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Representation formulas and Fatou-Kato

theorems for heat operators on stratified groups

ANDREA BONFIGLIOLI – FRANCESCO UGUZZONI

Abstract: In this note, we provide a characterization of non-negative L-caloric
functions on strips, where L is a sub-Laplacian on a stratified group. We prove represen-
tation results, Fatou-type and uniqueness theorems analogous to the classical Poisson-
Stieltjes formula and to Kato’s theorem concerning with positive solutions to the heat
equation.

1 – Introduction and main results

A stratified group is a connected and simply connected Lie group G whose
Lie algebra g admits a stratification, i.e., a vector space direct sum decomposi-
tion g = G1 ⊕ . . . ⊕ Gr with [G1,Gi] = Gi+1, [G1,Gr] = {0}. Stratified groups
(also known as Carnot groups) have been introduced by Folland [7] and after-
wards deeply studied by various authors, see e.g., Rothschild and Stein [15],
Folland and Stein [8], Varopoulos, Saloff-Coste and Coulhon [18]. In
particular, Rothschild and Stein pointed out that any Hörmander operator, sum
of squares of vector fields, can be locally approximated by a sub-Laplacian on
a stratified group. Recently, analysis on such groups has received new and sig-
nificant impulses in many directions. Indeed, Carnot groups appear as tangent
groups of subriemannian manifolds (see e.g., [12]) and they find many applica-
tions in mechanics and in control theory. We also refer to the rich bibliography
in the recent monographs [1], [9].
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In this paper, we give a contribution in the study of heat operators H =
L− ∂t, where L is a sub-Laplacian on G. The study of parabolic-type operators
on G has experienced an increasing interest, also in relation to some problems
from image processing (see e.g., [5], [6], [13]) and from the geometric theory of
several complex variables. In particular, the operator H (on a Carnot group G)
intervenes in the study of the linearizations of fully non-linear equations such as
the Levi curvature equation [4], [11].

In this note, which is a natural sequel of a study started in [2] (and related
to the above mentioned linearizations), we deal with a question left unanswered
in [2], giving a characterization of non-negative L-caloric functions and proving
some representation formulas. We also prove some results analogous to the clas-
sical Fatou-type and uniqueness theorems of Kato [10] concerning with positive
solutions to the heat equation. We point out that similar topics have been stud-
ied in [3], [14]: in [3], Fatou theory is generalized to the non-negative solutions of
some sub-elliptic equations on non-tangentially accessible domain; in [14], Fatou-
Kato results are obtained for a class of ultraparabolic Hörmander operators on
different homogeneous Lie groups, making use of some Gaussian estimates of
the fundamental solution analogous to the ones used here. Our main results are
contained in Theorems 1.1, 1.3 and 1.4 below.

We point out that many results presented in this paper are valid in more
general contexts. Indeed, the needed tools are mainly a local parabolic Harnack
inequality and techniques related to Gaussian bounds (we refer to [18] for such
results and related topics on general groups). However, our aim is only to answer
to some questions arisen in the study of the above mentioned linearizations rather
than to establish an axiomatic theory on the subject. Hence, we shall restrict to
the setting of Carnot groups.

Theorem 1.1. Let u be a real valued function defined on a strip. The
following statements are equivalent:

(i) u is a non-negative L-caloric function in some strip RN × (0, δ1).
(ii) For some Radon measure σ on RN , u has the representation

(1) u(x, t) =

∫

RN

Γ(x, t; ξ, 0) dσ(ξ),

for every (x, t) in some strip RN × (0, δ2).

Moreover, if (i)-(ii) hold, then

u(·, t) −→ σ, as t→ 0+, in the weak sense of measures,(2)

u(x, t) −→ ϕ(x), as t→ 0+, for almost every x ∈ RN ,(3)

where ϕ ∈ L1
loc(RN ) is the density of the absolutely continuous part of σ w.r.t. the

Lebesgue measure.
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Throughout the paper, we call L-caloric any solution u of the equation
Hu = 0, where H is the heat operator defined in (7) below. Moreover, a Radon
measure is understood to be a positive (regular) Borel measure on RN , finite
on compact sets. Finally, by (2) we mean

∫
ψ(x)u(x, t) dx −→

∫
ψ(x) dσ(x),

as t → 0+, for every continuous function ψ with compact support. The other
notations are explained below. The following remark shows how the strips in (i)
and (ii) of the above theorem are related.

Remark 1.2. If (i) holds then we have the representation (1) in the whole
strip RN × (0, δ1) for a Radon measure σ on RN satisfying the growth condition

(4)

∫

RN

exp(−ν d2(ξ)) dσ(ξ) <∞,

where ν = c/δ1; vice-versa, if (ii) holds, then the measure σ satisfies (4) with
ν = c/δ2 and (i) follows with δ1 = δ2/c

2. Here c > 0 is a structural constant
only depending on L.

The following result is a step in the proof of Theorem 1.1, beside being of
its own interest.

Theorem 1.3. Let u be a non-negative L-caloric function in RN × (0, T ).
Then, for every ε > 0, we have the following Poisson-Stieltjes type representation
formula

(5) u(x, t + ε) =

∫

RN

Γ(x, t; ξ, 0)u(ξ, ε) dξ, (x, t) ∈ RN × (0, T − ε).

From Theorem 1.1 and using as a main step Lemma 2.7 in the next section,
we can also derive the following Kato-type uniqueness result.

Theorem 1.4. Let u be a non-negative L-caloric function in RN × (0, T ).
If

lim
t→0+

u(x, t) = 0 for almost every x ∈ RN ,

lim sup
t→0+

u(x, t) <∞ for every x ∈ RN ,

then u vanishes identically.

We explicitly remark that the lim sup-condition in Theorem 1.4 cannot be
weakened, as one can easily realize taking u = Γ.
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We now explain all the notation. First of all, we give an operative definition
of Carnot group. Our definition is equivalent to the one of Folland, up to iso-
morphism. Let ◦ be an assigned Lie group law on RN . Suppose RN is endowed
with a homogeneous structure by a given family of Lie group automorphisms
{δλ}λ>0 (called dilations) of the form

δλ(x) = δλ(x(1), . . . , x(r)) = (λx(1), . . . , λrx(r)).

Here x(i) ∈ RNi for i = 1, . . . , r and N1 + . . . + Nr = N . We denote by g
the Lie algebra of (RN , ◦). For i = 1, . . . , N1, let Xi be the vector field in g

that agrees at the origin with ∂/∂x
(1)
i . We make the following assumption: the

Lie algebra generated by X1, . . . , XN1
is the whole g. With the above hypothe-

ses, we call G = (RN , ◦, δλ) a Carnot group. If Y1, . . . , YN1
is any basis for

span{X1, . . . , XN1
}, the second order differential operator

L =

N1∑

i=1

Y 2
i

is called a sub-Laplacian on G. Since X1, . . . , XN1
generate the whole g, which

has rank N at every point, any sub-Laplacian L satisfies Hörmander’s hypoel-
lipticity condition. We denote by Q =

∑r
j=1 jNj the homogeneous dimension of

G. Then |δλ(E)| = λQ |E| for any measurable set E. Here and in the sequel, we
denote by | · | the Lebesgue measure on RN . This measure is invariant w.r.t. the
left and right translations on G.

The simplest example of Carnot group is the additive Euclidean group
(RQ,+); in this case, the sub-Laplacians are exactly the constant coefficient
elliptic operators. The most significant (and simple) non-abelian example of
Carnot group is the Heisenberg group; in this case, a remarkable sub-Laplacian
is the real part of the Kohn-Spencer Laplacian.

Throughout the paper, d will denote a fixed homogeneous norm on G. For
instance, we choose d = γ1/(2−Q), where γ denotes the fundamental solution
of the sub-Laplacian

∑N1

i=1 X
2
i . We recall that a homogeneous norm on G is a

continuous function d : RN → [0,∞), smooth away from the origin, such that
d(δλ(x)) = λ d(x), d(x−1) = d(x), and d(x) = 0 iff x = 0. Hereafter, we also
denote d(y−1 ◦x) by d(x, y) and use the notation Bd(x, r) for the d-ball of center
x and radius r. The following quasi-triangle inequality holds

(6) d(x, y) ≤ β (d(x, z) + d(z, y)), x, y, z ∈ G,

for a suitable constant β. Throughout the sequel, L will always denote a fixed
sub-Laplacian on G and

(7) H = L − ∂t
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the related heat operator on G×R ≡ RN+1. Here z = (x, t) is the point of RN+1

(x ∈ G, t ∈ R). The operator H is hypoelliptic by Hörmander theorem.
It is known that H possesses a fundamental solution with the properties

recalled below (see [8], [18]; see also [2]). There exists a smooth function Γ on
RN+1 \ {0} such that the fundamental solution for H is given by

Γ(x, t; ξ, τ) = Γ(ξ−1 ◦ x, t− τ).

We have Γ(x, t) ≥ 0 and Γ(x, t) = 0 iff t ≤ 0; moreover

(8) Γ(x, t) = Γ(x−1, t), Γ(δλ(x), λ2t) = λ−QΓ(x, t).

For every ζ ∈ RN+1, Γ(·; ζ) is locally integrable and HΓ(·, ζ) = −δζ (the Dirac
measure supported at {ζ}). For every x ∈ RN , t, τ > 0, we have

(9)

∫

RN

Γ(ξ, t) dξ = 1, Γ(x, t + τ) =

∫

RN

Γ(ξ−1 ◦ x, t) Γ(ξ, τ) dξ.

The main tool we shall employ in the proofs of our results is the following Gaus-
sian estimate of Γ: there exists a positive constant c0 such that

(10) c−1
0 t−Q/2 exp

(
− c0 d

2(x)

t

)
≤ Γ(x, t) ≤ c0 t

−Q/2 exp
(
− d2(x)

c0 t

)
,

for every x ∈ RN , t > 0. We finally recall the following result, related to the
Cauchy problem for H (for the proof we refer to the results in [18] and to the
classical method of Aronson; see also [2]).

Theorem 1.5. (i) Let f be a continuous function on RN satisfying the
growth condition |f(x)| ≤ c exp(ν d2(x)), for some constants c, ν ≥ 0. Then the
function

u(x, t) =

∫

RN

Γ(x, t; ξ, 0) f(ξ) dξ, x ∈ RN , t ∈ (0, (cν)−1)

is well posed and is a classical solution to the Cauchy problem

Hu = 0 in RN × (0, (cν)−1), u(·, 0) = f.

Here c is a positive constant only depending on L and the structure of G.

(ii) Let u be a classical solution to the Cauchy problem

Hu = 0 in RN × (0, r), u(·, 0) = 0.

Suppose that one of the following conditions holds: either u is non-negative or
there exists ν > 0 such that∫ r

0

∫

RN

exp
(
− ν d2(x)

)
|u(x, t)|dxdt <∞.

Then u vanishes identically.
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2 – Fatou-Kato theorems

For the reader convenience, we first recall the following weak maximum
principle on strips, whose proof is standard and will be omitted.

Proposition 2.1. Let u ∈ C2(RN × (0, T )). If Hu ≥ 0, lim supu ≤ 0 both
in RN × {0} and at infinity, then u ≤ 0 in the whole strip.

In the sequel, we shall need the following Harnack theorem for H, whose
proof easily follows from the Harnack inequality in [18].

Theorem 2.2. Let us fix T > 0 and set ST = RN × (0, T ).

(i) For every z0 = (x0, t0) ∈ ST and for every compact set K ⊂ St0 , there exists
a positive constant c such that

sup
K

u ≤ cu(z0),

for every non-negative function u, L-caloric in ST .
(ii) Let un ≤ un+1 be a monotone sequence of L-caloric functions in ST . If there

exists z0 = (x0, t0) ∈ ST such that un(z0) is bounded, then un converges
uniformly on the compact subsets of St0 to a function u, L-caloric in St0 .

We are now able to prove the Poisson-Stieltjes type representation formula.

Proof of Theorem 1.3. For every n ∈ N, we set

vn(x, t) =

∫

RN

Γ(x, t; ξ, 0)ψ
(d(ξ)

n

)
u(ξ, ε) dξ,

where ψ ∈ C∞(R) is a fixed non-increasing cut-off function such that ψ(r) = 1
if r ≤ 1, ψ(r) = 0 if r ≥ 2. By Theorem 1.5, we know that vn is a solution to
the Cauchy problem




Hvn = 0 in RN × (0,∞),

vn(·, 0) = ψ
(d(·)

n

)
u(·, ε).

Moreover, for every t ∈ (0, T ), we have (by the estimates in (10))

0 ≤ vn(x, t) ≤ c0 t
−Q/2

∫

RN

exp
(
− d2(x, ξ)

c0 t

)
ψ
(d(ξ)

n

)
u(ξ, ε) dξ ≤

≤ c0

∫

d(x◦δ√tη)≤2n

exp
(
− d2(η)

c0

)
u(x ◦ δ√tη, ε) dη ≤

≤c0 max
Bd(0,2n)

u(·, ε)
∫

d(η)≥(β−1d(x)−2n)/
√
T

exp(−d(η)2/c0)dη → 0, as d(x) →∞.
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We now apply the weak maximum principle for H to the L-caloric function
wn(x, t) = u(x, t + ε) − vn(x, t) in the strip RN × (0, T − ε). Since ψ ≤ 1, we
have wn(·, 0) ≥ 0. Moreover, we have proved that vn vanishes at infinity in the
strip. Hence, recalling that u is non-negative, we get lim inf wn ≥ 0 at infinity
in the strip. The maximum principle of Proposition 2.1 then yields wn ≥ 0 in
RN × (0, T − ε). Recalling the definition of wn and letting n go to infinity, from
the above inequality, we finally obtain

u(x, t + ε) ≥
∫

RN

Γ(x, t; ξ, 0)u(ξ, ε) dξ =: v∞(x, t), (x, t) ∈ RN × (0, T − ε),

since vn ↗ v∞ by monotone convergence. This proves in particular that v∞ is
finite in RN × (0, T − ε). Now, from the Harnack Theorem 2.2-(ii), it follows
that v∞ is L-caloric in RN × (0, T − ε). Moreover, from the inequalities

vn(x, t) ≤ v∞(x, t) ≤ u(x, t + ε), (x, t) ∈ RN × (0, T − ε),

and recalling that vn(x, 0) = u(x, ε) if d(x) ≤ n, it follows that v∞ is continuous
in RN × [0, T − ε) and v∞(·, 0) = u(·, ε). As a consequence, setting w∞(x, t) =
u(x, t+ ε)− v∞(x, t), w∞ is a classical solution to Hw∞ = 0 in RN × (0, T − ε),
w∞(·, 0) = 0. Since moreover w∞ is non-negative, it must vanish identically, by
the uniqueness result in Theorem 1.5. This proves (5).

We now turn to the proof of Theorem 1.1 which is split in various steps,
starting with Lemma 2.3 below.

Lemma 2.3. Let u be a non-negative L-caloric function in the strip RN ×
(0, T ). Then, there exists a Radon measure σ on RN such that

u(x, t) =

∫

RN

Γ(x, t; ξ, 0) dσ(ξ), (x, t) ∈ RN × (0, T ),(11)

∫

RN

exp
(
− 2c0

T
d2(ξ)

)
dσ(ξ) <∞,(12)

where c0 > 0 is the constant in (10).

Proof. Let us fix t0 ∈ (0, T ) and choose j0 ∈ N such that t0 < T − 1/j0.
From Theorem 1.3, it follows that

u
(
x, t+

1

j

)
=

∫

RN

Γ(x, t; ξ, 0)u
(
ξ,

1

j

)
dξ, (x, t) ∈ RN×

(
0, T− 1

j0

)
, j > j0.

Since u(0, t0 + 1
j ) −→ u(0, t0) as j →∞, the sequence of Radon measures on RN

dµj(ξ) = Γ(0, t0; ξ, 0)u
(
ξ,

1

j

)
dξ, j > j0,
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is bounded and hence weakly converges (up to a subsequence) to a certain Radon
measure µ (with µ(RN ) <∞) in the sense that

(13)

∫

RN

f(ξ) dµj(ξ) −→
∫

RN

f(ξ) dµ(ξ), for every f ∈ C(0)(RN )

(we have denoted by C(0)(RN ) the space of continuous functions in RN , vanishing
at infinity). We now set M = 2β2 c2

0, where β is defined by (6) and c0 is the
constant in (10). For every (x, t) ∈ RN × (0, t0/M), we have

u(x, t)= lim
j→∞

u
(
x, t+

1

j

)
= lim

j→∞

∫

RN

Γ(x, t; ξ, 0)

Γ(0, t0; ξ, 0)
dµj(ξ)=

∫

RN

Γ(x, t; ξ, 0)

Γ(0, t0; ξ, 0)
dµ(ξ),

by (13), observing that Γ(x, t; ·, 0)/Γ(0, t0; ·, 0) ∈ C(0)(RN ), since the estimates
in (10) give, for d(ξ) ≥ 4β d(x),

0 <
Γ(x, t; ξ, 0)

Γ(0, t0; ξ, 0)
≤ c(t, t0) exp

(c0 d
2(ξ)

t0
− d2(x, ξ)

c0 t

)
≤

≤ c(t, t0) exp
(c0 d

2(ξ)

t0
− 1

c0 t

(d2(ξ)

β2
+ d2(x)− 2 d(x) d(ξ)

β

))
≤

≤ c(x, t, t0) exp
(
− d2(ξ)

( 1

2β2 c0 t
− c0

t0

))
−→ 0,

as d(ξ) →∞, if t < t0/M . Choosing

(14) dσ(ξ) =
dµ(ξ)

Γ(0, t0; ξ, 0)
,

we get (11) in the strip RN × (0, t0/M). In order to extend the representation
formula to the whole strip RN × (0, T ), we shall exploit (9). For fixed T > t ≥
t0/M > ε > 0, by Theorem 1.3 we have

u(x, t) =

∫

RN

Γ(x, t− ε; ξ, 0)u(ξ, ε) dξ =

=

∫

RN

(∫

RN

Γ(x, t− ε; ξ, 0) Γ(ξ, ε; y, 0) dξ
)
dσ(y)=

∫

RN

Γ(x, t; y, 0) dσ(y).

We explicitly remark that σ is finite on the compact sets by the estimates in (10)
and recalling that µ(RN ) < ∞. Moreover, again using (10) and from (11), it
follows that

u
(
0,

T

2

)
≥ c−1

0

(T
2

)−Q
2

∫

RN

exp
(
− 2 c0 d

2(ξ)

T

)
dσ(ξ),

which gives (12).
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Theorem 2.4. Let u be a non-negative L-caloric function in the strip
RN × (0, T ). Then, there exists a non-negative function ϕ ∈ L1

loc(RN ) such that

u(x, t) −→ ϕ(x), as t→ 0+, for almost every x ∈ RN .

Proof. Let σ be the Radon measure found in Lemma 2.3. By the Lebesgue
decomposition theorem, there exists a non-negative function ϕ ∈ L1

loc(RN ) and
a singular Radon measure s on RN such that

(15) dσ(ξ) = ϕ(ξ) dξ + ds(ξ).

Moreover, for a.e. x ∈ RN (w.r.t. the Lebesgue measure), we have

(16)
1

|Bd(x, ρ)|

∫

Bd(x,ρ)

|ϕ(ξ)−ϕ(x)|dξ −→ 0,
s(Bd(x, ρ))

|Bd(x, ρ)|
−→ 0, as ρ→ 0+.

The proof of (16) will be omitted. It follows e.g. adapting the arguments in [16,
Chapter 8], replacing the Euclidean metric by the quasi-distance d. The doubling
property of the d-balls ensures, for instance, a suitable d-version of the Vitali
covering lemma (see e.g. [17]).

Let us now fix an x ∈ RN where (16) holds and set, for brevity, dα(ξ) =
|ϕ(ξ) − ϕ(x)|dξ + ds(ξ). Also fix ε > 0. Then there exists ρ0 ∈ (0,

√
T ) such

that

(17)
1

|Bd(x, ρ)|

∫

Bd(x,ρ)

dα(ξ) < ε, for every ρ ∈ (0, 2 ρ0].

Let now t ∈ (0, ρ2
0) and let N(t) ∈ N be such that 2N(t)−1 ≤ ρo/

√
t < 2N(t).

From Lemma 2.3, (9) and (15), we obtain

|u(x, t)− ϕ(x)| ≤
∫

RN

Γ(x, t; ξ, 0) dα(ξ) ≤

≤
(∫

Bd(x,
√
t)

+

N(t)∑

j=1

∫

2j−1
√
t≤d(x,ξ)<2j

√
t

+

∫

d(x,ξ)>ρ0

)
Γ(x, t; ξ, 0) dα(ξ) =

= I1 + I2 + I3.

Using (17) and the estimates in (10), we get

I1 ≤
c

|Bd(x,
√
t)|

∫

Bd(x,
√
t)

exp
(
− d2(x, ξ)

c0 t

)
dα(ξ) ≤ c ε,
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recalling that
√
t < ρ0. In the same way, we can prove the estimate

I2 ≤ c

N(t)∑

j=1

exp(−4j−1c−1
0 ) 2j Q

|Bd(x, 2j
√
t)|

∫

Bd(x,2j
√
t)

dα(ξ) ≤

≤ c ε
∞∑

j=1

exp(−4j−1c−1
0 ) 2j Q = c′ ε,

recalling that 2j
√
t ≤ 2 ρ0 for every j ≤ N(t). Finally, using again (10) and

recalling the definition (14) of σ, we have

I3 ≤
∫

d(x,ξ)>ρ0

Γ(x, t; ξ, 0) dσ(ξ) + ϕ(x)

∫

d(x,ξ)>ρ0

Γ(x, t; ξ, 0) dξ ≤

≤ c(t0)

∫

d(x,ξ)>ρ0

t−
Q
2 exp

(
− d2(x, ξ)

c0 t
+

c0 d
2(ξ)

t0

)
dµ(ξ)+

+ cϕ(x)

∫

d(η)>
ρ0√

t

exp
(
− c−1

0 d2(η)
)
dη,

and then it is easy to see that I3 vanishes as t→ 0+. This concludes the proof.

In order to complete the proof of Theorem 1.1, we are only left to prove
Lemma 2.5 and Lemma 2.6 below.

Lemma 2.5. Let σ be a Radon measure on RN satisfying the growth
condition

(18)

∫

RN

e−ν d2(ξ) dσ(ξ) <∞,

for some constant ν > 0. Then the function

(19) u(x, t) =

∫

RN

Γ(x, t; ξ, 0) dσ(ξ)

is L-caloric in the strip RN × (0, (c∗ν)−1), where c∗ is a positive constant only
depending on L and the structure of G.
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Proof. From the estimate (10) and recalling that σ is finite on compact
sets, it follows

∫

RN

Γ(x, t; ξ, 0) dσ(ξ) ≤ c0t
−Q/2

∫

RN

exp
(
− d2(x, ξ)

c0t

)
dσ(ξ) ≤

≤ c(x, t) + c′(t)
∫

d(ξ)>4βd(x)

exp
(
− d2(ξ)

4c0β2t

)
dσ(ξ) <∞,

if 0 < t < (4c0β
2ν)−1 =: (c∗ν)−1. Moreover, by dominated convergence, it is

easy to see that u is continuous on the strip RN × (0, (c∗ν)−1). In order to prove
that u is L-caloric, one can differentiate under the integral sign, making use of
the estimates of the derivatives of Γ along the vector fields X1, . . . , XN1

(see e.g.,
[18]; see also [2]). Alternatively, one can use the Harnack Theorem 2.2, following
the lines of the proof of Theorem 1.3: the function

vn,ε(x, t) =

∫

RN

Γ(x, t− ε; ξ, 0)ψ
(d(ξ)

n

)
u(ξ, ε) dξ,

is a solution to Hvn,ε = 0 in RN × (ε,∞), vn,ε(x, ε) = ψ(d(x)/n)u(x, ε); more-
over, recalling that 0 ≤ ψ ≤ 1, (9) and the definition (19) of u, we have

vn,ε(x, t) ≤
∫

RN

∫

RN

Γ(x, t− ε; ξ, 0) Γ(ξ, ε; y, 0) dξdσ(y) =

=

∫

RN

Γ(x, t; y, 0) dσ(y) = u(x, t) <∞, if t < 1/(c∗ν);

hence, by Theorem 2.2, v∞,ε = limn→∞ vn,ε is L-caloric in RN × (ε, 1/(c∗ν));
finally, using again (9), we see that v∞,ε(x, t) =

∫
RN Γ(x, t − ε; ξ, 0)u(ξ, ε) dξ =

u(x, t) in RN × (ε, 1/(c∗ν)); since ε is arbitrary, this ends the proof.

Lemma 2.6. Under the hypotheses of Lemma 2.5 above, we have

u(·, t) −→ σ, as t→ 0+, in the weak sense of measures.

Proof. Let f ∈ C0(RN ). We have to prove that
∫

RN

f(x)u(x, t) dx −→
∫

RN

f(x) dσ(x), as t→ 0+.

For small t > 0, we have (see (8))
∫

RN

f(x)u(x, t) dx =

∫

RN

∫

RN

Γ(x, t; ξ, 0) f(x) dxdσ(ξ) =

=

∫

RN

∫

RN

Γ(ξ, t;x, 0) f(x) dxdσ(ξ).
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Moreover,
∫
RN Γ(ξ, t;x, 0) f(x) dx −→ f(ξ), as t → 0+, by Theorem 1.5. Hence

it is sufficient to prove that

(20)
∣∣∣
∫

RN

Γ(ξ, t;x, 0) f(x) dx
∣∣∣ ≤ c(f) e−ν d2(ξ)

holds for every ξ ∈ RN and for every small t > 0, and then to use the domi-
nated convergence (we recall that (18) holds). Let us set k0 = 4β maxsupp(f) d.
Since (9) holds, the integral in the left-hand side of (20) is clearly uniformly
bounded for d(ξ) ≤ k0. On the other hand, if d(ξ) > k0, the estimate (10) gives

∣∣∣
∫

RN

Γ(ξ, t;x, 0) f(x) dx
∣∣∣ ≤

≤ c(f) exp
(
− d2(ξ)

c0β2t
+

k0 d(ξ)

2c0β2t

)∫

supp(f)

t−Q/2 exp
(
− d2(x)

c0t

)
dx ≤

≤ c(f) exp
(
− d2(ξ)

2c0β2t

)∫

RN

e−d2(η)/c0 dη = c′(f) exp
(
− d2(ξ)

2c0β2t

)
,

which finally yields (20) for sufficiently small t.

Proof of Theorem 1.1. It directly follows collecting Lemma 2.3, Theo-
rem 2.4, Lemma 2.5 and Lemma 2.6.

Finally, we have to prove Theorem 1.4; our main tool will be Lemma 2.7
below. First, we fix a notation. Given a Radon measure σ on RN , we define the
upper d-symmetric derivative of σ at x ∈ RN ,

(21) d-Dsymσ(x) = lim sup
ρ→0+

σ(Bd(x, ρ))

|Bd(x, ρ)|
.

The following result generalizes [10, Lemma 1].

Lemma 2.7. Let σ be a Radon measure on RN such that d-Dsymσ(x) <∞
for every x ∈ RN . Then σ is absolutely continuous w.r.t. the Lebesgue measure.

Proof. We assume by contradiction that there exists a Borel set E ⊆
RN such that |E| = 0 and σ(E) > 0. From the hypotheses, we infer that
E = ∪n∈NEn, where En = {x ∈ E | d-Dsymσ(x) < n }. Hence there exists
n0 ∈ N such that σ(Eno

) > 0. Moreover, by the definition of d-Dsym, we have
En0 = ∪j∈NAj , where we have set

Aj = {x ∈ En0 | sup
0<ρ<1/j

σ(Bd(x, ρ))/|B(x, ρ)| < n0 }.
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Thus, there exists j0 ∈ N such that σ(Ajo) > 0. From the regularity of σ, it
follows that there exists a compact set K such that K ⊆ Aj0 (⊆ En0 ⊆ E),
σ(K) > 0. Clearly we have

(22) σ(Bd(x, ρ)) < n0 |Bd(x, ρ)|, for every x ∈ K, 0 < ρ < 1/j0.

We now fix ε > 0. Since |E| = 0 gives |K| = 0, there exists an open set V
such that K ⊂ V , |V | < ε. We claim that there exists a disjoint family of d-
balls {Bb(xi, δ)}pi=1 with the following properties: xi ∈ K, 0 < δ < (4β2j0)

−1,
K ⊆ ⋃p

i=1 Bd(xi, 4β
2δ) ⊆ V . As a consequence, by (22), we obtain

0 < σ(K) ≤
p∑

i=1

σ(Bd(xi, 4β
2δ)) ≤ n0

p∑

i=1

|Bd(xi, 4β
2δ)| =

= n0 (4β2)Q
p∑

i=1

|Bd(xi, δ)| =

= n0 (4β2)Q
∣∣∣

p⋃

i=1

Bd(xi, δ)
∣∣∣ ≤ n0 (4β2)Q |V | < n0 (4β2)Q ε.

Since ε > 0 is arbitrary, this gives a contradiction. Thus, in order to complete
the proof, we only have to prove the claim. Let {ξn}n be a countable dense
subset of K and let us choose a positive δ not exceeding (4β2j0)

−1, such that
4β2δ < min{d(x, y) | x ∈ K, y ∈ RN \V } so that Bd(x, 4β

2δ) ⊆ V for every x ∈
K. We set x1 = ξ1. If {ξn}n ⊂ Bd(x1, 2βδ), then K = {ξn}n ⊆ Bd(x1, 2βδ) ⊂
Bd(x1, 4β

2δ). Otherwise, let n2 ∈ N be such that ξ1, . . . , ξn2−1 ∈ Bd(x1, 2βδ),
ξn2 /∈ Bd(x1, 2βδ). Setting x2 = ξn2 , we clearly have Bd(x1, δ) ∩ Bd(x2, δ) =
∅ (we recall that β is defined by (6)). Iterating this procedure, we obtain a
(possibly finite) subsequence {xi = ξni

}i of {ξn}n and a sequence of disjoint
d-balls {Bd(xi, δ)}i such that {ξn}n ⊂ ∪iBd(xi, 2βδ). This gives

K = {ξn}n ⊆
⋃

i

Bd(xi, 2βδ) ⊂
⋃

i

Bd(xi, 4β
2δ)

(the radius of Bd(xi, 2βδ) has been chosen not depending on i, in order to allow
this last inclusion). The claim is proved by taking a finite sub-covering.

With Lemma 2.7 at hands, we are able to prove our uniqueness result.

Proof of Theorem 1.4. By Theorem 1.5, it is sufficient to prove that
u = 0 in RN×(0, δ) for some small δ > 0. Let σ be the Radon measure introduced
in Lemma 2.3. Let us prove that d-Dsymσ(x) <∞ for every x ∈ RN . Assuming
by contradiction that for some x ∈ RN one has d-Dsymσ(x) = ∞, there exists a
sequence of radii ρj → 0+ such that σ(Bd(x, ρj))/|Bd(x, ρj)| −→ ∞, as j →∞.
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From the representation formula (11) and the estimates of Γ in (10), it follows
that

u(x, ρ2
j ) =

∫

RN

Γ(x, ρ2
j ; ξ, 0) dσ(ξ) ≥ c ρ−Q

j

∫

Bd(x,ρj)

exp
(
− c0

d2(x, ξ)

ρ2
j

)
dσ(ξ) ≥

≥ c′ σ(Bd(x, ρj))/|Bd(x, ρj)| −→ ∞, as j →∞.

This contradicts the hypothesis lim supt→0+ u(x, t) < ∞. Hence we can apply
Lemma 2.7 and obtain that σ is absolutely continuous w.r.t. the Lebesgue mea-
sure. From the Lebesgue decomposition (15) dσ(ξ) = ϕ(ξ) dξ+ds(ξ), it immedi-
ately follows that s = 0. Moreover, Theorem 2.4 gives ϕ(x) = limt→0+ u(x, t) = 0
for almost every x ∈ RN , by hypothesis. Therefore, we obtain σ = 0. In or-
der to complete the proof, it is now sufficient to recall the representation for-
mula (11).
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