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Transformation groups and submanifold

geometry

GUDLAUGUR THORBERGSSON

Abstract: In the talk I give a survey on polar actions and generalizations of
isoparametric hypersurfaces in space forms to more general ambient spaces.

1 – Introduction

In this talk we will give a brief survey on generalizations of isoparamet-
ric hypersurfaces to submanifolds with higher codimension in various types of
ambient spaces. We will also discuss the question when such submanifolds are
homogeneous and introduce the isometric actions which have them as orbits.

A hypersurface Mn of a Riemannian manifold V n+1 is called isoparametric
if Mn is locally a regular level set of a function f with the property that both
‖ gradf ‖2 and ∆f are constant on the level sets of f . One can show that Mn

is an isoparametric hypersurface of V n+1 if and only if Mn and its parallel
hypersurfaces have constant mean curvature.

The term ‘isoparametric hypersurface’ is due to Levi-Civita ([37]) and
refers to the fact that ‖ gradf ‖2 and ∆f were at the time called the first and
the second differential parameter of f respectively.

If the ambient space V n+1 is a real space form, then Mn can be shown to be
an isoparametric hypersurface if and only if it has constant principal curvatures;
see [9]. This characterization does not hold in more general ambient spaces;
see [60] where counterexamples are given in complex projective spaces.
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Beniamino Segre proved the following theorem in [48]: let Mn be an isopara-
metric hypersurface in Rn+1. Then Mn is a piece of a plane, of a sphere, or
of a round cylinder. In particular it follows that Mn is homogeneous if it is
complete. Conversely, it is clear that homogeneous hypersurfaces of Rn+1 are
isoparametric.

The case n=2 of the theorem of Segre was first proved by Somigliana ([49])
and later reproved in [47] and [37].

Cartan classified isoparametric hypersurfaces in hyperbolic spaces in [9]
which also turn out to be homogeneous. He then turned to isoparametric hy-
persurfaces in spheres, see [10], [11], and [12], and noticed that the problem is
much more difficult there than in the other real space forms. In [11] he asked
three basic questions on isoparametric hypersurfaces in spheres. One of this
questions was whether isoparametric hypersurfaces in spheres are homogeneous.
A negative answer to Cartan’s question was only given much later by Ozeki
and Takeuchi in [42] who found inhomogeneous isoparametric hypersurfaces
in spheres. These examples were later generalized by Ferus, Karcher and
Münzner in [24].

I will not try to go further into the rich and beautiful theory of isoparametric
hypersurfaces in spheres and refer to [58] for further information. Still I would
like to mention the two highlights of the theory after the work of Cartan. The
first are the papers [39] and [40] of Münzner where it is shown that the number
g of principal curvatures of such a hypersurface can only be 1, 2, 3, 4 or 6. All
of these numbers are known to occur. The second is the paper [50] of Stolz in
which the possible multiplicities of the principal curvatures are determined. The
contributions of Münzner and Stolz are important steps on the way to a full
classification of isoparametric hypersurfaces in spheres, which is still an open
problem.

2 – Polar actions

In this section we will discuss polar actions. The geometry of their princi-
pal orbits will serve us as a motivation in the generalizations of isoparametric
hypersurfaces that we will present in the later sections.

Let V be a complete Riemannian manifold and let G be a Lie group acting
on V by isometries. One says that the action is polar if there is a complete
immersed submanifold Σ in V which meets all orbits of G in such a way that
all intersections between Σ and orbits are perpendicular. The submanifold Σ is
called a section of the action. It is rather easy to see that a section is totally
geodesic; see [44] and [45], p. 95. The action is called hyperpolar if the section is
flat.

One should think of a section as a set of canonical forms for the polar action
as will be clear in the examples.
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Example 2.1.
(i) Any isometric action with a hypersurface as an orbit is polar since a geodesic

which meets one orbit orthogonally meets all orbits orthogonally.
(ii) Let V be the linear space S0(n) consisting of real symmetric n×n-matrices

with zero trace endowed with the scalar product

〈X,Y 〉 = trace(XY ).

Let G be the group SO(n) acting on V by conjugation. We let Σ denote the
diagonal matrices in V . Then we know from linear algebra that every matrix
X in V can be conjugated into Σ by an element of G. It is now an easy
calculation to show that the intersections of conjugacy classes of matrices
in V with Σ are all perpendicular. The action is therefore hyperpolar.

(iii) Let V be a compact connected Lie group G with a bi-invariant Riemannian
metric acting on itself by conjugation. Let Σ be a maximal torus in G. The
theorem on maximal tori says that all conjugacy classes in G meet Σ. An
easy calculation shows that the intersections between conjugacy classes in G
and Σ are all perpendicular. It follows that the action is hyperpolar since Σ
is flat.

(iv) We now show how the examples (ii) and (iii) fit into the theory of symmetric
spaces.
A symmetric space is a Riemannian manifold V such that for every point p
in V there is an isometry σp of V fixing p and reversing the directions of the
geodesics through p. We refer to the book [33] for what we will need from
the theory of symmetric spaces. It is easy to show that symmetric spaces are
homogeneous with respect to the isometry group. We can therefore write
V = G/K where G is the identity component of the isometry group of V
and K is its isotropy group at some fixed point p0 in V . Such a pair of
groups (G,K) is called a symmetric pair.
Let Σ be a maximal flat and totally geodesic submanifold passing through
p0 in the symmetric space V . Then the action of K on V is hyperpolar
with Σ as a section; see [32]. This example generalizes the one in (ii) since
a compact connected Lie group K with a bi-invariant Riemannian metric
is a symmetric space with a maximal torus as a maximal flat and totally
geodesic submanifold. We can identify K with K×K/∆(K) where ∆(K) is
the diagonal in K ×K and it turns out that conjugation in K corresponds
to the action of ∆(K) on K ×K/∆(K).
One can generalize the action of K on the symmetric space V = G/K
as follows. Assume that (G,K1) and (G,K2) are symmetric pairs. Then
one can show that the action of K1 on V = G/K2 is hyperpolar. This
example was introduced by Hermann in [34] and we will refer to it as a
Hermann action(1). One gets concrete examples of this kind by considering

(1)Hermann proved in [34] that his examples are variationally complete and not that
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Grassmann manifolds Gk(C
n) = SU(n + 1)/Kk where Kk is the stabilizer

of Ck in Cn. Then the actions of the groups K1, . . . ,Kn−1 on Gk(C
n) are

all hyperpolar.

Now the action of K on V induces an action of K on the tangent space Tp0
V

which is called the isotropy representation of the symmetric space V . This
isotropy representation is hyperpolar with Tp0Σ as a section. The example
in (ii) is a special case and corresponds to the symmetric space V = G/K,
where G = SL(n,R) and K = SO(n). One clearly has the following direct
sum decomposition

sl(n,R) = so(n)⊕ S0(n)

into skew and symmetric matrices, and this decomposition is invariant under
AdG(K). Hence one can identify Tp0

V with S0(n) and the scalar product
on S0(n) in (ii) extends to G-invariant Riemannian metric on V . The action
in (ii) now corresponds to the isotropy representation of SL(n,R)/SO(n).

(v) We finally give an example of a polar action which is not hyperpolar. We let
V be the complex projective space Pn(C) endowed with the Fubini-Study
metric which is invariant under the action of SU(n+ 1). Now let Tn be the
maximal torus in SU(n + 1) consisting of diagonal matrices. Then it is not
difficult to see that the action of Tn on Pn(C) is polar with Pn(R) as a
section. This action is of course not hyperpolar since any two sections of a
polar actions are isometric and there can therefore not be a flat section.

The complex projective space Pn(C) with the Fubini-Study metric is an
example of a rank one symmetric space. Polar actions on compact rank one
symmetric spaces were classified in [46]. It turns out that the sections are
always real projective spaces if their dimension is at least two.

The following two theorems show that some of the examples above describe in
fact the most general situation. We will need the concept of orbit equivalent
actions in the statement of the theorems. Let K1 act isometrically on V1 and let
K2 act isometrically on V2. Then the actions of K1 and K2 are said to be orbit
equivalent if there is an isometry f : V1 → V2 such that f(K1p) = K2f(p) for all
p in V1, i.e., the orbits of K1 and K2 correspond under f .

Theorem 2.2 (Dadok [17]). Let K be a compact group acting in a polar
fashion on a Euclidean space V . Then the action of K is orbit equivalent to the
isotropy representation of some symmetric space.

they are hyperpolar. The relationship between the two concepts will be explained at
the end of this section.
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The cohomogeneity of an action is the minimal codimension of its orbits.
Eschenburg and Heintze gave in [21] a proof of Dadok’s theorem under the as-
sumption that the cohomogeneity is at least three. Their proof does not use the
classification of compact Lie groups. Lists of polar representations that are not
isotropy representations of symmetric spaces can be found in [4], [20], and [25].

Theorem 2.3 (Kollross [36]). Let V = G/K be a compact irreducible
symmetric space and let H be a subgroup of G which acts in a hyperpolar fashion
on V with cohomogeneity at least two. Then the action of H on V is orbit
equivalent to a Hermann action.

Kollross also classifies in [36] all cohomogeneity one actions on compact
irreducible symmetric spaces V . The classification of such actions on spheres
was already carried out in [35].

We now discuss the principal orbits of polar and hyperpolar actions from
the point of view of submanifold geometry. This will serve as a motivation for
the generalizations of isoparametric hypersurfaces in the later sections.

Let G be a Lie group acting by isometries on a Riemannian manifold V .
A principal orbit of the action of G on a manifold V is by definition an orbit
Gp with the property that there is a neighborhood U of p such that there is a
G-equivariant map from Gp to Gq for all q in U . If Gp is principal, then p is
said to be regular. The set of regular points is open and dense in V . Now let ξ0
be an element of νp(Gp) where ν(Gp) denotes the normal bundle of Gp. Then
ξ(gp) = dgp(ξ0) is a well defined normal vector field if Gp is principal. We call
such a normal vector field equivariant.

For a proof of the following proposition, see [45], p. 95-96, or [5], p. 44.

Proposition 2.4. Assume that the action of G on V is polar. Then
the equivariant normal vector fields along a principal orbit Gp are parallel. In
particular, the normal bundle is flat and has trivial normal holonomy.

The next property of the principal orbits of polar actions that we would like
to present has to do with focal points. Let M be a submanifold of the Riemannian
manifold V and assume that γ is a geodesic that starts in M , i.e. γ(0) lies in
M , and that γ′(0) is perpendicular to M . Suppose γs(t) is a smooth variation
of γ = γ0 such that γs(0) ∈ M and γ′

s(0) is perpendicular to M for all s. Now
let J be the variational vector field

J(t) =
∂

∂s

∣∣∣∣
s=0

γs(t)

of γs. We call such a variational vector field an M -Jacobi field along γ. One
can show that the M -Jacobi fields along γ form a vector space. A point γ(t0)



6 GUDLAUGUR THORBERGSSON [6]

is called a focal point of M along γ if there is a nonvanishing M -Jacobi field J
with J(t0) = 0. The dimension of the space of M -Jacobi fields vanishing in t0 is
called the multiplicity of the focal point γ(t0).

Proposition 2.5. Assume that the action of G on V is polar and let M
be a principal orbit of G. Let ξ be a parallel normal field along M . Then the
distances to the focal points and their multiplicities along the geodesic starting
in direction ξ(p) does not depend on p.

If V is a Euclidean space then the focal points of M are determined by
the principal curvatures. Let ξ be a normal vector field along M and X a
tangent vector of M at p. We let DXξ denote the directional derivative of ξ in
direction X and denote the tangent component of −DXξ by Aξ(X). It turns out
that the map Aξ : TpM → TpM that sends X to Aξ(X) is a selfadjoint linear
endomorphism that depends only on the value of ξ at p. One calls Aξ the shape
(or Weingarten) operator of M in direction ξp. The eigenvalues of Aξ are called
the principal curvatures of M in direction ξp.

Now if ξp is a normal vector of M at p and λ is a nonvanishing principal
curvature in direction ξp, then p + (1/λ)ξp is a focal point of M along the line
γ(t) = p+tξp. Conversely if p+(1/λ)ξp is a focal point of M along γ(t) = p+tξp,
then λ is a principal curvature in direction ξp.

We can therefore reformulate Proposition 2.5 as follows if the ambient space
is Euclidean. Notice that a polar action on a Euclidean space is hyperpolar since
the sections are affine subspaces.

Proposition 2.6. Let V be a Euclidean space on which a Lie group acts
in a polar fashion. Let M be a principal orbit of G and let ξ be a parallel normal
field along M . Then the principal curvatures in direction ξp do not depend on p.

Before we end this section we would like to mention two classes of actions
that are closely related to hyperpolar actions.

Variationally complete actions were introduced by Bott in [6]; see also [7].
By definition an isometric action of a Lie group G on a Riemannian manifold V
is called variationally complete if the following holds for all orbits M of G: let J
be an M -Jacobi field along γ(t) which vanishes at some point t0. Then J is
the variational vector field of a variation of the type φs(γ(t)) where φs is a one-
parameter subgroup of G. In other words, J is the restriction of a Killing field
induced by the action of G to γ.

Conlon proved in [16] that a hyperpolar action on a complete Riemannian
manifold is variationally complete. A partial converse was proved in [27]: a vari-
ationally complete action on a compact symmetric space is hyperpolar. It was
previously proved by Di Scala and Olmos in [18], see also [25], that varia-
tionally complete representations are polar. Lytchak has conjectured that vari-
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ationally complete actions on compact Riemannian manifolds with nonnegative
sectional curvature are hyperpolar.

Variationally complete actions were introduced in [6] and [7] to study the
Morse theory of geodesics on complete Riemannian manifolds and in particular
on compact symmetric spaces. We next briefly review one of the main results of
these papers.

Let M be a properly embedded submanifold of a Riemannian manifold V
and p some point in V . We let P = P(V, p×M) denote the space of absolutely
continuous paths γ : [0, 1] → V that start in p and end in M and for which the
so-called energy

E(γ) =

∫ 1

0

‖ γ′(t) ‖2 dt

is finite. Then P is in a natural way a Hilbert manifold and E is a smooth
functional on P, see [43], whose critical points are the geodesics starting in p
and meeting M perpendicularly. If p is not a focal point of M , then the energy
functional E is a Morse function in the sense that it has only nondegenerate
critical points. We say that the submanifold M is taut if the energy functional is
perfect, meaning that the number of critical points of index k of E in P is equal
to the k-th Betti number of P with respect to Z2-coefficients, or equivalently,
that the Z2-Morse inequalities of E on P are equalities; see [56]. An isometric
action is called taut if all of its orbits are taut.

One of the main theorems of Bott and Samelson in [7] can now be phrased
in our terminology by saying that variationally complete actions are taut.

A taut action does not have to be variationally complete. It is proved in [25],
[26], and [28] that there are precisely three irreducible taut representations of
compact groups which are not variationally complete. These three representa-
tions happen to be precisely the cohomogeneity three representations which are
not variationally complete.

3 – Isoparametric submanifolds of Euclidean spaces

Isoparametric submanifolds in Euclidean spaces with higher codimension
were first introduced by Harle in [29]. Carter and West independently intro-
duced and studied such submanifolds with codimension three in [13] and [14].
Terng then dealt with the case of general codimension in [52].

According to [52] a complete and connected submanifold Mn in Rn+k is
called isoparametric if its normal bundle is flat and if the principal curvatures
in the direction of any (locally defined) parallel normal vector field are con-
stant. It is proved in [52] that the normal holonomy of Mn is trivial. A locally
defined parallel normal curvature vector can therefore be extended to a globally
defined one.
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It is proved in [52] that a noncompact isoparametric submanifold is the
product embedding of a compact isoparametric one with a Euclidean space. We
will therefore always assume compactness in the following. A compact isopara-
metric submanifold is contained in a round hypersphere; see [52]. We can always
assume that Mn is not contained in any proper affine subspace. Such submani-
folds are called full. An isoparametric submanifold is said to be irreducible if it
cannot be nontrivially written as the product embedding of two isoparametric
submanifolds.

Propositions 2.4 and 2.6 imply that principal orbits of polar representations
are isoparametric. Conversely, Palais and Terng proved in [44] that a homo-
geneous isoparametric submanifold is such an orbit. One can show that an
isoparametric hypersurface Mn in Sn+1 is isoparametric in Rn+2. The inhomo-
geneous examples of Ferus, Karcher and Münzner in [24] that we already
mentioned in the introduction therefore give us a further class of examples. All
known examples of irreducible isoparametric submanifolds in Euclidean spaces
belong to one of these two classes of examples.

Terng developed a beautiful structure theory of isoparametric hypersurfaces
in [52]. We would like to mention some of these results since they have been a
paradigm in the generalizations.

Let Mn be an isoparametric submanifold in Rn+k and let ξ be a parallel
normal field along Mn. The end-point map in direction ξ is the map ηξ : Mn →
Rn+k one gets by setting ηξ(p) = p + ξp. It turns out that the image of Mn

under ηξ that we denote by Mξ is either a submanifold of dimension n or one of
a lower dimension. We call Mξ the parallel submanifold of Mn in direction ξ. If
the dimension of Mξ is equal to that of Mn, then Mξ is also isoparametric and
ηξ is a diffeomorphism between Mn and Mξ. If the dimension of Mξ is smaller
than that of Mn, then Mξ consists of focal points of Mn and ηξ is a fibration
from Mn onto Mξ. In this case we will call Mξ a focal submanifold. One can
show that the set F of focal points of Mn is precisely the union over the focal
submanifolds of Mn.

It is easy to see with help of Proposition 2.4 that if Mn is homogeneous and
hence a principal orbit of a polar representation, then the parallel submanifolds
are nothing but the other orbits of the representation.

If Mn is isoparametric, then F = {Mξ | ξ parallel along Mn} is a family
of disjoint submanifolds that covers the whole ambient space Rn+1. It is not
difficult to show that the isoparametric submanifolds in F foliate Rn+1 \F , the
complement of the focal set F of Mn. One can in fact show much more than
this: F is a singular Riemannian foliation in the sense of Molino. This is a
consequence of a much more general result of Töben in [59] that we will explain
in the last section; see also [45], Corollary 8.5.6.

Terng associated in [52] a Coxeter group to an isoparametric submanifold
M as follows. Let νpM be the normal space of M at p considered as an affine
subspace of Rn+k and consider the set Fp = F ∩ νpM of focal points contained
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in νpM . Then Fp is a finite union over hyperplanes in νpM and the reflections
in this hyperplanes generate a finite Coxeter group W that leaves the set Fp

invariant. It then follows that the orbit of p under W is the intersection M∩νpM .
The Coxeter group is implicit in Cartan’s work for the codimension two case
Mn ⊂ Sn+1 ⊂ Rn+1 since he proved that the focal points on the normal great
circles to Mn in Sn+1 are equidistant. In the codimension three case the Coxeter
group was already found by Carter and West in [13].

The following theorem proved in [57] shows that isoparametric submanifolds
come close to characterize principal orbits of polar representations.

Theorem 3.1. Let Mn be an irreducible, full and compact isoparametric
submanifold in Mn+k with k ≥ 3. Then Mn is a principal orbit of a polar
representation.

Theorem 3.1 combined with Dadok’s Theorem 2.2 gives a classification of
irreducible isoparametric submanifolds with codimension at least three. The
examples of Ferus, Karcher and Münzner are inhomogeneous with codimension
k = 2. If the codimension is k = 1, then the round spheres are the only examples.

A new proof of Theorem 3.1 was given by Olmos in [41] using his theory of
the normal holonomy of submanifolds; see also [5], Section 7.3. A further proof
was given by Heintze and Liu in [30] as a byproduct of a proof of an analogous
theorem in Hilbert spaces that will play a role in the next section. Eschenburg
gave a proof of the theorem in [19] that uses Lie triple products.

4 – Equifocal submanifolds

In the paper [55], equifocal submanifolds of compact symmetric spaces were
introduced and their basic theory developed as a generalization of isoparametric
hypersurfaces in spheres and an analogue of the isoparametric submanifolds in
Euclidean spaces. For symmetric spaces see reference [33] and the remarks in
Example 2.1 (iv) above.

The definition of an equifocal submanifold is based on the properties of
principal orbits of polar actions in Propositions 2.4 and 2.5.

Let Mn be a compact submanifold of a compact symmetric space V n+k.
We say that Mn is equifocal if the following three conditions are satisfied:

(i) The normal bundle of Mn is flat and has trivial holonomy.
(ii) If ξ is a parallel normal vector field and ηξ(p0) = exp(ξ(p0)) is a multiplicity

k focal point of Mn for some p0 in Mn, then ηξ(p) = exp(ξ(p)) is a multi-
plicity k focal point of Mn for all p in Mn. (In other words, the focal data
of Mn are invariant under normal parallel translation.)

(iii) The image exp(νp(M
n)) of the normal space νp(M

n) of Mn at p is contained
in some flat of V n+k for all p in Mn.



10 GUDLAUGUR THORBERGSSON [10]

Principal orbits of polar actions satisfy conditions (i) and (ii) in the defini-
tion above, and all three conditions are satisfied for principal orbits of hyperpolar
actions.

The third condition is of course always satisfies if Mn is a hypersurface. It
follows from [31] that a hypersurface Mn in a compact symmetric space V n+1

is equifocal if and only if it is isoparametric in the sense of the definition given
at the beginning of this paper. One can of course define equifocal hypersurfaces
in more general ambient spaces than symmetric spaces; see the next section.
If the ambient space has nonpositive sectional curvature one should take into
account that there might be focal points ‘beyond infinity’; see [22]. It is not
to be expected that such generalizations are equivalent to the concept of an
isoparametric hypersurface if the ambient space is not symmetric.

In [55] we show that if the compact symmetric space V n+1 is irreducible,
then an equifocal hypersurface Mn in V n+1 has the property that any geodesic
meeting Mn is closed. If V n+1 is simply connected, then one can show that the
number of focal points on such a normal closed geodesic is an even number that
we will denote by 2g. If V n+1 is a sphere, then g is the number of principal
curvatures of Mn which can only be one of the numbers 1, 2, 3, 4, and 6 as was
proved by Münzner; see the introduction. One can now ask which values g can
assume in general irreducible symmetric spaces, and what the possible values of
the multiplicities of the focal points are; see [51] and [23] where this question is
studied for rank one and two symmetric spaces.

One can prove more generally that the image of a normal space νp(M) of an
equifocal submanifold Mn in an irreducible compact symmetric space V n+k is a
torus T k; see [55]. One can associate to Mn an affine Coxeter group as follows.
Let F denote the set of focal points of Mn in T k and let F̃ be the preimage of
F in the universal cover Rk of T k. Then F̃ is a union of hyperplanes which are
precisely the mirrors of an affine Coxeter group W acting on Rk and leaving F̃
invariant.

The next theorem which is analogous to Theorem 3.1 gives a characterization
of the principal orbits of hyperpolar actions as equifocal submanifolds.

Theorem 4.1 (Christ [15]). Let Mn be an equifocal submanifold in an
irreducible compact symmetric space V n+k. Then Mn is the principal orbit of a
hyperpolar action if k ≥ 2.

The theorem does not hold for k = 1 since the inhomogeneous isoparametric
hypersurfaces in spheres are equifocal.

Theorem 4.1 and the results from [55] that we have been explaining are
proved with the help of a generalization due to Terng of the theory of isopara-
metric submanifolds in Euclidean spaces to Hilbert spaces; see [53]. We end this
section with a short explanation of this method.
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Let V n+k be a compact symmetric space that we write as a coset space
V n+k = G/K where (G,K) is a symmetric pair. Let g denote the Lie algebra
of G and set H = L2([0, 1], g), the Hilbert space of L2-paths in g. Then there
is a Riemannian submersion φ : H → V n+k such that a submanifold Mn is
equifocal in V n+k if and only if the preimage M = φ−1(Mn) is isoparametric
in H. The main point is that it is easier to work in H than in V n+1 since H is
linear, although infinite dimensional.

To define the Riemannian submersion φ, we need to introduce certain path
spaces in G. Let B be a subset of G × G and let P(G,B) denote the space
of absolutely continuous paths γ : [0, 1] → G such that (γ(0), γ(1)) ∈ B and
such that the integral ‖ γ′ ‖ 2 is finite. Here we assume G to be endowed with
a bi-invariant Riemannian metric such that the projection π : G → V n+k is a
Riemannian submersion. Then Pe = P(G, e × G) is the space of paths in G
starting at the identity e without a restriction on the end point.

Now it turns out that the map that sends a path γ in Pe to γ−1γ′ in H is
a diffeomorphism. Let E : H → Pe denote the inverse of this diffeomorphism.
Now we can define a map ψ : H → G by setting ψ(u) equal to the endpoint of
the curve E(u), i.e. ψ(u) = E(u)(1). It is proved in [55] that ψ is a Riemannian
submersion. Now we define φ : H → V n+k as φ = π ◦ ψ.

If H is a subgroup of G then P(G,H×K) is an infinite dimensional Hilbert
Lie group which acts on H by setting

γ ∗ u = γuγ−1 − γ′γ−1

for γ in P(G,H×K) and u in H; see [54] where it is proved that the action of H
on V n+k is hyperpolar if and only if the action of P(G,H×K) is polar on H. It
is also proved in [54] that the principal orbits of P(G,H ×K) are isoparametric
if its action on H is polar.

A very important result of Heintze and Liu in [30] is that an irreducible
isoparametric submanifold in an infinite dimensional Hilbert space is the princi-
pal orbit of a polar action if its codimension is at least two. This result of Heintze
and Liu is one of the main steps in the proof of Theorem 4.1. The method of
proof also works in finite dimensions if the codimension is at least three and can
be used to prove Theorem 3.1.

One can also use the Hilbert space H to prove that an action on a compact
symmetric space is hyperpolar if it is variationally complete; see [27] and Sec-
tion 2. One shows that the action of a subgroup H of G is variationally complete
(resp. hyperpolar) on V n+k if and only if the action of P(G,H × K) on H is
variationally complete (resp. hyperpolar). One has now reduced the problem to
an affine action on the linear space H and can argue in a similar way as as in [18].
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5 – Submanifolds in Riemannian manifolds

In this last section we would like to mention some recent generalizations to
Riemannian manifolds.

The orbits of a connected Lie group acting by isometries on a Riemannian
manifold give an example of a singular Riemannian foliation in the sense of
Molino; see [38], p. 189. By definition, a partition F of a Riemannian manifold
V into connected immersed submanifolds, called leaves, is said to be a singular
Riemannian foliation if the following two conditions are satisfied:

(i) The tangent space TpM for every M in F and every p in M is generated by
{Xp| X ∈ ΞF} where ΞF denotes the module of smooth vector fields on V
that are tangent to the submanifolds in F .

(ii) A geodesic that meets one leaf M in F perpendicularly, meets the leaves
perpendicularly for all parameter values.

The leaves in F of maximal dimension are called regular and those of lower
dimension singular.

If only the first condition is satisfied then one calls F a singular foliation.
A singular foliation is a foliation in the usual sense if the leaves are all regular.
The second condition means that the leaves are equidistant.

If F consists of the orbits of an action, then condition (ii) is satisfied since
the vector fields it induces are contained in ΞF and condition (ii) is satisfied if
the action is isometric.

Alexandrino studies singular Riemannian foliations that admit a section
in [2], where a section is defined as for polar actions. Previously such folia-
tions were studied by Boualem in [8]. Let F be such a singular foliation in a
Riemannian manifold V , let L be a singular leaf in F , and let T be a tubular
neighborhood of L that is a union over leaves in F . It is then proved in [2] that
the foliation consisting of the intersections of the leaves of such a foliation F
with the connected component of exp(νp(L)) ∩ T containing p is diffeomorphic
to an isoparametric foliation in an open neighborhood of 0 in Rk where k is
the codimension of L in V . This generalizes the slice theorems for polar actions
and isoparametric submanifolds; see [45]. A further result of [2] is that the reg-
ular leaves of singular Riemannian foliations with a section have parallel focal
structure, see also [59] for a different proof. Submanifolds with parallel focal
structure were studied by Ewert in [22]. They generalize equifocal submani-
folds in a similar way as polar actions generalize hyperpolar actions, see [59] for
a precise definition. Töben gives in [59] a necessary and sufficient condition for
a submanifold with parallel focal structure and finite normal holonomy to give
rise to a singular Riemannian foliation with the leaves being parallel submani-
folds. In [59] an action on the sections of a singular Riemannian foliations by a
group called transversal holonomy group is introduced. This action generalizes
the Weyl group action of polar actions.
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In [1] Alexandrino studies transnormal maps. These are by definition maps
from a Riemannian manifold into a Euclidean space with the property that its
restrictions to sufficiently small neighborhoods of regular level sets are Rieman-
nian submersions such that the normal spaces of the fibers form an integrable
distribution on the neighborhood. The main result of [2] is that the level sets of
an analytic transnormal map on a real analytic Riemannian manifold give rise
to a singular Riemannian foliation with sections.

Further results along these lines can be found in [3].
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[9] É. Cartan: Familles de surfaces isoparamétriques dans les espaces à courbure
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– 50931 Köln, Germany
E-mail: gthorber@mi.uni-koeln.de


