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Analysis of the Laplacian of an incomplete

manifold with almost polar boundary

JUN MASAMUNE

Abstract: Motivated by recent interest in global analysis of singular manifolds,
we establish the essential self-adjointness of a Laplacian, a Liouville property of sub-
harmonic functions, conservativeness and parabolicity of an incomplete manifold. These
results are applicable for manifolds with fractal Cauchy boundary.

Let M be a connected C1,1-Riemann manifold without boundary. In our
previous paper [13], we had studied that if the Cauchy boundary ∂M = M \
M , where M is the completion of M , is almost polar (see Definition 3), then
a Laplace-Beltrami operator (hereafter, Laplacian, in short) is essentially self-
adjoint. We call such a manifold a manifold with almost polar boundary. The
present paper is a continuation of this previous work. Here we will investigate the
spectral theory of an incomplete manifold such as: The essential self-adjointness
of the Laplacian, conservativeness and parabolicity of the manifold, a Liouville
property of sub-harmonic functions.

The typical example M = N \Σ is a complete manifold N deleted a closed
manifold Σ of co-dimension ≥ 2. More crucial example is: M itself is a manifold
but the completion M is no more a manifold. For example, M may be an alge-
braic variety with singular set, a football, an orbifold, a Met1-surface, so called
singular manifolds. We allow ∂M to be a fractal (see Section 5 for examples).
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We consider a Laplacian ∆ = div ·∇ with the following domain: the domain
D(∇) of ∇ is the set of C1,1-functions f such that both f and ∇f are square
integrable. Similarly, the domain D(div) of div is the set of C1,1-vector fields
X such that X and divX are square integrable. Then let the domain D(∆) of
∆ be the set of functions f ∈ D(∇) such that ∇f ∈ D(div). M is said to have
negligible boundary if −div is a formal adjoint of ∇. The following is our main
result.

Theorem 1. Let M be a connected C1,1-Riemann manifold without bound-
ary. If ∂M is almost polar, then M has negligible boundary. Moreover,

(i) If M has negligible boundary, then the Laplacian ∆ is essentially self-adjoint.
(ii) ∆ is essentially self-adjoint if and only if two Sobolev spaces W0 and W

coincide, and moreover, then the L2-closure ∆ coincides with both Dirichlet
and Neumann Laplacians.
In the sequel, assume ∆ to be essentially self-adjoint.

(iii) If the volume v(r) of the ball B(x, r) of radius r centered at an arbitrary but
fixed point x ∈M satisfies

(1)

∫ ∞ r

log v(r)
= ∞,

then M is conservative. If v(r) satisfies

(2)

∫ ∞ r

v(r)
= ∞,

then M is parabolic.
(iv) Every sub-harmonic function f belonging to D(∆) or to L∞ ∩ Lp for an

arbitrary p > 1, is a constant.

It is known that condition (1) (resp. (2)) of Theorem 1 implies the conser-
vativeness (resp. parabolicity) of a complete manifold [8].

An immediate application of Theorem 1 is

Corollary 1. Let us assume M satisfies the condition of Theorem 1
and ∆ is essentially self-adjoint. If M is not bounded and the Ricci curvature is
non-negative, then the following holds.

(i) Every harmonic 1-form α such that |α| ∈ D(∆) is 0.
(ii) Every harmonic map f : M → N such that the energy is in D(∆) is

constant, where N is a complete smooth manifold whose sectional curva-
ture is non-positive. The condition such that M is not bounded and the
Ricci curvature is non-negative may be replaced to that the Ricci curvature
is positive at some point.
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We organize the paper in the following manner.
In Section 1, we establish notation.
In Section 2, we discuss Sobolev spaces W 1,2

0 and W 1,2. The nature of
the research through the paper is the fact two Sobolev spaces W 1,2

0 and W 1,2

coincide if ∂M is almost polar (Theorem 2). This result has been well known for
an incomplete manifold M = N \Σ, where N is a complete manifold and Σ is a
closed almost polar set. Let us explain why our setting covers this case. Since
Σ is almost polar, it has volume 0, hence any ball centered at arbitrary point
x ∈ Σ has intersection with N . Therefore, there exists a sequence in N that
converges to x. This shows N = M , because N is complete. The contribution
of our study is to generalize the previous result to an incomplete manifold such
that whose completion is no more a manifold.

In Section 3, we study the essential self-adjointness of the Laplacian. In
general, if a symmetric operator on a Hilbert space has a unique self-adjoint
extensions, it is called essentially self-adjoint. This problem has been introduced
to Riemannian geometry by M. P. Gaffney [6]. He established a sufficient
condition for a manifold called M has negligible boundary so that the Laplacian ∆
on forms is essentially self-adjoint. We present two alternative proofs of Gaffney
theorem. Subsequently, together with the main result in [5], Gaffney proved the
essential self-adjointness of the Laplacian on forms of complete manifolds. We
prove the Laplacian is essentially self-adjoint if and only if W = W0.

In Section 4, we study the conservativeness, parabolicity, and a Liouville
property. The idea of our study of conservativeness and parabolicity bases on
the following fact. Consider again M = N \ Σ, where N is a complete manifold
and Σ is a closed almost polar set. Then the Brownian motion of N does not
hit Σ, accordingly, if N is conservative or parabolic, then so is M . On our
setting, we discuss without asking if Brownian motion hits ∂M or not, because
we do not know if the Brownian motion could be extended to M .

In order to establish the conservativeness, we decompose M into M1 and M2,
where ∂M ⊂ ∂M1, M1 has finite volume. We impose Neumann boundary condi-
tion to both manifolds. Then both manifolds are conservative (A.Grigor’yan [8]
proved that (1) in Theorem 1 is a sufficient condition for the conservativeness of
a complete manifold or a manifold with boundary of Neumann condition). As
we had seen M has no boundary condition (Theorem 2), we will obtain the con-
servativeness of M . One may prove the parabolicity in the same way, however,
we present a different proof.

In Section 5, we provide examples. P. Li and G. Tian [11] proved the
essential self-adjointness of the Laplacian, the conservativeness of an incomplete
manifold M \ Σ, where M ⊂ CPn is an algebraic variety deleted the singular
set Σ of co-dimension not less than 3. Since M has finite volume and the singular
set is almost polar, M \Σ is not only conservative but more strongly, parabolic.
See more detailed proof for their result in [24]. The main reason why we study
the manifold of class C1,1 is because the most simple but non-trivial manifold
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with fractal boundary is merely C1,1 (Example 7). Finally, let us introduce
some related topics to our result. The Laplacian ∆C on the set of forms with
compact support of a complete manifold is essentially self-adjoint [20]. This
result contains the Gaffney theorem on a complete manifold because ∆C ⊂ ∆.
However, ∆C is not necessarily essentially self-adjoint on a manifold with polar
boundary, while the corresponding Markov form (E , C∞

0 ) has unique Dirichlet
extension. Indeed, ∆C on R3 \ {0}, where {0} is almost polar, has infinitely
many self-adjoint extensions [9], [2]. The Laplacian ∆C on M \N , where M is
a complete and N is a closed sub-manifold, is essentially self-adjoint if and only
if the co-dimension of N is greater than 3 [13].

S. Ozawa [16], studied the behavior of the first eigenvalue λε of M \ Bε

where M is a compact manifold as ε → 0. P. Li and G. Tian established an
eigenvalue estimate of an algebraic variety deleted the singular set [11]. The
author and W. Rossman proved the Weyl’s asymptotic formula for an incomplete
manifold [14]. G. C. Papanicolaou and S. R. S. Varadhan [17] analyzed
the asymptotic behavior of the solution of the heat equation on a domain of an
Euclidean space punched out small balls.

1 – Notation

We list up notation for convenience of reading. Most of them will be ex-
plained also in the main body of the paper.

M - a connected Riemann manifold of class C1,1 without boundary. M
admits an atlas such that every coordinate transformation is C1,1 and Riemann
metric is Lipschitz on every compact set.

– µ - the Riemann measure.

– d - the intrinsic distance of M - see Section 2.

– r := d(·, x) - the radius function from the point x ∈M .

– M - the completion of M with respect to d.

– ∂M := M \M .

– B(Σ, r) := {x ∈M | d(Σ, x) < r} - the r-neighbourhood of the set Σ ⊂M .

– ∆ := div∇ - the Laplace-Beltrami operator on M .

– ∆ - the L2-closure of ∆ - see Section 2.

– ∆D (resp. ∆N ) - Dirichlet (resp. Neumann) Laplacian - see Section 3.

– p(t, x, y) - the heat kernel associated with 1
2∆ - see Section 4.

– Ω - a bounded domain of M .

– Cl - the set of real-valued functions of class l on M .

– Cl
0(Ω) - the set of functions f ∈ Cl with compact support in Ω.

– V l - the set of real-valued vector fields of class l on M .
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– V l
0 (Ω) - the set of vector fields in V l with compact support in Ω.

– f |Ω - the function f restricted to Ω.

– Lp := Lp(M,µ) - the completion of C1,1
0 with respect to the norm ‖f‖p :=

(
∫
fp)1/p := (

∫
M

fp(x) dµ(x))1/p. Especially 〈f, g〉 :=
∫
fg for f, g ∈ L2.

– etT - the semi-group generated by a non-positive self-adjoint operator T
on L2.

– W := W 1,2(M,µ), W0 := W 1,2
0 (M,µ), and H := H1

2 (M,µ) - Sobolev spaces
of order (1, 2) - see Section 2.

– E(f, g) := 〈∇f,∇g〉 - the Dirichlet integral of f, g ∈W .

– Cap(Σ) - the capacity of a Borel set Σ ⊂M - see Section 2.

2 – Sobolev spaces

The main purpose of this section is to prove; if ∂M is almost polar, then
W = W0. On a complete manifold, where the Cauchy boundary is empty, this
goes back to Gaffney [5]. He cuts off the function f ∈ W out side of a ball
B(r), and prove that the modified function fr belongs to W0 and converges to f
as r →∞. If a manifold is incomplete, one should cut off f also near the Cauchy
boundary ∂M . We will prove that if ∂M is almost polar, then this modified
function fn belongs to W0 and converges to f (Theorem 2).

Definition 1. Denote by W the completion of the set of real-valued C1,1-
functions f on M such that ‖f‖1,2 = ‖f‖2 + ‖∇f‖2 <∞, where ‖ · ‖2 stands for
the L2-norm, with respect to the norm ‖ · ‖1,2. The set W0 is the completion of

the set of functions in C1,1 with compact support C1,1
0 in W . Another Sobolev

type space H consists of measurable functions f such that both f and ∇f are
square integrable.

The Riemann distance does not work on a C1,1-manifold, so we work with
the intrinsic distance [1].

Definition 2. The intrinsic distance d is defined by

d(x, y) = sup{ψ(x)− ψ(y)|ψ ∈ C1,1, ‖∇ψ‖∞ ≤ 1} for x, y ∈M.

We impose

Assumption 1. d is non-degenerate and generates the original topology
of M .

Remark 1. It is known that d coincides with the Riemann distance, if the
manifold is class C2,1 [7].
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Example 1. K. Th. Sturm [21] developed the conservativeness, parabol-
icity, and Lp-Liouville property of a local Dirichlet space utilizing the canonical
intrinsic distance associated to the Dirichlet form. A local Dirichlet space is a
generalization of a Riemann manifold, so his result covers complete manifolds,
however, his assumption excludes incomplete manifolds.

We define the capacity for M .

Definition 3. Let Σ ⊂M be a Borel set. Denote by O the family of open
sets O of M such that Σ ⊂ O. Let L(O) be the set of functions f ∈ W0 such
that

0 ≤ f ≤ 1 and f |O = 1.

The capacity Cap(Σ) of Σ is

Cap(Σ) = inf
O∈O

Cap(O),

where
Cap(O) = inf

f∈L(O)
‖f‖1,2.

We say Σ is almost polar if Cap(Σ) = 0.

Remark 2. The Brownian motion on M hits Σ ⊂M if and only if Cap(Σ) >
0, so the Brownian motion on M and that of M \ Σ (in order to make M \ Σ a
manifold, Σ should be closed) are the same almost surely, if Σ is almost polar. If
Σ is a manifold and co-dimension is not less than 2, or a fractal with Hausdorff
co-dimension greater than 2, then it is almost polar.

Example 2. See Section 5 for examples of manifolds M with almost polar
boundary such that M is not a manifold.

Recall the definition of the closure of an operator.

Definition 4. An operator S : H1 → H2, where H1 and H2 are Hilbert
spaces, is called closed if the graph G(S) is closed in H1×H2. S is called closable
if it has a closed extension. The operator T whose graph G(T ) coincides with the
the completion of G(S) in H1 ×H2 is called the L2-closure (hereafter, closure,
for short) of S and denoted by S.

It is well known in functional analysis that

Proposition 1. Every closable operator S has its closure S.

We may state the main result of this section.

Theorem 2. Let M be a C1,1-manifold without boundary. Then the
following holds.

(i) W = H.
(ii) If Cap(∂M) = 0, then W0 = W .
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Proof. We start to prove (i). For f ∈ W , let fn ∈ C1 be a sequence such
that fn → f in W as n→∞. By Stokes theorem,

〈f,divX〉 = lim
n→∞

〈fn,divX〉 = lim
n→∞

〈∇fn, X〉 = 〈∇f,X〉

for every X ∈ V 1
0 . This shows f ∈ H.

Conversely, let f be in H. Let {Uα, ψα}α>0 be a local chart, where each
Uα is relative compact, and {ρα}α be an associated partition of unity such that
ρα ∈ C1,1

0 (Uα). We claim fα := ραf ∈ H. Let X be the weak derivative of f .
Then it holds

〈ραX + f∇ρα, Y 〉 = 〈f,−div(ραY )〉+ 〈f∇ρα, Y 〉 = 〈fα,divY 〉

for every Y ∈ V 1
0 . Hence −(ραX + f∇ρα) ∈ L2 is the weak derivative of fα. So

fα ∈ H. Denote by Jε the Friedrich mollifier. Define Jεfα ∈ C1,1 by

Jεfα :=

∫
Jε(·, y)fα(y)µ(dy).

Since Jε(x, ·) has support in B(x, ε), for every α > 0, there exists εα > 0 such
that Jεfα ∈ C1,1

0 (Uα) for every 0 < ε < εα. Due to compactness argument,

‖Jεfα − fα‖1,2 → 0

as ε→ 0. For α > 0 and δ > 0, let εα > 0 be such that

‖Jεαfα − fα‖1,2 < 2−αδ.

Then fδ =
∑

α Jεαfα ∈ C1,1 satisfies

‖fδ − f‖1,2 < δ.

This shows f ∈W . Now we have completed the proof of (i).
Next, we prove (ii). We would like to show that for every f ∈ W there

exists fn ∈ W0 such that fn → f in W as n→∞. First, we claim that we may
assume f to be bounded. Define

f ∨ g := max{f, g},
f ∧ g := min{f, g}.

Then fn := (f ∨(−l))∧ l → f in W as l →∞ [11]. Hence, hereafter we assume f
is bounded.
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Next we claim that we may assume that f is 0 on some neighbourhood of
∂M . Since ∂M is almost polar, there exists a sequence en ∈W such that

(a) 0 ≤ en ≤ 1,

(b) there exists an open set ∂M ⊂ On ⊂M such that en|On
=1,

(c) ‖en‖1,2 → as n→∞.

From condition (c), we may assume that en tends to 0 almost everywhere as
n→∞. Set fn = (1− en)f . Because of condition (a), fn ∈W . Then

(3) ‖f − fn‖1,2 ≤ ‖enf‖2 + ‖en∇f‖2 + ‖f∇en‖2.

The first and second terms of R.H.S. of (3) tends to 0 as n → ∞ by Lebesgue
theorem. The third term of R.H.S. of (3) tends to 0 as n → ∞ because f
is bounded. Due to (b), hereafter, we assume f is 0 on some neighbourhood
of ∂M .

Finally, we are going to cut off f outside of a big ball. Define a function
ηn by

(4) ηn(r) = ((2− n−1r) ∨ 0) ∧ 1,

where r is the radius function from an arbitrary but fixed point x ∈ M . Put
B(r) := B(x, r). We note that B(r) has finite volume for every r > 0. Indeed,
since ∂M is almost polar, there exists an open set ∂M ⊂ O with finite volume,
and as B(r) \O ⊂M is compact because of Assumption 1, it has finite volume.
Due to the definition of the intrinsic distance, ‖∇r‖∞ ≤ 1, and thus ηn(r) ∈W
for every n > 0. As ηn is bounded,

fn := fηn ∈W for every n > 0.

Since ‖∇ηn‖∞ ≤ 1/n, we have

(5) ‖f − fn‖1,2 ≤ ‖(1− ηn)f‖2 + n−1‖f‖2 + ‖(1− ηn)∇f‖2.

By Lebesgue theorem, R.H.S. of (5) tends to 0 as n→∞. Now we may assume f
has compact support. By the mollifier techniques as in the proof of (i) above,
we obtain a sequence fn ∈ C1,1

0 such that fn → f in W . This shows W0 = W ,
and we have completed the proof.



[9] Analysis of the Laplacian of an incomplete etc. 117

3 – Essential self-adjointness

A symmetric operator is called essentially self-adjoint if it has a unique self-
adjoint extension. In a series of papers, M. P. Gaffney studied this problem
for the Laplacian of a manifold. In [6] he established a criterion called M has
negligible boundary (see Definition 5) so that the Laplacian is essentially self-
adjoint. Subsequently, in [5] he showed that a complete manifold has negligible
boundary. In our previous paper [13] we had showed that if W = W0, then M
has negligible boundary. In this section, we will prove that the converse is also
true, namely

Theorem 3. The Laplacian is essentially self-adjoint if and only if W =W0.

First, we will present alternative two different proofs of Gaffney theorem
(Theorem 4). Then Theorem 3 will follow immediately.

In order to make ∆ symmetric, we need

Definition 5. We say M has negligible boundary if

∫
div(fX) = 0

for every f ∈ D(∇) and X ∈ D(div).

The following Gaffney theorem says the assumption such that M has negli-
gible boundary makes ∆ not only symmetric but also essentially self-adjoint.

Theorem 4. ∆ is essentially self-adjoint if and only if M has negligible
boundary.

Before starting the proof, let us present a corollary which is the (i) of The-
orem 1.

Corollary 2. If M has almost polar boundary, then ∆ is essentially
self-adjoint.

Proof. Let f ∈ D(∇) and X ∈ D(div). Due to Theorem 2, there exists
fn ∈ C1,1

0 such that fn → f in W . Then

〈∇f,X〉 = lim
n→∞

〈∇fn, X〉 = −〈f,divX〉.

Hence M has negligible boundary, and ∆ is essentially self-adjoint by Theo-
rem 4.
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The first proof is to combine Lemma 1 and 2. We prove that the closure ∆
is self-adjoint, because if T is a self-adjoint extension of ∆ then

∆ ⊂ ∆ ⊂ T = T ∗ ⊂ ∆
∗

= ∆∗,

which shows ∆ = ∆
∗

implies ∆ = T , the essential self-adjointness of ∆.

Lemma 1. If M has negligible boundary, then div · ∇ is self-adjoint.

Proof. We would like to show −div = ∇∗, where ∇∗ stands for the adjoint-
operator of ∇, because then by Von Neumann theorem, div · ∇ = −∇∗ · ∇ is
self-adjoint. One direction is obvious, because by the definition of negligible
boundary, −div ⊂ ∇∗ and since ∇∗ is closed, −div ⊂ ∇∗.

Conversely, let X ∈ D(∇∗). Because D(∇∗
C) = H = W where ∇C is

the restriction of ∇ to the set of functions with compact support, there exists
a sequence Xn ∈ D(div) such that Xn → X in W as n → ∞. This means
X ∈ D(div).

Lemma 2. If M has negligible boundary, then ∆ = div · ∇.

Proof. As Lemma 1 says ∆ ⊂ div · ∇, we only prove the converse. Let
{Uα, ψα}α>0 be a local chart, where each Uα is relative compact, and {ρα}α be
an associated partition of unity such that ρα ∈ C1,1

0 (Uα). Suppose f ∈ D(div·∇).
Then fα := ραf belongs to D(div · ∇). By the definition of a closed operator,
for every α > 0 and ε > 0, there exists a vector field Xα,ε ∈ V 1,1

0 (Uα) such that

(6) ‖∇fα −Xα,ε‖1,2 < ε.

Due to Kodaira-Morrey-Eells decomposition, there exist fα,ε ∈ D(∇) and Yα,ε ∈
div−1(0) such that

Xα,ε = ∇fα,ε + Yα,ε.

Since the div−1(0) component of ∇fα,ε is 0, we have

(7) ‖∇fα −∇fα,ε‖2 ≤ ‖∇fα −Xα,ε‖2
and

(8) ‖div · ∇fα − div ·∇fα,ε‖2 = ‖div · ∇fα − divXα,ε‖2.
By (6), (7), (8) and Poincaré inequality, for every α > 0 and ε > 0, there exists
hα,ε ∈ D(∆) such that

‖fα − hα,ε‖2 + ‖div · ∇(fα − hα,ε)‖2 < 2−αε.

Define a function fε ∈ D(∆) by

fε =
∑

α

fα,ε.

Then we have
‖f − fε‖2 + ‖div · ∇f −∆fε‖2 < ε.

Since ε > 0 is arbitrary, now we have completed the proof.
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We proceed to the second proof. Let us recall two self-adjoint Laplacians.
Both of them are an extension of the Laplacian on C1,1

0 . The Dirichlet Laplacian
∆D is the self-adjoint operator defined on the set of functions f ∈W0 such that
∆f ∈ L2. The Neumann Laplacian ∆N is the self-adjoint operator defined on
the set of functions f ∈ W such that 〈∆f, ψ〉 = −〈∇f,∇ψ〉 for every ψ ∈
W [18]. Denote by ∆D,0 (resp. ∆N,0) the Laplacian defined on C1,1 ∩ D(∆D)
(resp. C1,1 ∩D(∆N )).

Lemma 3. ∆D,0 (resp. ∆D,0) is essentially self-adjoint and its closure is
∆D (resp. ∆N ).

The proof is similar to that of main result of [15]. For the sake of complete-
ness, we present the proof.

Proof. We would like to show ∆D,0 = ∆D. Let f ∈ D(∆D). Then by
hypo-ellipticity of ∆,

ft = et∆Df ∈ D(∆D,0).

By definition of et∆D ,
ft → f in L2 as t→ 0,

and
∆ft = et∆D∆Df → ∆Df in L2 as t→ 0.

Hence ft ∈ D(∆D,0) is a Cauchy sequence with respect to the graph norm of
∆D,0, and thus, f = limn→∞ ft ∈ D(∆D,0). Obviously, the same proof applies
for ∆N,0.

As ∆D,0 ⊂ ∆, if ∆ is symmetric, then it is essentially self-adjoint. This
completes the second proof of Theorem 4.

Now we prove Theorem 3.

Proof. In the proof above, we have observed that if M has negligible
boundary, then ∆ is essentially self-adjoint and the closure ∆ is the Dirichlet
Laplacian. Now we would like to see that the closure coincides also to the
Neumann Laplacian, because if it is true, then the quadratic forms

√−∆D and√−∆N coincide, where

D(
√
−∆D) = W0 and D(

√
−∆N ) = W,

and accordingly, W = W0 [18].
Suppose f is in D(∆N,0). Then

〈∆f, ψ〉 = −〈∇f,∇ψ〉 for every ψ ∈W

shows ∇f ∈ D(∇∗). Hence ∇f ∈ D(div) by Lemma 1, and f ∈ D(∆) by
Lemma 2. Thus, ∆D = ∆ = ∆N and we have the proof.
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Remark 3. Consider the Laplacian ∆ = ∂δ + δ∂ on forms with following
domain [6]. The domain D(∂) of ∂ is the set of C1-forms α such that both α and
∂α are square integrable. Similarly, the domain D(δ) of δ is the set of C1-forms
α such that both α and δα are square integrable. Then let the domain D(∆) of
the Laplacian ∆ be the set of C1-forms α ∈ D(∂) ∩D(δ) such that ∂α ∈ D(δ)
and δα ∈ D(∂). One may prove the essential self-adjointness of ∆ by a similar
method of the second proof presented above. In fact, assume ∆ is symmetric.
Then, for the Friedrich self-adjoint extension ∆F of ∆,

αt = e−t∆Fα ∈ D(∆),

and both αt and ∆αt converges to α and ∆α, respectively, as t→ 0.

4 – Conservative, parabolic, and Liouville property

In this section we prove conservativeness, parabolicity and a Liouville type
property. Let us start from definitions. The heat kernel p associated to 1

2∆ is
the smallest positive fundamental solution to the heat equation

1

2
∆ut =

∂

∂t
ut.

J. Dodziuk [3] showed that every Riemann manifold (whether it is complete or
incomplete) admits the heat kernel. Let us recall

Definition 6. A manifold M is called conservative if the heat kernel p
satisfies ∫

p(t, x, y) dµ(y) = 1

for every t > 0 and x ∈M .

Let (E , D(E)) be a Dirichlet form on L2 and T be the generator. (E , D(E))
is called conservative if for every fn ∈ L2 such that 0 ≤ fn ≤ 1, fn → 1, it holds
etT fn → 1 as n → ∞ for every t > 0. For further study of a Dirichlet form, we
refer [4]. Denote by ∆D the Dirichlet Laplacian. Then, since

et∆Df =

∫
p(t, ·, y)f(y) dµ(y) for every f ∈ L2,

the conservativeness of M is equivalent to that of the Dirichlet form (E ,W0).
As (E ,W0) generates the Brownian motion, M is conservative if and only if the
Brownian motion Xt starting from an arbitrary point of M may be found on M
almost surely at every time t > 0. The terminology conservative originates on
this fact.
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A manifold with boundary is never conservative in the sense above, because
the Brownian motion will be absorbed at the boundary. So instead of the heat
kernel, we consider the Neumann heat kernel. In such case, the corresponding
Dirichlet form is (E ,W ) and the Brownian motion is reflected at the boundary.
A manifold with boundary of Neumann condition is conservative if it has volume
growth condition (1) of Theorem 1 [8].

We start the proof of conservativeness.

Proof. Our argument bases on the following [4].

Theorem 5. The Dirichlet form (E , D(E)) is conservative if and only if
there exists a sequence fn ∈ D(E) such that

0 ≤ fn ≤ 1, lim
n→∞

fn = 1, and lim
n→∞

E(fn, ψ) = 0 for everyψ ∈ D(E) ∩ L1.

Let ∂M ⊂ On be a decreasing family of open sets of M such that ∂On∩M is
C1,1 for every n > 1, and Cap(On) → 0 as n→∞. The manifold with boundary
M \ On is conservative with Neumann condition [8] for every n > 1. Hence, by
Theorem 5, for every n > 0 there exists a sequence fn,l ∈W (M \On) such that
0 ≤ fn,l ≤ 1 on M ,

lim
l→∞

fn,l = 1, and lim
l→∞

E(fn,l, ψ) = 0 for every ψ ∈W (M \On) ∩ L1.

Set hn,l = en ∨ fn,l, where en is the equilibrium potential of On ∩M , that is the
function en ∈W0 such that 0 ≤ en ≤ 1 on M ,

en|On∩M = 1, and Cap(On ∩M) = ‖en‖1,2.
Then hn,l ∈W , and

(9) |E(hn,l, ψ)| ≤ |〈∇en,∇ψ〉|+
∣∣∣
∫

M\On

〈∇fn,l,∇ψ〉
∣∣∣.

The R.H.S. of (9) tends to 0 as n, l → ∞. Since hn,l ∈ W0 for every n, l > 1,
and hn,l → 1 as n, l →∞, M is conservative by Theorem 5.

A manifold is said to be parabolic if it does not admit a non-negative Green
function G. By definition,

G(x, y) =

∫ ∞

0

p(t, x, y) dt, for every x, y ∈M.

This shows M is parabolic if and only if the Brownian motion is recurrent. The
concept of recurrence may be extended to general Dirichlet form, and it holds [4].

Theorem 6. The Dirichlet form (E , D(E)) is recurrent if and only if there
exists a sequence fn ∈ D(E) such that

0 ≤ fn ≤ 1, lim
n→∞

fn = 1, and lim
n→∞

E(fn, fn) = 0.
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We proceed to prove the parabolicity.

Proof. The volume growth condition (2) of Theorem 1 implies

∑

n>0

2n+1

v(2n+1)− v(2n)
= ∞,

where v(r) stands for the volume of the ball B(x, r) with arbitrary but fixed
x ∈M . Hence,

(10) lim
n→∞

v(2n+1)− v(2n)

22n
= 0.

Let ηn ∈W be the function defined by (4). Then

E(ηn, ηn) =
v(2n+1)− v(2n)

22n
.

By (10) and Theorem 6, the Brownian motion is recurrent.

Remark 4. The parabolicity may be proved by the same idea of the proof
of conservativeness presented above. More precisely, decompose M = M1 ∪M2,
where ∂M ⊂ M1 and M1 has finite volume. Imposing Neumann condition to
both M1 and M2, by condition (2) of Theorem 1, both manifolds are parabolic.
As M does not have boundary condition, it is parabolic.

Finally, we prove a Liouville property.

Proof. Let ηn ∈W be the function defined by (4). Let f be a non-negative
sub-harmonic function. Assume f ∈ D(∆). Since ∆ = ∆D ((ii) of Theorem 1),

0 ≤ 〈∆f, η2
nf〉 = −2〈∇f, ηnf∇ηn〉 − 〈∇f, η2

n∇f〉,

and hence

(11) ‖ηn∇f‖2 ≤ 2‖f∇ηn‖2.

The R.H.S. of (11) tents to 0 as n→∞ by Lebesgue theorem. Therefore ∇f = 0.
If one puts h = fp/2, then h is sub-harmonic and f ∈ L2. Essentially the

same proof described above applies to show ∇h = 0, so we omit it.

Remark 5. It is known that there exists non-constant non-negative sub-
harmonic function such that f /∈ Lp for any p > 1 on a complete manifold. The
next two examples show that we may not remove the additional assumption such
that f is bounded and ∂M is almost polar.

Consider M = R3 \{0} and f = (r−2−1)∨0, where r is the radius from the
origin. Obviously, M has almost polar, f is sub-harmonic, and f ∈ L5/4. Then,
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a standard smoothing technique of sub-harmonic functions on Euclidean space
yields a non-negative, non-bounded, non-constant C2-sub-harmonic function in
L5/4.

Consider M = R \ {0} and f = ((r + 1)−1 − 4) ∨ 0. Then {0} is not almost
polar, f is bounded sub-harmonic and belongs to Lp with every p > 1.

Remark 6. A similar estimate in the proof of parabolicity may be found
in [10]. The conservativeness and parabolicity can be proved by the main result
in [10]. The original proof of Liouville property of complete manifolds can be
found in [22].

5 – Examples

In this section, we consider some examples. Let us recall a sufficient condi-
tion of ∂M to be almost polar [13].

Definition 7. The lower Minkowski co-dimension of a Cauchy boundary
∂M is

lim inf
ε→0

log vol(Nε)

log ε

where Nε is the ε-tubular neighbourhood of ∂M .

Theorem 7. If the lower Minkowski co-dimension of ∂M is greater
than 2, then it is almost polar. In particular, if ∂M is a manifold, and its lower
Minkowski co-dimension is not less than 2, then the same conclusion holds.

Example 3. Consider the incomplete manifold M\Σ, where M ⊂ CPn is an
algebraic variety in complex projective space with singular set of co-dimension 2.
P. Li and G. Tian [11] showed the essential self-adjointness of the Laplacian,
conservativeness, and established an estimate of eigenvalues. As they proved
that Σ is almost polar (Theorem 4.1), and M has finite volume, their manifold
is not only conservative but more strongly, also parabolic. For a detailed proof,
we refer [24].

Example 4. Let M be a compact orbifold with singular locus Σ of codimen-
sion ≥ 2. In the same way as in [11], one may show that the Riemann manifold
M \ Σ has almost polar Cauchy boundary. The spectrum of the L2-closure of
the Laplacian is studied in [19].

Example 5. Consider an incomplete 2-dimensional manifold of finite vol-
ume having constant curvature = 1 with isolated conical singularities. Such a
manifold is called Met1-surface and is important for the study of minimal sur-
faces [12].
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Example 6. Consider the so called “football”. Set M := C \ {0}

g =
4(dx2 + dy2)

(1 + r2)2
, f =

µrµ−1(1 + r2)

1 + r2µ
, µ ∈ R+, h = f2g,

where r is the distance from the origin. Then {0} is almost polar. In [14], we show
that the Laplacian has pure point spectrum and it satisfies Weyl’s asymptotic
formula.

The next example has fractal Cauchy boundary.

Example 7. Let us recall the Cantor set Σ in a real-line. Consider the
union of 2n-segments

Σn = [0, 3−n] ∪ [2 · 3−n, 3−n+1] ∪ . . . ∪ [1− 3−n, 1] ⊂ R.

Then Σ is defined by Σ = limn→∞ ∩1<l<nΣl. Let (M, g) = (N \ Σ, fgo) be
an incomplete manifold defined as follows; N is a 3-dimensional complete C2-
manifold with metric go ∈ C2, Σ is a Cantor set, by this we mean there exists
a local chart (U,ψ) of N such that C ⊂ U and ψ(Σ) is a Cantor set in R. The
metric g = fgo is defined as follows. Denote by r the distance from Σ with
respect to go, and set

f(x) =

{
r2ε, if x ∈ B;

1, otherwise,

where ε > log 2−log 3
2 log 3−log 2 and B = {x ∈ N | r(x) < 1}.

Proposition 2. M is a C1,1-manifold with almost polar boundary.

Proof. Since M is of class C2 and g is Lipschitz on every compact set,
M is of class C1,1. Let us assume ψ(Σ) lies in x-axis. We claim ∂M = Σ.
Indeed, for every a = (x, 0, 0) ∈ Σ (hereafter we identify Σ with ψ(Σ)) and
an = (x, 0, 1/n) ∈M , there exists C > 0 such that

d(a− an) < C

∫ 1
n

0

zε dt→ 0 as n→∞,

where d is the Riemann distance with respect to g. As N is complete, ∂M =
Σ. Denote by Vn the volume of B(Σn, 3

−1) with respect to g. By an explicit
computation of Vn and letting n→∞, Minkowski dimension of Σ is

dim(Σ) = 3 +
log Vn

n log 3
≤ 1 +

log 2

log 3
− 2ε + 1

ε + 1
.

Hence, co-dimension of Σ ⊂M is greater than 2 if ε > log 2−log 3
2 log 3−log 2 . By Theorem 7,

∂M is almost polar.
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