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Laurent type expansions of ∂̄∂∂-closed (0, n – 1)-forms in Cn

TELEMACHOS HATZIAFRATIS

Abstract: We characterize the multiple sequences �k1,...,kn of complex numbers
for which there exist ∂̄-closed (0, n − 1)-forms θ(ζ), defined for ζ ∈ Cn − {|ζ| ≤ R},
so that

∫
|ζ|=ρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ dζ1 ∧ ... ∧ dζn = �k1,...,kn (ρ > R). We also derive

Laurent type expansions of such ∂̄-closed (0, n− 1)-forms in terms of the derivatives of
the Bochner-Martinelli kernel and we discuss Mittag-Leffler type constructions in this
setting.

1 – Introduction

Let us recall that given a sequence �k, k = 0, 1, 2, ..., of complex numbers,
there exists a holomorphic function g(ζ) defined for ζ ∈ C − {|ζ| ≤ R} (where
R ≥ 0) so that ∫

|ζ|=ρ

ζkg(ζ)dζ = �k, k = 0, 1, 2, ... (ρ > R),

if and only if
lim sup
k→∞

k
√
|�k| ≤ R,

and that, moreover, such a function is of the form

g(ζ) =
1

2πi

∞∑

k=0

�k
1

ζk+1
+ a holomorphic function in C.
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Fourier-Laplace transform – Derivatives of the Bochner-Martinelli kernel – Mittag-
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In Cn, we may consider systems (g1, . . . , gn) of C∞ functions, which satisfy the
differential equation

n∑

j=1

(−1)j−1 ∂gj
∂ζ̄j

= 0

(equivalently: the (0, n− 1)-form

θ =
n∑

j=1

gjdζ̄1 ∧ . . . (j) . . . ∧ dζ̄n

is ∂̄-closed), and pose an analogous question as follows: For which multiple
sequences �k1,...,kn

of complex numbers, do there exist ∂̄-closed (0, n− 1)-forms
θ(ζ), defined for ζ ∈ Cn − {|ζ| ≤ R}, so that

∫

|ζ|=ρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ dζ1 ∧ ... ∧ dζn = �k1,...,kn
(ρ > R)?

It turns out that we can characterize such sequences (see Theorem 2) and fur-
thermore we can give an analogous expansion for these ∂̄-closed (0, n− 1)-forms
θ, in terms of appropriate derivatives of the Bochner-Martinelli kernel (see The-
orem 3). For background material, we refer to [2], [3], [4], and [7].

Notation. If D is an open subset of Cn, we will denote by Z
(0,n−1)

∂̄
(D) the

set of ∂̄-closed (0, n − 1)-forms with C∞ coefficients in D and H
(0,n−1)

∂̄
(D) will

denote the set of the corresponding ∂̄-cohomology classes in D:

H
(0,n−1)

∂̄
(D) = {[θ] : θ ∈ Z

(0,n−1)

∂̄
(D)},

where [θ] = {θ + ∂̄ − exact (0, n− 1)− forms in D}.
Also O(D) will denote the set of holomorphic functions in D.

2 – Fourier-Laplace transforms of ∂̄-closed (0, n− 1)-forms

Let E be a compact convex set in Cn and let ξ ∈ Z
(0,n−1)

∂̄
(Cn − E). The

Fourier-Laplace transform of ξ is the entire holomorphic function Fξ defined by
the integral

Fξ(w) =

∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ), w ∈ Cn,

where 〈ζ, w〉 =
∑

ζjwj , ω(ζ) = dζ1 ∧ . . . ∧ dζn and U is an open and bounded
convex set with smooth boundary which contains E. Since the differential form
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e〈ζ,w〉ξ(ζ) ∧ ω(ζ) is d−closed, it follows from Stokes’ theorem that the above
integral is independent of the choice of U . Indeed, if V is a sufficiently large ball,
then
∫

ζ∈∂V

e〈ζ,w〉ξ(ζ) ∧ ω(ζ)−
∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ) =

∫

ζ∈V−U

d[e〈ζ,w〉ξ(ζ) ∧ ω(ζ)] = 0.

Notice also that this integral depends only on the cohomology class [ξ] ∈
H

(0,n−1)

∂̄
(Cn − E). For, if ξ − θ = ∂̄u (where θ ∈ Z

(0,n−1)

∂̄
(Cn − E) and u is a

(0, n− 2)−form in Cn − E), then
∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ)−
∫

ζ∈∂U

e〈ζ,w〉θ(ζ) ∧ ω(ζ) =

∫

ζ∈∂U

d[e〈ζ,w〉u(ζ) ∧ ω(ζ)] = 0.

Now it is easy to see that the function Fξ is an entire function of exponential
type. In fact,

|Fξ(w)| ≤
∫

ζ∈∂U

e|〈ζ,w〉||ξ(ζ) ∧ ω(ζ)| ≤ AeR|w| for w ∈ Cn,

where A and R are positive constants.
Conversely, using the derivatives of the Bochner-Martinelli kernel, we will

show that every entire function of exponential type is the Fourier-Laplace trans-
form of a ∂̄-closed (0, n− 1)-form.

The derivatives of the Bochner-Martinelli kernel. For ζ �= z, set

M(ζ, z) =
βn

|ζ − z|2n
n∑

j=1

(−1)j−1(ζ̄j − z̄j)dζ̄1 ∧ . . . (j) . . . ∧ dζ̄n,

where βn = (−1)n(n−1)/2(n − 1)!/(2πi)n, and for each k = (k1, . . . , kn), where
kj are non-negative integers, let us define the (0, n− 1)-forms

ηk(ζ) =
∂k1+···+knM(ζ, z)

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

.

A simple computation shows that

ηk(ζ) = βnn(n + 1) · · · (n + k1 + · · ·+ kn − 1)
ζ̄k1
1 · · · ζ̄kn

n

|ζ|2(n+k1+···+kn)
×

×
n∑

j=1

(−1)j−1ζ̄jdζ̄1 ∧ . . . (j) . . . ∧ dζ̄n.

Since ∂̄ζ [M(ζ, z)] = 0, it follows that ∂̄ηk = 0. Thus ηk ∈ Z
(0,n−1)

∂̄
(Cn − {0}).
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Now recall the Bochner-Martinelli formula: For f ∈ O(Cn),

(1) f(z) =

∫

ζ∈Sρ

f(ζ)M(ζ, z) ∧ ω(ζ), when |z| < ρ,

where Sρ = {ζ ∈ Cn : |ζ| = ρ} and ρ > 0.
Applying to both sides of (1) the differentiation

Dk =
∂k1+···+kn

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

,

we obtain the formula

(2) Dkf =
∂k1+···+knf

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

=

∫

ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ).

Construction of ∂̄-closed (0, n − 1)-forms with prescribed Fou-
rier-Laplace transform. Let F be an entire holomorphic function of the
following exponential type:

(FR) |F (w)| ≤ AeR|w|, for every w ∈ Cn,

where A and R are positive constants.
Now we will estimate the derivatives of F at zero, using Cauchy’s formula

in the polydisk:

(3) Dkf =
k1! . . . kn!

(2πi)n

∫

ζ∈Tr

f(ζ1, ..., ζn)

ζk1+1
1 · · · ζkn+1

n

dζ1 ∧ . . . ∧ dζn,

where Tr is the torus of multi-radius r = (r1, ..., rn):

Tr = {ζ ∈ Cn : |ζ1| = r1, ..., |ζn| = rn}.

Since for ζ ∈ Tr, |F (ζ)| ≤ AeR
√

r2
1+···+r2

n , (3) implies that the coefficient σk, in
the expansion F (w) =

∑
k σkw

k, satisfies the inequality

|σk| =
1

k1! . . . kn!
|DkF | ≤ A

eR
√

r2
1+···+r2

n

rk1
1 · · · rkn

n

for every r1, ..., rn > 0.

Applying this inequality with

r1 =
√

k1(k1 + · · ·+ kn)/R, ..., rn =
√

kn(k1 + · · ·+ kn)/R,
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we obtain

(4) |σk| ≤ A
(eR)

k1+···+kn

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)
(k1+···+kn)/2

for every k1, ..., kn.

(Convention: kj
kj/2 = 1, when kj = 0.)

Next let us recall that if F (w) is to be the Fourier-Laplace transform of an
analytic functional T , then the action of T on a function f ∈ O(Cn) will be
given by the formula:

T (f) =
∑

k

σkD
kf.

Now we take an arbitrary f ∈ O(Cn) and substitute the values of its deriva-
tives Dkf in the sum

∑
k σkD

kf , using formula (2). Interchanging the order of
summation and integration, we obtain − at least formally − that

(5)
∑

k

σkD
kf =

∫

ζ∈Sρ

f(ζ)

(∑

k

σkηk(ζ)

)
∧ ω(ζ).

We will show that the series
∑

k σkηk(ζ) converges for ζ ∈ Cn − BR (where
BR = {|ζ| ≤ R}), and defines a ∂̄-closed (0, n − 1)-form whose Fourier-Laplace
transform is the given function F . In fact we will see that the convergence is
uniform and absolute on compact subsets of Cn − BR, and therefore (5) holds
when ρ > R. In proving this, (4) will play the important role in conjunction
with the following lemma.

Lemma 1. If t1, ..., tn > 0 and t21 + · · ·+ t2n < 1 then

∑

k1,...,kn

ek1+···+kn(k1 + · · ·+ kn)!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)
(k1+···+kn)/2

tk1
1 ...tkn

n <∞.

Proof. First let us keep in mind that the validity of the assertion is not
affected if the general term of the sum is multiplied (or divided) by a quantity
of the form ks11 ...ksnn (for some nonnegative constants s1, ..., sn).

Now to prove the lemma, it suffices to show that the sum of the terms,
whose indices k1, ..., kn are all even, is finite, i.e.,

(6)

∑

k1,...,kn

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)

kn(2k1 + · · ·+ 2kn)
k1+···+kn

t2k1
1 ...t2kn

n <∞

for t21 + · · ·+ t2n < 1.
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To justify this reduction we split the sum according to the parity of the k1, ..., kn.
More precisely, if we call C(k1, ..., kn) the general term of the sum in the state-
ment of the lemma then on the one hand it is clear that

∑

k1,...,kn

C(k1, ..., kn) =
∑

(u1,...,un)∈{0,1}n

∑

k1,...,kn

C(2k1 + u1, ..., 2kn + un),

and on the other hand it is easy to see (using the remark at the beginning of
this proof) that (6) implies that each of the 2n sums

∑

k1,...,kn

C(2k1 + u1, ..., 2kn + un) is finite

(i.e., when u1, ..., un ∈ {0, 1}), and the reduction of the proof of the lemma to (6),
follows.

Using the notation |k| = k1 + · · ·+ kn, we have

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)

kn(2k1 + · · ·+ 2kn)
k1+···+kn

=

=




n∏

j=1

ekjkj !

k
kj

j


 e|k||k|!

|k||k|
(2|k|)!

4|k|(|k|!)2
|k|!

k1!...kn!
.

But from Stirling’s formula, for min{sj : 1 ≤ j ≤ n} large enough,

ekjkj !

k
kj

j

≈
√

2πkj ,
e|k||k|!
|k||k| ≈

√
2π|k| and

(2|k|)!
4|k|(|k|!)2 ≈

1

2
√

π|k|
.

Therefore, using also the expansion

∑

k1,...,kn

(k1 + · · ·+ kn)!

k1!...kn!
t2k1
1 ...t2kn

n =
1

1− (t21 + · · ·+ t2n)
valid for t21+· · ·+t2n < 1,

we conclude that there is a positive integer N so that

∑

min{k1,...,kn}>N

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)

kn(2k1 + · · ·+ 2kn)
k1+···+kn

t2k1
1 ...t2kn

n <∞.

Now (6) can be proved by induction on n.

Some computations. For each ψ = (ψ1, ..., ψn) ∈ Cn − {0}, we define the
region

Gψ =

{
ζ ∈ Cn − {0} :

|ζj |
|ζ|2 <

|ψj |
|ψ|2 for j = 1, ..., n

}
.
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We will show that for |ψ| > R, the series
∑

k |σkCk(ζ)| converges uniformly in
ζ ∈ Gψ, where Ck(ζ) is the main coefficient of ηk(ζ), i.e., the quantity

Ck(ζ) = n(n + 1) · · · (n + k1 + · · ·+ kn − 1)
ζ̄k1
1 · · · ζ̄kn

n

|ζ|2(n+k1+···+kn)
.

First notice that Gψ ⊂ {ζ ∈ Cn : |ζ| > |ψ|}, because

|ζj |
|ζ|2 <

|ψj |
|ψ|2 ⇒

n∑

j=1

|ζj |2
|ζ|4 <

n∑

j=1

|ψj |2
|ψ|4 ⇒ 1

|ζ|2 <
1

|ψ|2 .

Also uψ ∈ Gψ for every u > 1 (as it is easy to check) and for a fixed ρ > R,

(7) Cn − Bρ =
⋃

ψ∈Sρ
Gψ.

Indeed, if ζ ∈ Cn −Bρ then it is easy to see that ζ ∈ Gψ, where ψ = ρζ/|ζ|, and
of course ρζ/|ζ| ∈ Sρ.

To prove the uniform convergence of the series
∑

k |σkCk(ζ)| for ζ ∈ Gψ

(with |ψ| > R), it suffices to notice that, since,

|Ck(ζ)| =
∏n−1

l=1 (k1 + · · ·+ kn + l)

(n− 1)!|ζ|2n (k1 + · · ·+ kn)!

( |ζ1|
|ζ|2

)k1

. . .

( |ζn|
|ζ|2

)kn

,

inequality (4) implies that the series
∑

k sup{|σkCk(ζ)| : ζ ∈ Gψ} is dominated
by the convergent series

∑

k1,... ,kn

[∏n−1
l=1 (k1 + · · ·+ kn + l)

(n− 1)!|ψ|2n
e|k|(|k|)!

k
k1/2
1 · · · kkn/2

n |k||k|/2

(
R|ψ1|
|ψ|2

)k1

. . .

(
R|ψn|
|ψ|2

)kn
]
.

The convergence of the above series follows from Lemma 1, since

n∑

j=1

(
R|ψj |
|ψ|2

)2

=

(
R

|ψ|

)2

< 1.

Now we can prove the following theorem which is a Paley-Wiener type the-
orem. As it is well-known such theorems deal with the question of representing
entire functions of exponential type as Fourier-Laplace transforms of measures
and the related literature is quite extensive. This particular theorem expresses
such measures in terms of the Bochner-Martinelli kernel.
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Theorem 1. If F (w) =
∑

k σkw
k is an entire function, which satisfies

(FR) for some R > 0, then the series
∑

k σkηk(ζ) defines a ∂̄-closed (0, n − 1)-
form η(ζ), with C∞ coefficients in ζ ∈ Cn − BR, and

F (w) =

∫

ζ∈Sρ

e〈ζ,w〉η(ζ) ∧ ω(ζ), for w ∈ Cn and ρ > R.

Thus an analytic functional T , which is carried by the ball BR, is represented by
the measure

dλ(ζ) =
∑

k

σkηk(ζ) ∧ ω(ζ)
∣∣
ζ∈Sρ ,

supported by the sphere Sρ (ρ > R), where σk = T (zk)/k!.

In particular, any measure dµ (in Cn and with compact support) is analyt-
ically equivalent to dλ (given by the above formula), where σk =

∫
zkdµ(z)/k!

and ρ > sup{|z| : z ∈ supp(µ)}

Proof. Notice that

ηk(ζ) =

n∑

j=1

(−1)j−1ζ̄jCk(ζ)dζ̄1 ∧ ...(j)... ∧ dζ̄n.

But if P is any derivative (of any order), with respect to ζ1, ..., ζn, ζ̄1, ..., ζ̄n, then

(8)
∑

k

sup
{
|σkP[ζ̄jCk(ζ)]| : ζ ∈ Gψ

}
<∞,

provided that |ψ| > R. This follows from Lemma 1, which implies that

∑

k1,...,kn

ks11 ...ksnn
e|k|(|k|)!

k
k1/2
1 · · · kkn/2

n |k||k|/2
tk1
1 ...tkn

n <∞ (t1, ..., tn>0, t21+· · ·+t2n<1),

for every nonnegative constants s1, ..., sn. (At this point we use the fact that,
since the function F satisfies the condition (FR), the coefficients σk satisfy (4),
and, therefore, we can carry out computations, similar to the ones that follow
the proof of Lemma 1, which lead to (8).)

But (8) implies that η =
∑

k σkηk has C∞ coefficients Cn − BR and that

∂̄η =
∑

k

σk∂̄ηk = 0.
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Furthermore, for f ∈ O(Cn),

∫

ζ∈Sρ

f(ζ)η(ζ) ∧ ω(ζ) =

∫

ζ∈Sρ

f(ζ)

(∑

k

σkηk(ζ)

)
∧ ω(ζ) =

=
∑

k

σk

∫

ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ) =
∑

k

σkD
kf,

where we also used (2). Applying the above formula with f(ζ) = e〈ζ,w〉 (for fixed
w), we obtain

∫

ζ∈Sρ

e〈ζ,w〉η(ζ) ∧ ω(ζ) =
∑

k

σkw
k = F (w).

This completes the proof.

3 – Laurent type expansions of ∂̄-closed (0, n− 1)-forms

The computations of the previous section lead also to the following theorem.

Theorem 2. Let R ≥ 0. Suppose that for each k = (k1, ..., kn), where kj
are nonnegative integers, we are given a complex number �k = �k1,...,kn . Then

a necessary and sufficient condition that there exist θ ∈ Z
(0,n−1)

∂̄
(Cn − BR) so

that

(P)

∫

ζ∈Sρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ ω(ζ) = �k1,...,kn
, for every k (where ρ > R),

is that the sequence �k = �k1,...,kn satisfy the condition

(GR) For every ε > 0 there is a positive constant A(ε) so that

|�k| ≤ A(ε)
[e(R + ε)]

k1+···+knk1!...kn!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)
(k1+···+kn)/2

for every k1, ..., kn.
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Proof. Set
ck1,...,kn =

�k1,...,kn

k1!...kn!
.

To prove the one direction, let us assume that θ ∈ Z
(0,n−1)

∂̄
(Cn−BR) and satisfies

(P). Then

ck1,...,knw
k1
1 ...wkn

n =

∫

ζ∈Sρ

ζk1
1 · · · ζkn

n wk1
1 ...wkn

n

k1!...kn!
θ(ζ) ∧ ω(ζ).

Since ∑

k1,...,kn

ζk1
1 · · · ζkn

n wk1
1 ...wkn

n

k1!...kn!
= e〈ζ,w〉,

it follows that the series F (w) =
∑

k ckw
k converges, it defines an entire holo-

morphic function F (w), and that this function is given by the integral:

F (w) =

∫

ζ∈Sρ

e〈ζ,w〉θ(ζ) ∧ ω(ζ) for ρ > R.

Applying this with ρ = R + ε (where ε > 0), we see that

|F (w)| ≤ A(ε)e(R+ε)|w|,

where

A(ε) =

∫

|ζ|=R+ε

|θ(ζ) ∧ ω(ζ)|.

Now we can prove (in the same way we proved that (FR) implies (4)) that

|ck| ≤ A(ε)
[e(R + ε)]

k1+···+kn

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)
(k1+···+kn)/2

,

and this proves (GR).
To prove the other direction, let us assume that the sequence �k satisfies

(GR). Then, it follows from the proof of Theorem 1, that the series θ(ζ) =∑
k ckηk(ζ) defines a ∂̄-closed (0, n − 1)-form with C∞ coefficients in ζ ∈ Cn −

BR+ε, and this is true for every ε > 0. Thus θ ∈ Z
(0,n−1)

∂̄
(Cn − BR). Moreover

∫

ζ∈Sρ

f(ζ)θ(ζ) ∧ ω(ζ) =
∑

k

ck

∫

ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ) =
∑

k

ckD
kf,
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for f ∈ O(Cn) and ρ > R. Applying this formula with f(ζ) = ζl11 · · · ζlnn (with
nonnegative integers l1, ..., ln), we see that, indeed, θ satisfies the required period
condition (P). This completes the proof of the theorem.

The following theorem is a variation of Theorem 2. It gives Laurent type
expansions for ∂̄-closed (0, n − 1)-forms in Cn − BR. (The case R = 0 of it, is
in [2].)

Theorem 3. Every θ ∈ Z
(0,n−1)

∂̄
(Cn − BR) has an expansion of the form

θ =
∑

k

�k

k!
ηk + ∂̄υ,

where the numbers �k are given by (P) and υ is a (0, n − 2)-form with C∞

coefficients in Cn − BR.

Proof. Given θ ∈ Z
(0,n−1)

∂̄
(Cn − BR), we define �k by (P) and we set

η =
∑

k

�k

k!
ηk.

It follows from the proof of Theorem 2 that η ∈ Z
(0,n−1)

∂̄
(Cn−BR) and that, for

ρ > R, ∫

ζ∈Sρ

ζk1
1 · · · ζkn

n η(ζ) ∧ ω(ζ) = �k1,...,kn .

Therefore
∫

ζ∈Sρ

ζk1
1 · · · ζkn

n [θ(ζ)− η(ζ)] ∧ ω(ζ) = 0, for every k1, ..., kn.

Now [1, Lemma 5] (see also Lemma 2, below) implies that there exists a (0, n−2)-
form υ, with C∞ coefficients in Cn − BR, so that θ − η = ∂̄υ. This gives the
required expansion and completes the proof of the theorem.

Remarks. 1. Writing the quantity

ek1+···+knk1!...kn!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)
(k1+···+kn)/2

in the form 


n∏

j=1

ekjkj !

k
kj

j


 k

k1/2
1 · · · kkn/2

n

(k1 + · · ·+ kn)
(k1+···+kn)/2

,
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and using Stirling’s formula

ekjkj !

k
kj

j

≈
√

2πkj ,

it is easy to see that a sequence �k satisfies the condition (GR) if and only if for
every ε > 0 there is a positive constant Ã(ε) so that

|�k| ≤ Ã(ε)
(R + ε)

k1+···+knk
k1/2
1 · · · kkn/2

n

(k1 + · · ·+ kn)
(k1+···+kn)/2

for every k1, ..., kn.

2. Let θ ∈ Z
(0,n−1)

∂̄
(U − B(a,R)), where U is an open neighborhood of

the closed ball B(a,R) = {ζ ∈ Cn : |ζ − a| ≤ R}. Taking a ρ > R so that
B(a, ρ) ⊂ U , we define the coefficients ck by the formula:

ck =
1

k1!...kn!

∫

ζ∈Sρ

(ζ1 − a1)
k1 · · · (ζn − an)knθ(ζ) ∧ ω(ζ).

Let us also consider the differential forms ηk(·, a) defined by the formula

ηk(ζ, a) =
∂k1+···+knM(ζ, z)

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=a

=

= βnn(n + 1) · · · (n + k1 + · · ·+ kn − 1)
(ζ̄1 − ā1)

k1 · · · (ζ̄n − ān)kn

|ζ − a|2(n+k1+···+kn)
×

×
n∑

j=1

(−1)j−1(ζ̄j − āj)dζ̄1 ∧ . . . (j) . . . ∧ dζ̄n.

Then ηk(·, a) ∈ Z
(0,n−1)

∂̄
(Cn−{a}) and they have properties analogous to those of

ηk. We notice that although the differential form θ is defined only in U−B(a,R),
the series ∑

k

ckηk(ζ, a)

converges for ζ ∈ Cn − B(a,R) and defines there a ∂̄-closed (0, n− 1)-form.

Expansions in more general domains. Suppose that D is a pseudo-
convex domain in Cn, a1, ..., aN ∈ D and R1, ..., RN ≥ 0 so that

B(aj , Rj) ⊂ D (j = 1, ...N) and B(aj , Rj) ∩ B(am, Rm) = ∅ (j �= m).
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Let θ ∈ Z
(0,n−1)

∂̄

(
D − [B(a1, R1) ∪ · · · ∪ B(aN , RN )]

)
. Taking ρj > Rj so that

the balls B(aj , ρj) are pairwise disjoint, we define

cjk =
1

k1!...kn!

∫

ζ∈Sρj

(ζ1 − aj1)
k1 · · · (ζn − ajn)knθ(ζ) ∧ ω(ζ).

Then, in view of the previous remark,
∑

k c
j
kηk(ζ, a

j) ∈ Z
(0,n−1)

∂̄
(Cn−B(aj , Rj)),

and therefore

ξ
def
= θ −

N∑

j=1

∑

k

cjkηk(ζ, a
j) ∈ Z

(0,n−1)

∂̄

(
D − [B(a1, R1) ∪ · · · ∪ B(aN , RN )]

)
.

Moreover

∫

ζ∈Sρj

(ζ1 − aj1)
k1 · · · (ζn − ajn)knξ(ζ) ∧ ω(ζ) = 0 for all k and j.

It follows from Lemma 2 below that ξ is ∂̄-exact in D − [B(a1, R1) ∪ · · · ∪
B(aN , RN )]. The conclusion is that θ has the following expansion

θ =
N∑

j=1

∑

k

cjkηk(ζ, a
j) + ∂̄υ,

for some (0, n−2)-form υ with C∞ coefficients in D−[B(a1, R1)∪· · ·∪B(aN , RN )].

Lemma 2. Let us consider an open set Ω ⊂ Cn of the form Ω = D− (G1 ∪
. . . ∪ GN ) where D is a pseudoconvex set and G1, . . . , GN are compact convex
sets in Cn so that Gj ⊂ D and Gj ∩ Gm = ∅ for j �= m. Let us also consider
simple closed surfaces Sj, each one around the set Gj and close to it.

Then a differential form χ ∈ Z
(0,n−1)

∂̄
(Ω) is ∂̄-exact (in Ω) if and only if

(9)

∫

ζ∈Sj

e〈w,ζ〉χ(ζ) ∧ ω(ζ) = 0, for every j = 1, . . . , N and w ∈ Cn.
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Notice that (9) is equivalent to

∫

ζ∈Sj

f(ζ)χ(ζ) ∧ ω(ζ) = 0, for f ∈ O(Cn) and j = 1, ..., N,

because the set of the functions e〈w,ζ〉, w ∈ Cn, is dense in the space of entire
functions (with the topology of uniform convergence on compact sets. Also this
is equivalent to

∫

ζ∈Sj

(ζ1 − aj1)
k1 · · · (ζn − ajn)knχ(ζ) ∧ ω(ζ) = 0 for all k and j,

where aj are any preassigned points.

Proof of Lemma 2. The one direction follows from Stokes’s formula. The
other direction is a generalization of [1, Lemma 5] and its proof is similar in this
case too, so we will outline it.

First we exhaust the set Ω with a sequence of compact sets of the form

K = {λ ≤ 0} − ({ρ1 < 0} ∪ . . . ∪ {ρN < 0}),

so that the set {λ < 0} is a bounded strictly pseudoconvex set with smooth
boundary and the sets {ρ1 < 0}, . . . , {ρN < 0} are strictly convex neighborhoods
of the convex sets G1, . . . , GN . In other words, the sets {λ < 0} should exhaust
the pseudoconvex set D, while the set {ρj < 0} should shrink down to the set
Gj , for j = 1, . . . , N .

Fixing such a set K, we consider the map γ : (∂K)×int(K) → Cn as follows:
For (ζ, z) ∈ (∂K)× int(K), {γl(ζ, z)}nl=1 is defined to be a Henkin-Ramirez map
of the strictly pseudoconvex set {λ < 0}, if ζ ∈ {λ = 0}, and

γl(ζ, z) =
∂ρj
∂ζl

(z) if ζ ∈ {ρj = 0}.

(For exhaustions of pseudoconvex sets by strictly pseudoconvex domains and
constructions of Henkin-Ramirez maps, see [5] and [6]).

Then

n∑

l=1

(ζl − zl)γl(ζ, z) �= 0, for (ζ, z) ∈ (∂K)× int(K),

and therefore we may write down the Cauchy-Leray formula:

(10) u = ∂̄z(Tq−1u)+Tq(∂̄u)+Lγ
q (u), for (0, q)-forms u in a neighborhood of K

(notation is as in [1, p. 912]).
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Now if χ ∈ Z
(0,n−1)

∂̄
(Ω) satisfies (9), it follows, as in the proof of [1,

Lemma 5], that Lγ
n−1(χ) = 0, and therefore (10) gives

χ = ∂̄z(Tn−2χ), in int(K).

Now the conclusion that χ is ∂̄-exact in Ω, follows from [1, Lemma 4], and this
completes the proof of the lemma.

4 – Mittag-Leffler type constructions of ∂̄-closed (0, n− 1)-forms

In Theorem 2, we saw when and how we can construct a ∂̄-closed (0, n −
1)-form, in the complement of a closed ball, with prescribed certain weighted
periods. The following theorem deals with the analogous question, when the
closed ball is replaced by the union of an infinite sequence of pair-wise disjoint
closed balls. Given the previous constructions, its proof is similar to the proof
of [3,Theorem 2].

Theorem 4. Let D be an open subset of Cn and B(aj , Rj), j = 1, 2, 3, ...,
a sequence of pair-wise disjoint closed balls, contained in D, with Rj ≥ 0. Let us
also assume that the set {a1, a2, a3, ...} of the centers of these balls is discrete in
D and set M =

⋃∞
j=1 B(aj , Rj). Suppose that for each j we are given a sequence

�j
k = �j

k1,..,kn
of complex numbers which satisfies the condition (GRj

). Then

there exists θ ∈ Z
(0,n−1)

∂̄
(Cn −M) so that

(M)

∫

ζ∈Sρj

(ζ1 − aj1)
k1 · · · (ζn − ajn)knθ(ζ) ∧ ω(ζ) = �j

k1,..,kn
, for all k and j,

where ρj > Rj, with the balls B(aj , ρj) being pair-wise disjoint.
If we assume, in addition, that the open set D and the balls B(aj , Rj) satisfy

the condition

(∗) D can be exshausted by a sequence of pseudoconvex sets Gν (ν = 1, 2, 3, . . . )

so that (∂Gν) ∩M = ∅ (∀ ν),

then the differential form θ, which satisfies (M), is unique up to a ∂̄-exact (0, n−
1)-form in Cn −M.

Corollary. With the notation and under the assumptions of the above
theorem (including condition (∗)), we have an isomorphism:

H
(0,n−1)

∂̄
(Cn −M) ∼=

∞∏

j=1

O(Bj),

where Bj = {ζ ∈ Cn : |ζ| < 1/Rj}.
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Proof. To define this isomorphism, let us associate, to each cohomology

class [θ] ∈ H
(0,n−1)

∂̄
(Cn−M), a sequence of holomorphic functions (hj)

∞
j=1 defined

by the power series:

hj(τ) =
∑

k

cjkτ
k, for τ ∈ Bj ,

where

cjk =
1

k1!...kn!

∫

ζ∈Sρj

(ζ1 − aj1)
k1 · · · (ζn − ajn)knθ(ζ) ∧ ω(ζ),

with the ρj > Rj chosen so that the balls B(aj , ρj) are pairwise disjoint.
Then it is easy to check (in view of the previous computations) that hj ∈

O(Bj) and that the map
[θ] → (hj)

∞
j=1,

gives the required isomorphism.
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