An example is given by [10] in the case Ap = ∆p and g ≡ 1.
This situation is as a consequence of a strange convergence phenomenon: The
principal eigenfunctions us, s < p, converge to a positive solution of the first
equation (1.1).

The limit function is in the Sobolev space W 1,p(Ω) and in every W 1,p−ε
0 (Ω),

ε> 0 small enough, but is not in the required W 1,p
0 (Ω). If Ω satisfies the segment

property then it follows from Theorem 2.1, that

W 1,q
0 (Ω) ∩ W 1,p(Ω) = W 1,p

0 (Ω), 1 < q < p.

In this case we show in Corollary 3.2 and Corollary 3.3 our main results related
to the stability.

In Theorem 3.6 we show that the eigenfunctions and their gradients converge
locally uniformly to a positive solution of the first equation problem (1.1), by
the C1,α

loc -regularity, see [4], and the L∞-estimate established in the Appendix.
The paper is organized as follows: In Section 2, we establish some definitions

and basic properties. In Section 3, we first give some general stability results
with respect to p for the first positive eigenvalue of problem (1.1) and we restrict
ourselves to bounded domain Ω having the segment property. This class of
domains is fairly large. Then we prove the global stability using some results
established in Section 2 and in Appendix. The segment property is needed here
to guarantee the right boundary values of the limit function.
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2 – Preliminary results

In defining the eigenvalues of the Ap-Laplacian operator with weight (in a
given bounded domain Ω ⊂ IRN ), we shall interpret Equation (1.1) in the weak
sense.

Definition 2.1. We say that λ ∈ IR is an eigenvalue, if there exists a
function u ∈ W 1,p

0 (Ω), u �≡ 0, such that

(2.1)
∫

Ω

| ∇u |p−2
a 〈∇u,∇ϕ〉a dx = λ

∫
Ω

g(x) | u |p−2 uϕ dx,

whenever ϕ ∈ W 1,p
0 (Ω). The function u is called an eigenfunction.

2.1 – Basic properties

Under our conditions on ai,j and g, it is well-known that the problem (1.1)
possesses at least a sequence of positive eigenvalues λn, λn ↗+∞, as n → +∞.
These can obtained by the Ljusternick-Schnirelmann theory minimizing the en-
ergy functional,

Φ(u) =
(

1
p
|||∇u|a||pp

)2

− 1
p

∫
Ω

g(x)|u|p dx,

on W 1,p
0 (Ω). See [2], see also [8] or [15].

Let now λp(g) denote the first positive eigenvalue of (1.1). We recall that
λp(g) can be variationally characterized as

(2.2)
λp(g) = min

{∫
Ω

| ∇u |pa dx; u ∈ W 1,p
0 (Ω),

∫
Ω

g(x) | u |pa dx = 1
}

=

= min
{ ∫

Ω
| ∇u |pa dx∫

Ω
g(x) | u |p dx

; u ∈ W 1,p
0 (Ω),

∫
Ω

g(x) | u |p dx > 0
}

.

Throughout this paper, the first eigenfunctions are those corresponding to λp(g).
The principal eigenfunction, denoted up, is the first eigenfunction normalized by∫
Ω

g(x) | up |p dx = 1, and required to be positive. Hence

λp(g) =
∫

Ω

| ∇up |pa dx.

We end this paragraph by recalling some fundamental properties, found in [8],
[15], which valid under our assumptions.
1) The first eigenfunctions are essentially unique in any bounded domain, i.e.,

they are merely constant multiples of each other.
2) The principal eigenfunction has no zeros in the domain the first eigenfunc-

tions are only those not changing sign.
3) The solutions of problem (1.1) are known to be of class C1,α

loc (Ω) for some
α > 0 depending on p and N , see [4].
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2.2 – The segment property

We begin with defining a sharp class of domains for which the boundary is
sufficiently regular to guarantee that

W 1,p(Ω) ∩q<p W 1,q
0 (Ω) = W 1,p

0 (Ω).

Definition 2.2. An open subset Ω of IRN is said to have the segment
property if, given any x ∈ ∂Ω, there exist an open set Gx in IRN with x ∈ Gx

and yx of IRN \ {0} such that, if z ∈ Ω ∩ Gx and t ∈]0, 1[, then z + tyx ∈ Ω.

This property allows us by a translation to push the support of a function
u in Ω. The following result is essential here.

Theorem 2.1. Let Ω be a bounded domain in IRN having the segment
property. If u ∈ W 1,p(Ω) ∩ W 1,q

0 (Ω) for some q ∈]1, p[, then u ∈ W 1,p
0 (Ω).

Proof. The following technique is inspired by [1, Theorem 3.18]. The
function

ũ =
{

u in Ω
0 in IRN \ Ω,

is in W 1,p(IRN ). Indeed, we have u ∈ W 1,q
0 (Ω), and so ũ ∈ W 1,q(IRN ); moreover

∇ũ = ∇̃u weakly and a.e. on IRN . On the other hand, ũ ∈ Lp(IRN ) and ∇̃u
∈ (Lp(IRN ))N , because u ∈ W 1,p(Ω). Finally, we conclude that ũ ∈ W 1,p(IRN )).

Let K = supp u =: {x ∈ Ω, u(x) �= 0}IRN

, (closure in IRN ). Thus K is compact
and K ⊂ Ω.

If K ⊂ Ω, let jε be defined as in Section 2.17 of [1], thus the convolution
jε ∗u ∈ C∞

0 (Ω), provided 0 < ε < dist(K, ∂Ω), and jε ∗u → u in W 1,p(Ω), as ε →
0+. This shows that u ∈ W 1,p

0 (Ω). We shall therefore suppose that K ∩ ∂Ω �= ∅.
From Definition 2.2, to each x ∈ ∂Ω, there corresponds a neighborhood Gx and
a vector yx ∈ IRN \ {0}. Put F = K ∩ (Ω \

⋃
x∈∂Ω Gx); then F is compact and

F ⊂ Ω. Thus there is an open set G0 such that F ⊂ G0 ⊂ Ω, with G0 ⊂ Ω.
On the other hand, K ∩ ∂Ω is compact in IRN and covered by the open sets
Gx,x ∈ ∂Ω. Therefore K ∩ ∂Ω may be covered by finitely may of the Gx,
say G1, G2, ..., Gk, and also the sets G0, G1, ..., Gk form an open covering of K.
By a similar argument as that in the proof of Theorem 3.18. of [1, p.55], we
can construct open sets G′

0, G
′
1, ..., G

′
k which form an open covering of K with

G′
j ⊂ Gj for each j. Now, let Θ = {θj , 0 ≤ j ≤ k} be a partition of unity

subordinate to covering {G′
j , 0 ≤ j ≤ k} and put uj = θju, ∀j = 0, ..., k. We

have u =
∑N

j=0 uj and supp uj ⊂ G′
j , for each j = 0, ..., k. Therefore, it suffices

to show that each uj ∈ W 1,p
0 (Ω ∩ Gj). Since G′

0 ⊂ Ω, our discussion of the case
K ⊂ Ω above shows that u0 ∈ W 1,p

0 (Ω). For j ≥ 1, we have uj ∈ W 1,p(Ω ∩ Gj)
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and ũj ∈ W 1,p(IRN ). Put Kj = suppuj and let uj,t = ũj(x − tyj), with 0 < t <
min{1, | yj |−1 dist(G′

j , G
c
j)}, yj denoting the element associated with Gj as in

Definition 2.2. Thus we have

(2.3) suppuj,t ⊂ Ω ∩ Gj ,

for each t satisfying 0 < t < min{1, | yj |−1 dist(G′
j , G

c
j)}. Indeed, we have

suppuj,t = Kj + tyj ⊂ Gj ∩ Ω + tyj ⊂ Ω

by the segment property. On the other hand, let x ∈ suppuj,t. Then

dist(x, G′
j) ≤ dist(x, x−tyj) +dist(x−tyj , Kj) +dist(Kj , G

′
j) = dist(x, x−tyj).

We obtain
dist(x, G′

j) ≤ dist(x, x − tyj) =| tyj | .

Therefore, dist(x, G′
j) < dist(G′

j , G
c
j) by the choice of t. Hence x ∈ Gj . This

completes the proof of (2.3). We also have uj,t ∈ W 1,p(IRN ), because ũj ∈
W 1,p(IRN ); especially, we have uj,t ∈ W 1,p(Ω ∩ Gj) and from (2.3), we deduce
that uj,t ∈ W 1,p

0 (Ω ∩ Gj), for t > 0 sufficiently small. Translation is continuous
in Lp(Ω ∩ Gj) so uj,t → uj in Lp(Ω ∩ Gj) and ∇uj,t → ∇uj in (Lp(Ω ∩ Gj))N ,
as t → 0+ (note that ∇ũj = ∇̃uj ). Hence uj,t → uj in W 1,p(Ω ∩ Gj). This
together with the fact that uj,t ∈ W 1,p

0 (Ω ∩ Gj), for t > 0 small enough, ends
the proof.

Remark 2.1. A bounded domain Ω ⊂ IRN has the segment property if,
and only if, it is in the class C, cf. [5]. This means that locally the boundary
has the continuous equation xN = f(x1, x2, ..., xN−1), after a notation of the
coordinate axis.

3 – Stability of s −→ λs(g)

The first positive eigenvalue λs(g) of the As-Laplacian with weight g ∈
L∞

loc(Ω)∩Lr(Ω), where r = r(N, p) satisfies (1.2), exists for each s ∈ (1,∞) which
is near enough to p. Indeed, observe that (1.2) yields the following conditions:
r > N

p if 1 < p < N, r > N if p = N and r = 1 if p > N , which imply the
existence of λs(g), (cf. [15]).

We will assume throughout this section that our conditions on g and ai,j

are satisfied.
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3.1 – Some inequalities

Theorem 3.1. The eigenvalues λs(g) and λs satisfy

(3.1) pλ
1
p
p (g) ≤ sλ

1
s
s

(
λs(g)
λs

) 1
p

,

when 1 < p < s and p, s are close enough.

Proof.Let ϕ=u
s
p
s . Then ϕ∈W 1,p

0 (Ω), because s>p.Moreover
∫
Ω

g|ϕ|pdx=∫
Ω

gus
sdx = 1, and ∇ϕ = s

p | us | s
p−1 ∇us. Observe that ϕ is admissible to

compute λs(g) in (2.2). Hence

λ
1
p
p (g) ≤

(∫
Ω

| ∇ϕ |pa dx

) 1
p

=
s

p

(∫
Ω

us−p
s | ∇us |pa dx

) 1
p

.

From Hölder’s inequality, we obtain the estimate

λ
1
p
p (g) ≤ s

p

(∫
Ω

us
sdx

) 1
p− 1

s

λ
1
s
s (g).

On the other hand, we have

λs

∫
Ω

us
sdx ≤

∫
Ω

| ∇us |sa dx = λs(g)

by (1.3 ii) and the minimizing property of λs. Hence

λ
1
p
p (g) ≤ s

p

(
λs(g)
λs

) 1
p− 1

s

λ
1
s
s (g) =

s

p
λ

1
s
s

(
λs(g)
λs

) 1
p

.

Remark 3.1. If g ∈ L∞(Ω), the inequality (3.1) holds for each 1 < p <
s < ∞. Notice that the one-sided limits

lim
s→p−

λs(g) and lim
s→p+

λs(g)

exist.

Corollary 3.1. We have

lim sup
s→p−

λs(g) ≤ λp(g) ≤ lim inf
s→p+

λs(g).
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Proof. • When s → p+, we have p < s < p + 1. Thus

sλ
1
s
s ≤ (p + 1)λ

1
p+1
p+1 .

Hence the set {λs | p < s < p + 1} is bounded. Thus λ
p
s −1
s → 1, as s → p+.

Finally, from the inequality (3.1), we deduce that

λp(g) ≤ lim inf
s→p+

λs(g).

• For s → p−, with 1 < s < p, we have from (3.1), the following inequalities[(
s

p

)p−s

λ
p
s −1
s

]
λs(g) ≤ λs(g)λ

1− s
p

s ≤
(

s

p

)s

λp(g).

The first inequality is (3.1) for g ≡ 1. Hence(
s

p

)p

λ
p
s −1
s λs(g) ≤ λp(g).

Therefore

lim sup
s→p−

[(
s

p

)p

λ
p
s −1
s λs(g)

]
≤ λp(g).

On the other hand, since λ
p
s −1
s → 1, as s → p−, we obtain that

lim sup
s→p−

λs(g) ≤ λp(g).

Remark 3.2. Observe that if lim
s→p

λs(g) exists, then this limit is necessarily

equal to λp(g). Therefore we will study the different cases s → p+ and s → p−.

3.2 – Stability to the right

Theorem 3.2. For an arbitrary bounded domain we have

lim
s→p+

λs(g) = λp(g).
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Proof. Let ϕ ∈ C∞
0 (Ω) be such that

(3.2)
∫

Ω

g | ϕ |p dx > 0,

and let ε > 0 (small). Applying the Dominated Convergence Theorem, we find

lim
ε→0+

∫
Ω

g | ϕ |p+ε dx =
∫

Ω

g | ϕ |p dx > 0.

Hence, there is ε0 > 0 sufficiently small such that∫
Ω

g | ϕ |p+ε dx > 0, when 0 < ε < ε0.

On the other hand, we have

λp+ε(g) ≤
∫
Ω
| ∇ϕ |p+ε

a dx∫
Ω

g | ϕ |p+ε dx
.

It follows from the Dominated Convergence Theorem that

(3.3) lim sup
ε→0+

λp+ε(g) ≤
∫
Ω

| ∇ϕ |pa dx∫
Ω

g | ϕ |p dx
.

This, and the fact that ϕ is an arbitrary function satisfying (3.2), yield

lim sup
ε→0+

λp+ε(g) ≤ λp(g).

Now the result follows from Corollary 3.1.

Theorem 3.3. The principal eigenfunctions us associated with λs(g)
satisfy

(3.4) lim
s→p+

∫
Ω

| ∇us −∇up |pa dx = 0.
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Proof. For 1 < p < s with s near p. Hölder’s inequality implies that

(3.5)
∫

Ω

| ∇us |pa dx ≤| Ω |1−
p
s (λs(g))

p
s .

This shows that {us, s > p} is a bounded set in W 1,p
0 (Ω). Hence there is a

sequence s1, s2, ..., converging to p+ and there is a function u ∈ W 1,p
0 (Ω) such

that usj
⇀ u (weakly) in W 1,p

0 (Ω), as j → +∞. Using the Rellich-Kondrachov
Compactness Theorem, (cf.[1, p.144]), we obtain that usj → u in Lp+ 1

N (Ω), as
j → +∞; in particular, usj → u in Lp(Ω), as j → +∞. Passing to a subsequence
if necessary, we can assume that usj

→ u a.e. in Ω. We will prove that u ≡ up.
The weak lower semicontinuity of the norm and (3.5) yield

(3.6)
∫

Ω

| ∇u |pa dx ≤ λp(g).

It suffices to have ∫
Ω

gup dx = 1.

Indeed, if we set Ms = max
Ω

us, then from Lemma 4.1., we have max
s∈[a,b]

Ms <

M < ∞. Here M is a constant not depending on s, and [a, b] is any small
interval containing p. Thus 0 < usj ≤ M, and 0 ≤ u ≤ M a.e. on Ω. Hence

| g | | usj
sj

− up |≤| g | usj
sj

+ | g | up ≤| g | Msj + | g | up

a.e. on Ω. On the other hand, Msj ≤ Mp+1 + 1. Thus a.e. on Ω, we have

| g | | usj
sj

− up | ≤ | g | (Mp+1 + 1 + Mp) ∈ L1(Ω).

The Dominated Convergence Theorem yields∣∣∣∣∫
Ω

g(usj
sj

− up)dx

∣∣∣∣ ≤
∫

Ω

| g | | usj
sj

− up | dx → 0,

as j → +∞, since g(usj
sj − up) → 0, a.e. in Ω, as j → +∞. From this it follows

easily that
∫
Ω

g | u |p dx = 1. Finally, (3.6) and the variational characterization
of λp(g) yield ∫

Ω

| ∇u |pa dx = λp(g).

By the uniqueness of the principal eigenfunction we have u = up. Thus the limit
function u does not depend on the particular (sub)sequence s1, s2, .... Therefore
us → up at least in Lp(Ω), as s → p+.

The rest of the proof, i.e., the strong convergence (3.4) can be obtained from
Clarkson’s inequalities, (cf.[1]); but with the || | |a||p-norm in W 1,p

0 (Ω).
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3.3 – Stability to the left

This case is more difficult, because if u ∈ W 1,p−ε
0 (Ω) then it is possible that

u /∈ W 1,p
0 (Ω).

Theorem 3.4. Let Ω be an arbitrary bounded domain. If we suppose that

(3.7) lim
s→p−

∫
Ω

| ∇us −∇up |sa dx = 0,

then we have
lim

s→p−
λs(g) = λp(g).

Proof. (3.7) and the Hölder inequality imply

lim
s→p−

∫
Ω

| ∇us −∇up |p−ε
a dx = 0,

for any ε > 0 sufficiently small so that 0 < p − s < ε < p − 1. Therefore
∇us → ∇up in (Lp−ε(Ω))N , as s → p−. For ε > 0 small enough, the Hölder’s
inequality implies that

|| | ∇us |a||p−ε≤| Ω |
s+ε−p
s(p−ε) || | ∇us |a||s .

Hence

(3.8) || | ∇up |a||p−ε ≤| Ω |
ε

p(p−ε) lim inf
s→p−

λ
1
s
s (g).

Letting ε → 0+, the Fatou lemma yields

λ
1
p
p (g) =|| | ∇up |a||p ≤ lim inf

s→p−
λ

1
s
s (g).

This completes the proof, in view of Corollary 3.1.

Remark 3.3. The converse of the theorem is an open question in the case
p ≤ N .

However, we have the following partial result for any bounded domain and
every p in (1,+∞).

Theorem 3.5. Under the same assumptions, suppose that lim
s→p−

λs(g) =

λp(g). Then each sequence of real numbers tending to p from below contains a
subsequence s1, s2, ... such that

(3.9) lim
j→+∞

∫
Ω

| ∇usj
−∇u |sj

a dx = 0,

for some function u ∈ W 1,p(Ω) ∩ W 1,p−ε
0 (Ω), whenever ε > 0,

∫
Ω

g | u |p dx =
1, u ≥ 0 a.e. on Ω and

∫
Ω
| ∇u |pa dx ≤ λp(g). The function u may be depend

on the sequence, but it is a weak solution to the equation

Apu + λp(g)|u|p−2u = 0.
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Proof. Let us fix ε0 > 0 small enough, so that 0 < p− ε0 < s < p and that
(p + ε) < (p − ε)∗ for 0 < ε < ε0; where for t ∈ (1,+∞), t∗ = Nt

N−t if 1 < t < N
and t∗ = +∞ if t ≥ N . Using Hölder’s inequality, we obtain

|| | ∇us |a||p−ε ≤| Ω |
s+ε−p
s(p−ε) λ

1
s
s (g),

when 0 < ε < ε0. From (3.1), we conclude that the norms || | ∇us |a||p−ε, 0 < ε <
ε0, are uniformly bounded, in view of the assumption lim

s→p−
λs(g) = λp(g). Thus

we can find a function u ∈ W 1,p−ε
0 (Ω), 0 < ε < ε0; and find a sequence s1, s2, ...

converging to p− such that usj
⇀ u (weakly) in W 1,p−ε

0 (Ω), as j → +∞, for each
ε ∈ (0, ε0) and hence usj → u in Lp+ε(Ω). Passing to a subsequence if necessary,
we can assume that u ≥ 0 a.e. on Ω. Clearly u ∈ Lp(Ω) and is independent
of ε. On the other hand, the weak lower semicontinuity of the norm and the
assumption lim

j→+∞
λsj

(g) = λp(g) imply that

|| | ∇u |a||p−ε ≤| Ω |
ε

p(p−ε) λ
1
p
p (g).

Then letting ε → 0+, we obtain with Fatou’s lemma that ∇u ∈ (Lp(Ω))N and

(3.10) || | ∇u |a||p ≤ λ
1
p
p (g).

The normalization:
∫
Ω

g | u |p dx = 1, is preserved and

(3.11) lim
j→+∞

∫
Ω

g

(
usj + u

2

)sj

dx = 1,

for a subsequence if necessary. On the other hand, we have

(3.12) λsj (g) ≤
∫
Ω

| ∇usj
−∇u

2 |sj
a dx∫

Ω
g(

usj+u

2 )sj dx
,

for j sufficiently large, because by (3.11) there is an index j0 so large that∫
Ω

g
(usj+u

2

)sj

dx > 0,

when j ≥ j0. Clarkson’s inequality yields∫
Ω

∣∣∣∣∇usj −∇u

2

∣∣∣∣sj

a

dx ≤ 1
2
λsj (g) +

1
2
|| | ∇u |a||sj

sj
−λsj (g)

∫
Ω

g

(
usj + u

2

)sj

dx,
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if sj ≥ 2. Now (3.11) and the assumption lim
s→p−

λs(g) = λp(g) imply

lim sup
j→+∞

∫
Ω

∣∣∣∣∇usj
−∇u

2

∣∣∣∣sj

a

dx ≤ 1
2
|| | ∇u |a||pp −1

2
λp(g).

From this and (3.10), it follows easily that

lim
j→+∞

∫
Ω

| ∇usj
−∇u |sj

a dx = 0,

for the case p > 2.
For the case 1 ≤ p ≤ 2, we argue as follows. There is j1 ∈ IN such that

1 ≤ sj ≤ 2, for each j ≥ j1. Let j2 = max(j1, j0). Then Clarckson’s inequality
associated with sj and (3.12) yield

{∫
Ω

|
∇usj

−∇u

2
|sj
a dx

} 1
sj−1

+
{

λsj
(g)

∫
Ω

g(
usj

+ u

2
)sj dx

}
≤

≤
{

1
2
λsj

(g) +
1
2

∫
Ω

|∇u|sj
a dx

} 1
sj−1

.

On the other hand from Hölder’s inequality and (3.10) we deduce that∫
Ω

|∇u|sj
a dx ≤ |Ω|

p−sj
p λp(g)

sj
p .

Thus {∫
Ω

|
∇usj

−∇u

2
|sj
a dx

} 1
sj−1

≤
{

1
2
λsj (g) +

1
2
|Ω|

p−sj
p λp(g)

sj
p

} 1
sj−1

+

−
{

λsj (g)
∫

Ω

g

(
usj + u

2

)sj

dx

} 1
sj−1

.

Now, (3.11) and the assumption lim
s→p−

= λp(g) imply that

{
lim sup
j→+∞

∫
Ω

|
∇usj

−∇u

2
|sj
a dx

} 1
p−1

≤
{

1
2
λp(g) +

1
2
λp(g)

} 1
p−1

− λp(g)
1

p−1 = 0.

Hence
lim

j→+∞

∫
Ω

|∇usj −∇u|sj
a dx.
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Remark 3.4. (i) If the limit function u ∈ W 1,p
0 (Ω), then u ≡ up by the

uniqueness of the principal eigenfunction and (3.10).
(ii) When p ≤ N , in a very irregular domain the defect lim

s→p−
λs(g) < λp(g)

is possible. See the counterpart in [10] for the case

∆pu + λ|u|p−2u = 0.

Corollary 3.2. For any bounded domain Ω having the segment property,
we have

lim
s→p−

λs(g) = λp(g)

if and only if

lim
s→p−

∫
Ω

| ∇us −∇up |sa dx = 0.

Proof. Suppose that lim
s→p−

λs(g) = λp(g). From Theorem 3.5, the limit

function u satisfies for ε > 0 small enough u ∈ W 1,p(Ω) ∩ W 1,p−ε
0 (Ω) such that

u ≥ 0 a.e. in Ω,

∫
Ω

g | u |p dx = 1 and
∫

Ω

| ∇u |pa dx ≤ λp(g).

Since Ω has the segment property, thus u ∈ W 1,p
0 (Ω) by Theorem 2.1. Thus u is

admissible in the definition of λp(g). Consequently,

λp(g) =
∫

Ω

| ∇u |pa dx.

Hence u ≡ up by the uniqueness of the principal eigenfunction. So by (3.9), we
obtain

lim
s→p−

∫
Ω

| ∇us −∇up |sa dx = 0,

since the limit function does not depend on the choice of the sequence. The
converse is immediate, in view of Theorem 3.4.

Using the C1,α
loc -regularity of the principal eigenfunctions us, s proved in [6]

and the L∞-estimate to be established in Lemma 4.1., we can state the following
result generalizing [10].

Theorem 3.6. Assume that the conditions on g and ai,j are satisfied.
Then each sequence converging to p−, contains a subsequence s1, s2, ... such that
usj → u and ∇usj → ∇u locally uniformly, where u is some function in C1(Ω).
Moreover, u is a weak solution of the equation

(E) Apu + λg(x) | u |p−2 u = 0 ,

where λ = lim
j→+∞

λsj (g).
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We know that only the first eigenfunctions are not changing signs. Thus if
λ is an eigenvalue of (E), then λ = λp(g), and by normalization, we have u ≡ up.
We have come to an important point: though the limit function u of {us}, as
s → p−, is in ∈ W 1,p(Ω) ∩ W 1,p−ε

0 (Ω), for any ε > 0 chosen sufficiently small,
it is not always the right eigenfunction up, i.e., u is not necessary in W 1,p

0 (Ω).
Therefore u is not admissible in the definition of λp(g). But, If Ω satisfies the
segment property, then u = up, λ = λp(g) and

lim
s→p−

λs(g) = λp(g).

So we have the following result.

Corollary 3.3. For any bounded domain Ω having the segment property,
we have

lim
s→p

λs(g) = λp(g).

4 – Appendix

The technique to uniformly bound up in an arbitrary domain is originally
due to Ladyzhenskaya and Urlatseva, cf. [7].

Lemma 4.1. Let the assumptions on g and ai,j be fulfilled. Then for
any bounded domain Ω, maxΩ up is bounded uniformly in p, ( up denotes the
normalized principal eigenfunction).

Proof. If p > N , then from [5, Theorem 3.18., p.240] we have

|| up ||∞≤ C | Ω | 1
N − 1

p || ∇up ||p≤ C | Ω | 1
N − 1

p λ
1
p
p (g),

where C = 1
N [

1− 1
p

1
N −1

]
1
p′ ω

1
N

N , and ωN is the volume of the unit ball in IRN .
For 1 < p ≤ N , we keep track of various “constants” in Proposition 2.16. of

[15]; we obtain the lower bound

‖up‖∞,Ω ≤ b‖∇up‖1,Ω ;

where
b = (2pλp(g)‖g‖r,Ω)

Nr
pr−N (Cθ + C

θ
p ω

θ(1−p)
N

N )1−
pr−N

(p−1)Nr ,

θ =
Nr

pr(1 + N) − N(1 + r)

and C = ( (N−1)p

2(N−p)
√

N
)p if 1 < p < N , and C = [max{N, r(N−1)

r−1 }]N
r if p = N .

This concludes the proof of the Lemma.
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Doctorat, U.L.B. (1991-1992).

Lavoro pervenuto alla redazione il 31 gennaio 2003
ed accettato per la pubblicazione il 23 marzo 2004.

Bozze licenziate il 6 dicembre 2004

INDIRIZZO DEGLI AUTORI:

Abdelouahed El Khalil – Department of Mathematics and Industrial Genie – Polytechnic
School of Montreal – P.O. 6079, Succ. Centre-Ville – Montréal (Quebec) H3C 3A7
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