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Transformation groups and submanifold

geometry

GUDLAUGUR THORBERGSSON

Abstract: In the talk I give a survey on polar actions and generalizations of
isoparametric hypersurfaces in space forms to more general ambient spaces.

1 – Introduction

In this talk we will give a brief survey on generalizations of isoparamet-
ric hypersurfaces to submanifolds with higher codimension in various types of
ambient spaces. We will also discuss the question when such submanifolds are
homogeneous and introduce the isometric actions which have them as orbits.

A hypersurface Mn of a Riemannian manifold V n+1 is called isoparametric
if Mn is locally a regular level set of a function f with the property that both
‖ gradf ‖2 and ∆f are constant on the level sets of f . One can show that Mn

is an isoparametric hypersurface of V n+1 if and only if Mn and its parallel
hypersurfaces have constant mean curvature.

The term ‘isoparametric hypersurface’ is due to Levi-Civita ([37]) and
refers to the fact that ‖ gradf ‖2 and ∆f were at the time called the first and
the second differential parameter of f respectively.

If the ambient space V n+1 is a real space form, then Mn can be shown to be
an isoparametric hypersurface if and only if it has constant principal curvatures;
see [9]. This characterization does not hold in more general ambient spaces;
see [60] where counterexamples are given in complex projective spaces.

Key Words and Phrases: Polar actions – Isoparametric submanifolds – Equifocal
submanifolds.
A.M.S. Classification: 53C30, 53C35, 53C40



2 GUDLAUGUR THORBERGSSON [2]

Beniamino Segre proved the following theorem in [48]: let Mn be an isopara-
metric hypersurface in Rn+1. Then Mn is a piece of a plane, of a sphere, or
of a round cylinder. In particular it follows that Mn is homogeneous if it is
complete. Conversely, it is clear that homogeneous hypersurfaces of Rn+1 are
isoparametric.

The case n=2 of the theorem of Segre was first proved by Somigliana ([49])
and later reproved in [47] and [37].

Cartan classified isoparametric hypersurfaces in hyperbolic spaces in [9]
which also turn out to be homogeneous. He then turned to isoparametric hy-
persurfaces in spheres, see [10], [11], and [12], and noticed that the problem is
much more difficult there than in the other real space forms. In [11] he asked
three basic questions on isoparametric hypersurfaces in spheres. One of this
questions was whether isoparametric hypersurfaces in spheres are homogeneous.
A negative answer to Cartan’s question was only given much later by Ozeki
and Takeuchi in [42] who found inhomogeneous isoparametric hypersurfaces
in spheres. These examples were later generalized by Ferus, Karcher and
Münzner in [24].

I will not try to go further into the rich and beautiful theory of isoparametric
hypersurfaces in spheres and refer to [58] for further information. Still I would
like to mention the two highlights of the theory after the work of Cartan. The
first are the papers [39] and [40] of Münzner where it is shown that the number
g of principal curvatures of such a hypersurface can only be 1, 2, 3, 4 or 6. All
of these numbers are known to occur. The second is the paper [50] of Stolz in
which the possible multiplicities of the principal curvatures are determined. The
contributions of Münzner and Stolz are important steps on the way to a full
classification of isoparametric hypersurfaces in spheres, which is still an open
problem.

2 – Polar actions

In this section we will discuss polar actions. The geometry of their princi-
pal orbits will serve us as a motivation in the generalizations of isoparametric
hypersurfaces that we will present in the later sections.

Let V be a complete Riemannian manifold and let G be a Lie group acting
on V by isometries. One says that the action is polar if there is a complete
immersed submanifold Σ in V which meets all orbits of G in such a way that
all intersections between Σ and orbits are perpendicular. The submanifold Σ is
called a section of the action. It is rather easy to see that a section is totally
geodesic; see [44] and [45], p. 95. The action is called hyperpolar if the section is
flat.

One should think of a section as a set of canonical forms for the polar action
as will be clear in the examples.
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Example 2.1.
(i) Any isometric action with a hypersurface as an orbit is polar since a geodesic

which meets one orbit orthogonally meets all orbits orthogonally.
(ii) Let V be the linear space S0(n) consisting of real symmetric n×n-matrices

with zero trace endowed with the scalar product

〈X, Y 〉 = trace(XY ).

Let G be the group SO(n) acting on V by conjugation. We let Σ denote the
diagonal matrices in V . Then we know from linear algebra that every matrix
X in V can be conjugated into Σ by an element of G. It is now an easy
calculation to show that the intersections of conjugacy classes of matrices
in V with Σ are all perpendicular. The action is therefore hyperpolar.

(iii) Let V be a compact connected Lie group G with a bi-invariant Riemannian
metric acting on itself by conjugation. Let Σ be a maximal torus in G. The
theorem on maximal tori says that all conjugacy classes in G meet Σ. An
easy calculation shows that the intersections between conjugacy classes in G
and Σ are all perpendicular. It follows that the action is hyperpolar since Σ
is flat.

(iv) We now show how the examples (ii) and (iii) fit into the theory of symmetric
spaces.
A symmetric space is a Riemannian manifold V such that for every point p
in V there is an isometry σp of V fixing p and reversing the directions of the
geodesics through p. We refer to the book [33] for what we will need from
the theory of symmetric spaces. It is easy to show that symmetric spaces are
homogeneous with respect to the isometry group. We can therefore write
V = G/K where G is the identity component of the isometry group of V
and K is its isotropy group at some fixed point p0 in V . Such a pair of
groups (G, K) is called a symmetric pair.
Let Σ be a maximal flat and totally geodesic submanifold passing through
p0 in the symmetric space V . Then the action of K on V is hyperpolar
with Σ as a section; see [32]. This example generalizes the one in (ii) since
a compact connected Lie group K with a bi-invariant Riemannian metric
is a symmetric space with a maximal torus as a maximal flat and totally
geodesic submanifold. We can identify K with K×K/∆(K) where ∆(K) is
the diagonal in K ×K and it turns out that conjugation in K corresponds
to the action of ∆(K) on K ×K/∆(K).
One can generalize the action of K on the symmetric space V = G/K
as follows. Assume that (G, K1) and (G, K2) are symmetric pairs. Then
one can show that the action of K1 on V = G/K2 is hyperpolar. This
example was introduced by Hermann in [34] and we will refer to it as a
Hermann action(1). One gets concrete examples of this kind by considering

(1)Hermann proved in [34] that his examples are variationally complete and not that
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Grassmann manifolds Gk(Cn) = SU(n + 1)/Kk where Kk is the stabilizer
of Ck in Cn. Then the actions of the groups K1, . . . , Kn−1 on Gk(Cn) are
all hyperpolar.
Now the action of K on V induces an action of K on the tangent space Tp0V
which is called the isotropy representation of the symmetric space V . This
isotropy representation is hyperpolar with Tp0Σ as a section. The example
in (ii) is a special case and corresponds to the symmetric space V = G/K,
where G = SL(n,R) and K = SO(n). One clearly has the following direct
sum decomposition

sl(n,R) = so(n)⊕ S0(n)

into skew and symmetric matrices, and this decomposition is invariant under
AdG(K). Hence one can identify Tp0V with S0(n) and the scalar product
on S0(n) in (ii) extends to G-invariant Riemannian metric on V . The action
in (ii) now corresponds to the isotropy representation of SL(n,R)/SO(n).

(v) We finally give an example of a polar action which is not hyperpolar. We let
V be the complex projective space Pn(C) endowed with the Fubini-Study
metric which is invariant under the action of SU(n + 1). Now let Tn be the
maximal torus in SU(n + 1) consisting of diagonal matrices. Then it is not
difficult to see that the action of Tn on Pn(C) is polar with Pn(R) as a
section. This action is of course not hyperpolar since any two sections of a
polar actions are isometric and there can therefore not be a flat section.
The complex projective space Pn(C) with the Fubini-Study metric is an
example of a rank one symmetric space. Polar actions on compact rank one
symmetric spaces were classified in [46]. It turns out that the sections are
always real projective spaces if their dimension is at least two.

The following two theorems show that some of the examples above describe in
fact the most general situation. We will need the concept of orbit equivalent
actions in the statement of the theorems. Let K1 act isometrically on V1 and let
K2 act isometrically on V2. Then the actions of K1 and K2 are said to be orbit
equivalent if there is an isometry f : V1 → V2 such that f(K1p) = K2f(p) for all
p in V1, i.e., the orbits of K1 and K2 correspond under f .

Theorem 2.2 (Dadok [17]). Let K be a compact group acting in a polar
fashion on a Euclidean space V . Then the action of K is orbit equivalent to the
isotropy representation of some symmetric space.

they are hyperpolar. The relationship between the two concepts will be explained at
the end of this section.
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The cohomogeneity of an action is the minimal codimension of its orbits.
Eschenburg and Heintze gave in [21] a proof of Dadok’s theorem under the as-
sumption that the cohomogeneity is at least three. Their proof does not use the
classification of compact Lie groups. Lists of polar representations that are not
isotropy representations of symmetric spaces can be found in [4], [20], and [25].

Theorem 2.3 (Kollross [36]). Let V = G/K be a compact irreducible
symmetric space and let H be a subgroup of G which acts in a hyperpolar fashion
on V with cohomogeneity at least two. Then the action of H on V is orbit
equivalent to a Hermann action.

Kollross also classifies in [36] all cohomogeneity one actions on compact
irreducible symmetric spaces V . The classification of such actions on spheres
was already carried out in [35].

We now discuss the principal orbits of polar and hyperpolar actions from
the point of view of submanifold geometry. This will serve as a motivation for
the generalizations of isoparametric hypersurfaces in the later sections.

Let G be a Lie group acting by isometries on a Riemannian manifold V .
A principal orbit of the action of G on a manifold V is by definition an orbit
Gp with the property that there is a neighborhood U of p such that there is a
G-equivariant map from Gp to Gq for all q in U . If Gp is principal, then p is
said to be regular. The set of regular points is open and dense in V . Now let ξ0

be an element of νp(Gp) where ν(Gp) denotes the normal bundle of Gp. Then
ξ(gp) = dgp(ξ0) is a well defined normal vector field if Gp is principal. We call
such a normal vector field equivariant.

For a proof of the following proposition, see [45], p. 95-96, or [5], p. 44.

Proposition 2.4. Assume that the action of G on V is polar. Then
the equivariant normal vector fields along a principal orbit Gp are parallel. In
particular, the normal bundle is flat and has trivial normal holonomy.

The next property of the principal orbits of polar actions that we would like
to present has to do with focal points. Let M be a submanifold of the Riemannian
manifold V and assume that γ is a geodesic that starts in M , i.e. γ(0) lies in
M , and that γ′(0) is perpendicular to M . Suppose γs(t) is a smooth variation
of γ = γ0 such that γs(0) ∈ M and γ′

s(0) is perpendicular to M for all s. Now
let J be the variational vector field

J(t) =
∂

∂s

∣∣∣∣
s=0

γs(t)

of γs. We call such a variational vector field an M -Jacobi field along γ. One
can show that the M -Jacobi fields along γ form a vector space. A point γ(t0)
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is called a focal point of M along γ if there is a nonvanishing M -Jacobi field J
with J(t0) = 0. The dimension of the space of M -Jacobi fields vanishing in t0 is
called the multiplicity of the focal point γ(t0).

Proposition 2.5. Assume that the action of G on V is polar and let M
be a principal orbit of G. Let ξ be a parallel normal field along M . Then the
distances to the focal points and their multiplicities along the geodesic starting
in direction ξ(p) does not depend on p.

If V is a Euclidean space then the focal points of M are determined by
the principal curvatures. Let ξ be a normal vector field along M and X a
tangent vector of M at p. We let DXξ denote the directional derivative of ξ in
direction X and denote the tangent component of −DXξ by Aξ(X). It turns out
that the map Aξ : TpM → TpM that sends X to Aξ(X) is a selfadjoint linear
endomorphism that depends only on the value of ξ at p. One calls Aξ the shape
(or Weingarten) operator of M in direction ξp. The eigenvalues of Aξ are called
the principal curvatures of M in direction ξp.

Now if ξp is a normal vector of M at p and λ is a nonvanishing principal
curvature in direction ξp, then p + (1/λ)ξp is a focal point of M along the line
γ(t) = p+tξp. Conversely if p+(1/λ)ξp is a focal point of M along γ(t) = p+tξp,
then λ is a principal curvature in direction ξp.

We can therefore reformulate Proposition 2.5 as follows if the ambient space
is Euclidean. Notice that a polar action on a Euclidean space is hyperpolar since
the sections are affine subspaces.

Proposition 2.6. Let V be a Euclidean space on which a Lie group acts
in a polar fashion. Let M be a principal orbit of G and let ξ be a parallel normal
field along M . Then the principal curvatures in direction ξp do not depend on p.

Before we end this section we would like to mention two classes of actions
that are closely related to hyperpolar actions.

Variationally complete actions were introduced by Bott in [6]; see also [7].
By definition an isometric action of a Lie group G on a Riemannian manifold V
is called variationally complete if the following holds for all orbits M of G: let J
be an M -Jacobi field along γ(t) which vanishes at some point t0. Then J is
the variational vector field of a variation of the type φs(γ(t)) where φs is a one-
parameter subgroup of G. In other words, J is the restriction of a Killing field
induced by the action of G to γ.

Conlon proved in [16] that a hyperpolar action on a complete Riemannian
manifold is variationally complete. A partial converse was proved in [27]: a vari-
ationally complete action on a compact symmetric space is hyperpolar. It was
previously proved by Di Scala and Olmos in [18], see also [25], that varia-
tionally complete representations are polar. Lytchak has conjectured that vari-
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ationally complete actions on compact Riemannian manifolds with nonnegative
sectional curvature are hyperpolar.

Variationally complete actions were introduced in [6] and [7] to study the
Morse theory of geodesics on complete Riemannian manifolds and in particular
on compact symmetric spaces. We next briefly review one of the main results of
these papers.

Let M be a properly embedded submanifold of a Riemannian manifold V
and p some point in V . We let P = P(V, p×M) denote the space of absolutely
continuous paths γ : [0, 1] → V that start in p and end in M and for which the
so-called energy

E(γ) =
∫ 1

0

‖ γ′(t) ‖2 dt

is finite. Then P is in a natural way a Hilbert manifold and E is a smooth
functional on P, see [43], whose critical points are the geodesics starting in p
and meeting M perpendicularly. If p is not a focal point of M , then the energy
functional E is a Morse function in the sense that it has only nondegenerate
critical points. We say that the submanifold M is taut if the energy functional is
perfect, meaning that the number of critical points of index k of E in P is equal
to the k-th Betti number of P with respect to Z2-coefficients, or equivalently,
that the Z2-Morse inequalities of E on P are equalities; see [56]. An isometric
action is called taut if all of its orbits are taut.

One of the main theorems of Bott and Samelson in [7] can now be phrased
in our terminology by saying that variationally complete actions are taut.

A taut action does not have to be variationally complete. It is proved in [25],
[26], and [28] that there are precisely three irreducible taut representations of
compact groups which are not variationally complete. These three representa-
tions happen to be precisely the cohomogeneity three representations which are
not variationally complete.

3 – Isoparametric submanifolds of Euclidean spaces

Isoparametric submanifolds in Euclidean spaces with higher codimension
were first introduced by Harle in [29]. Carter and West independently intro-
duced and studied such submanifolds with codimension three in [13] and [14].
Terng then dealt with the case of general codimension in [52].

According to [52] a complete and connected submanifold Mn in Rn+k is
called isoparametric if its normal bundle is flat and if the principal curvatures
in the direction of any (locally defined) parallel normal vector field are con-
stant. It is proved in [52] that the normal holonomy of Mn is trivial. A locally
defined parallel normal curvature vector can therefore be extended to a globally
defined one.
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It is proved in [52] that a noncompact isoparametric submanifold is the
product embedding of a compact isoparametric one with a Euclidean space. We
will therefore always assume compactness in the following. A compact isopara-
metric submanifold is contained in a round hypersphere; see [52]. We can always
assume that Mn is not contained in any proper affine subspace. Such submani-
folds are called full. An isoparametric submanifold is said to be irreducible if it
cannot be nontrivially written as the product embedding of two isoparametric
submanifolds.

Propositions 2.4 and 2.6 imply that principal orbits of polar representations
are isoparametric. Conversely, Palais and Terng proved in [44] that a homo-
geneous isoparametric submanifold is such an orbit. One can show that an
isoparametric hypersurface Mn in Sn+1 is isoparametric in Rn+2. The inhomo-
geneous examples of Ferus, Karcher and Münzner in [24] that we already
mentioned in the introduction therefore give us a further class of examples. All
known examples of irreducible isoparametric submanifolds in Euclidean spaces
belong to one of these two classes of examples.

Terng developed a beautiful structure theory of isoparametric hypersurfaces
in [52]. We would like to mention some of these results since they have been a
paradigm in the generalizations.

Let Mn be an isoparametric submanifold in Rn+k and let ξ be a parallel
normal field along Mn. The end-point map in direction ξ is the map ηξ : Mn →
Rn+k one gets by setting ηξ(p) = p + ξp. It turns out that the image of Mn

under ηξ that we denote by Mξ is either a submanifold of dimension n or one of
a lower dimension. We call Mξ the parallel submanifold of Mn in direction ξ. If
the dimension of Mξ is equal to that of Mn, then Mξ is also isoparametric and
ηξ is a diffeomorphism between Mn and Mξ. If the dimension of Mξ is smaller
than that of Mn, then Mξ consists of focal points of Mn and ηξ is a fibration
from Mn onto Mξ. In this case we will call Mξ a focal submanifold. One can
show that the set F of focal points of Mn is precisely the union over the focal
submanifolds of Mn.

It is easy to see with help of Proposition 2.4 that if Mn is homogeneous and
hence a principal orbit of a polar representation, then the parallel submanifolds
are nothing but the other orbits of the representation.

If Mn is isoparametric, then F = {Mξ | ξ parallel along Mn} is a family
of disjoint submanifolds that covers the whole ambient space Rn+1. It is not
difficult to show that the isoparametric submanifolds in F foliate Rn+1 \F , the
complement of the focal set F of Mn. One can in fact show much more than
this: F is a singular Riemannian foliation in the sense of Molino. This is a
consequence of a much more general result of Töben in [59] that we will explain
in the last section; see also [45], Corollary 8.5.6.

Terng associated in [52] a Coxeter group to an isoparametric submanifold
M as follows. Let νpM be the normal space of M at p considered as an affine
subspace of Rn+k and consider the set Fp = F ∩ νpM of focal points contained
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in νpM . Then Fp is a finite union over hyperplanes in νpM and the reflections
in this hyperplanes generate a finite Coxeter group W that leaves the set Fp

invariant. It then follows that the orbit of p under W is the intersection M∩νpM .
The Coxeter group is implicit in Cartan’s work for the codimension two case
Mn ⊂ Sn+1 ⊂ Rn+1 since he proved that the focal points on the normal great
circles to Mn in Sn+1 are equidistant. In the codimension three case the Coxeter
group was already found by Carter and West in [13].

The following theorem proved in [57] shows that isoparametric submanifolds
come close to characterize principal orbits of polar representations.

Theorem 3.1. Let Mn be an irreducible, full and compact isoparametric
submanifold in Mn+k with k ≥ 3. Then Mn is a principal orbit of a polar
representation.

Theorem 3.1 combined with Dadok’s Theorem 2.2 gives a classification of
irreducible isoparametric submanifolds with codimension at least three. The
examples of Ferus, Karcher and Münzner are inhomogeneous with codimension
k = 2. If the codimension is k = 1, then the round spheres are the only examples.

A new proof of Theorem 3.1 was given by Olmos in [41] using his theory of
the normal holonomy of submanifolds; see also [5], Section 7.3. A further proof
was given by Heintze and Liu in [30] as a byproduct of a proof of an analogous
theorem in Hilbert spaces that will play a role in the next section. Eschenburg
gave a proof of the theorem in [19] that uses Lie triple products.

4 – Equifocal submanifolds

In the paper [55], equifocal submanifolds of compact symmetric spaces were
introduced and their basic theory developed as a generalization of isoparametric
hypersurfaces in spheres and an analogue of the isoparametric submanifolds in
Euclidean spaces. For symmetric spaces see reference [33] and the remarks in
Example 2.1 (iv) above.

The definition of an equifocal submanifold is based on the properties of
principal orbits of polar actions in Propositions 2.4 and 2.5.

Let Mn be a compact submanifold of a compact symmetric space V n+k.
We say that Mn is equifocal if the following three conditions are satisfied:

(i) The normal bundle of Mn is flat and has trivial holonomy.
(ii) If ξ is a parallel normal vector field and ηξ(p0) = exp(ξ(p0)) is a multiplicity

k focal point of Mn for some p0 in Mn, then ηξ(p) = exp(ξ(p)) is a multi-
plicity k focal point of Mn for all p in Mn. (In other words, the focal data
of Mn are invariant under normal parallel translation.)

(iii) The image exp(νp(Mn)) of the normal space νp(Mn) of Mn at p is contained
in some flat of V n+k for all p in Mn.
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Principal orbits of polar actions satisfy conditions (i) and (ii) in the defini-
tion above, and all three conditions are satisfied for principal orbits of hyperpolar
actions.

The third condition is of course always satisfies if Mn is a hypersurface. It
follows from [31] that a hypersurface Mn in a compact symmetric space V n+1

is equifocal if and only if it is isoparametric in the sense of the definition given
at the beginning of this paper. One can of course define equifocal hypersurfaces
in more general ambient spaces than symmetric spaces; see the next section.
If the ambient space has nonpositive sectional curvature one should take into
account that there might be focal points ‘beyond infinity’; see [22]. It is not
to be expected that such generalizations are equivalent to the concept of an
isoparametric hypersurface if the ambient space is not symmetric.

In [55] we show that if the compact symmetric space V n+1 is irreducible,
then an equifocal hypersurface Mn in V n+1 has the property that any geodesic
meeting Mn is closed. If V n+1 is simply connected, then one can show that the
number of focal points on such a normal closed geodesic is an even number that
we will denote by 2g. If V n+1 is a sphere, then g is the number of principal
curvatures of Mn which can only be one of the numbers 1, 2, 3, 4, and 6 as was
proved by Münzner; see the introduction. One can now ask which values g can
assume in general irreducible symmetric spaces, and what the possible values of
the multiplicities of the focal points are; see [51] and [23] where this question is
studied for rank one and two symmetric spaces.

One can prove more generally that the image of a normal space νp(M) of an
equifocal submanifold Mn in an irreducible compact symmetric space V n+k is a
torus T k; see [55]. One can associate to Mn an affine Coxeter group as follows.
Let F denote the set of focal points of Mn in T k and let F̃ be the preimage of
F in the universal cover Rk of T k. Then F̃ is a union of hyperplanes which are
precisely the mirrors of an affine Coxeter group W acting on Rk and leaving F̃
invariant.

The next theorem which is analogous to Theorem 3.1 gives a characterization
of the principal orbits of hyperpolar actions as equifocal submanifolds.

Theorem 4.1 (Christ [15]). Let Mn be an equifocal submanifold in an
irreducible compact symmetric space V n+k. Then Mn is the principal orbit of a
hyperpolar action if k ≥ 2.

The theorem does not hold for k = 1 since the inhomogeneous isoparametric
hypersurfaces in spheres are equifocal.

Theorem 4.1 and the results from [55] that we have been explaining are
proved with the help of a generalization due to Terng of the theory of isopara-
metric submanifolds in Euclidean spaces to Hilbert spaces; see [53]. We end this
section with a short explanation of this method.
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Let V n+k be a compact symmetric space that we write as a coset space
V n+k = G/K where (G, K) is a symmetric pair. Let g denote the Lie algebra
of G and set H = L2([0, 1], g), the Hilbert space of L2-paths in g. Then there
is a Riemannian submersion φ : H → V n+k such that a submanifold Mn is
equifocal in V n+k if and only if the preimage M = φ−1(Mn) is isoparametric
in H. The main point is that it is easier to work in H than in V n+1 since H is
linear, although infinite dimensional.

To define the Riemannian submersion φ, we need to introduce certain path
spaces in G. Let B be a subset of G × G and let P(G, B) denote the space
of absolutely continuous paths γ : [0, 1] → G such that (γ(0), γ(1)) ∈ B and
such that the integral ‖ γ′ ‖ 2 is finite. Here we assume G to be endowed with
a bi-invariant Riemannian metric such that the projection π : G → V n+k is a
Riemannian submersion. Then Pe = P(G, e × G) is the space of paths in G
starting at the identity e without a restriction on the end point.

Now it turns out that the map that sends a path γ in Pe to γ−1γ′ in H is
a diffeomorphism. Let E : H → Pe denote the inverse of this diffeomorphism.
Now we can define a map ψ : H → G by setting ψ(u) equal to the endpoint of
the curve E(u), i.e. ψ(u) = E(u)(1). It is proved in [55] that ψ is a Riemannian
submersion. Now we define φ : H → V n+k as φ = π ◦ ψ.

If H is a subgroup of G then P(G, H×K) is an infinite dimensional Hilbert
Lie group which acts on H by setting

γ ∗ u = γuγ−1 − γ′γ−1

for γ in P(G, H×K) and u in H; see [54] where it is proved that the action of H
on V n+k is hyperpolar if and only if the action of P(G, H×K) is polar on H. It
is also proved in [54] that the principal orbits of P(G, H ×K) are isoparametric
if its action on H is polar.

A very important result of Heintze and Liu in [30] is that an irreducible
isoparametric submanifold in an infinite dimensional Hilbert space is the princi-
pal orbit of a polar action if its codimension is at least two. This result of Heintze
and Liu is one of the main steps in the proof of Theorem 4.1. The method of
proof also works in finite dimensions if the codimension is at least three and can
be used to prove Theorem 3.1.

One can also use the Hilbert space H to prove that an action on a compact
symmetric space is hyperpolar if it is variationally complete; see [27] and Sec-
tion 2. One shows that the action of a subgroup H of G is variationally complete
(resp. hyperpolar) on V n+k if and only if the action of P(G, H × K) on H is
variationally complete (resp. hyperpolar). One has now reduced the problem to
an affine action on the linear space H and can argue in a similar way as as in [18].
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5 – Submanifolds in Riemannian manifolds

In this last section we would like to mention some recent generalizations to
Riemannian manifolds.

The orbits of a connected Lie group acting by isometries on a Riemannian
manifold give an example of a singular Riemannian foliation in the sense of
Molino; see [38], p. 189. By definition, a partition F of a Riemannian manifold
V into connected immersed submanifolds, called leaves, is said to be a singular
Riemannian foliation if the following two conditions are satisfied:

(i) The tangent space TpM for every M in F and every p in M is generated by
{Xp| X ∈ ΞF} where ΞF denotes the module of smooth vector fields on V
that are tangent to the submanifolds in F .

(ii) A geodesic that meets one leaf M in F perpendicularly, meets the leaves
perpendicularly for all parameter values.

The leaves in F of maximal dimension are called regular and those of lower
dimension singular.

If only the first condition is satisfied then one calls F a singular foliation.
A singular foliation is a foliation in the usual sense if the leaves are all regular.
The second condition means that the leaves are equidistant.

If F consists of the orbits of an action, then condition (ii) is satisfied since
the vector fields it induces are contained in ΞF and condition (ii) is satisfied if
the action is isometric.

Alexandrino studies singular Riemannian foliations that admit a section
in [2], where a section is defined as for polar actions. Previously such folia-
tions were studied by Boualem in [8]. Let F be such a singular foliation in a
Riemannian manifold V , let L be a singular leaf in F , and let T be a tubular
neighborhood of L that is a union over leaves in F . It is then proved in [2] that
the foliation consisting of the intersections of the leaves of such a foliation F
with the connected component of exp(νp(L)) ∩ T containing p is diffeomorphic
to an isoparametric foliation in an open neighborhood of 0 in Rk where k is
the codimension of L in V . This generalizes the slice theorems for polar actions
and isoparametric submanifolds; see [45]. A further result of [2] is that the reg-
ular leaves of singular Riemannian foliations with a section have parallel focal
structure, see also [59] for a different proof. Submanifolds with parallel focal
structure were studied by Ewert in [22]. They generalize equifocal submani-
folds in a similar way as polar actions generalize hyperpolar actions, see [59] for
a precise definition. Töben gives in [59] a necessary and sufficient condition for
a submanifold with parallel focal structure and finite normal holonomy to give
rise to a singular Riemannian foliation with the leaves being parallel submani-
folds. In [59] an action on the sections of a singular Riemannian foliations by a
group called transversal holonomy group is introduced. This action generalizes
the Weyl group action of polar actions.
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In [1] Alexandrino studies transnormal maps. These are by definition maps
from a Riemannian manifold into a Euclidean space with the property that its
restrictions to sufficiently small neighborhoods of regular level sets are Rieman-
nian submersions such that the normal spaces of the fibers form an integrable
distribution on the neighborhood. The main result of [2] is that the level sets of
an analytic transnormal map on a real analytic Riemannian manifold give rise
to a singular Riemannian foliation with sections.

Further results along these lines can be found in [3].
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constante, Ann. di Mat., 17 (1938), 177-191.
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trische Hyperflächen, Math. Z., 177 (1981), 479-502.

[25] C. Gorodski – G. Thorbergsson: Representations of compact Lie groups and
the osculating spaces of their orbits, preprint, University of Cologne, 2000 (also
E-print math. DG/0203196).

[26] C. Gorodski – G. Thorbergsson: Cycles of Bott-Samelson type for taut repre-
sentations, Ann. Global Anal. Geom., 21 (2002), 287-302.

[27] C. Gorodski – G. Thorbergsson: Variationally complete actions on compact
symmetric spaces, J. Differential Geom., 62 (2002), 39-48.

[28] C. Gorodski – G. Thorbergsson: The classification of taut irreducible repre-
sentations, J. Reine Angew. Math., 555 (2003), 187-235.

[29] C. E. Harle: Isoparametric families of submanifolds, Bol. Soc. Brasil. Mat., 13
(1982), 35-48.

[30] E. Heintze – X. Liu: Homogeneity of infinite-dimensional isoparametric sub-
manifolds, Ann. of Math., 149 (1999), 149-181.

[31] E. Heintze – X. Liu – C. Olmos: Isoparametric submanifolds and a Chevalley-
type restriction theorem, E-print math. DG/0004028.

[32] E. Heintze – R. S. Palais – C.-L. Terng – G. Thorbergsson: Hyperpolar
actions on symmetric spaces, Geometry, Topology, and Physics for Raoul Bott,
S. T. Yau (eds.), Conf. Proc. Lecture Notes Geom. Topology, IV, International
Press, Cambridge, MA, 1995, pp. 214-245.

[33] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, Pure and
Applied Mathematics, Vol. 80, Academic Press, New York-London, 1978.

[34] R. Hermann: Variational completeness for compact symmetric spaces, Proc.
Amer. Math. Soc., 11 (1960), 544-546.

[35] W.-Y. Hsiang – H. B. Lawson Jr.: Minimal submanifolds of low cohomogeneity ,
J. Differential Geometry, 5 (1971), 1-38.



[15] Transformation groups and submanifold etc. 15

[36] A. Kollross: A classification of hyperpolar and cohomogeneity one actions,
Trans. Amer. Math. Soc., 354 (2002), 571-612.

[37] T. Levi-Civita: Famiglie di superficie isoparametriche nell’ordinario spazio eu-
clideo, Rend. Acc. Naz. Lincei, XXVI (1937), 657-664.

[38] P. Molino: Riemannian foliations, Progress in Mathematics, Vol. 73, Birkhäuser,
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(1981), 215-232.

[41] C. Olmos: Isoparametric submanifolds and their homogeneous structures, J. Dif-
ferential Geom., 38 (1993), 225-234.

[42] H. Ozeki – M. Takeuchi: On some types of isoparametric hypersurfaces in
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Laurent type expansions of ∂̄∂∂-closed (0, n – 1)-forms in C
n

TELEMACHOS HATZIAFRATIS

Abstract: We characterize the multiple sequences �k1,...,kn of complex numbers
for which there exist ∂̄-closed (0, n − 1)-forms θ(ζ), defined for ζ ∈ C

n − {|ζ| ≤ R},
so that

∫
|ζ|=ρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ dζ1 ∧ ... ∧ dζn = �k1,...,kn (ρ > R). We also derive

Laurent type expansions of such ∂̄-closed (0, n− 1)-forms in terms of the derivatives of
the Bochner-Martinelli kernel and we discuss Mittag-Leffler type constructions in this
setting.

1 – Introduction

Let us recall that given a sequence �k, k = 0, 1, 2, ..., of complex numbers,
there exists a holomorphic function g(ζ) defined for ζ ∈ C − {|ζ| ≤ R} (where
R ≥ 0) so that ∫

|ζ|=ρ

ζkg(ζ)dζ = �k, k = 0, 1, 2, ... (ρ > R),

if and only if
lim sup

k→∞

k
√
|�k| ≤ R,

and that, moreover, such a function is of the form

g(ζ) =
1

2πi

∞∑
k=0

�k
1

ζk+1
+ a holomorphic function in C.

Key Words and Phrases: Laurent type expansions – ∂̄-closed (0, n − 1)-forms –
Fourier-Laplace transform – Derivatives of the Bochner-Martinelli kernel – Mittag-
Leffler type constructions.
A.M.S. Classification: 32A26
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In C
n, we may consider systems (g1, . . . , gn) of C∞ functions, which satisfy the

differential equation
n∑

j=1

(−1)j−1 ∂gj

∂ζ̄j
= 0

(equivalently: the (0, n− 1)-form

θ =
n∑

j=1

gjdζ̄1 ∧ . . . (j) . . . ∧ dζ̄n

is ∂̄-closed), and pose an analogous question as follows: For which multiple
sequences �k1,...,kn

of complex numbers, do there exist ∂̄-closed (0, n− 1)-forms
θ(ζ), defined for ζ ∈ C

n − {|ζ| ≤ R}, so that∫
|ζ|=ρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ dζ1 ∧ ... ∧ dζn = �k1,...,kn
(ρ > R)?

It turns out that we can characterize such sequences (see Theorem 2) and fur-
thermore we can give an analogous expansion for these ∂̄-closed (0, n− 1)-forms
θ, in terms of appropriate derivatives of the Bochner-Martinelli kernel (see The-
orem 3). For background material, we refer to [2], [3], [4], and [7].

Notation. If D is an open subset of C
n, we will denote by Z

(0,n−1)

∂̄
(D) the

set of ∂̄-closed (0, n − 1)-forms with C∞ coefficients in D and H
(0,n−1)

∂̄
(D) will

denote the set of the corresponding ∂̄-cohomology classes in D:

H
(0,n−1)

∂̄
(D) = {[θ] : θ ∈ Z

(0,n−1)

∂̄
(D)},

where [θ] = {θ + ∂̄ − exact (0, n− 1)− forms in D}.
Also O(D) will denote the set of holomorphic functions in D.

2 – Fourier-Laplace transforms of ∂̄-closed (0, n− 1)-forms

Let E be a compact convex set in C
n and let ξ ∈ Z

(0,n−1)

∂̄
(Cn − E). The

Fourier-Laplace transform of ξ is the entire holomorphic function Fξ defined by
the integral

Fξ(w) =
∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ), w ∈ C
n,

where 〈ζ, w〉 =
∑

ζjwj , ω(ζ) = dζ1 ∧ . . . ∧ dζn and U is an open and bounded
convex set with smooth boundary which contains E. Since the differential form
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e〈ζ,w〉ξ(ζ) ∧ ω(ζ) is d−closed, it follows from Stokes’ theorem that the above
integral is independent of the choice of U . Indeed, if V is a sufficiently large ball,
then∫
ζ∈∂V

e〈ζ,w〉ξ(ζ) ∧ ω(ζ)−
∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ) =
∫

ζ∈V −U

d[e〈ζ,w〉ξ(ζ) ∧ ω(ζ)] = 0.

Notice also that this integral depends only on the cohomology class [ξ] ∈
H

(0,n−1)

∂̄
(Cn − E). For, if ξ − θ = ∂̄u (where θ ∈ Z

(0,n−1)

∂̄
(Cn − E) and u is a

(0, n− 2)−form in C
n − E), then∫

ζ∈∂U

e〈ζ,w〉ξ(ζ) ∧ ω(ζ)−
∫

ζ∈∂U

e〈ζ,w〉θ(ζ) ∧ ω(ζ) =
∫

ζ∈∂U

d[e〈ζ,w〉u(ζ) ∧ ω(ζ)] = 0.

Now it is easy to see that the function Fξ is an entire function of exponential
type. In fact,

|Fξ(w)| ≤
∫

ζ∈∂U

e|〈ζ,w〉||ξ(ζ) ∧ ω(ζ)| ≤ AeR|w| for w ∈ C
n,

where A and R are positive constants.
Conversely, using the derivatives of the Bochner-Martinelli kernel, we will

show that every entire function of exponential type is the Fourier-Laplace trans-
form of a ∂̄-closed (0, n− 1)-form.

The derivatives of the Bochner-Martinelli kernel. For ζ �= z, set

M(ζ, z) =
βn

|ζ − z|2n

n∑
j=1

(−1)j−1(ζ̄j − z̄j)dζ̄1 ∧ . . . (j) . . . ∧ dζ̄n,

where βn = (−1)n(n−1)/2(n − 1)!/(2πi)n, and for each k = (k1, . . . , kn), where
kj are non-negative integers, let us define the (0, n− 1)-forms

ηk(ζ) =
∂k1+···+knM(ζ, z)

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

.

A simple computation shows that

ηk(ζ) = βnn(n + 1) · · · (n + k1 + · · ·+ kn − 1)
ζ̄k1
1 · · · ζ̄kn

n

|ζ|2(n+k1+···+kn)
×

×
n∑

j=1

(−1)j−1ζ̄jdζ̄1 ∧ . . . (j) . . . ∧ dζ̄n.

Since ∂̄ζ [M(ζ, z)] = 0, it follows that ∂̄ηk = 0. Thus ηk ∈ Z
(0,n−1)

∂̄
(Cn − {0}).
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Now recall the Bochner-Martinelli formula: For f ∈ O(Cn),

(1) f(z) =
∫

ζ∈Sρ

f(ζ)M(ζ, z) ∧ ω(ζ), when |z| < ρ,

where Sρ = {ζ ∈ C
n : |ζ| = ρ} and ρ > 0.

Applying to both sides of (1) the differentiation

D
k =

∂k1+···+kn

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

,

we obtain the formula

(2) D
kf =

∂k1+···+knf

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=0

=
∫

ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ).

Construction of ∂̄-closed (0, n − 1)-forms with prescribed Fou-
rier-Laplace transform. Let F be an entire holomorphic function of the
following exponential type:

(FR) |F (w)| ≤ AeR|w|, for every w ∈ C
n,

where A and R are positive constants.
Now we will estimate the derivatives of F at zero, using Cauchy’s formula

in the polydisk:

(3) D
kf =

k1! . . . kn!
(2πi)n

∫
ζ∈Tr

f(ζ1, ..., ζn)
ζk1+1
1 · · · ζkn+1

n

dζ1 ∧ . . . ∧ dζn,

where Tr is the torus of multi-radius r = (r1, ..., rn):

Tr = {ζ ∈ C
n : |ζ1| = r1, ..., |ζn| = rn}.

Since for ζ ∈ Tr, |F (ζ)| ≤ AeR
√

r2
1+···+r2

n , (3) implies that the coefficient σk, in
the expansion F (w) =

∑
k σkwk, satisfies the inequality

|σk| =
1

k1! . . . kn!
|DkF | ≤ A

eR
√

r2
1+···+r2

n

rk1
1 · · · rkn

n

for every r1, ..., rn > 0.

Applying this inequality with

r1 =
√

k1(k1 + · · ·+ kn)/R, ..., rn =
√

kn(k1 + · · ·+ kn)/R,
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we obtain

(4) |σk| ≤ A
(eR)k1+···+kn

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)(k1+···+kn)/2
for every k1, ..., kn.

(Convention: kj
kj/2 = 1, when kj = 0.)

Next let us recall that if F (w) is to be the Fourier-Laplace transform of an
analytic functional T , then the action of T on a function f ∈ O(Cn) will be
given by the formula:

T (f) =
∑

k

σkD
kf.

Now we take an arbitrary f ∈ O(Cn) and substitute the values of its deriva-
tives Dkf in the sum

∑
k σkDkf , using formula (2). Interchanging the order of

summation and integration, we obtain − at least formally − that

(5)
∑

k

σkD
kf =

∫
ζ∈Sρ

f(ζ)

(∑
k

σkηk(ζ)

)
∧ ω(ζ).

We will show that the series
∑

k σkηk(ζ) converges for ζ ∈ C
n − BR (where

BR = {|ζ| ≤ R}), and defines a ∂̄-closed (0, n − 1)-form whose Fourier-Laplace
transform is the given function F . In fact we will see that the convergence is
uniform and absolute on compact subsets of C

n − BR, and therefore (5) holds
when ρ > R. In proving this, (4) will play the important role in conjunction
with the following lemma.

Lemma 1. If t1, ..., tn > 0 and t21 + · · ·+ t2n < 1 then

∑
k1,...,kn

ek1+···+kn(k1 + · · ·+ kn)!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)(k1+···+kn)/2
tk1
1 ...tkn

n < ∞.

Proof. First let us keep in mind that the validity of the assertion is not
affected if the general term of the sum is multiplied (or divided) by a quantity
of the form ks1

1 ...ksn
n (for some nonnegative constants s1, ..., sn).

Now to prove the lemma, it suffices to show that the sum of the terms,
whose indices k1, ..., kn are all even, is finite, i.e.,

(6)

∑
k1,...,kn

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)kn(2k1 + · · ·+ 2kn)k1+···+kn

t2k1
1 ...t2kn

n < ∞

for t21 + · · ·+ t2n < 1.
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To justify this reduction we split the sum according to the parity of the k1, ..., kn.
More precisely, if we call C(k1, ..., kn) the general term of the sum in the state-
ment of the lemma then on the one hand it is clear that∑

k1,...,kn

C(k1, ..., kn) =
∑

(u1,...,un)∈{0,1}n

∑
k1,...,kn

C(2k1 + u1, ..., 2kn + un),

and on the other hand it is easy to see (using the remark at the beginning of
this proof) that (6) implies that each of the 2n sums∑

k1,...,kn

C(2k1 + u1, ..., 2kn + un) is finite

(i.e., when u1, ..., un ∈ {0, 1}), and the reduction of the proof of the lemma to (6),
follows.

Using the notation |k| = k1 + · · ·+ kn, we have

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)kn(2k1 + · · ·+ 2kn)k1+···+kn

=

=


 n∏

j=1

ekj kj !

k
kj

j


 e|k||k|!

|k||k|
(2|k|)!

4|k|(|k|!)2
|k|!

k1!...kn!
.

But from Stirling’s formula, for min{sj : 1 ≤ j ≤ n} large enough,

ekj kj !

k
kj

j

≈
√

2πkj ,
e|k||k|!
|k||k| ≈

√
2π|k| and

(2|k|)!
4|k|(|k|!)2 ≈

1
2
√

π|k|
.

Therefore, using also the expansion

∑
k1,...,kn

(k1 + · · ·+ kn)!
k1!...kn!

t2k1
1 ...t2kn

n =
1

1− (t21 + · · ·+ t2n)
valid for t21+· · ·+t2n < 1,

we conclude that there is a positive integer N so that

∑
min{k1,...,kn}>N

e2k1+···+2kn(2k1 + · · ·+ 2kn)!

(2k1)
k1 ...(2kn)kn(2k1 + · · ·+ 2kn)k1+···+kn

t2k1
1 ...t2kn

n < ∞.

Now (6) can be proved by induction on n.

Some computations. For each ψ = (ψ1, ..., ψn) ∈ C
n − {0}, we define the

region

Gψ =
{

ζ ∈ C
n − {0} :

|ζj |
|ζ|2 <

|ψj |
|ψ|2 for j = 1, ..., n

}
.



[7] Laurent type expansions of ∂̄-closed (0, n − 1)-forms in Cn 23

We will show that for |ψ| > R, the series
∑

k |σkCk(ζ)| converges uniformly in
ζ ∈ Gψ, where Ck(ζ) is the main coefficient of ηk(ζ), i.e., the quantity

Ck(ζ) = n(n + 1) · · · (n + k1 + · · ·+ kn − 1)
ζ̄k1
1 · · · ζ̄kn

n

|ζ|2(n+k1+···+kn)
.

First notice that Gψ ⊂ {ζ ∈ C
n : |ζ| > |ψ|}, because

|ζj |
|ζ|2 <

|ψj |
|ψ|2 ⇒

n∑
j=1

|ζj |2
|ζ|4 <

n∑
j=1

|ψj |2
|ψ|4 ⇒ 1

|ζ|2 <
1
|ψ|2 .

Also uψ ∈ Gψ for every u > 1 (as it is easy to check) and for a fixed ρ > R,

(7) C
n − Bρ =

⋃
ψ∈Sρ

Gψ.

Indeed, if ζ ∈ C
n −Bρ then it is easy to see that ζ ∈ Gψ, where ψ = ρζ/|ζ|, and

of course ρζ/|ζ| ∈ Sρ.
To prove the uniform convergence of the series

∑
k |σkCk(ζ)| for ζ ∈ Gψ

(with |ψ| > R), it suffices to notice that, since,

|Ck(ζ)| =
∏n−1

l=1 (k1 + · · ·+ kn + l)
(n− 1)!|ζ|2n

(k1 + · · ·+ kn)!
(
|ζ1|
|ζ|2

)k1

. . .

(
|ζn|
|ζ|2

)kn

,

inequality (4) implies that the series
∑

k sup{|σkCk(ζ)| : ζ ∈ Gψ} is dominated
by the convergent series

∑
k1,... ,kn

[∏n−1
l=1 (k1 + · · ·+ kn + l)

(n− 1)!|ψ|2n

e|k|(|k|)!
k

k1/2
1 · · · kkn/2

n |k||k|/2

(
R|ψ1|
|ψ|2

)k1

. . .

(
R|ψn|
|ψ|2

)kn
]
.

The convergence of the above series follows from Lemma 1, since

n∑
j=1

(
R|ψj |
|ψ|2

)2

=
(

R

|ψ|

)2

< 1.

Now we can prove the following theorem which is a Paley-Wiener type the-
orem. As it is well-known such theorems deal with the question of representing
entire functions of exponential type as Fourier-Laplace transforms of measures
and the related literature is quite extensive. This particular theorem expresses
such measures in terms of the Bochner-Martinelli kernel.
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Theorem 1. If F (w) =
∑

k σkwk is an entire function, which satisfies
(FR) for some R > 0, then the series

∑
k σkηk(ζ) defines a ∂̄-closed (0, n − 1)-

form η(ζ), with C∞ coefficients in ζ ∈ C
n − BR, and

F (w) =
∫

ζ∈Sρ

e〈ζ,w〉η(ζ) ∧ ω(ζ), for w ∈ C
n and ρ > R.

Thus an analytic functional T , which is carried by the ball BR, is represented by
the measure

dλ(ζ) =
∑

k

σkηk(ζ) ∧ ω(ζ)
∣∣
ζ∈Sρ

,

supported by the sphere Sρ (ρ > R), where σk = T (zk)/k!.
In particular, any measure dµ (in C

n and with compact support) is analyt-
ically equivalent to dλ (given by the above formula), where σk =

∫
zkdµ(z)/k!

and ρ > sup{|z| : z ∈ supp(µ)}

Proof. Notice that

ηk(ζ) =
n∑

j=1

(−1)j−1ζ̄jCk(ζ)dζ̄1 ∧ ...(j)... ∧ dζ̄n.

But if P is any derivative (of any order), with respect to ζ1, ..., ζn, ζ̄1, ..., ζ̄n, then

(8)
∑

k

sup
{
|σkP[ζ̄jCk(ζ)]| : ζ ∈ Gψ

}
< ∞,

provided that |ψ| > R. This follows from Lemma 1, which implies that

∑
k1,...,kn

ks1
1 ...ksn

n

e|k|(|k|)!
k

k1/2
1 · · · kkn/2

n |k||k|/2
tk1
1 ...tkn

n <∞ (t1, ..., tn >0, t21+· · ·+t2n <1),

for every nonnegative constants s1, ..., sn. (At this point we use the fact that,
since the function F satisfies the condition (FR), the coefficients σk satisfy (4),
and, therefore, we can carry out computations, similar to the ones that follow
the proof of Lemma 1, which lead to (8).)

But (8) implies that η =
∑

k σkηk has C∞ coefficients C
n − BR and that

∂̄η =
∑

k

σk∂̄ηk = 0.
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Furthermore, for f ∈ O(Cn),

∫
ζ∈Sρ

f(ζ)η(ζ) ∧ ω(ζ) =
∫

ζ∈Sρ

f(ζ)

(∑
k

σkηk(ζ)

)
∧ ω(ζ) =

=
∑

k

σk

∫
ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ) =
∑

k

σkD
kf,

where we also used (2). Applying the above formula with f(ζ) = e〈ζ,w〉 (for fixed
w), we obtain ∫

ζ∈Sρ

e〈ζ,w〉η(ζ) ∧ ω(ζ) =
∑

k

σkwk = F (w).

This completes the proof.

3 – Laurent type expansions of ∂̄-closed (0, n− 1)-forms

The computations of the previous section lead also to the following theorem.

Theorem 2. Let R ≥ 0. Suppose that for each k = (k1, ..., kn), where kj

are nonnegative integers, we are given a complex number �k = �k1,...,kn . Then
a necessary and sufficient condition that there exist θ ∈ Z

(0,n−1)

∂̄
(Cn − BR) so

that

(P)
∫

ζ∈Sρ

ζk1
1 · · · ζkn

n θ(ζ) ∧ ω(ζ) = �k1,...,kn
, for every k (where ρ > R),

is that the sequence �k = �k1,...,kn satisfy the condition

(GR) For every ε > 0 there is a positive constant A(ε) so that

|�k| ≤ A(ε)
[e(R + ε)]k1+···+knk1!...kn!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)(k1+···+kn)/2
for every k1, ..., kn.
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Proof. Set
ck1,...,kn =

�k1,...,kn

k1!...kn!
.

To prove the one direction, let us assume that θ ∈ Z
(0,n−1)

∂̄
(Cn−BR) and satisfies

(P). Then

ck1,...,knwk1
1 ...wkn

n =
∫

ζ∈Sρ

ζk1
1 · · · ζkn

n wk1
1 ...wkn

n

k1!...kn!
θ(ζ) ∧ ω(ζ).

Since ∑
k1,...,kn

ζk1
1 · · · ζkn

n wk1
1 ...wkn

n

k1!...kn!
= e〈ζ,w〉,

it follows that the series F (w) =
∑

k ckwk converges, it defines an entire holo-
morphic function F (w), and that this function is given by the integral:

F (w) =
∫

ζ∈Sρ

e〈ζ,w〉θ(ζ) ∧ ω(ζ) for ρ > R.

Applying this with ρ = R + ε (where ε > 0), we see that

|F (w)| ≤ A(ε)e(R+ε)|w|,

where
A(ε) =

∫
|ζ|=R+ε

|θ(ζ) ∧ ω(ζ)|.

Now we can prove (in the same way we proved that (FR) implies (4)) that

|ck| ≤ A(ε)
[e(R + ε)]k1+···+kn

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)(k1+···+kn)/2
,

and this proves (GR).
To prove the other direction, let us assume that the sequence �k satisfies

(GR). Then, it follows from the proof of Theorem 1, that the series θ(ζ) =∑
k ckηk(ζ) defines a ∂̄-closed (0, n − 1)-form with C∞ coefficients in ζ ∈ C

n −
BR+ε, and this is true for every ε > 0. Thus θ ∈ Z

(0,n−1)

∂̄
(Cn − BR). Moreover

∫
ζ∈Sρ

f(ζ)θ(ζ) ∧ ω(ζ) =
∑

k

ck

∫
ζ∈Sρ

f(ζ)ηk(ζ) ∧ ω(ζ) =
∑

k

ckD
kf,
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for f ∈ O(Cn) and ρ > R. Applying this formula with f(ζ) = ζl1
1 · · · ζln

n (with
nonnegative integers l1, ..., ln), we see that, indeed, θ satisfies the required period
condition (P). This completes the proof of the theorem.

The following theorem is a variation of Theorem 2. It gives Laurent type
expansions for ∂̄-closed (0, n − 1)-forms in C

n − BR. (The case R = 0 of it, is
in [2].)

Theorem 3. Every θ ∈ Z
(0,n−1)

∂̄
(Cn − BR) has an expansion of the form

θ =
∑

k

�k

k!
ηk + ∂̄υ,

where the numbers �k are given by (P) and υ is a (0, n − 2)-form with C∞

coefficients in C
n − BR.

Proof. Given θ ∈ Z
(0,n−1)

∂̄
(Cn − BR), we define �k by (P) and we set

η =
∑

k

�k

k!
ηk.

It follows from the proof of Theorem 2 that η ∈ Z
(0,n−1)

∂̄
(Cn−BR) and that, for

ρ > R, ∫
ζ∈Sρ

ζk1
1 · · · ζkn

n η(ζ) ∧ ω(ζ) = �k1,...,kn .

Therefore ∫
ζ∈Sρ

ζk1
1 · · · ζkn

n [θ(ζ)− η(ζ)] ∧ ω(ζ) = 0, for every k1, ..., kn.

Now [1, Lemma 5] (see also Lemma 2, below) implies that there exists a (0, n−2)-
form υ, with C∞ coefficients in C

n − BR, so that θ − η = ∂̄υ. This gives the
required expansion and completes the proof of the theorem.

Remarks. 1. Writing the quantity

ek1+···+knk1!...kn!

k
k1/2
1 · · · kkn/2

n (k1 + · · ·+ kn)(k1+···+kn)/2

in the form 
 n∏

j=1

ekj kj !

k
kj

j


 k

k1/2
1 · · · kkn/2

n

(k1 + · · ·+ kn)(k1+···+kn)/2
,
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and using Stirling’s formula

ekj kj !

k
kj

j

≈
√

2πkj ,

it is easy to see that a sequence �k satisfies the condition (GR) if and only if for
every ε > 0 there is a positive constant Ã(ε) so that

|�k| ≤ Ã(ε)
(R + ε)k1+···+knk

k1/2
1 · · · kkn/2

n

(k1 + · · ·+ kn)(k1+···+kn)/2
for every k1, ..., kn.

2. Let θ ∈ Z
(0,n−1)

∂̄
(U − B(a, R)), where U is an open neighborhood of

the closed ball B(a, R) = {ζ ∈ C
n : |ζ − a| ≤ R}. Taking a ρ > R so that

B(a, ρ) ⊂ U , we define the coefficients ck by the formula:

ck =
1

k1!...kn!

∫
ζ∈Sρ

(ζ1 − a1)k1 · · · (ζn − an)knθ(ζ) ∧ ω(ζ).

Let us also consider the differential forms ηk(·, a) defined by the formula

ηk(ζ, a) =
∂k1+···+knM(ζ, z)

∂zk1
1 · · · ∂zkn

n

∣∣∣∣
z=a

=

= βnn(n + 1) · · · (n + k1 + · · ·+ kn − 1)
(ζ̄1 − ā1)k1 · · · (ζ̄n − ān)kn

|ζ − a|2(n+k1+···+kn)
×

×
n∑

j=1

(−1)j−1(ζ̄j − āj)dζ̄1 ∧ . . . (j) . . . ∧ dζ̄n.

Then ηk(·, a) ∈ Z
(0,n−1)

∂̄
(Cn−{a}) and they have properties analogous to those of

ηk. We notice that although the differential form θ is defined only in U−B(a, R),
the series ∑

k

ckηk(ζ, a)

converges for ζ ∈ C
n − B(a, R) and defines there a ∂̄-closed (0, n− 1)-form.

Expansions in more general domains. Suppose that D is a pseudo-
convex domain in C

n, a1, ..., aN ∈ D and R1, ..., RN ≥ 0 so that

B(aj , Rj) ⊂ D (j = 1, ...N) and B(aj , Rj) ∩ B(am, Rm) = ∅ (j �= m).
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Let θ ∈ Z
(0,n−1)

∂̄

(
D − [B(a1, R1) ∪ · · · ∪ B(aN , RN )]

)
. Taking ρj > Rj so that

the balls B(aj , ρj) are pairwise disjoint, we define

cj
k =

1
k1!...kn!

∫
ζ∈Sρj

(ζ1 − aj
1)

k1 · · · (ζn − aj
n)knθ(ζ) ∧ ω(ζ).

Then, in view of the previous remark,
∑

k cj
kηk(ζ, aj) ∈ Z

(0,n−1)

∂̄
(Cn−B(aj , Rj)),

and therefore

ξ
def= θ −

N∑
j=1

∑
k

cj
kηk(ζ, aj) ∈ Z

(0,n−1)

∂̄

(
D − [B(a1, R1) ∪ · · · ∪ B(aN , RN )]

)
.

Moreover

∫
ζ∈Sρj

(ζ1 − aj
1)

k1 · · · (ζn − aj
n)knξ(ζ) ∧ ω(ζ) = 0 for all k and j.

It follows from Lemma 2 below that ξ is ∂̄-exact in D − [B(a1, R1) ∪ · · · ∪
B(aN , RN )]. The conclusion is that θ has the following expansion

θ =
N∑

j=1

∑
k

cj
kηk(ζ, aj) + ∂̄υ,

for some (0, n−2)-form υ with C∞ coefficients in D−[B(a1, R1)∪· · ·∪B(aN , RN )].

Lemma 2. Let us consider an open set Ω ⊂ C
n of the form Ω = D− (G1 ∪

. . . ∪ GN ) where D is a pseudoconvex set and G1, . . . , GN are compact convex
sets in C

n so that Gj ⊂ D and Gj ∩ Gm = ∅ for j �= m. Let us also consider
simple closed surfaces Sj, each one around the set Gj and close to it.

Then a differential form χ ∈ Z
(0,n−1)

∂̄
(Ω) is ∂̄-exact (in Ω) if and only if

(9)
∫

ζ∈Sj

e〈w,ζ〉χ(ζ) ∧ ω(ζ) = 0, for every j = 1, . . . , N and w ∈ C
n.
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Notice that (9) is equivalent to∫
ζ∈Sj

f(ζ)χ(ζ) ∧ ω(ζ) = 0, for f ∈ O(Cn) and j = 1, ..., N,

because the set of the functions e〈w,ζ〉, w ∈ C
n, is dense in the space of entire

functions (with the topology of uniform convergence on compact sets. Also this
is equivalent to∫

ζ∈Sj

(ζ1 − aj
1)

k1 · · · (ζn − aj
n)knχ(ζ) ∧ ω(ζ) = 0 for all k and j,

where aj are any preassigned points.

Proof of Lemma 2. The one direction follows from Stokes’s formula. The
other direction is a generalization of [1, Lemma 5] and its proof is similar in this
case too, so we will outline it.

First we exhaust the set Ω with a sequence of compact sets of the form

K = {λ ≤ 0} − ({ρ1 < 0} ∪ . . . ∪ {ρN < 0}),

so that the set {λ < 0} is a bounded strictly pseudoconvex set with smooth
boundary and the sets {ρ1 < 0}, . . . , {ρN < 0} are strictly convex neighborhoods
of the convex sets G1, . . . , GN . In other words, the sets {λ < 0} should exhaust
the pseudoconvex set D, while the set {ρj < 0} should shrink down to the set
Gj , for j = 1, . . . , N .

Fixing such a set K, we consider the map γ : (∂K)×int(K) → C
n as follows:

For (ζ, z) ∈ (∂K)× int(K), {γl(ζ, z)}n
l=1 is defined to be a Henkin-Ramirez map

of the strictly pseudoconvex set {λ < 0}, if ζ ∈ {λ = 0}, and

γl(ζ, z) =
∂ρj

∂ζl
(z) if ζ ∈ {ρj = 0}.

(For exhaustions of pseudoconvex sets by strictly pseudoconvex domains and
constructions of Henkin-Ramirez maps, see [5] and [6]).

Then
n∑

l=1

(ζl − zl)γl(ζ, z) �= 0, for (ζ, z) ∈ (∂K)× int(K),

and therefore we may write down the Cauchy-Leray formula:

(10) u = ∂̄z(Tq−1u)+Tq(∂̄u)+Lγ
q (u), for (0, q)-forms u in a neighborhood of K

(notation is as in [1, p. 912]).
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Now if χ ∈ Z
(0,n−1)

∂̄
(Ω) satisfies (9), it follows, as in the proof of [1,

Lemma 5], that Lγ
n−1(χ) = 0, and therefore (10) gives

χ = ∂̄z(Tn−2χ), in int(K).

Now the conclusion that χ is ∂̄-exact in Ω, follows from [1, Lemma 4], and this
completes the proof of the lemma.

4 – Mittag-Leffler type constructions of ∂̄-closed (0, n− 1)-forms

In Theorem 2, we saw when and how we can construct a ∂̄-closed (0, n −
1)-form, in the complement of a closed ball, with prescribed certain weighted
periods. The following theorem deals with the analogous question, when the
closed ball is replaced by the union of an infinite sequence of pair-wise disjoint
closed balls. Given the previous constructions, its proof is similar to the proof
of [3,Theorem 2].

Theorem 4. Let D be an open subset of C
n and B(aj , Rj), j = 1, 2, 3, ...,

a sequence of pair-wise disjoint closed balls, contained in D, with Rj ≥ 0. Let us
also assume that the set {a1, a2, a3, ...} of the centers of these balls is discrete in
D and set M =

⋃∞
j=1 B(aj , Rj). Suppose that for each j we are given a sequence

�j
k = �j

k1,..,kn
of complex numbers which satisfies the condition (GRj

). Then

there exists θ ∈ Z
(0,n−1)

∂̄
(Cn −M) so that

(M)
∫

ζ∈Sρj

(ζ1 − aj
1)

k1 · · · (ζn − aj
n)knθ(ζ) ∧ ω(ζ) = �j

k1,..,kn
, for all k and j,

where ρj > Rj, with the balls B(aj , ρj) being pair-wise disjoint.
If we assume, in addition, that the open set D and the balls B(aj , Rj) satisfy

the condition

(∗) D can be exshausted by a sequence of pseudoconvex sets Gν (ν = 1, 2, 3, . . . )

so that (∂Gν) ∩M = ∅ (∀ ν),

then the differential form θ, which satisfies (M), is unique up to a ∂̄-exact (0, n−
1)-form in C

n −M.

Corollary. With the notation and under the assumptions of the above
theorem (including condition (∗)), we have an isomorphism:

H
(0,n−1)

∂̄
(Cn −M) ∼=

∞∏
j=1

O(Bj),

where Bj = {ζ ∈ C
n : |ζ| < 1/Rj}.
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Proof. To define this isomorphism, let us associate, to each cohomology
class [θ] ∈ H

(0,n−1)

∂̄
(Cn−M), a sequence of holomorphic functions (hj)∞j=1 defined

by the power series:

hj(τ) =
∑

k

cj
kτk, for τ ∈ Bj ,

where
cj
k =

1
k1!...kn!

∫
ζ∈Sρj

(ζ1 − aj
1)

k1 · · · (ζn − aj
n)knθ(ζ) ∧ ω(ζ),

with the ρj > Rj chosen so that the balls B(aj , ρj) are pairwise disjoint.
Then it is easy to check (in view of the previous computations) that hj ∈

O(Bj) and that the map
[θ] → (hj)∞j=1,

gives the required isomorphism.
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Matrix-free numerical torus bifurcation

of periodic orbits

EUGENE ALLGOWER – ULF GARBOTZ – KURT GEORG†

Abstract: We consider systems

ϕ̇ = f(ϕ, λ)

where f : R
n×R → R

n. Such systems often arise from space discretizations of parabolic
PDEs. We are interested in branches (with respect to λ) of periodic solutions of such
systems.

In the present paper we describe a numerical continuation method for tracing such
branches. Our methods are matrix-free, i.e., Jacobians are only implemented as ac-
tions, this enables us to allow for large n. Of particular interest is the detection and
precise numerical approximation of bifurcation points along such branches: especially
period-doubling and torus bifurcation points. This will also be done in a matrix-free
context combining Arnoldi iterations (to obtain coarse information) with the calcula-
tion of suitable test functions (for precise approximations). We illustrate the method
with the one- and two-dimensional Brusselator.

1 – Introduction

Recently, Georg [5] discussed a general setting for performing numerical
continuation in a matrix-free setting. Transpose-free iterative linear solvers (see,
e.g., [15]) can be effectively incorporated into such large-scale problems. A fre-
quent application of numerical continuation concerns the detection of singular-
ities and bifurcation points on a solution branch. By means of suitable test

Key Words and Phrases: Matrix-free continuation – Numerical bifurcation – Torus
bifurcation.
A.M.S. Classification: 65P30 – 37M20 – 37G15
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functions various bifurcation points can also be detected and approximated in a
matrix free setting.

In this paper we describe how to numerically trace periodic orbits in a
matrix-free way. We also present a test function for detecting and approximating
torus bifurcations in a matrix-free setting. Numerical results for torus bifucation
arising in the Brusselator equations in one and two dimensions are given.

The results reproduce the branches computed in [12], [13], where the
Newton-Picard Gauss Seidel method was used. The test functions derived here
to characterize bifurcations were used to obtain highly accurate approximations
of the bifurcation points.

In order to describe the numerical tracing for the problems considered here,
we review several of the ideas in [5].

2 – The Problem Setting

We consider systems

(1) ϕ̇ = f(ϕ, λ)

where f : R
n × R → R

n. Such systems often arise from space discretizations of
parabolic PDEs. We are interested in branches (with respect to λ) of periodic
solutions of such systems.

We denote a solution of (1) which has initial value u for t = 0 with ϕ(u, t, λ).
We have that t �→ ϕ(u, t, λ) is periodic with period T iff

(2) ϕ(u, T, λ)− u = 0.

However, even fixing λ, all points u of the same periodic orbit would satisfy
this equation, hence we need an additional phase condition, say

(3) h(u, T, λ) = 0

to single out, at least locally, one point per orbit (see, e.g., [16]). In our numerical
example we used the Poincaré phase condition

(4) (u− û)T f(û, λ) = 0

where û is some current point close to some orbit for given λ. This point will,
of course, need to be adapted regularly. Let us remark that the Poincaré phase
condition has proven to be an effective choice, see [12], [13].

Let us form the equation

(5) H(u, T, λ) :=
[

ϕ(u, T, λ)− u
h(u, T, λ)

]
= 0.
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For almost all choices of λ there is a neighbourhood of the orbit such that 0 is a
regular value of H, if û is in that neigbourhood.

Hence, the periodic orbits of (1) can be traced by using numerical con-
tinuation methods (arising from varying λ) on equation (5). In particular, a
matrix-free approach is very suitable if we are interested in allowing large di-
mensions n, since an action of the (full) Jacobian H ′ can be readily obtained,
as we will see in Section 8. On the other hand, an explicit evaluation of the full
Jacobian for large n is prohibitively expensive (see, e.g., [12], [13]). Hence, in
this case direct linear solving methods are generally out of the question.

A numerical continuation method traces the solution branches of H−1(0).
The method is called matrix-free if the Jacobian of H is not calculated explicitly,
but only its action on a vector is given via some efficient process. In connection
with modern (transpose-free) iterative linear solvers, see, e.g., [15], this is often
a suitable approach for large systems, in particular for those investigated here.

Our main interest will center on the precise numerical detection of bifurca-
tion points along solution branches of H−1(0). These special points on a solution
branch are characterized by an additional equation

τ(u, T, λ) = 0

where τ : R
n ×R×R → R can be viewed as a so-called test function. Note that

also the detection and approximation of bifurcation points is carried out here in
a matrix-free context.

Let us briefly describe the different bifurcation scenarios we are interested
in for the periodic solutions of the dynamical system (1). Here is a list, see also
[16]:

1. We briefly mention the case of a simple bifurcation point. This case, how-
ever, is documented rather well in the literature.

2. A singularity which displays a characteristic feature of periodic solutions
is a period-doubling bifurcation. It turns out that the approach is rather
similar to the simple bifurcation.

3. The most intriguing bifurcation is a torus bifurcation, which is a bit similar
to Hopf bifurcation (and is sometimes also called a Hopf bifurcation of limit
cycles). This will be our main topic.

3 – Numerical Continuation

We consider the numerical tracing of a solution branch

s �→ (u(s), T (s), λ(s))

of Equation (5). For simplicity, we view s as an arc-length parameter. Numeri-
cally, we actually perform pseudo-arclength steps, see, e.g., [1], [8].
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A numerical continuation (predictor-corrector) method repeats two steps:

1. A predictor step generates an approximate point further along the solution
curve, typically by linear extrapolation.

2. A corrector step finds a point approximately on the solution curve and close
to the predicted point, typically by Newton-like steps.

The following algorithm sketches a possible implementation of this idea. For
a more compact notation, we use x := (u, T, λ) ∈ R

n+2, x̃ := (ũ, T̃ , λ̃) ∈ R
n+2.

– Algorithm 6 (Matrix-Free Predictor-Corrector)

1. Initialization
choose x such that H(x) ≈ 0
choose approximate tangent S such that H ′(x)S ≈ 0, ||S|| = 1
choose step size h > 0
choose small reduction factor 1 >> η > 0

2. repeat
(a) Predictor

x̃ ← x + hS

(b) Corrector
find ∆x such that∥∥∥∥

[
H(x̃)

0

]
+
[

H ′(x̃)
ST

]
∆x

∥∥∥∥ ≤ η

∥∥∥∥
[

H(x̃)
0

]∥∥∥∥
via a transpose-free iterative linear solver, see, e.g., [15]
x̃ ← x̃ + ∆x

(c) determine new h

S ← (x̃− x)/||x̃− x||
x ← x̃

Remark 7. The corrector step approximately solves

[
H(x)

ST (x− x̃)

]
= 0

for x using an inexact Newton step. In our numerical examples, we use several
such Newton steps in fact while reducing η.
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4 – Calculating Special Points

When tracing a solution branch

s �→ (u(s), T (s), λ(s)) =: x(s)

of (5), one is often interested in special points on this branch. They can be of
various types. Our cases of interest are covered by requiring that a certain test
function τ : R

n+2 → R changes sign. Hence we seek a point x∗ ∈ R
n+2 such that

(8)
[

H(x∗)
τ(x∗)

]
= 0 .

The following Lemma is easy to see:

Lemma 9. Let x∗ = x(s∗) be a regular zero point of H, i.e., the Jacobian
H ′(x∗) has maximal rank. Then the following statements are equivalent:

1. τ(x(s)) has a simple zero at s = s∗.
2. x∗ is a regular zero point of (8).

Once an approximation of x∗ is found, we could, of course, use an inexact
Newton’s method directly on (8) to obtain a better approximation, i.e., without
continuing to follow a path. Note, however, that this places a calculation of τ
into the innermost loop of the method, i.e., while evaluating the functions in (8).

In the context of bifurcation analysis an evaluation of τ may be rather costly,
e.g., in the case of torus bifurcation, see Theorem 13 below. Therefore, in our
path following context, we use a somewhat different approach, which places an
evaluation of τ into the outermost loop: During the numerical continuation, we
monitor the sign of τ . Assume that a situation τ(x−)τ(x+) < 0 is encountered
for two subsequent points x−, x+ on the solution curve. Then we introduce the
approximate tangent

S := (x+ − x−)/||x+ − x−||

and the linear approximations

p(s) = x− + s S ≈ x(s)

Now let q(s) be the solution of[
H(q)

ST (q − p(s))

]
= 0 .

Hence, q(s) can be viewed as the corrector-point to the predictor point p(s).
Clearly, q(s) can be approximated via an iterative nonlinear solver using a
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matrix-free double loop, the outer loop consisting of a Newton iteration, and
the inner loop being a transpose-free iterative linear solver. We now find a zero
of the function s �→ τ(q(s)) via a secant-like method (e.g., Brent’s Method,
see [2]).

The resulting method for calculating x∗ is implemented as a matrix-free
triple loop, the outer loop being the secant-like method. Note, however, that
the iterative methods representing the two inner loops can be started with in-
creasingly improved values. Alternatively, a modification of this approach can
be implemented into the numerical continuation method as a steplength strat-
egy, see [1, Section 8.1] for details. This modification permits a matrix-free
implementation consisting of a double loop.

We will apply these ideas to test functions τ that signal certain types of
bifurcation points.

5 – Simple Bifurcation Points

Bordered matrices are an important tool for a numerical unfolding of sin-
gularities. For example, this is one of the principal themes of the book [6]. A
consequence of [6, Proposition 3.2.1] is Keller’s Lemma, see [8]:

Let A ∈ R
n×n have rank n− k, and let B, C ∈ R

n×k. Then[
A B

CT 0

]
is nonsingular if and only if

[A B ] and
[

A
CT

]
have full rank. Since the set of invertible matrices is open in the space of square
matrices, the choice of matrices B, C such that the above matrices have full
rank is usually easy to fulfill. However, for numerical purposes, one needs to
take issues of condition into account, see Remark 20.

The following is a well-known fact, see, e.g., [5], [6]. A simple bifurcation
point x∗ = x(s∗) is characterized by the fact that the determinant

det
[

H ′(x(s))
ST

]
changes sign at s = s∗. Here S has to be some approximate tangent, i.e.,
S ≈ ẋ(s∗). However, this is not a numerically suitable choice of a test function.
A better choice is to consider the following bordered system:


[

H ′(x(s))
ST

]
a

bT 0


[ ξ(s)

τ(s)

]
=
[

0
1

]
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If a, b ∈ R
n+2 are chosen such that

[ [
H ′(x(s∗))

ST

]
a

]
and



[

H ′(x(s∗))
ST

]
bT




have full rank, then the matrix of the bordered system is non-singular for s ≈ s∗

where x∗ = x(s∗) is a simple bifurcation point. It is easy to see (e.g., via Cramer’s
Rule) that τ is a test-function for the simple bifurcation point x∗, i.e., τ has a
simple zero at s = s∗.

Hence, in principle, we could use the method described in Section 4 to detect
and approximate simple bifurcation points. However, the approximation cannot
be executed very accurately since the Jacobian[

H ′(x(s))
ST

]

becomes singular at s = s∗, and hence the numerical tracing of x(s) becomes
unstable for s ≈ s∗. It is, however, possible to obtain a matrix-free stable
method, see [5].

6 – Period-Doubling Bifurcation

If u is a T -periodic orbit of (1), i.e., H(u, T, λ) = 0, then ∂1ϕ(u, T, λ)
is called the monodromy matrix. A simple period-doubling bifurcation point
x∗ = (u∗, T ∗, λ∗) is characterized in the following way, see, e.g., [16]: For an
algebraically simple real eigenvalue ν(s) of s �→ ∂1ϕ(u(s), T (s), λ(s)) there holds
ν(s∗) = −1 and ν′(s∗) �= 0. Note that this implies that the determinant of

∂1ϕ
(
u(s), T (s), λ(s)

)
+ I

changes sign at s = s∗.
In analogy to Section 5 we obtain the following numerical test function for

detecting such a point while numerically following the curve s �→ x(s).

Theorem 10. Let x∗ = x(s∗) be a simple period-doubling bifurcation point
as defined above. Suppose b, c ∈ R

n are chosen such that the bordered matrix in
the following system is invertible

(11)
[

∂1ϕ
(
u(s), T (s), λ(s)

)
+ I b

cT 0

] [
ξ(s)
τ(s)

]
=
[

0
1

]
.

Then the system is non-singular for s ≈ s∗, and τ(s) has a simple zero at s = s∗.
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Contrary to a simple bifurcation point, however, a simple period-doubling
bifurcation point is not a singular point on the curve H−1(0), and hence the
method described in Section 4 applies. The only additional complexity of the
problem comes from the calculation of τ which requires one matrix-free loop.

7 – Torus bifurcation

We consider again a local (i.e., for s≈s∗) parametrization s �→(u(s),T (s),λ(s))
of H−1(0), and define the monodromy matrix A(s) := ∂1ϕ

(
u(s), T (s), λ(s)

)
. A

simple torus bifurcation point

(u∗, T ∗, λ∗) = (u(s∗), T (s∗), λ(s∗))

is characterized in the following way, see, e.g., [6], [10], [16]: Let ν(s) + iω(s) be
an algebraically simple complex eigenvalue of A(s) for s ≈ s∗. Hence

A(s)(v1(s) + iv2(s)) = (ν(s) + iω(s))(v1(s) + iv2(s))

for linearly independent v1(s), v2(s) ∈ R
n. Let the two eigenvalues furthermore

cross the unit circle in the sense that

ε(s) := ν(s)2 + ω(s)2 − 1

has a simple zero at s = s∗ with ω(s∗) �= 0. It follows that

(A− ν)v1 = −ωv2 ,

(A− ν)v2 = ωv1 .

Hence, if we consider the real vector space

E(s) = span { v1(s), v2(s) } ,

then the kernel of

(A(s)− ν(s) I)2 + ω(s)2 I = A(s)2 − 2ν(s)A(s) + I +ε(s) I

is E(s). Also note that the two-dimensional space E(s) is invariant under A(s),
and that A(s) is bijective on E(s) for s ≈ s∗ since its two eigenvalues are close
to the unit circle.

The following theorem describes a test function for a simple torus bifur-
cation point which we have implemented numerically. The introduction of the
system (14) below was motivated by similar systems for Hopf bifurcation, such
as [3], [17].
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For the proof of the theorem we introduce the following notation:

Definition 12. For f, g : R
k1 → R

k2 we define f(z) � g(z) if there is an
ε > 0 such that ||f(z)|| ≥ ε||g(z)|| for sufficiently small ||z||.

Theorem 13. Let (u(s∗), T (s∗), λ(s∗)) be a simple torus bifurcation point
as described above. Assume that c, d ∈ R

n are chosen so that
A(s∗)2 − 2ν(s∗)A(s∗) + I

cT

dT


 and

[
A(s∗)− (ν(s∗)± iω(s∗)) I

dT

]

have full rank. Note that this implies that there exists a unique e(s) ∈ E(s) with
cT e(s) = 1, dT e(s) = 0 for s ≈ s∗. Furthermore assume that a, b ∈ R

n are
chosen so that

[A(s∗)2− 2ν(s∗)A(s∗)+ I a b] and [A(s∗)2 − 2ν(s∗)A(s∗)+ I a A(s∗)e(s∗)]

have full rank. Then the bordered matrix in the linear system

(14)


A(s)2 − 2µA(s) + I a b

cT 0 0
dT 0 0




 ξ(µ, s)

α(µ, s)
β(µ, s)


 =


 0

1
0




is non-singular for s ≈ s∗ and µ ≈ ν(s∗). Hence
 ξ(µ, s)

α(µ, s)
β(µ, s)




is well-defined. Furthermore, the following holds:

1. 
 ξ(ν(s∗), s∗)

α(ν(s∗), s∗)
β(ν(s∗), s∗)


 =


 e(s∗)

0
0


 .

2. ∂1β(ν(s∗), s∗) �= 0, hence by the implicit function theorem the equation
β(µ, s) = 0 defines a parametrization µ(s) for s ≈ s∗ such that β(µ(s), s) = 0
and µ(s∗) = ν(s∗).

3. τ(s) := α(µ(s), s) has a simple zero at s = s∗ and can hence be used as a
test function for torus bifurcation.
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Proof. The non-singularity of the linear system is an immediate conse-
quence of the assumptions on a, b, c, d and that the complex eigenvalue ν(s∗) +
iω(s∗) is simple.

1. The first claim follows from the uniqueness of the solution and the definition
of e(s).

2. Differentiating the linear system with respect to µ gives
−2A(s) 0 0

0 0 0
0 0 0




 ξ(µ, s)

α(µ, s)
β(µ, s)


+


A(s)2 − 2µA(s) + I a b

cT 0 0
dT 0 0




 ∂1ξ(µ, s)

∂1α(µ, s)
∂1β(µ, s)


=

=


 0

0
0




Now we use Cramer’s Rule to obtain that

∂1β(ν(s∗),s∗)=

det


A(s∗)2 − 2ν(s∗)A(s∗) + I a 2A(s∗)ξ(ν(s∗), s∗)

cT 0 0
dT 0 0




det


A(s∗)2 − 2ν(s∗)A(s∗) + I a b

cT 0 0
dT 0 0




�= 0

because of the assumptions on a, b, c, d and since A(s∗)ξ(ν(s∗), s∗) =
A(s∗)e(s∗) �= 0.

3. First we show that

(15) det
[

∂1α(ν(s∗), s∗) ∂2α(ν(s∗), s∗)
∂1β(ν(s∗), s∗) ∂2β(ν(s∗), s∗)

]
�= 0 .

For this purpose we write

A2(s)− 2µA(s) + I = (A(s)− (µ− i
√

1− µ2) I)︸ ︷︷ ︸
=: A1(µ, s)

(A(s)− (µ + i
√

1− µ2) I)︸ ︷︷ ︸
=: A2(µ, s)

We will also make use of three lemmas which we list after this proof. Ac-
cording to [3, Proposition 1.1] we have to show two things to obtain (15):
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(a) A1(µ, s)v � v and A2(µ, s)v � v uniformly in (µ , s) ≈ (ν(s∗) , s∗)
for vT d = 0. This is a fairly standard consequence of the fact that
µ(s∗) + iω(s∗) is a simple eigenvalue of A(s∗) and of the assumptions
on d, see Lemma 19 for more details.

(b)

(16) σn−1(A2(s)− 2µA(s) + I) � |s|+ |µ− ν(s∗)|

Here σ1(B) ≥ σ2(B) ≥ . . . σn(B) ≥ 0 denote the singular values of a
matrix B ∈ R

n×n. To prove (16), we first use Lemma 17 to obtain

σn(A(s)− (µ + i
√

1− µ2) I) � (µ− ν(s)) + i(
√

1− µ2 − ω(s)) .

We want to use Lemma 18 with

k(µ, s) :=
[

µ− ν(s)√
1− µ2 − ω(s)

]

and calculate the Jacobian:

k′(ν(s∗), s∗) =
[

1 −ν′(s∗)
−ν(s∗)/ω(s∗) −ω′(s∗)

]
.

We obtain

det k′(ν(s∗), s∗) = ω(s∗)−1(−ω′(s∗)ω(s∗)− ν′(s∗)ν(s∗)) �= 0 .

Here we used the fact that ν2(s)+ω2(s)−1 has a simple zero at s = s∗

and thus the derivative 2ν(s∗)ν′(s∗) + 2ω(s∗)ω′(s∗) �= 0. Hence, by
using Lemma 18, we can continue our above estimate to conclude

σn(A2(µ, s)) = σn(A(s)− (µ + i
√

1− µ2) I) � |s|+ |µ− ν(s∗)| .

Combining this with the fact that

σn−1(A1(µ, s)) = σn−1(A(s)− (µ− i
√

1− µ2) I) � 1

for [s, µ]≈ [0, ν(s∗)], we now obtain from σn−1(A1A2)≥σn−1(A1) σn(A2)
the nondegeneracy condition (16).
We have established (15) and use this in the following way. Let us
define α̃(s) := α(µ(s), s). We know that α̃(s∗) = 0 and have to show
that α̃′(s∗) �= 0. We have

α̃′(s∗) = ∂1α(ν(s∗), s∗) µ′(s∗) + ∂2α(ν(s∗), s∗) .
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From β(µ(s), s) = 0 we obtain

0 = ∂1β(ν(s∗), s∗) µ′(s∗) + ∂2β(ν(s∗), s∗) .

Note that ∂1β(ν(s∗), s∗) �= 0 was already established. Eliminating
µ′(s∗) in the last two equations leads to

α̃′(s∗) = ∂2α(ν(s∗), s∗)− ∂1α(ν(s∗), s∗)
∂2β(ν(s∗), s∗)
∂1β(ν(s∗), s∗)

which is different from zero because of (15).

The previous proof used the following lemmas:

Lemma 17. Let s ∈ R �→ B(s) ∈ R
n×n and s ∈ R �→ ρ(s) ∈ C be smooth

and such that ρ(s) is an eigenvalue of B(s) and ρ(s∗) is an algebraically simple
eigenvalue of B(s∗). Then σn(B(s)− ρ(s) I) � |ρ(s∗)− ρ(s)|.

A proof can be obtained by following arguments in [3, p. 533].
The next lemma is well-known:

Lemma 18. If k : R
2 → R

2 is smooth, k(y0) = 0, and k′(y0) non-singular,
then k(y) � y − y0.

The following lemma seems to be fairly standard, see, e.g., the techniques
used in [6].

Lemma 19. Let B : R
k → R

m×m be continuous and such that B(0) has 0
as an algebraically simple eigenvalue. Let d ∈ R

m be such that

[
B(0)
dT

]

has full rank. Then

B(λ)v � v for v ∈ R
m with v⊥ d

uniformly for λ ≈ 0.



[13] Matrix-free numerical torus bifurcation of periodic orbits 45

Remark 20. Note that the theorem gives a local result. We therefore
propose to use it in conjunction with an Arnoldi iteration: While following a
branch of periodic solutions, we occasionally apply an Arnoldi-type iteration (we
used ARPACK [11]) to obtain snapshots of the dominant eigenvalues (Floquet
multipliers) of the monodromy matrix ∂1ϕ(u, T, λ). The snapshot will show
when a pair of conjugate complex eigenvalues passes through the unit circle.
We then use the above test-function as described in Section 4 to approximate
the torus bifurcation point more accurately. Note that the Arnoldi-like method
not only gives us guesses for µ via the real part of the approximate eigenvalue,
but also choices for a and b via the real and imaginary part of the approximate
eigenvector. This proved to be an effective and efficient strategy.

8 – Implementing the action of H ′(u, T, λ)

As has been seen in the preceding sections, in order to perform the predictor-
corrector steps of numerical continuation and the evaluation of the test func-
tions for bifurcations, it is necessary to implement the action of the Jacobian

H ′(u, T, λ) =
[

∂1ϕ− I ∂2ϕ ∂3ϕ
∂1h ∂2h ∂3h

]
(u, T, λ) efficiently, see also [4], [12], [13].

1. The action v �→ ∂1ϕ(u, T, λ)v is obtained in the following way: Defining

z(t) := ∂1ϕ(u, t, λ)v

and differentiating the equations

(21) ∂2ϕ(u, t, λ) = f(ϕ(u, t, λ), λ), ϕ(u, 0, λ) = u

with respect to u leads to the following description: We solve

(22) ż = ∂1f(ϕ(u, t, λ), λ) z, z(0) = v

and obtain
∂1ϕ(u, T, λ)v = z(T ).

2. The vector ∂3ϕ(u, T, λ) is obtained in the following way: Defining

ξ(t) = ∂3ϕ(u, t, λ)

and differentiating the equations (21) with respect to λ leads to the following
description:
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We solve

(23) ξ̇ = ∂1f(ϕ(u, t, λ), λ) ξ + ∂2f(ϕ(u, t, λ), λ), ξ(0) = 0

and obtain
∂3ϕ(u, T, λ) = ξ(T ).

3. The vector

(24) ∂2ϕ(u, T, λ) = f(ϕ(u, T, λ), λ)

is immediately obtained from (21)

The action of the other derivatives contained in H ′(u, T, λ) are even more obvi-
ous.

9 – The numerical calculation of ϕ and its derivatives

The previously indicated implementations all rely on an approximation of
the orbit

t �→ ϕ(u, t, λ).

Our present aim is only to demonstrate the usefulness and applicability of
the matrix-free approach. We need to approximate the orbit on a grid t0 =
0, t1 , . . . , tm−1, tm = T . For simplicity and convenience, we use an equidistant
grid ti = ih in our numerical example, and note that for greater efficiency an
adaptive grid must be taken into consideration.

Since we are mainly interested in cases where ϕ̇ = f(ϕ, λ) is obtained from
parabolic PDEs via space discretizations, we concentrate on the case where ϕ̇ =
f(ϕ, λ) is stiff, hence we have to consider the use of an implicit solver for the
time steps. The main point here is that we need to solve a nonlinear system for
each time step.

For simplicity, in our numerical example we consider the implicit midpoint
rule, i.e., we approximate ϕ(u, ti, λ) ≈ ϕi via

ϕi − ϕi−1

h
= f

(
ϕi + ϕi−1

2
, λ

)
.

We solve this for ϕi using an inexact Newton’s method, see, e.g., [9], where
the linear equations (per Newton step) are solved with an iterative linear solver
(see, e.g., [15]). For a preconditioner we use an (occasionally updated) sparse
(possibly incomplete) LU factorization of the approximate Jacobian

I−h∂1f (v, λ) where v ≈ ϕi .
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A few preconditioners are stored along an orbit, and are used again for small
variations in u and λ.

The linear differential equation (22) is solved by the same implicit midpoint
rule. This leads to the linear systems(

I−h

2
∂1f

(
ϕ

(
u,

ti+1 + ti
2

, λ

)
, λ

))
zi+1 =

(
I +

h

2
∂1f

(
ϕ

(
u,

ti+1 + ti
2

, λ

)
, λ

))
zi

which we have to solve for zi+1. Typically we would replace the unknown
ϕ(u, ti+1+ti

2 , λ) with ϕi+1+ϕi

2 .
The linear differential equation (23) is also solved by the implicit midpoint

rule:(
I−h

2
∂1f

(
ϕ

(
u,

ti+1 + ti
2

, λ

)
, λ

))
ξi+1 =

(
I +

h

2
∂1f

(
ϕ

(
u,

ti+1 + ti
2

, λ

)
, λ

))
ξi+

+ h∂2f

(
ϕ

(
u,

ti+1 + ti
2

, λ

)
, λ

)

It is convenient to use the same iterative linear solver for all three cases,
with the same preconditioner. We finally note that similar remarks would hold
if we replaced the implicit midpoint rule with a higher order implicit solver for
(21)-(23).

10 – Numerical Example

The Brusselator in one space dimension (z-variable) is modelled by the
equations

(25)

∂X

∂t
=

DX

L2

∂2X

∂z2
+ X2Y − (B + 1)X + A,

∂Y

∂t
=

DY

L2

∂2Y

∂z2
−X2Y + BX

with Dirichlet boundary conditions

(26)
X(t, z = 0) = X(t, z = 1) = A,

Y (t, z = 0) = Y (t, z = 1) = B/A,

see, e.g., [7]. As in [12], we use the characteristic length L as the bifurcation
parameter while the other parameters are fixed at A = 2, B = 5.45, DX = 0.008
and DY = 0.004.
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It is known, see [12], that the first bifurcation from the trivial solution
X ≡ A, Y ≡ B/A is a Hopf bifurcation at L ≈ 0.513 and the bifurcating branch
of periodic orbits has two torus bifurcation points between 1.7 and 1.9.

Using a numerical continuation method as described in Section 3, we recon-
firmed the bifurcation diagram published in [12].

As an example, we used our torus test function described in Theorem 13
together with the approach described in Section 4 to calculate the two torus
bifurcation points more accurately. For this purpose, we chose m = 100 time
steps to discretize the periodic orbit as described in Section 8. In the space co-
ordinate z we used a central difference discretization with n (equidistant) interior
points.

We note that this example is simple in that the solutions are known to be
smooth. In fact, for more precise approximations, it would be adequate to use
higher order discretizations in space and time. Also, in general, our approach
should be modified to allow for adaptive meshes, in particular with respect to
time.

However, here we just want to make the point that our matrix-free numerical
approach is capable of handling large structures involving a variety of singulari-
ties. More complex approaches involving adaptive meshes and/or higher orders
are currently under investigation.

For the first torus bifurcation we obtained

n L
50 1.778310

100 1.783406
200 1.784757

For the second torus bifurcation we obtained

n L
50 1.864434

100 1.872761
200 1.874973

This data supports the claim that the approximation is quadratic in the
space discretization (neglecting the time discretization which was held fixed).
Now we consider the Brusselator in two space dimensions (x and y-coordinates)

∂X

∂t
=

DX

L2

(
∂2X

∂x2
+

∂2X

∂y2

)
+ X2Y − (B + 1)X + A,

∂Y

∂t
=

DY

L2

(
∂2Y

∂x2
+

∂2Y

∂y2

)
−X2Y + BX
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on the unit square [0, 1] × [0, 1] with the Dirichlet boundary conditions corre-
sponding to (26) on all boundaries.

Fixing the same parameter values as above, the first branch of periodic
orbits bifurcates from the trivial solution at L ≈ 0.72.

This branch has been computed in [14] for similar parameter values. As
in [14], we continued that branch and detected a torus bifurcation point at
L ≈ 1.48, see Figure 1 and Figure 2. We again used our torus test function
described in Theorem 13 together with the approach described in Section 9 to
precisely calculate this torus bifurcation point.

3.24

3.26

3.28

3.3

3.32

3.34

1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54

T

lambda

torus bifurcation

Fig. 1: The numerical continuation for a 20 × 20 space discretization.

For this purpose, we again chose m = 100 time steps to discretize the
periodic orbit as described in Section 8. In the space co-ordinates x, y we used
a central difference discretization with n× n (equidistant) interior points.

Note that the resulting computations are already relatively large for direct
methods (i.e., generating the monodromy matrix). With our matrix-free ap-
proach, however, we were able to perform the required calculations for n = 40
on a 600MHz laptop.

The numerical continuation method and the evaluation of the test function
have as the main computational expense the time integrations described in Sec-
tion 9. The stiff solver used there makes use of an iterative linear solver which
needs to be preconditioned. We chose some time points on the orbit to generate a
sparse LU-factorization of the linear problem, and we used this LU-factorization
as a preconditioner for neighboring times, and also for similar parameter val-
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Fig. 2: The trajectories of the 10 eigenvalues with largest magnitude on the λ-interval
[1.47639, 1.48032] for a 40 × 40 space discretization.

ues during the continuation procedure. For finer space discretizations we would
propose to use only incomplete LU-factorizations.

For the torus bifurcation we obtained

grid L
10× 10 1.47224
20× 20 1.47756
40× 40 1.47930
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This data again supports the claim that the approximation is quadratic
in the space discretization (neglecting the time discretization which was held
fixed). Additional efficiencies could be effected by incorporating higher order
spatial discretizations and variable time steps.
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Birkhäuser Verlag, Basel, 1987, pp. 122-130.

[8] H. B. Keller: Numerical solution of bifurcation and nonlinear eigenvalue prob-
lems, In P. H. Rabinowitz, editor, Applications of Bifurcation Theory, Academic
Press, New York, London, 1977, pp. 359-384.

[9] C. T. Kelley: Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, 1995.

[10] Yu. A. Kuznetsov.: Elements of Applied Bifurcation Theory , volume 112 of
Appl. Math. Sci. Springer, second edition, 1998.

[11] R.B. Lehoucq – D.C. Sorensen – C. Yang: ARPACK Users’ Guide, Software,
Environments, Tools. Society for Industrial and Applied Mathematics, 1998.

[12] K. Lust – D. Roose: Computation and bifurcation analysis of periodic solu-
tions of large-scale systems, In E. Doedel and L.S. Tuckerman, editors, Numerical
Methods for Bifurcation Problems and Large-Scale Dynamical Systems. Springer-
Verlag, 2000.

[13] K. Lust – D. Roose – A. Spence – A. R. Champneys: An adaptive Newton-
Picard algorithm with subspace iteration for computing periodic solutions, SIAM
Journal on Scientific Computing, 19 (1998), 1188-1209.



52 EUGENE ALLGOWER – ULF GARBOTZ – KURT GEORG [20]

[14] D. Roose – S. Vandewalle: Efficient parallel computation of periodic solutions
of partial differential equations, In R. Seydel and H. Troger, editors, Bifurcations
and Chaos: Analysis, Algorithms, Applications, ISNM, Birkhäuser Verlag, Basel,
1991, pp. 278-288

[15] Y. Saad: Iterative Methods for Sparse Linear Systems, PWS Publishing Com-
pany, 1996.

[16] R. Seydel: From Equilibrium to Chaos. Practical Bifurcation and Stability Anal-
ysis, Elsevier, New York, 1988.

[17] B. Werner: Computation of Hopf bifurcation with bordered matrices, SIAM J.
Numer. Anal., 33 (1996), 435-455.

Lavoro pervenuto alla redazione il 15 febbraio 2003
ed accettato per la pubblicazione il 21 aprile 2004.

Bozze licenziate il 14 febbraio 2005

INDIRIZZO DEGLI AUTORI:

Eugene Allgower, Ulf Garbotz – Department of Mathematics – Colorado State University –
Fort Collins, CO 80523
E-mail: allgower@math.colostate.edu ulf@garbotz.de

Work partially supported by NSF via grant # DMS-9870274.



Rendiconti di Matematica, Serie VII
Volume 25, Roma (2005), 53-67

Representation formulas and Fatou-Kato

theorems for heat operators on stratified groups

ANDREA BONFIGLIOLI – FRANCESCO UGUZZONI

Abstract: In this note, we provide a characterization of non-negative L-caloric
functions on strips, where L is a sub-Laplacian on a stratified group. We prove represen-
tation results, Fatou-type and uniqueness theorems analogous to the classical Poisson-
Stieltjes formula and to Kato’s theorem concerning with positive solutions to the heat
equation.

1 – Introduction and main results

A stratified group is a connected and simply connected Lie group G whose
Lie algebra g admits a stratification, i.e., a vector space direct sum decomposi-
tion g = G1 ⊕ . . . ⊕ Gr with [G1,Gi] = Gi+1, [G1,Gr] = {0}. Stratified groups
(also known as Carnot groups) have been introduced by Folland [7] and after-
wards deeply studied by various authors, see e.g., Rothschild and Stein [15],
Folland and Stein [8], Varopoulos, Saloff-Coste and Coulhon [18]. In
particular, Rothschild and Stein pointed out that any Hörmander operator, sum
of squares of vector fields, can be locally approximated by a sub-Laplacian on
a stratified group. Recently, analysis on such groups has received new and sig-
nificant impulses in many directions. Indeed, Carnot groups appear as tangent
groups of subriemannian manifolds (see e.g., [12]) and they find many applica-
tions in mechanics and in control theory. We also refer to the rich bibliography
in the recent monographs [1], [9].

Key Words and Phrases: Carnot groups – Non-negative caloric functions – Fatou
and Kato theorems – Uniqueness theorems.
A.M.S. Classification: 31B25 – 35C15 – 35H20 – 43A80
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In this paper, we give a contribution in the study of heat operators H =
L− ∂t, where L is a sub-Laplacian on G. The study of parabolic-type operators
on G has experienced an increasing interest, also in relation to some problems
from image processing (see e.g., [5], [6], [13]) and from the geometric theory of
several complex variables. In particular, the operator H (on a Carnot group G)
intervenes in the study of the linearizations of fully non-linear equations such as
the Levi curvature equation [4], [11].

In this note, which is a natural sequel of a study started in [2] (and related
to the above mentioned linearizations), we deal with a question left unanswered
in [2], giving a characterization of non-negative L-caloric functions and proving
some representation formulas. We also prove some results analogous to the clas-
sical Fatou-type and uniqueness theorems of Kato [10] concerning with positive
solutions to the heat equation. We point out that similar topics have been stud-
ied in [3], [14]: in [3], Fatou theory is generalized to the non-negative solutions of
some sub-elliptic equations on non-tangentially accessible domain; in [14], Fatou-
Kato results are obtained for a class of ultraparabolic Hörmander operators on
different homogeneous Lie groups, making use of some Gaussian estimates of
the fundamental solution analogous to the ones used here. Our main results are
contained in Theorems 1.1, 1.3 and 1.4 below.

We point out that many results presented in this paper are valid in more
general contexts. Indeed, the needed tools are mainly a local parabolic Harnack
inequality and techniques related to Gaussian bounds (we refer to [18] for such
results and related topics on general groups). However, our aim is only to answer
to some questions arisen in the study of the above mentioned linearizations rather
than to establish an axiomatic theory on the subject. Hence, we shall restrict to
the setting of Carnot groups.

Theorem 1.1. Let u be a real valued function defined on a strip. The
following statements are equivalent:

(i) u is a non-negative L-caloric function in some strip R
N × (0, δ1).

(ii) For some Radon measure σ on R
N , u has the representation

(1) u(x, t) =
∫

RN

Γ(x, t; ξ, 0) dσ(ξ),

for every (x, t) in some strip R
N × (0, δ2).

Moreover, if (i)-(ii) hold, then

u(·, t) −→ σ, as t → 0+, in the weak sense of measures,(2)

u(x, t) −→ ϕ(x), as t → 0+, for almost every x ∈ R
N ,(3)

where ϕ ∈ L1
loc(R

N ) is the density of the absolutely continuous part of σ w.r.t. the
Lebesgue measure.
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Throughout the paper, we call L-caloric any solution u of the equation
Hu = 0, where H is the heat operator defined in (7) below. Moreover, a Radon
measure is understood to be a positive (regular) Borel measure on R

N , finite
on compact sets. Finally, by (2) we mean

∫
ψ(x) u(x, t) dx −→

∫
ψ(x) dσ(x),

as t → 0+, for every continuous function ψ with compact support. The other
notations are explained below. The following remark shows how the strips in (i)
and (ii) of the above theorem are related.

Remark 1.2. If (i) holds then we have the representation (1) in the whole
strip R

N × (0, δ1) for a Radon measure σ on R
N satisfying the growth condition

(4)
∫

RN

exp(−ν d2(ξ)) dσ(ξ) < ∞,

where ν = c/δ1; vice-versa, if (ii) holds, then the measure σ satisfies (4) with
ν = c/δ2 and (i) follows with δ1 = δ2/c2. Here c > 0 is a structural constant
only depending on L.

The following result is a step in the proof of Theorem 1.1, beside being of
its own interest.

Theorem 1.3. Let u be a non-negative L-caloric function in R
N × (0, T ).

Then, for every ε > 0, we have the following Poisson-Stieltjes type representation
formula

(5) u(x, t + ε) =
∫

RN

Γ(x, t; ξ, 0) u(ξ, ε) dξ, (x, t) ∈ R
N × (0, T − ε).

From Theorem 1.1 and using as a main step Lemma 2.7 in the next section,
we can also derive the following Kato-type uniqueness result.

Theorem 1.4. Let u be a non-negative L-caloric function in R
N × (0, T ).

If

lim
t→0+

u(x, t) = 0 for almost every x ∈ R
N ,

lim sup
t→0+

u(x, t) < ∞ for every x ∈ R
N ,

then u vanishes identically.

We explicitly remark that the lim sup-condition in Theorem 1.4 cannot be
weakened, as one can easily realize taking u = Γ.
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We now explain all the notation. First of all, we give an operative definition
of Carnot group. Our definition is equivalent to the one of Folland, up to iso-
morphism. Let ◦ be an assigned Lie group law on R

N . Suppose R
N is endowed

with a homogeneous structure by a given family of Lie group automorphisms
{δλ}λ>0 (called dilations) of the form

δλ(x) = δλ(x(1), . . . , x(r)) = (λx(1), . . . , λrx(r)).

Here x(i) ∈ R
Ni for i = 1, . . . , r and N1 + . . . + Nr = N . We denote by g

the Lie algebra of (RN , ◦). For i = 1, . . . , N1, let Xi be the vector field in g

that agrees at the origin with ∂/∂x
(1)
i . We make the following assumption: the

Lie algebra generated by X1, . . . , XN1 is the whole g. With the above hypothe-
ses, we call G = (RN , ◦, δλ) a Carnot group. If Y1, . . . , YN1 is any basis for
span{X1, . . . , XN1}, the second order differential operator

L =
N1∑
i=1

Y 2
i

is called a sub-Laplacian on G. Since X1, . . . , XN1 generate the whole g, which
has rank N at every point, any sub-Laplacian L satisfies Hörmander’s hypoel-
lipticity condition. We denote by Q =

∑r
j=1 jNj the homogeneous dimension of

G. Then |δλ(E)| = λQ |E| for any measurable set E. Here and in the sequel, we
denote by | · | the Lebesgue measure on R

N . This measure is invariant w.r.t. the
left and right translations on G.

The simplest example of Carnot group is the additive Euclidean group
(RQ,+); in this case, the sub-Laplacians are exactly the constant coefficient
elliptic operators. The most significant (and simple) non-abelian example of
Carnot group is the Heisenberg group; in this case, a remarkable sub-Laplacian
is the real part of the Kohn-Spencer Laplacian.

Throughout the paper, d will denote a fixed homogeneous norm on G. For
instance, we choose d = γ1/(2−Q), where γ denotes the fundamental solution
of the sub-Laplacian

∑N1
i=1 X2

i . We recall that a homogeneous norm on G is a
continuous function d : R

N → [0,∞), smooth away from the origin, such that
d(δλ(x)) = λ d(x), d(x−1) = d(x), and d(x) = 0 iff x = 0. Hereafter, we also
denote d(y−1 ◦x) by d(x, y) and use the notation Bd(x, r) for the d-ball of center
x and radius r. The following quasi-triangle inequality holds

(6) d(x, y) ≤ β (d(x, z) + d(z, y)), x, y, z ∈ G,

for a suitable constant β. Throughout the sequel, L will always denote a fixed
sub-Laplacian on G and

(7) H = L − ∂t



[5] Representation formulas and Fatou-Kato theorems . . . 57

the related heat operator on G×R ≡ R
N+1. Here z = (x, t) is the point of R

N+1

(x ∈ G, t ∈ R). The operator H is hypoelliptic by Hörmander theorem.
It is known that H possesses a fundamental solution with the properties

recalled below (see [8], [18]; see also [2]). There exists a smooth function Γ on
R

N+1 \ {0} such that the fundamental solution for H is given by

Γ(x, t; ξ, τ) = Γ(ξ−1 ◦ x, t− τ).

We have Γ(x, t) ≥ 0 and Γ(x, t) = 0 iff t ≤ 0; moreover

(8) Γ(x, t) = Γ(x−1, t), Γ(δλ(x), λ2t) = λ−QΓ(x, t).

For every ζ ∈ R
N+1, Γ(·; ζ) is locally integrable and HΓ(·, ζ) = −δζ (the Dirac

measure supported at {ζ}). For every x ∈ R
N , t, τ > 0, we have

(9)
∫

RN

Γ(ξ, t) dξ = 1, Γ(x, t + τ) =
∫

RN

Γ(ξ−1 ◦ x, t) Γ(ξ, τ) dξ.

The main tool we shall employ in the proofs of our results is the following Gaus-
sian estimate of Γ: there exists a positive constant c0 such that

(10) c−1
0 t−Q/2 exp

(
− c0 d2(x)

t

)
≤ Γ(x, t) ≤ c0 t−Q/2 exp

(
− d2(x)

c0 t

)
,

for every x ∈ R
N , t > 0. We finally recall the following result, related to the

Cauchy problem for H (for the proof we refer to the results in [18] and to the
classical method of Aronson; see also [2]).

Theorem 1.5. (i) Let f be a continuous function on R
N satisfying the

growth condition |f(x)| ≤ c exp(ν d2(x)), for some constants c, ν ≥ 0. Then the
function

u(x, t) =
∫

RN

Γ(x, t; ξ, 0) f(ξ) dξ, x ∈ R
N , t ∈ (0, (cν)−1)

is well posed and is a classical solution to the Cauchy problem

Hu = 0 in R
N × (0, (cν)−1), u(·, 0) = f.

Here c is a positive constant only depending on L and the structure of G.

(ii) Let u be a classical solution to the Cauchy problem

Hu = 0 in R
N × (0, r), u(·, 0) = 0.

Suppose that one of the following conditions holds: either u is non-negative or
there exists ν > 0 such that∫ r

0

∫
RN

exp
(
− ν d2(x)

)
|u(x, t)|dxdt < ∞.

Then u vanishes identically.
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2 – Fatou-Kato theorems

For the reader convenience, we first recall the following weak maximum
principle on strips, whose proof is standard and will be omitted.

Proposition 2.1. Let u ∈ C2(RN × (0, T )). If Hu ≥ 0, lim supu ≤ 0 both
in R

N × {0} and at infinity, then u ≤ 0 in the whole strip.

In the sequel, we shall need the following Harnack theorem for H, whose
proof easily follows from the Harnack inequality in [18].

Theorem 2.2. Let us fix T > 0 and set ST = R
N × (0, T ).

(i) For every z0 = (x0, t0) ∈ ST and for every compact set K ⊂ St0 , there exists
a positive constant c such that

sup
K

u ≤ cu(z0),

for every non-negative function u, L-caloric in ST .
(ii) Let un ≤ un+1 be a monotone sequence of L-caloric functions in ST . If there

exists z0 = (x0, t0) ∈ ST such that un(z0) is bounded, then un converges
uniformly on the compact subsets of St0 to a function u, L-caloric in St0 .

We are now able to prove the Poisson-Stieltjes type representation formula.

Proof of Theorem 1.3. For every n ∈ N, we set

vn(x, t) =
∫

RN

Γ(x, t; ξ, 0) ψ
(d(ξ)

n

)
u(ξ, ε) dξ,

where ψ ∈ C∞(R) is a fixed non-increasing cut-off function such that ψ(r) = 1
if r ≤ 1, ψ(r) = 0 if r ≥ 2. By Theorem 1.5, we know that vn is a solution to
the Cauchy problem 


Hvn = 0 in R

N × (0,∞),

vn(·, 0) = ψ
(d(·)

n

)
u(·, ε).

Moreover, for every t ∈ (0, T ), we have (by the estimates in (10))

0 ≤ vn(x, t) ≤ c0 t−Q/2

∫
RN

exp
(
− d2(x, ξ)

c0 t

)
ψ
(d(ξ)

n

)
u(ξ, ε) dξ ≤

≤ c0

∫
d(x◦δ√tη)≤2n

exp
(
− d2(η)

c0

)
u(x ◦ δ√tη, ε) dη ≤

≤c0 max
Bd(0,2n)

u(·, ε)
∫

d(η)≥(β−1d(x)−2n)/
√

T

exp(−d(η)2/c0)dη → 0, as d(x) →∞.
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We now apply the weak maximum principle for H to the L-caloric function
wn(x, t) = u(x, t + ε) − vn(x, t) in the strip R

N × (0, T − ε). Since ψ ≤ 1, we
have wn(·, 0) ≥ 0. Moreover, we have proved that vn vanishes at infinity in the
strip. Hence, recalling that u is non-negative, we get lim inf wn ≥ 0 at infinity
in the strip. The maximum principle of Proposition 2.1 then yields wn ≥ 0 in
R

N × (0, T − ε). Recalling the definition of wn and letting n go to infinity, from
the above inequality, we finally obtain

u(x, t + ε) ≥
∫

RN

Γ(x, t; ξ, 0) u(ξ, ε) dξ =: v∞(x, t), (x, t) ∈ R
N × (0, T − ε),

since vn ↗ v∞ by monotone convergence. This proves in particular that v∞ is
finite in R

N × (0, T − ε). Now, from the Harnack Theorem 2.2-(ii), it follows
that v∞ is L-caloric in R

N × (0, T − ε). Moreover, from the inequalities

vn(x, t) ≤ v∞(x, t) ≤ u(x, t + ε), (x, t) ∈ R
N × (0, T − ε),

and recalling that vn(x, 0) = u(x, ε) if d(x) ≤ n, it follows that v∞ is continuous
in R

N × [0, T − ε) and v∞(·, 0) = u(·, ε). As a consequence, setting w∞(x, t) =
u(x, t + ε)− v∞(x, t), w∞ is a classical solution to Hw∞ = 0 in R

N × (0, T − ε),
w∞(·, 0) = 0. Since moreover w∞ is non-negative, it must vanish identically, by
the uniqueness result in Theorem 1.5. This proves (5).

We now turn to the proof of Theorem 1.1 which is split in various steps,
starting with Lemma 2.3 below.

Lemma 2.3. Let u be a non-negative L-caloric function in the strip R
N ×

(0, T ). Then, there exists a Radon measure σ on R
N such that

u(x, t) =
∫

RN

Γ(x, t; ξ, 0) dσ(ξ), (x, t) ∈ R
N × (0, T ),(11)

∫
RN

exp
(
− 2c0

T
d2(ξ)

)
dσ(ξ) < ∞,(12)

where c0 > 0 is the constant in (10).

Proof. Let us fix t0 ∈ (0, T ) and choose j0 ∈ N such that t0 < T − 1/j0.
From Theorem 1.3, it follows that

u
(
x, t+

1
j

)
=
∫

RN

Γ(x, t; ξ, 0) u
(
ξ,

1
j

)
dξ, (x, t) ∈ R

N×
(
0, T− 1

j0

)
, j > j0.

Since u(0, t0 + 1
j ) −→ u(0, t0) as j →∞, the sequence of Radon measures on R

N

dµj(ξ) = Γ(0, t0; ξ, 0) u
(
ξ,

1
j

)
dξ, j > j0,
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is bounded and hence weakly converges (up to a subsequence) to a certain Radon
measure µ (with µ(RN ) < ∞) in the sense that

(13)
∫

RN

f(ξ) dµj(ξ) −→
∫

RN

f(ξ) dµ(ξ), for every f ∈ C(0)(RN )

(we have denoted by C(0)(RN ) the space of continuous functions in R
N , vanishing

at infinity). We now set M = 2β2 c2
0, where β is defined by (6) and c0 is the

constant in (10). For every (x, t) ∈ R
N × (0, t0/M), we have

u(x, t)= lim
j→∞

u
(
x, t+

1
j

)
= lim

j→∞

∫
RN

Γ(x, t; ξ, 0)
Γ(0, t0; ξ, 0)

dµj(ξ)=
∫

RN

Γ(x, t; ξ, 0)
Γ(0, t0; ξ, 0)

dµ(ξ),

by (13), observing that Γ(x, t; ·, 0)/Γ(0, t0; ·, 0) ∈ C(0)(RN ), since the estimates
in (10) give, for d(ξ) ≥ 4β d(x),

0 <
Γ(x, t; ξ, 0)
Γ(0, t0; ξ, 0)

≤ c(t, t0) exp
(c0 d2(ξ)

t0
− d2(x, ξ)

c0 t

)
≤

≤ c(t, t0) exp
(c0 d2(ξ)

t0
− 1

c0 t

(d2(ξ)
β2

+ d2(x)− 2 d(x) d(ξ)
β

))
≤

≤ c(x, t, t0) exp
(
− d2(ξ)

( 1
2 β2 c0 t

− c0

t0

))
−→ 0,

as d(ξ) →∞, if t < t0/M . Choosing

(14) dσ(ξ) =
dµ(ξ)

Γ(0, t0; ξ, 0)
,

we get (11) in the strip R
N × (0, t0/M). In order to extend the representation

formula to the whole strip R
N × (0, T ), we shall exploit (9). For fixed T > t ≥

t0/M > ε > 0, by Theorem 1.3 we have

u(x, t) =
∫

RN

Γ(x, t− ε; ξ, 0) u(ξ, ε) dξ =

=
∫

RN

(∫
RN

Γ(x, t− ε; ξ, 0) Γ(ξ, ε; y, 0) dξ
)
dσ(y)=

∫
RN

Γ(x, t; y, 0) dσ(y).

We explicitly remark that σ is finite on the compact sets by the estimates in (10)
and recalling that µ(RN ) < ∞. Moreover, again using (10) and from (11), it
follows that

u
(
0,

T

2

)
≥ c−1

0

(T

2

)−Q
2
∫

RN

exp
(
− 2 c0 d2(ξ)

T

)
dσ(ξ),

which gives (12).
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Theorem 2.4. Let u be a non-negative L-caloric function in the strip
R

N × (0, T ). Then, there exists a non-negative function ϕ ∈ L1
loc(R

N ) such that

u(x, t) −→ ϕ(x), as t → 0+, for almost every x ∈ R
N .

Proof. Let σ be the Radon measure found in Lemma 2.3. By the Lebesgue
decomposition theorem, there exists a non-negative function ϕ ∈ L1

loc(R
N ) and

a singular Radon measure s on R
N such that

(15) dσ(ξ) = ϕ(ξ) dξ + ds(ξ).

Moreover, for a.e. x ∈ R
N (w.r.t. the Lebesgue measure), we have

(16)
1

|Bd(x, ρ)|

∫
Bd(x,ρ)

|ϕ(ξ)−ϕ(x)|dξ −→ 0,
s(Bd(x, ρ))
|Bd(x, ρ)| −→ 0, as ρ → 0+.

The proof of (16) will be omitted. It follows e.g. adapting the arguments in [16,
Chapter 8], replacing the Euclidean metric by the quasi-distance d. The doubling
property of the d-balls ensures, for instance, a suitable d-version of the Vitali
covering lemma (see e.g. [17]).

Let us now fix an x ∈ R
N where (16) holds and set, for brevity, dα(ξ) =

|ϕ(ξ) − ϕ(x)|dξ + ds(ξ). Also fix ε > 0. Then there exists ρ0 ∈ (0,
√

T ) such
that

(17)
1

|Bd(x, ρ)|

∫
Bd(x,ρ)

dα(ξ) < ε, for every ρ ∈ (0, 2 ρ0].

Let now t ∈ (0, ρ2
0) and let N(t) ∈ N be such that 2N(t)−1 ≤ ρo/

√
t < 2N(t).

From Lemma 2.3, (9) and (15), we obtain

|u(x, t)− ϕ(x)| ≤
∫

RN

Γ(x, t; ξ, 0) dα(ξ) ≤

≤
(∫

Bd(x,
√

t)

+
N(t)∑
j=1

∫
2j−1

√
t≤d(x,ξ)<2j

√
t

+
∫

d(x,ξ)>ρ0

)
Γ(x, t; ξ, 0) dα(ξ) =

= I1 + I2 + I3.

Using (17) and the estimates in (10), we get

I1 ≤
c

|Bd(x,
√

t)|

∫
Bd(x,

√
t)

exp
(
− d2(x, ξ)

c0 t

)
dα(ξ) ≤ c ε,
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recalling that
√

t < ρ0. In the same way, we can prove the estimate

I2 ≤ c
N(t)∑
j=1

exp(−4j−1c−1
0 ) 2j Q

|Bd(x, 2j
√

t)|

∫
Bd(x,2j

√
t)

dα(ξ) ≤

≤ c ε

∞∑
j=1

exp(−4j−1c−1
0 ) 2j Q = c′ ε,

recalling that 2j
√

t ≤ 2 ρ0 for every j ≤ N(t). Finally, using again (10) and
recalling the definition (14) of σ, we have

I3 ≤
∫

d(x,ξ)>ρ0

Γ(x, t; ξ, 0) dσ(ξ) + ϕ(x)
∫

d(x,ξ)>ρ0

Γ(x, t; ξ, 0) dξ ≤

≤ c(t0)
∫

d(x,ξ)>ρ0

t−
Q
2 exp

(
− d2(x, ξ)

c0 t
+

c0 d2(ξ)
t0

)
dµ(ξ)+

+ cϕ(x)
∫

d(η)>
ρ0√

t

exp
(
− c−1

0 d2(η)
)
dη,

and then it is easy to see that I3 vanishes as t → 0+. This concludes the proof.

In order to complete the proof of Theorem 1.1, we are only left to prove
Lemma 2.5 and Lemma 2.6 below.

Lemma 2.5. Let σ be a Radon measure on R
N satisfying the growth

condition

(18)
∫

RN

e−ν d2(ξ) dσ(ξ) < ∞,

for some constant ν > 0. Then the function

(19) u(x, t) =
∫

RN

Γ(x, t; ξ, 0) dσ(ξ)

is L-caloric in the strip R
N × (0, (c∗ν)−1), where c∗ is a positive constant only

depending on L and the structure of G.
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Proof. From the estimate (10) and recalling that σ is finite on compact
sets, it follows∫

RN

Γ(x, t; ξ, 0) dσ(ξ) ≤ c0t
−Q/2

∫
RN

exp
(
− d2(x, ξ)

c0t

)
dσ(ξ) ≤

≤ c(x, t) + c′(t)
∫

d(ξ)>4βd(x)

exp
(
− d2(ξ)

4c0β2t

)
dσ(ξ) < ∞,

if 0 < t < (4c0β
2ν)−1 =: (c∗ν)−1. Moreover, by dominated convergence, it is

easy to see that u is continuous on the strip R
N × (0, (c∗ν)−1). In order to prove

that u is L-caloric, one can differentiate under the integral sign, making use of
the estimates of the derivatives of Γ along the vector fields X1, . . . , XN1 (see e.g.,
[18]; see also [2]). Alternatively, one can use the Harnack Theorem 2.2, following
the lines of the proof of Theorem 1.3: the function

vn,ε(x, t) =
∫

RN

Γ(x, t− ε; ξ, 0)ψ
(d(ξ)

n

)
u(ξ, ε) dξ,

is a solution to Hvn,ε = 0 in R
N × (ε,∞), vn,ε(x, ε) = ψ(d(x)/n) u(x, ε); more-

over, recalling that 0 ≤ ψ ≤ 1, (9) and the definition (19) of u, we have

vn,ε(x, t) ≤
∫

RN

∫
RN

Γ(x, t− ε; ξ, 0) Γ(ξ, ε; y, 0) dξdσ(y) =

=
∫

RN

Γ(x, t; y, 0) dσ(y) = u(x, t) < ∞, if t < 1/(c∗ν);

hence, by Theorem 2.2, v∞,ε = limn→∞ vn,ε is L-caloric in R
N × (ε, 1/(c∗ν));

finally, using again (9), we see that v∞,ε(x, t) =
∫

RN Γ(x, t − ε; ξ, 0)u(ξ, ε) dξ =
u(x, t) in R

N × (ε, 1/(c∗ν)); since ε is arbitrary, this ends the proof.

Lemma 2.6. Under the hypotheses of Lemma 2.5 above, we have

u(·, t) −→ σ, as t → 0+, in the weak sense of measures.

Proof. Let f ∈ C0(RN ). We have to prove that∫
RN

f(x)u(x, t) dx −→
∫

RN

f(x) dσ(x), as t → 0+.

For small t > 0, we have (see (8))∫
RN

f(x)u(x, t) dx =
∫

RN

∫
RN

Γ(x, t; ξ, 0) f(x) dxdσ(ξ) =

=
∫

RN

∫
RN

Γ(ξ, t;x, 0) f(x) dxdσ(ξ).
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Moreover,
∫

RN Γ(ξ, t;x, 0) f(x) dx −→ f(ξ), as t → 0+, by Theorem 1.5. Hence
it is sufficient to prove that

(20)
∣∣∣ ∫

RN

Γ(ξ, t;x, 0) f(x) dx
∣∣∣ ≤ c(f) e−ν d2(ξ)

holds for every ξ ∈ R
N and for every small t > 0, and then to use the domi-

nated convergence (we recall that (18) holds). Let us set k0 = 4β maxsupp(f) d.
Since (9) holds, the integral in the left-hand side of (20) is clearly uniformly
bounded for d(ξ) ≤ k0. On the other hand, if d(ξ) > k0, the estimate (10) gives

∣∣∣∫
RN

Γ(ξ, t;x, 0) f(x) dx
∣∣∣ ≤

≤ c(f) exp
(
− d2(ξ)

c0β2t
+

k0 d(ξ)
2c0β2t

)∫
supp(f)

t−Q/2 exp
(
− d2(x)

c0t

)
dx ≤

≤ c(f) exp
(
− d2(ξ)

2c0β2t

)∫
RN

e−d2(η)/c0 dη = c′(f) exp
(
− d2(ξ)

2c0β2t

)
,

which finally yields (20) for sufficiently small t.

Proof of Theorem 1.1. It directly follows collecting Lemma 2.3, Theo-
rem 2.4, Lemma 2.5 and Lemma 2.6.

Finally, we have to prove Theorem 1.4; our main tool will be Lemma 2.7
below. First, we fix a notation. Given a Radon measure σ on R

N , we define the
upper d-symmetric derivative of σ at x ∈ R

N ,

(21) d-Dsymσ(x) = lim sup
ρ→0+

σ(Bd(x, ρ))
|Bd(x, ρ)| .

The following result generalizes [10, Lemma 1].

Lemma 2.7. Let σ be a Radon measure on R
N such that d-Dsymσ(x) < ∞

for every x ∈ R
N . Then σ is absolutely continuous w.r.t. the Lebesgue measure.

Proof. We assume by contradiction that there exists a Borel set E ⊆
R

N such that |E| = 0 and σ(E) > 0. From the hypotheses, we infer that
E = ∪n∈NEn, where En = {x ∈ E | d-Dsymσ(x) < n }. Hence there exists
n0 ∈ N such that σ(Eno

) > 0. Moreover, by the definition of d-Dsym, we have
En0 = ∪j∈NAj , where we have set

Aj = {x ∈ En0 | sup
0<ρ<1/j

σ(Bd(x, ρ))/|B(x, ρ)| < n0 }.
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Thus, there exists j0 ∈ N such that σ(Ajo
) > 0. From the regularity of σ, it

follows that there exists a compact set K such that K ⊆ Aj0 (⊆ En0 ⊆ E),
σ(K) > 0. Clearly we have

(22) σ(Bd(x, ρ)) < n0 |Bd(x, ρ)|, for every x ∈ K, 0 < ρ < 1/j0.

We now fix ε > 0. Since |E| = 0 gives |K| = 0, there exists an open set V
such that K ⊂ V , |V | < ε. We claim that there exists a disjoint family of d-
balls {Bb(xi, δ)}p

i=1 with the following properties: xi ∈ K, 0 < δ < (4β2j0)−1,
K ⊆

⋃p
i=1 Bd(xi, 4β2δ) ⊆ V . As a consequence, by (22), we obtain

0 < σ(K) ≤
p∑

i=1

σ(Bd(xi, 4β2δ)) ≤ n0

p∑
i=1

|Bd(xi, 4β2δ)| =

= n0 (4β2)Q

p∑
i=1

|Bd(xi, δ)| =

= n0 (4β2)Q
∣∣∣ p⋃

i=1

Bd(xi, δ)
∣∣∣ ≤ n0 (4β2)Q |V | < n0 (4β2)Q ε.

Since ε > 0 is arbitrary, this gives a contradiction. Thus, in order to complete
the proof, we only have to prove the claim. Let {ξn}n be a countable dense
subset of K and let us choose a positive δ not exceeding (4β2j0)−1, such that
4β2δ < min{d(x, y) | x ∈ K, y ∈ R

N \V } so that Bd(x, 4β2δ) ⊆ V for every x ∈
K. We set x1 = ξ1. If {ξn}n ⊂ Bd(x1, 2βδ), then K = {ξn}n ⊆ Bd(x1, 2βδ) ⊂
Bd(x1, 4β2δ). Otherwise, let n2 ∈ N be such that ξ1, . . . , ξn2−1 ∈ Bd(x1, 2βδ),
ξn2 /∈ Bd(x1, 2βδ). Setting x2 = ξn2 , we clearly have Bd(x1, δ) ∩ Bd(x2, δ) =
∅ (we recall that β is defined by (6)). Iterating this procedure, we obtain a
(possibly finite) subsequence {xi = ξni

}i of {ξn}n and a sequence of disjoint
d-balls {Bd(xi, δ)}i such that {ξn}n ⊂ ∪iBd(xi, 2βδ). This gives

K = {ξn}n ⊆
⋃
i

Bd(xi, 2βδ) ⊂
⋃
i

Bd(xi, 4β2δ)

(the radius of Bd(xi, 2βδ) has been chosen not depending on i, in order to allow
this last inclusion). The claim is proved by taking a finite sub-covering.

With Lemma 2.7 at hands, we are able to prove our uniqueness result.

Proof of Theorem 1.4. By Theorem 1.5, it is sufficient to prove that
u = 0 in R

N×(0, δ) for some small δ > 0. Let σ be the Radon measure introduced
in Lemma 2.3. Let us prove that d-Dsymσ(x) < ∞ for every x ∈ R

N . Assuming
by contradiction that for some x ∈ R

N one has d-Dsymσ(x) = ∞, there exists a
sequence of radii ρj → 0+ such that σ(Bd(x, ρj))/|Bd(x, ρj)| −→ ∞, as j →∞.
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From the representation formula (11) and the estimates of Γ in (10), it follows
that

u(x, ρ2
j ) =

∫
RN

Γ(x, ρ2
j ; ξ, 0) dσ(ξ) ≥ c ρ−Q

j

∫
Bd(x,ρj)

exp
(
− c0

d2(x, ξ)
ρ2

j

)
dσ(ξ) ≥

≥ c′ σ(Bd(x, ρj))/|Bd(x, ρj)| −→ ∞, as j →∞.

This contradicts the hypothesis lim supt→0+ u(x, t) < ∞. Hence we can apply
Lemma 2.7 and obtain that σ is absolutely continuous w.r.t. the Lebesgue mea-
sure. From the Lebesgue decomposition (15) dσ(ξ) = ϕ(ξ) dξ+ds(ξ), it immedi-
ately follows that s = 0. Moreover, Theorem 2.4 gives ϕ(x) = limt→0+ u(x, t) = 0
for almost every x ∈ R

N , by hypothesis. Therefore, we obtain σ = 0. In or-
der to complete the proof, it is now sufficient to recall the representation for-
mula (11).
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An algorithm for estimating the optimal

regularization parameter by the L-curve

G. RODRIGUEZ – D. THEIS

Abstract: In this paper we introduce a new algorithm to estimate the optimal
regularization parameter in truncated singular value decomposition (TSVD) regulariza-
tion methods for the numerical solution of severely ill-posed linear systems. The algo-
rithm couples a geometrical approach to identify the corner of the L-curve associated
to the problem with some heuristic rules. Numerical results are reported to highlight
the performance of the algorithm with respect to other methods for the selection of the
regularization parameter.

1 – Introduction

A linear system of equations

Ax = b

is considered severely ill-conditioned when the condition number

κ(A) := ‖A‖ ‖A−1‖,

in a given matrix norm, is of the same order of magnitude, or larger, than the
reciprocal of the relative precision on the entries of the matrix A and of the right
hand side vector b.

Key Words and Phrases: ill-conditioned linear systems – Regularization – Truncated
singular value decomposition (TSVD) – L-curve.
A.M.S. Classification: 65F05 – 65F20 – 65F22
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In this situation, no general purpose method is able to produce acceptable
results, since ill-conditioning causes a huge amplification of errors in the solution
of the linear system. Often, the only possibility for partially recovering the
solution is the exploitation of a priori informations. Regularization methods
consist of techniques that take advantage of informations on the regularity of the
solution. Usually, these informations are formally expressed as the request for
the solution x to belong to the kernel of a certain linear regularization operator
H (in most cases, the discrete approximation of a differential operator). This
approach is particularly effective when the solution of the linear system may be
thought of as the sampling of a function which exhibits some degree of regularity.
An example of great applicative interest is given by the linear systems arising in
the discretization of first kind Fredholm integral equations with discrete data∫

Ω

k(ui, v) f(v) dv = g(ui), i = 1, . . . , m.

Each regularization method depends on at least one parameter, whose tun-
ing is crucial for the quality of the numerical solution, since it balances the
request of approximately satisfying the linear system with the regularity con-
straint.

The three most widely used regularization techniques are the Truncated
(Generalized) Singular Value Decomposition (TSVD/TGSVD) [8], Tikhonov reg-
ularization [20], [21], [6] and regularizing iterative methods [4], [7]. A complete
survey of the various regularization strategies and the available methods for the
estimation of the optimal regularization parameter can be found in [12].

In this paper we will concentrate on the first mentioned regularization
method, and on a particular strategy for choosing its parameter, the L-curve
method. In Section 2 the TSVD and TGSVD are recalled, while in Section 3
the L-curve method is described. In Section 4 we introduce a new algorithm for
the localization of the corner of the L-curve, which has already been applied, in
a preliminary version, in some previous researches [2], [19]. Finally, in Section 5
the performance of the new algorithm is assessed on a set of test linear systems,
and in Section 6 plans for future work are discussed.

2 – The truncated (G)SVD

Let us consider, as a model problem, the overdetermined linear system

(2.1) Ax = b

where A ∈ IRm×n, m ≥ n, is a full-rank matrix.
The singular value decomposition (SVD) of A [1], [5] is given by

(2.2) UT AV =
[

Σ
0

]
, Σ = diag(σ1, . . . , σn),
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where σ1 ≥ · · · ≥ σn > 0 are the singular values and the orthogonal matrices

U = [u1, . . . ,um] and V = [v1, . . . ,vn]

contain the left and right singular vectors, respectively. Then, the least squares
solution of (2.1) can be expressed in the form

(2.3) x =
n∑

i=1

uT
i b
σi

vi.

Severe ill-conditioning can be restated by saying that A is numerically rank-
deficient, i.e. there exists an integer k ≤ n such that, for a given tolerance ε,

σk+1, . . . , σn < ε.

This integer is, in fact, the numerical ε-rank of A, usually defined as

rankε(A) := min
‖E‖2≤ε

rank(A + E).

When a singular value σi is approximately zero, the corresponding singular vector
vi belongs to the numerical kernel of A and we expect its coefficient in (2.3) to
be negligible. If the system (2.1) is compatible this is certainly true, but the
presence of noise on b may cause a huge growth in the norm of the solution x.

To obtain a better estimate of the least squares solution the truncated SVD
(TSVD) solution is often used. It is given by

(2.4) xk =
k∑

i=1

uT
i b
σi

vi

and it coincides with the minimum 2-norm solution to the least squares problem

(2.5) min ‖Akx− b‖2,

where Ak is the best rank k approximation to A in the 2-norm, obtainable by
substituting σj = 0, j = k + 1, . . . , n, in (2.2).

It is then crucial to correctly tune the value of the regularization parameter
k in order to avoid the numerical explosion of the norm of the solution while
preserving, at the same time, all of its significant components.

When there is the a priori information that the solution (approximately)
belongs to the kernel of a certain regularization matrix H, that is the num-
ber ‖Hx‖2 is small, it is more effective to compute the solution of (2.5) which
minimizes the semi-norm ‖Hx‖2, instead than the norm ‖x‖2.
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The solution to this non-standard regularization problem can be obtained
by the transformation y = Hx, but while the case of H square nonsingular can
be easily managed, if the regularization matrix is a non square p × n matrix
(p < n) with rank p, the computation is a bit more cumbersome. A method
for taking this problem to standard form has been described in [9] and starts by
expressing the least-squares solution in the form

(2.6) x = H†
Ay + x0,

where x0 is in the null space of H and the matrix H†
A is the A-weighted pseudo

inverse of H, defined in the following.
Let the generalized singular value decomposition (GSVD) of the matrix pair

(A, H) [1], [5] be the factorization

UT AZ =


DA 0

0 In−p

0 0




V T HZ = [DH 0 ]

with

DA = diag(d1, . . . , dp), 0 < d1 ≤ · · · ≤ dp ≤ 1,

DH = diag(h1, . . . , hp), 1 ≥ h1 ≥ · · · ≥ hp > 0,

and d2
i + h2

i = 1, i = 1, . . . , p. The matrices U and V are orthogonal, Z =
[z1, . . . , zn] is nonsingular and the ratios γi = di/hi, i = 1, . . . , p, are called the
generalized singular values of (A, H). Then, we define

H†
A := Z

[
D−1

H

0

]
V T

and it is immediate to observe that it is a right inverse of H.
By substituting y = Hx, with x given by (2.6), we come to the following

standard form regularization problem: find the minimum norm solution to

min ‖Āky − b̄‖2,

where Āk is the best rank k approximation to Ā = AH†
A and b̄ = b−Ax0. The

solution to this problem, known as the truncated GSVD (TGSVD) solution, is
given by

(2.7) xk =
p∑

i=p−k+1

uT
i b
di

zi +
n∑

i=p+1

(uT
i b)zi.
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Again, to get a meaningful solution it is essential to correctly estimate the value
of the regularization parameter k.

Several criteria are available for this task, some requiring the knowledge of
the standard deviation of the noise affecting the data and some not requiring it.
We will discuss the L-curve method in the next section, here we briefly recall
some of the other most widely used techniques.

The Generalized Cross Validation (GCV) [3], [22] is a statistical method
which estimates the optimal value of the regularization parameter, under the
assumption that the data vector b is affected by normally distributed noise, by
minimizing the functional

(2.8) V (k) =
1
m‖(I −A(k))b‖2[
1
m trace(I −A(k))

]2 .

The influence matrix A(k) is defined by the identity

Axk = A(k)b.

The GCV has some computationally relevant properties and, moreover, is a
predictive mean-square error criteria [22], in the sense that it estimates the min-
imizer of the residual function

T (k) =
1
m
‖A(xk − x)‖2.

If the standard deviation σ of the noise on the data is known, the following
unbiased estimate [15] for the function T (k) is also available

T̂ (k) =
1
m
‖(I −A(k))b‖2 − σ2

m
trace(I −A(k))2 +

σ2

m
trace A2(k).

Mallows’ criterion chooses the value of k which minimizes T̂ (k). Another tech-
nique which makes use of the value of σ is Morozov discrepancy principle [17],
which takes as optimal the value of k that satisfies the equation

1
m
‖(I −A(k))b‖2 = σ2.

However, numerical experiments reported in the literature (see e.g. [3], [18])
showed that these two procedures do not give better results than GCV, even
when σ is exactly known.
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3 – The L-curve method

The L-curve method [10], [14] consists of the analysis of the piecewise linear
curve whose break-points are

(xi, yi) = (log10 ‖Axi − b‖2, log10 ‖Hxi‖2) , i = 1, . . . , p

(p is the row dimension of the regularization matrix H).
This curve, in most cases, exhibits a typical “L” shape, and the optimal value

of the regularization parameter k is considered to be the one corresponding to
the corner of the “L” (see Figure 1).
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Fig. 1: An L-curve.

This choice is justified by the fact that while the regularized solution xk of
(2.1) coincides with the least-squares solution x when k = p, the ill-conditioning
of A causes a strong growth in the weighted semi-norm ‖Hxk‖2 when k exceeds a
certain threshold (which is, in fact, the numerical ε-rank of A for a well-chosen ε).
The corner of the L-curve marks this transition, since it represents a compromise
between the minimization of the norm of the residual and the semi-norm of the
solution. This is particular evident in Figure 1: the horizontal branch of the
“L” is dominated by the regularization error, while the vertical branch shows
the sharp increase in the semi-norm caused by propagation errors.

We spend some words to explain the symbols used in this and in the following
figures. The heading of the graph displays informations on the test problem and
on the method used for its solution. In this case we created a test linear system
with the SHAW matrix, taken from [11], and with sample solution sin2pi, given
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by xi = sin 2πi
n , i = 1, . . . , n (other test matrices and solutions will be introduced

in Section 5). The dimension of the system is n and the data vector b is affected
by white noise with variance nσ2. This system, as H = I, has been solved by
TSVD. Each point on the graph stands for the particular regularized solution
xk whose index labels the point.

A numerical algorithm for the detection of the corner of the L-curve has
been introduced in [14]. When the regularization method depends on a continu-
ous parameter λ, like in Tikhonov regularization, then the L-curve is a smooth
function, possibly twice differentiable, and this method selects the value which
maximizes the curvature κ(λ) of the L-curve. If, on the contrary, the regu-
larization parameter is discrete, like in T(G)SVD or in iterative regularization
methods, the algorithm selects the parameter closest to the point of maximum
curvature of a cubic spline curve with knots resulting from a local smoothing of
the L-curve points.

This method has some drawbacks, especially when applied to a discrete
L-curve.
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Fig. 2: A cluster of points.

In fact, in T(G)SVD regularization methods the points of the L-curve tend
to cluster in a neighborhood of the corner. In this situation, errors due to
floating point computations may produce false corners and loss of convexity, as
illustrated in Figure 2 which shows an experimental L-curve together with a
close-up of a neighborhood of its corner. The effect is that the spline which fits
the L-curve often presents unexpected oscillations near the corner, which lead
to an inaccurate estimate. This is particularly dangerous when the algorithm
returns an over-estimation of the optimal value of k, which often causes a large
increase in the norm of the computed solution.

Moreover, in many practical situations, some of which are depicted in Figure
3, the L-curve totally looses its “L” shape, making it difficult to choose a good
value of the parameter without resorting to some heuristic rule.
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Fig. 3: Some bad L-curves.

We remark, anyway, that these L-curves are still rather informative about
the problems we are trying to solve, and their interpretation will allow us, in the
next section, to implement an effective strategy which exploits the informations
they contain.

The two upper graphs in Figure 3, for example, exhibit a huge increase in
the semi-norm of the solution and small changes in the residuals, mostly due
to floating-point arithmetics. This situation is typical of linear systems whose
solution exactly belongs to the kernel of the regularization matrix H and for
which just a few generalized singular values are sufficient to compute a good
approximation of the solution. In real applications, to get good results we are
interested in using a regularization matrix H whose kernel contains the biggest
possible component of the solution x, so it is important that the parameter
estimation routine could treat effectively this situation.

The lower left graph in Figure 3, instead, displays a monotonically decreas-
ing residual associated to a negligible growth in the semi-norm, typical of a
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well-conditioned (of mildly ill-conditioned) linear system, for which it is possible
to use all the singular values in the computation of the solution. The last graph
shows both the effects in the same test problem. Obviously, one would not apply
regularization to a well conditioned matrix, but since in some applications the
matrix A is severely ill-conditioned only for a certain range of dimensions, or in
correspondence of particular values of some constants, it would be desirable if
the regularization method would automatically detect a well-conditioned matrix,
tuning correspondingly the regularization parameter.

4 – The corner algorithm

The algorithm we propose couples a simple geometrical approach to locate
the corner of a discrete L-curve, preceded by a suitable numerical pre-processing
of cluster of points, to some empirical rules aimed to recognize two classes of
L-curves “without a unique corner” for which it is possible to predict a good
value of the regularization parameter. These rules have been devised through
analyzing, and interpreting, a large number of experimental L-curves.

The algorithm takes in input the residuals and the semi-norms associated
to each regularized solution, namely

(4.1) ‖b−Axi‖, ‖Hxi‖, i = 1, . . . , p,

and can be decomposed into three phases.

1. Initially, we try to understand if the solution is approximately in the kernel
of the regularization operator H. It is important to check this condition
first, because if affirmative the L-curve would not be “L” shaped, and the
search for a corner would be useless (see upper graphs in Figure 3). The task
is performed through detecting extremely small semi-norms, with a test of
the type

min ‖Hxi‖
max ‖Hxi‖

< τ1.

The subroutine applies this test in conjunction with

min
‖Hxi‖
‖xi‖

< τ2

whenever the 2-norms of the regularized solutions are made available.
The tolerances τ1 and τ2 are two of the four constants the algorithm depends
on. They have been fixed to 10−12 and 10−4 respectively, working in double
precision, and the results do not seem much sensitive on changes in these
parameters.
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If the detection of small semi-norms is successful, the algorithm stops return-
ing the index of the smaller one as an estimate of the optimal regularization
parameter.

2. If the previous test is not verified, we compute the points of the L-curve

Pi = (log10 ‖b−Axi‖, log10 ‖Hxi‖), i = 1, . . . , p,

and the vectors
vi = Pi+1 − Pi, i = 1, . . . , p− 1.

To eliminate clusters (Figure 2) we delete all the “short” vectors, i.e. those
verifying the condition

‖vi‖ < τ3,

leaving q acceptable vectors (q ≤ p). The constant τ3, which we fix at ‖Pp−
P1‖/(2p), is rather important. Taking smaller values can give very good
results, but may also lead to dangerous over-estimates. We are currently
analyzing the possibility of choosing the value of τ3 adaptively.
After normalizing the q remaining vectors (we are only interested in their
orientation) the situation is similar to the one depicted in Figure 4.
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Fig. 4: L-curve and wedge products.

If we travel along the L-curve visiting the vectors vi in ascending order, the
corner is characterized by an angle α � −π

2 between vk and vk+1. Then, the
search for the corner can be carried out by finding the minimum z-coordinate
of the wedge products between two succeeding vectors (See Figure 4)

wi = (vi ∧ vi+1)z = ‖vi‖ · ‖vi+1‖ · sinα, i = 1, . . . , q.
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The following elementary property of wedge products

(vi ∧ vi+1)z = det ([vi vi+1 ])

allows to compute the numbers wi easily and with a small computational
effort.

3. The minimum of the wedge products is accepted as a corner only if it verifies
the condition

(4.2) min
i=1,... ,p

wi < τ4, (τ4 = −0.5).

The value of τ4, like the first two constants of the algorithm, does not seem
to be very critical for the performance of the method.
If condition (4.2) is not verified, the L-curve is considered to be without a
corner and we check for the presence of a well conditioned (or mildly ill-
conditioned) matrix by detecting a small change in the extremal semi-norms

| log10 ‖Hxp‖ − log10 ‖Hx1‖ | < 10.

In this case we return k = p as the optimal parameter.
The failure of the last test is an error condition, which we still keep in

the subroutine with the hope to trap unforeseen situations, i.e. L-curves not
belonging to the three classes we have considered, and to further improve the
algorithm.

The outline of the algorithm is reported in Figure 5. A Matlab [16] function is
available upon request (send an email to rodriguez@unica.it).
We end up with a computational remark. It is known that the residuals and the
semi-norms (4.1) can be expressed in terms of the singular system of the matrix
A. In fact, from (2.4) and (2.7) it follows

‖xi‖2 =
i∑

�=1

(
uT

� b
σ�

)2

and ‖Hxi‖2 =
p∑

�=p−i+1

(
uT

� b
γ�

)2

.

It is also possible, taking into account that

b−Axk = A(x− xk) = A(xp − xk),

to obtain a similar formula for the residuals. Anyway, even if this formula is
computationally less expensive, we noticed that the residuals computed in this
way are sometimes too well computed and give worse results, for what concerns
the estimation of the regularization parameter, with respect to the residuals
computed by implementing their definition. We feel that the reason for this is
that the residuals should be affected by propagation errors in the same amount
as the solution is, since we want to extract from them informations about the
quality of results.
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1. input ‖b− Axi‖, ‖Hxi‖, ‖xi‖, i = 1, . . . , p
2. τ1 = 10−12, τ2 = 10−4

3. if
min

i=1,... ,p
‖Hxi‖

max
i=1,... ,p

‖Hxi‖ < τ1 and min
i=1,... ,p

‖Hxi‖
‖xi‖

< τ2

1. k = arg min
i=1,... ,p

‖Hxi‖
4. else

1. for i = 1, . . . , p
1. Pi = (log10 ‖b− Axi‖, log10 ‖Hxi‖)

2. τ3 =
‖Pp − P1‖

2p , τ4 = −0.5

3. q = 0
4. for i = 1, . . . , p

1. v = Pi+1 − Pi

2. if ‖v‖ > τ3

1. q = q + 1

2. vq =
v

‖v‖
5. for i = 1, . . . , q − 1

1. wi = det
([

vi vi+1

])
6. if min

i=1,... ,q
wi < τ4

1. k = arg min
i=1,... ,q

wi

7. else
1. if | log10 ‖Hxp‖ − log10 ‖Hx1‖ | < 10

1. k = p
2. else

1. error ‘corner not found’
5. output k

Fig. 5: The corner algorithm.

5 – Numerical experimentation

To investigate the performance of our algorithm we applied it to the esti-
matation of the optimal regularization parameter in a set of test problem, which
we solved by TSVD or TGSVD when H = I or H �= I, respectively.

We considered eleven square test matrices, taken from the package Reg-
ularization Tools [11], [13] (heat(1), shaw, spikes, baart, ilaplace) and
from Matlab [16] (hilbert, pascal, lotkin, moler, prolate, random). For
n = 20, most of these matrices are severely ill-conditioned (in the sense that their
condition number exceeds the reciprocal of the machine epsilon εM � 2.2·10−16),
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two of them are mildly ill-conditioned (moler and prolate) and one (the ran-
dom matrix) is well conditioned. For n = 80 they are all severely ill-conditioned,
except the random matrix.

For each test matrix, we constructed different linear systems by computing
the right hand side b corresponding to the sample solutions listed in Table 1
(the rtools solution, which is the sample solution adopted in [11], is used only
with the matrices coming from the Regularization Tools).

Table 1. Sample solutions of linear systems.

rtools defined as in [11]

ones xi = 1

lin xi =
i

n

quad xi =
(
i −

⌊
n

2

⌋)2

/
⌈

n

2

⌉2

sin2pi xi = sin
2π(i − 1)

n

sinpi xi = sin
π(i − 1)

n

lin+sinpi xi =
i

n
+ sin

π(i − 1)

n

The linear systems so obtained were solved both in the presence and in the
absence of noise on the data. In practice, the data vector b was substituted by
the vector b̃, with components

b̃i = bi + σεi, i = 1, . . . , n,

with εi normally distributed with mean value 0 and variance 1. We considered
σ = 0, 10−8, 10−4.

By this procedure we generated 213 test problems, which we solved for
n = 20 and n = 80 either by TSVD (H = I) and by TGSVD for each of
the regularization matrices H = D1, D2, D3, being Dk the Toeplitz matrix of
dimension (n− k)× n whose first row is the discrete approximation of the k-th
derivative.

For each test problem, the optimal regularization parameter was compared
with the estimates furnished by our algorithm (labelled as corner in Tables 2 and
3), by the routine l curve from [13], which is an implementation of the maximum
curvature algorithm described in [14], and by the routine GCV, coming from the
same package, which returns the minimizer of the functional (2.8).
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Table 2. Numerical tests, n = 20.

H corner l curve GCV

I 102(8/2) 38(76/37) 94(42/35)
D1 89(21/4) 64(46/31) 76(74/54)
D2 92(30/20) 50(50/39) 39(136/114)
D3 101(44/35) 41(58/40) 28(119/100)

Table 2 lists the results obtained for n = 20 by applying the three mentioned
methods with each of the four adopted regularization matrices. The first number
in every entry of the table equals the number of tests in which the optimal
parameter is exactly identified (the “full successes”), while the two numbers in
parentheses indicate in how many tests an incorrect estimate of the regularization
parameter produces an error in the solution which exceeds the optimal one by a
factor 102 and 104, respectively (the “failures”). We remark that the algorithms
should be considered successful at least when the error on the computed solution
is smaller than 102 times the optimal error. Table 3 shows the same results for
n = 80.

Table 3. Numerical tests, n = 80.

H corner l curve GCV

I 90(39/33) 50(66/40) 72(62/51)
D1 71(27/24) 30(75/65) 56(84/39)
D2 73(25/17) 20(125/98) 56(74/62)
D3 84(34/17) 13(128/111) 44(108/77)

The numerical results show that the estimates furnished by our algorithm
are significantly more trustworthy than the ones produced by the two other
algorithms considered. Moreover, the number of the cases of total failure is
rather small. We feel that the reason for this is also that our algorithm tends to
under-estimate, rather than over-estimate, the optimal regularization parameter.
These results confirm, in particular, the great efficacy of the L-curve as a tool
for the analysis and the numerical resolution of ill-conditioned linear systems.

6 – Future work

In this section we expose the lines of research which we consider important
in order to further improve the performance of our algorithm and to extend its
range of applicability.
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First of all, we are developing an adaptive procedure to choose the values of
the constants on which the algorithm depends, in particular the one (τ3) whose
value seems to be the most sensible for the performance of the method.

We also plan to carry on a wider numerical experimentation, with the hope
to identify some particular test problems leading to L-curves which our method
actually does not recognize, i.e. cases which fall into the final error condition of
the algorithm.

Finally we wish to extend the method in order to apply it to iterative reg-
ularization methods and to Tikhonov regularization. The difficulty, in the first
case, is that the discrete regularization parameter, namely the iteration index,
does not have an upper bound, unlike in SVD methods, and we think that a
part of the algorithm should be repeated at each iteration to be able to track
the overcoming of the corner of the L-curve.

In the second case, where the parameter is a positive real number, we plan
to start with a coarse discretization of the L-curve and to add adaptively more
points in a neighborhood of the corner until its position is identified up to a
prescribed accuracy.
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On the surface tension for non local energy functionals

CRISTIANA BISCEGLIA – EMANUELE ROSATELLI

Abstract: We consider the free energy functional Fε(m), ε > 0 a scaling parame-
ter, m ∈ L∞(T ; [−1, 1]), T the unit torus, which has been derived in a continuum limit
from Ising spin systems with Kac interactions, see [8]. In [1] it is proved that Fε(m)
Γ−converges to a perimeter functional P . We study here the free energy functional
with an additional term describing the interaction with an external magnetic field h.
We suppose that h takes only the two values ±s, s > 0. Calling E the region of the
torus where the external field is negative and Fε,s(m; E) the new functional, we then
define Gε,s(E) = infm Fε,s(m; E). We prove that Gε,s(·) Γ−converges to a perimeter
functional which as a function of s converges pointwise as s → 0 to P .

1 – Introduction

In this paper we consider the non local, excess, free energy functional defined
for all m on L∞(IRd; [−1, 1]), with values in [0,+∞], +∞ included, by

(1.1) Fβ,h(m) =
∫

IRd

dr fβ,h

(
m(r)

)
+

1
4

∫
IRd

dr

∫
IRd

dr′J(r, r′)[m(r)−m(r′)]2

where h ∈ L∞(IRd; IR),

(1.2) fβ,h(m) = φβ,h(m)− min
|m|≤1

φβ,h(m)

(1.3) φβ,h(m) = −m2

2
− hm− I(m)

β
, m ∈ [−1, 1]

Key Words and Phrases: Coexistence of Phases – Surface Tension – Γ- convergence.
A.M.S. Classification: 47H – 82C
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(1.4) I(m) = −1−m

2
log

1−m

2
− 1 + m

2
log

1 + m

2
.

The interaction J(r, r′) is a translational invariant (i.e. J(r, r′) = J(0, r′ − r)),
smooth, symmetric, probability kernel supported by |r−r′| ≤ 1. As Fβ,h depends
symmetrically on J(r, r′) there is no loss of generality in assuming

J(r, r′) = J(r′, r), and, equivalently, J(0, r) = J(0,−r).

The expression (1.1) arises in the study of Gibbs measures in Ising spin systems
with Kac interactions, see [4] and in their time evolution with Glauber dynamics
, where it is derived in a continuum limit, [6]; m is then interpreted as a magneti-
zation density and β−1 = κT , T the absolute temperature and κ the Boltzmann
constant, h is an external magnetic field.

Due to the positivity of J , the second term is minimized by any constant
function, while the first one is minimal when the constant is set equal to a
minimizer, call it mβ,h, of fβ,h(s), s ∈ [−1, 1].

Thus Fβ,h(m∗) = 0 when m∗(r) = mβ,h for all r ∈ IRd: m∗(r) is therefore
called an equilibrium phase and Fβ,h(m) measures the increase of free energy in
magnetization profiles m which deviate from equilibrium.

Phase transitions are related to the lack of uniqueness of the minimizers
of the free energy functional, which, for Fβ,h, occurs at h = 0 and β > 1. In
such cases in fact the equilibrium magnetization mβ,0 can take two values, ±mβ ,
solutions of the mean field equation

(1.5) mβ = tanh {βmβ}.

We now turn to the main object of this paper, surface tension and more generally,
coexistence of phases. Roughly speaking, the surface tension is the excess free
energy per unit area needed to create a state with two coexisting phases. The
area in the definition refers to the interface which separates the two phases
and the surface tension may depend on its orientation when the interaction is
anisotropic. Thus, in a macroscopic description, characterized by the assumption
of local thermodynamic equilibrium, at all points the magnetization is either
equal to mβ or to −mβ . Let us restrict, for simplicity, to a unit torus T of
IRd (in macroscopic units). Then a macroscopic state is a magnetization profile
u(r) ∈ {±mβ} for any r ∈ T . Call E the region in T where u = mβ and Ec

its complement, where u = −mβ , then, if the boundary ∂E of E is regular, the
macroscopic free energy of u is

(1.6) P (u) =
∫

∂E

dHd−1(r)θβ(ν(r))

where dHd−1(r) is the Hausdorff area measure and θβ(n) = θβ(−n) is the surface
tension of a planar surface with normal n, ν(r) the unit normal to ∂E at r.
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Regularity of E is not really necessary and in fact the above expression keeps its
validity for all u in BV (T , {±mβ}]), as it will be discussed later on.

To relate the macroscopic theory to the functional (1.1) we interpret the
latter as the result of a more accurate, microscopic, description of the system,
where distances are magnified revealing deviations from the local equilibrium
condition |u(r)| = mβ . Thus, calling ε−1 the magnifying factor of the blow up,
a microscopic state is an element m ∈ L∞(ε−1T , [−1, 1]) and its microscopic
free energy is F per

ε−1T (m), where the latter is the functional (1.1) restricted to
m ∈ L∞(ε−1T ); [−1, 1]) with J replaced by its periodization on ε−1T .

To compare with (1.6) we first need to have objects on a same space. Let
Vε : L∞(T ; [−1, 1]) → L∞(ε−1T ; [−1, 1]) be defined by

(1.7) Vεm(r) = m(εr) =: m(ε)(r), r ∈ ε−1T .

Then F per
ε−1T ◦Vε becomes a functional on L∞(T ; [−1, 1]) which associates to any

given m ∈ L∞(T ; [−1, 1]) a microscopic free energy, indexed by ε. Since we are
interested in states with interface, their free energy must scale as an area, namely
proportionally to ε−d+1. We then define

(1.8) Φε = εd−1F per
ε−1T ◦ Vε

Φε is the “normalized, microscopic free energy functional” which we want to
compare with the macroscopic functional P of (1.6).

Φε and P are defined on different functional spaces, and to establish a
relation between them we follow De Giorgi and his definition of Γ convergence.
We start by arguing that a microscopic profile which describes the macroscopic
state u ∈ BV (T , {±mβ}) should look more and more like u as ε → 0. To
make it quantitative, we use the L1(T ) norm, which weights both the volume
of the region where two profiles differ and the amount of their discrepancy: this
is therefore a natural candidate to quantify distances. In this language, the
physical apparatus used to prepare a macroscopic state u is then schematized as
a constraint which imposes the microscopic states m to be in a L1(T )-ball of u.
Thus a state u which looks sharp at the macroscopic level, becomes fuzzy after
the microscopic blow up and it is better represented by a set of states, a ball in
L1 with center u, rather than by a single profile. The radius of the ball is related
to the accuracy of the physical apparatus used in the preparation of the state
and we imagine that it can be taken arbitrarily small, as ε → 0.

To conclude, we only need to determine the free energy to associate to the
L1 ball which represents a macroscopic interface u ∈ BV (T , {±mβ}) at the
microscopic level. By invoking thermodynamic principles, the equilibrium free
energy under a given constraint is the minimal free energy of the states satisfying
the constraint, hence calling δ > 0 the accuracy parameter identified to the radius
of the L1-ball, we set

(1.9) Φδ,ε(u) = inf
‖m−u‖L1(T )≤δ

Φε(m)
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and call

(1.10) Φ′
0(u) = lim

δ→0
lim inf

ε→0
Φδ,ε(u), Φ′′

0(u) = lim
δ→0

lim sup
ε→0

Φδ,ε(u).

The equality P (u) = Φ′
0(u) = Φ′′

0(u) is the De Giorgi definition that Φε Γ-
converges to P , in such a case we will write Φε

Γ−→P . Alberti and Bellettini, [1],
have proved for a class of functionals which includes Φε that

Theorem. For any u in BV (T , {±mβ}) Φε
Γ−→P and, if u is regular (i.e.

its discontinuity set ∂E is a regular surface), then P (u) is given by the expression
(1.6) with θβ(ν) a continuous function on the unit ball of IRd. The general theory
of BV functions, see [1] defines for any u ∈ BV (T , {±mβ}) a set ∂∗E ⊂ ∂E, a
measure dµ on ∂∗E and a unit vector function ν(r) on ∂∗E. In terms of these
quantities,

(1.11) P (u) =
∫

∂∗E

dµ(r)θβ(ν(r)).

There are also results about the value of the surface tension θβ(ν), expressed
in terms of the one dimensional free energy of standing fronts, see [2], see also [5]
for a related model, a uniqueness theorem for such one dimensional fronts, [7],
and a proof of strict convexity and regularity of the surface tension as a function
of the direction ν, [9].

The motivation of this paper is about the actual implementation of the
previous definition of surface tension in a physical experiment. For that we
would need a physical apparatus which forces the minus phase in the set E and
the plus one in Ec. The natural way is to use an external magnetic field and, with
a great deal of idealization, we will suppose to be able to set the magnetic field
equal to −s in a region B and equal to +s in the complement, with the additional
assumption that E and B are close in the symmetric difference distance, namely
that |B � E| ≤ δ (the same accuracy parameter as before). Under such a space
dependent magnetic field

(1.12) hB(r) := s1Bc(r)− s1B(r)

equilibrium will be reached by minimizing over all m the functional Fε,s(m;B),
defined in (2.2) below.

For any Borel subset B of the torus, we callGε,s(B) the infimum ofFε,s(m;B)
over all m ∈ L∞(ε−1T ; [−1, 1]).

Our main result in this paper is a proof that Gε,s(·) Γ−converges to a
perimeter functional Ps and Ps → P as s → 0, thus justifying from an operational
point of view, the original definition of surface tension via Γ−convergence.
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The paper is organized as follows: in the next section we give precise def-
initions and in Theorem 2.2.1 we state the main results. We divide the proof
of Theorem 2.2.1 in two sections, the lower and the upper bound. To prove the
lower bound we need some results about “contours”,the argument is treated in
Section 5. Finally, in the last section, we will prove the convergence to P of the
surface free energy functional Ps(E), see (2.4).

2 – Definitions and results

Let T be the unit torus in IRd, s > 0 and ε > 0. Furthermore let B be
the set of all Borel measurable subsets of the torus equipped with L1−distance,
which is the same as the volume of the symmetric difference:

(2.1) |A � B| := vol ((A\B) ∪ (B\A)) =
∫
|1A − 1B |dr.

For all m ∈ L∞(ε−1T ; [−1; 1]) and B ∈ B we define

(2.2)
Fε,s(m(r);B) : =

∫
ε−1T

fβ,hB
(m(r))dr+

+
1
4

∫
ε−1T

∫
ε−1T

J(r, r′)(m(r)−m(r′))2drdr′

where, by an abuse of notation, J is the periodization on ε−1T of the probability
kernel in (1.1), hB(r) as in (1.12), fβ,hB

, φβ,hB
and I(m) as in (1.2)-(1.4).

We next define, for any B ∈ B,

(2.3) Gε,s(B) = εd−1 inf
m∈L∞(ε−1T ;[−1,1])

Fε,s(m;B).

Our main result is

Theorem 2.2.1. For any s small enough, Gε,s
Γ−→Ps on BV (T ), where

Ps is a perimeter functional in BV (T ). Namely for any E ∈ BV (T ), for any
m ∈ L∞(ε−1T ; [−1, 1]), and for any δ > 0 there exists s� > 0 and a continuous
function θβ,s(ν) on the unit ball of IRd , such that for any s ≤ s�

(2.4) lim inf
δ→0

lim inf
ε→0

inf
B∈BV (T ):|BE|≤δε−d

Gε,s(B) =
∫

∂∗E

θβ,s(ν)dµ := Ps(E).

Moreover

(2.5) lim
s→0

θβ,s(ν) = θβ(ν)

and lim
s→0

Ps(E) = P (χE), with P as in (1.11) and χE = mβ1E −mβ1Ec .
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In the next two sections we prove (2.4), while (2.5) will be proved in the
last section.

3 – Lower bound

In this section we will prove that

(3.1) lim
δ→0

lim inf
ε→0

inf
B∈BV (T ):|BE|≤δε−d

Gε,s(B) ≥
∫

∂∗E

dµ(r)θβ,s(ν).

First of all, we need some basic notions and results for the theory of BV sets,
which we state in the next subsection, for more details see, for example, [1].

3.1 – Geometric measure theory

We say that a function f on T has bounded variation, f ∈ BV (T ), if its
gradient Df (in the sense of distributions) is a vector real valued Radon measure
whose total variation measure has finite mass ‖µ‖:

(3.2) ‖µ‖ = µ(T ) = sup
φ∈C1(T ,IRd),‖φ‖∞≤1

∣∣∣∣
∫
T

drf div φ

∣∣∣∣ .
We say that E is a general BV set if 1E ∈ BV (T ). If E is a C1 set, the total
variation dµ of D1E is the usual Hausdorff measure dHd−1(r) on ∂E and for
any φ ∈ C(T , IRd)

(3.3)
∫
T
〈D1E , φ〉 = −

∫
T

dr1E div φ = −
∫

∂E

dHd−1(r)〈ν(r), φ〉

where ν(r) is the outward unit normal to ∂E at r.
If E is a general BV set, then there are a set ∂∗E ⊂ ∂E, called the reduced

boundary of E, and a unit vector valued function ν(r) on ∂∗E so that for any
φ ∈ C(T , IRd)

(3.4)
∫
T
〈D1E , φ〉 = −

∫
∂∗E

dHd−1(r)〈ν(r), φ〉.

The following theorem states that BV sets can be regarded, measure theoreti-
cally, as C1 sets:

Theorem 3.3.1. Let E ∈ BV (T ) and D1E(r) = −dµν(r).Then for any
ε > 0 there are C1 hyper-surfaces S1, . . . , Sm whose closures are disjoint from
each other, and compact sets K1, . . . , Km with Ki ⊂ Si ∩ ∂∗E, so that

(3.5) dµ
∣∣
Ki

= dHd−1
∣∣
Ki

∫
T

dµ−
m∑

i=1

∫
Ki

dµ ≤ ε.
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Moreover the normal to Si ar r ∈ Ki, is the same as the unit vector ν(r) in (3.3)
and

(3.6) max
i=1...m

max
r,r′∈Si

|ν(r)− ν(r′)| ≤ ε.

The next Theorem states that a BV set E is with good approximation made
of essentially flat parts plus a small remainder. We set

(3.7) u = C(1Ec − 1E).

Theorem 3.3.2. For any ε > 0 there are n ≥ 1 disjoint measurable sets
Σi, each one contained in some K

(ε)
j , n cubes Ri, all of side h, and n unit vectors

νi, νi orthogonal to a face of Ri, with the following proprieties so that

(3.8) sup
r∈Σi

|ν(r)− νi| < ε,

∣∣∣∣hd−1 −
∫

Σi

dµ

∣∣∣∣ < εhd−1,

∣∣∣∣nhd−1 −
∫
T

dµ

∣∣∣∣ < ε.

Moreover calling χ(r) := C(1R+
i
− 1R−

i
), with R±

i the upper and lower halves of
Ri with to the direction νi,

(3.9)
∫

Ri

dr|χRi
− u| < εhd, i = 1, ..., n.

3.2 – Proof of (3.1)

Let Rn(L;C) be the cylinder in IRd whose axis is directed along n and whose
cross section is LC, C an unit cube of IRd−1 and L > 0 a scaling parameter.
We keep n and B fixed and to simplify notation we drop them, thus writing
R(L) and R(L, k). We introduce coordinate axes with the origin the center of
R(L, k), xd axis along n and the the others parallel to the side of C, so that C
is a coordinate cube. Then

R(L, k) =
{

(x1, .., xd) ∈ IRd : |xd| ≤ k, |xi| ≤ L, i = 1, . . . , d− 1
}

and denote with R±
L,k the upper and lower halves of R(L, k) with respect to the

direction n. Calling

(3.10) χ(r) = m+
β,s1xd≥0 + m−

β,s1xd<0

we denote by χ∆, ∆ ⊂ IRd, the restriction of χ to ∆ and we define
(3.11)

θβ,s(L, k) :=
1

Ld−1
inf

m∈L∞(R(L,k);[−1;1])

B:|R+
L,k

∩(R+
L,k

Bc)|≤δ, |R−
L,k

∩(R−
L,k

B)|≤δ

Fs

(
mR(L,k)|χR(L,k)c ;B

)
.
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We remember that the functional Fε,s(·, B) is defined by making the interaction
J periodic over each coordinate xi, i < d, with period L, thus considering LB
as a torus. We thus set

(3.12) θβ,s := lim inf
L→∞

lim inf
k→∞

θβ,s(L, k).

In some cases, when the context is not clear, we indicate with θβ,s,ν the surface
tension defined in the rectangle Rν(L, k) directed along ν.

We consider the small parameter α and the cubes Ri as in Theorem 3.3.2
below, i = 1, . . . , n , all of side k so that if we call χ̃i = s(1ε−1R+

i
− 1ε−1R−

i
), we

have ∫
ε−1Ri

dr|hB − χ̃i| ≤
∫

ε−1Ri

dr|hB − hE |+
∫

ε−1Ri

dr|hE − χ̃i|

≤ ε−d(δ + αkd) ≤ 2αkdε−d.

Hence |(B � ε−1Ri) ∩ ε−1Ri| ≤ 2αkdε−d.
We next write

∆ =
n⋃

i=1

ε−1Ri .

Then

Fε,s(m;B) = Fε,s(m∆c ;B) +
n∑

i=1

Fε,s (mε−1Ri
|m∆c ;B)

(3.14) εd−1Fε,s(m;B) ≥
n∑

i=1

Fε,s (mε−1Ri
|m∆c ;B ∩Ri)

where

(3.15)

Fε,s(mΛ|mΛc ;B) := Fε,s(mΛ;B)+

+
1
2

∫
ε−1Λ

∫
ε−1Λc

J(r, r′)(mΛ(r)−mΛc(r′))2drdr′

Fε,s(mΛ;B) :=
∫

ε−1Λ

fβ,hB
(mΛ(r))dr+

+
1
4

∫
ε−1Λ

∫
ε−1Λ

J(r, r′)(mΛ(r)−mΛ(r′))2drdr′.

At the end of section we are going to prove that

(3.16) inf
m∈L∞(IRd;[−1;1])

B∈BV (T ):|BE|≤δε−d

Fε,s (m;B) = inf
m∈L∞(IRd;[−1;1]):Fε,s(m;B)≤δε−d

B∈BV (T ):|BE|≤δε−d

Fε,s (m;B)
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therefore, using (3.14) and (3.16), we obtain that

l.h.s. of (3.1) ≥

lim inf
α→0

∑
i


lim inf

ε→0
εd−1 inf

Fε,s(m;B)≤2αkdε−d

B∈BV (T ):|(Bε−1Ri)∩ε−1Ri|≤2αkdε−d

Fε,s

(
mε−1Ri

|mε−1Rc
i
;B
)
 .

Now we state two results that we will prove later. The first one gives us a
constraint on the function m, the second one gives us a lower bound on each
rectangle C(L) = R(L, L/2), where

R(L, L/2) =
{

x ∈ IRd : |xi| ≤ L, i = 1...d-1, |xd| ≤ L/2
}

.

Notational remark: when we consider function on L∞(T ; [−1, 1]) we write
Fs(m;B) instead of Fε,s (m;B), B ∈ BV (T ).

Proposition 3.3.3. Let C(L) be the cylinders of the form R(L;L/2).
Then for any m ∈ L∞(C(L); [−1; 1]) such that Fs

(
mC(L);B

)
≤ δL−d we have

(3.17)
∫

C(L)

|m(r)− χ(r)|dr ≤ δ′Ld

χ(r) = m+
β,s1xd≥0 + m−

β,s1xd<0, r ∈ C(L).

Theorem 3.3.4. There is a c > 0 and a continuous function θβ,s(ν) on
the unit ball, so that for any ε > 0 there is Lε > 0 and for any L ≥ Lε

(3.18) Fs

(
mC(L)|mC(L)c ;B

)
≥ Ld−1(θβ,s(ν)− ε− c

√
δ)

for any δ > 0 ,for any m s.t. ‖m− χ‖L1(C(L)) ≤ δ′Ld and for any B ∈ BV (T )
such that

|(Bc � C−(L)) ∩ C−(L)| ≤ δLd |(B � C+(L)) ∩ C+(L)| ≤ δLd.
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Then, using (3.18)

l.h.s. of (3.1) ≥ lim
s→0

lim inf
α→0

∑
i

kd−1(θβ,s(νi)− cn
√

α).

By (3.8) we have nkd−1 ≤ µ(T ) + α and for a suitable constant c′,

(3.19) |kd−1θβ,s(νi)−
∫

Σi

dµθβ,s(ν)| ≤ c′kd−1α

so, in conclusion ∃ c′′ > 0 such that

(3.20) l.h.s. of (3.1) ≥ lim
s→0

lim inf
α→0

∑
i

∫
Σi

dµθβ,s(ν)− c′′
√

α

and, see the end of this section,

lim
α→0

∑
i

∫
Σi

dµθβ,s(ν) →
∫

∂∗E

dµ(r)θβ,s(ν)

thus we obtain (3.1).

Proof of (3.16). It suffices to show that ∀δ > 0 and for any B ∈ BV (T )
there exists m ∈ L∞(ε−1T ; [−1, 1]) and δ′ > 0 such that

Fε,s (m;B) ≤ δ′ε−d.

It is enough to choose m̂ = m−
β,s1Bn +m+

β,s1Bc
n

where Bn are the polyedrical sets
which approximate B ∈ BV (T ) in variation, namely 1Bn converges in variation
to 1B . Indeed, computing the functional Fε,s(m̂;B)

Fε,s(m̂;B) =
∫

ε−1T
fβ,hB

(m̂)dr +
1
2

∫
ε−1Bn

∫
ε−1Bc

n

J(r, r′)(m+
β,s −m−

β,s)
2drdr′≤

≤ 2h

∫
ε−1T

dr|1Bn − 1B |+
∫

ε−1Bn

∫
ε−1Bc

n

J(r, r′)drdr′ ≤

≤ 2sδε−d + cnε−d+1 = δ′ε−d

with δ′ = 2sδ + cnε.
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4 – Upper Bound

In this section we will prove that

(4.1) lim
δ→0

lim sup
ε→0

inf
B∈BV (T ):|BE|≤δε−d

Gε,s (B) ≤
∫

∂∗E

dµ(r)θβ,s(ν(r)).

Given E ∈ BV (T ) we can approximate in the sense of variations the function
hE by functions hEk

equal to ±s outside and inside polyhedral sets Ek with
boundary ∂Ek. For each k we will construct functions m(ε,k,L,t) so that

(4.2) lim sup
L→∞

lim sup
t→∞

lim sup
ε→0

εd−1Fε,s(m(ε,k,L,t);Ek) ≤
∫

∂∗Ek

dµk(r)θβ,s(ν(r))

where dµk = dµ|Ek
as in Theorem 3.3.1. Then by letting k →∞,

(4.3)

lim sup
k→∞

lim sup
L→∞

lim sup
t→∞

lim sup
ε→0

εd−1Fε,s(m(ε,k,L,t);Ek) ≤

≤ lim sup
k→∞

∫
∂∗Ek

dµk(r)θβ,s(ν)

and

(4.4) lim
k→∞

∫
∂∗Ek

dµk(r)θβ,s(ν(r)) =
∫

∂∗E

dµ(r)θβ,s(ν(r)).

Then, by (4.2) and (4.3) there are L(ε), t(ε), and k(ε) so that the family
m(ε,k(ε),L(ε),t(ε)) satisfies (4.1). Thus the proof of (4.1) follows from the exis-
tence of a family m(ε,k,L,t,) satisfying (4.2), which is proved in the rest of the
subsection.

We fix k and we will drop it from the notation in the sequel. Thus we denote
with E a polyhedral set and with hE = s(1Ec − 1E). The faces of E are called
σi, i = 1, .., n, and their normal νi, directed toward the plus magnetization.
On each hyperplane which contains ε−1Σi, we introduce a partition into d − 1
dimensional cubes of side L, the orientation of the cubes of the partition being
the same for all ε. We first define m(ε,L,t) around ε−1Σ1: on each rectangle
Rν1(L, t) of height 2t and mid cross section a cube entirely contained in ε−1Σ1,
we choose m(ε,L,t) so that

(4.5)
1

Ld−1
Fs(m

(ε,L,t)
Rν1 (L,t)|χRc

ν1
(L,t);Ek) ≤ θβ,s,ν1(L, t) + ε.

When the mid cross section of Rν1(L, t) is not entirely contained in ε−1Σ1, we set
m(ε) = m±

β,s in the part of Rν1(L, t) which is above and below ε−1Σ1 Rν1(L, t).
we follow the same rule in the other faces, except for the points where m(ε) has
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already been defined. On the remaining of the space we set m(ε) equal to m±
β,s

outside and inside E respectively. If we fix t, if L is large enough, any rectangle
Rνi(L, t) at distance > L from the boundary of ε−1Σi has no intersection with
any other rectangles, then, for a suitable constant c,

(4.6) εd−1Fε,s(m(ε);E) ≤
n∑

i=1

(
[θβ,s,νi(L, t) + ε]|Σi|+ cLtε

)
.

Then (4.2) follows, and the proof of the upper bound is completed.

5 – Contours and dynamics

In this section we give a generalized definition of contours and we study
some proprieties of the evolution. For this purpose we define three basic objects.
The first one is the family of partitions of IRd

{
D�, � = 2n, n ∈ Z

}
D� is a decreasing sequence of partitions into cubes C� of side �. C

(�)
r denotes the

cube of D� which contains r. Another basic object is the coarse-grained image
of m ∈ L∞(IRd; [−1, 1]) with grain �, Av(�)(m; r)

(5.1) Av(�)(m; r) =
1

C(�)

∫
C

(�)
r

dr′m(r′) , |C(�)| = �d, m ∈ L∞(IRd; [−1; 1]).

The last basic object is the ”block spin” function

(5.2) η(ζ,�) (m; r) =
{ ±1 if |Av(�)(m; r)−m±

β,s| ≤ ζ,
0 otherwise.

where ζ > 0 and � < 1. Using these quantities we define:

• Outer and inner boundaries.
The D�−outer boundary of a D�−measurable region Λ, denoted by δ�

out[Λ],
is the union of all the cubes C of D� not in Λ which are connected to Λ.
The D�−inner boundary δ�

out[Λ] is the D�−outer boundary of Λc.

• Phase Indicator.
Denoted by Θ(ζ,�−,�+,s) (m, B; r), �− < 1, �+ > 10, ζ > 0, it is defined
as Θ(ζ,�−,�+,s) (m, B; r) = ±1 if η(ζ,�−) (m; r′) = ±1 for all r′ ∈ C

(�+)
r ∪

δ�
out[C

(�+)
r ] and |C(�−)

r ∩ (C(�−)
r � Bc[B])| ≤ ζ.

Elsewhere Θ(ζ,�−,�+)
B ((m, h); r) = 0
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• Correct points.
The ± correct points of m for a set B are the points r where, respectively
{Θ(ζ,�−,�+,s) (m, B; r) = ±1}.
The set {Θ(ζ,�−,�+,s) (m, B; r) = 0}, is instead the union of the spatial sup-
port of all the contours of m.

• Approximate, local equilibrium phase spaces.
These are the spaces with elements m for which all points of Λ are ± correct.
Such spaces are denoted by Mζ,�,�+,±,Λ and we drop Λ when Λ = IRd.

5.1 – Invariance under evolution

In this subsection we will prove that the local equilibrium ensembles
Mζ,�,�+,±,Λ are invariant under the partial dynamics and that the minimizers
of free energy in Mζ,�,�+,±,Λ is pointwise close to m+

β,s [or to m−
β,s], the closeness

being exponentially with the distance from the boundaries. By simmetry, it is
sufficient to prove the statement for the + ensemble, to which in the sequel we
restrict.

We consider the Cauchy problem obtained, after a suitable scaling limit, by
the Glauber dynamics, applied to Ising systems with Kac potentials,

(5.3)




dm(r, t)
dt

= −m(r, t) + tanh {β[J � m(r, t) + hB ]} , r ∈ IRd, t > 0;

m(r, 0) = m(r) r ∈ IRd.

We also consider dynamics where, outside region Λ, the function is frozen and
it acts as a boundary condition for the evolution inside Λ. Namely, we define a
partial dynamics in Λ by setting

(5.4)




dm(Λ)(r, t)
dt

=−m(Λ)(r, t)+tanh
{
β[J � m(Λ)+hB ]

}
, (r, t)∈Λ× {t > 0};

m(Λ)(r, t) = m(r), (r, t) ∈ (Λc × {t > 0}) ∪ (IRd × {t = 0}).

Definition 5.5.1. Let TΛ
t be the semigroup on L∞(IRd, [−1, 1]) defined by

setting

(5.5) TΛ
t (m) = solution of (5.4).

With similar arguments as in [5] it is possible to prove that the orbits TΛ
t (m)

converge by subsequences as t →∞ and that the limits points satisfy the mean
field equation

(5.6) m(Λ)(r) = tanh
{

β[J � m(Λ) + hB ]
}

r ∈ Λ.
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Lemma 5.5.2. There are ζ ′0, κ0 and s� positive, so that if ζ < ζ ′0 and
� < �0(ζ) = κ0ζ, then, for any m ∈ Mζ,�,�+,+,Λ, with s < s� and r ∈ Λ

(5.7) |J � m(r)−m+
β,s| ≤ 2ζ

(5.8) | tanh{β[J � m(r) + hB ]} −m+
β,s| ≤ ζ − ε0(ζ), ε0(ζ) = κ0ζ.

Proof. Calling
J (�)(r, r′) = Av(�)(J(r, ·); r′)

the average of J(r, ·) over its second variable, for � small enough

(5.9) |J(r, r′)− J (�)(r, r′)| ≤ c�1|r−r′|≤2, c := d‖∇J‖∞ < ∞.

Then
|J � m− J (�) � m| ≤ 2dc�

and since
J (�) � m = J (�) � u, u(r) ≡ Av(�)(m; r)

|J � m− J (�) � u| ≤ 2dc�.

On other hand, by assumption, |u(r)−m+
β,s| ≤ ζ for all r at distance ≤ 2 from

Λ, hence
|J (�) � u(r)−m+

β,s| ≤ ζ r ∈ Λ

thus concluding

(5.10) |J � m(r)−m+
β,s| ≤ ζ + 2dc�.

By choosing κ0 so small that κ02dc < 1 we derive (5.7) from (5.8). Since

d

dm
tanh{βm}

∣∣
m=m+

β,s

≤ a < 1

| tanh{β[m(r) + hB ]} −m+
β,s| ≤ a|J � m(r)−m+

β,s + (hB − s)|
≤ a|ζ + 2dc� + (hB − s)|.

Choosing s� = 2d−1cκ0ζ for any s < s� and κ0 ≤ (1− a)/(1 + 2dc)

| tanh{β[m(r) + hB ]} −m+
β,s| ≤ ζ

(
1− [(1− a)− 2dcκ0]

)
≤ ζ − κ0ζ.

The lemma is proved.
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The next Lemma proves the invariance of Mζ,�,�+,+,Λ under the partial dy-
namics TΛ

t . We omit the proof.

Lemma 5.5.3. If ζ, �, s� and Λ are as in Lemma 5.5.2, TΛ
t , t > 0, maps

Mζ,�,�+,+,Λ into itself.

We call

(5.11) XΛ,m =
{
u ∈ Mζ,�,�+,+,Λ : uΛc = mΛc

}
ψ∆ standing for the restriction of a function ψ to a set ∆.

Theorem 5.5.4. There are ζ0 < ζ ′0 (ζ ′0, �0(ζ) and s� as in Lemma 5.5.2),
ω and cω all positive, such that for any B ∈ BV (T ), m ∈ Mζ,�,�+,+,Λ, and for
any s ≤ s�, the following holds:

(5.12) inf
u∈Mζ,�,�+,+,Λ

Fs (uΛ|mΛc ;B) = Fs(ψ|mΛc)

where ψ(r) is the unique solution of the mean field:

(5.13) ψ(r) = tanh{β[J � ψ(r) + s]}

and

(5.14)
ψΛ ∈C∞(Λ, [m+

β,s − ζ, m+
β,s + ζ])

|ψΛ(r)−m+
β,s| ≤ cωe−ω dist(r,Λc

�=)

where Λc
�= = {r ∈ Λc dist(r, Λ) ≤ 1; mΛc(r) �= m+

β,s}.

In (5.12) Fs(·) means that the magnetic field is constantly equals to s on
the whole space. Moreover when s = 0, we simply write F (·).

Proof. By Lemma 5.5.3 TΛ
t leaves XΛ,m invariant and since XΛ,m is closed

under uniform convergence on the compacts, for any u ∈ XΛ,m, TΛ
t u converges

by subsequences to an element ψ of X0
Λ,m:

X0
Λ,m = {ψ ∈ XΛ,m : ψ solves (5.6) }

and Fs(uΛ|mΛc ;B) ≥ Fs(ψΛ|ψΛc ;B), the inequality being strict unless u ∈
X0

Λ,m. Therefore

Fs(uΛ|mΛc ;B) > inf
ψ∈X0

Λ,m

Fs(ψΛ|mΛc ;B), for any u ∈ XΛ,m\X0
Λ,m.



100 CRISTIANA BISCEGLIA – EMANUELE ROSATELLI [16]

By (5.8), any ψ ∈ X0
Λ,m satisfies the first condition in (5.14). We show that if ζ

is small enough then X0
Λ,m consists of only one element, ψ, which is therefore the

strict minimizer of Fs(uΛ|mΛc ;B). Suppose ψ and φ are both in XΛ,m, then by
(5.7), J �ψ(r) and J �φ(r), r ∈ Λ, are in [m+

β,s− 2ζ, m+
β,s +2ζ] so that, recalling

that s ≤ s�

| tanh{βJ � ψ(r) + βhB(r)} − tanh{βJ � φ(r) + βhB(r)}| ≤

≤ β

cosh2{β(m+
β,s − 2ζ ′)}

(∫
Λ

dr′J(r, r′)|ψ(r′)− φ(r′)|
)

since β cosh−2{β(m+
β,s)} < 1 we have for r ∈ Λ and a suitable constant c < 1,

| tanh{βJ � ψ(r) + βhB(r)} − tanh{βJ � φ(r) + βhB(r)}| ≤ c sup
r′∈Λ

|ψ(r′)− φ(r′)|

which implies that φ = ψ in Λ, hence everywhere. By (5.8) applied to ψΛ

Fs(ψΛ|mΛc ;B) ≥ Fs(ψΛ|mΛc).

Now we can repeat the same arguments and with hB = s every where and we
obtain

(5.15) Fs(ψΛ|mΛc) ≥ Fs(ψ̄Λ|mΛc)

where ψ̄ satisfies (5.13). To prove the last inequality in (5.14), let ψ ∈ X0
Λ,m and

φ ∈ X0
Λ,n, then, for r ∈ Λ

(5.16) |φ(r)−ψ(r)|≤e−2ω

(∫
Λ

dr′J(r, r′)|ψ(r′)−φ(r′)|+
∫

Λ

dr′J(r, r′)|m(r′)−n(r′)|
)

where we have chosen ζ0 so small that

e−2ω :=
β

cosh2{β(m+
β,s − 2ζ0)}

< 1.

Calling n0 the smallest integer larger or equal to dist(r, Λc
�=), by iterating (5.16)

we get

|φ(r)− ψ(r)| ≤
∑

n≥n0

e−2ωn2 ≤
(
2
∑
n≥0

e−ωn
)
e−ωn0

which yields (5.14) with cω := 2/(1− e−ω) and n(r) = m+
β,s.
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5.2 – Free energy of Contours

We call the triple (ζ, �−, �+) good if the following holds:

• The pair (ζ, �−) is good if ζ < ζ0/2 and �− < ��(ζ), ��(ζ) = κ0ζ with ζ0 and
κ0 as in Theorem 5.5.4.

• The triple (ζ, �−, �+) is good if he pair (ζ, �−) is good, �+ > 100 and

c�d
−ζ2 ≥ 2d+3�d

+[cωe−�+ω/6]2

with c a suitable positive constant and ω and cω as in Theorem 5.5.4.

The contours of a profile m relative to the parameters (ζ, �−, �+), are the pairs
Γ = (sp(Γ), ηΓ), where sp(Γ), the spatial support of Γ, is a maximal connected
component of {r ∈ IRd : Θ(ζ,�−,�+,s) (m, B; ·) = 0} and ηΓ is the restriction
of η(ζ,�) (m; r) to sp(Γ). Γ is a bounded contour if sp(Γ) is bounded. If Γ is
bounded we set

(5.17) K = δ
�+
in [sp(Γ)], A = δ

�+
out[sp(Γ)]

K is the “safety zone” of Γ.
A0 is the maximal connected component of A contained in the unbounded

component of sp(Γ)c. K0 the maximal connected component of K which is
connected to A0; ηΓ ≡ 1 or ηΓ ≡ −1 on K0; in the former case Γ is a + contour,
in the latter a − contour. The othe maximal connected components of K, if
they exist, are denoted by K±

i i = 1, .., n±, labelled so that ηΓ = 1 on K+
i and

ηΓ = −1 on K−
i . The maximal connected component of A connected to K±

i is
called A±

i . The maximal connected component of sp(Γ) which contains A±
i is

called int±i (Γ) and we write

(5.18)

int±(Γ) =
n±⋃
i=1

int±i (Γ),

int(Γ) = int+(Γ) ∪ int−(Γ),

C(Γ) = int(Γ) ∪ sp(Γ)

in the sequel we will choose �− ”very small” and �+ very large, so that a correct
point r is always inside a ”large” region, where η(ζ,�−) (m; ·) is constantly equal
to 1 or −1. At the same time, the region of correct points and the red zone
where the deviations from equilibrium are localized, are separated by the safety
zone, where η(ζ,�) (m; r) has a constant non zero value.

Theorem 5.5.5. Let (ζ, �−, �+) be good, m ∈ L∞(IRd, [−1, 1]), s� as in
Lemma 5.5.2, B ∈ BV (T ) and Γ a (ζ, �−, �+), + bounded contour for m, then
for any s < s� there is ψ ∈ L∞(IRd, [−1, 1] equal to m on C(Γ)c, to m+

β,s on
C(Γ)\K0 and with ψ with values in [m+

β,s − ζ + ε, m+
β,s + ζ − ε] on K0 such that

(5.19) Fs

(
mC(Γ)|mC(Γ)c ;B

)
≥ Fs

(
ψC(Γ)|ψC(Γ)c

)



102 CRISTIANA BISCEGLIA – EMANUELE ROSATELLI [18]

Proof. We need to prove that

(5.20) Fs (m;B) ≥ Fs (ψ) .

Let Σ0 be a D(�′−)-measurable circuit contained in K0 whose complement is
made of two unconnected components at mutual distance ≥ 1, calling ext(Σ0)
the one which contains A0. We also suppose that Σ0 has distance ≤ �′/3 from
S0 := δ1

in[K0]. By Theorem 5.5.4 applied to K0\S0 with boundary conditions
the restriction of m to S0 there is φ equal to m outside K0\S0, which, on K0\S0

has values in [m+
β,s − ζ + ε, m+

β,s + ζ − ε], ε = ε0(ζ ′) and such that

Fs(φK0\S0 |mS0) ≤ Fs(mK0\S0 |mS0 ;B)

(5.21) |φ(r)−m+
β,s| ≤ cωe−ω�′/3 on Σ0

setting ∆ = Σ0 ∪ ext(Σ0), we have

Fs(φ) = Fs(φ∆c |φ∆) + Fs(φ∆) ≥ Fs(φ∆).

Set ψ = φ on ∆ and equal to m+
β,s on ∆c, we are going to prove that

(5.22) Fs(φ∆c |φ∆) ≥ Fs(ψ∆c |ψ∆).

Indeed, since Fs(ψ∆c) = 0, we have

(5.23)
Fs(ψ∆c |ψ∆) =

1
2

∫
Σ0

dr

∫
∆C

dr′J(r, r′)(φ(r)−m+
β,s)

2 ≤

≤ Fs(φ∆c) +
1
2

∫
∆

dr

∫
∆C

dr′J(r, r′)(φ(r)− φ(r′))2.

The last inequality follows from the fact that the interaction between ψ∆ and
ψ∆c is very small, i.e.∫

Σ0

dr

∫
∆C

dr′J(r, r′)(φ(r)−m+
β,s)

2 ≤ |Σ0|
2

[cωe−�′+/3]2.

Then, since Fs(φ∆) = Fs(ψ∆) and from (5.23)

Fs(φ) = Fs(φ∆) + Fs(φ∆c |φ∆) ≥ Fs(ψ∆) + Fs(ψ∆c |ψ∆) = Fs(ψ)

and then the theorem is proved.
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In the proof of Theorem 3.3.4 we use the following Corollary, whose for
brevity we omit the proof.

Corollary 5.5.6. Let (ζ, �−, �+) be good, s� as in Lemma 5.5.2, Λ
and ∆ ⊂ Λ two bounded, D(�+)-measurable regions; m ∈ L∞(IRd, [−1, 1]) with
η(ζ,�−) (m; r) = 1, r ∈ δ

�+
out[Λ]∪δ

�+
in [Λ], B ∈ BV (T ) with |C(�−)

r ∩(C(�−)
r � Bc)| ≤

ζ�d
−, r ∈ δ

�+
out[Λ]∪ δ

�+
in [Λ]. Then there is a φ ∈ L∞(IRd, [−1, 1]) so that φ = m on

Λc, φ = m+
β,s on ∆, η(ζ,�−) (φ; r) = 1 on Λ and for any s < s� , calling

δ∆ = {r ∈ ∆ : dist(r, ∆c) ≤ 1}, Λc
�= = {r ∈ Λc, m(r) �= m+

β,s, dist(r, Λ) ≤ 1}

(5.24) Fs (mΛ|mΛc ;B) ≥ Fs (φΛ|φΛc)− (2cω expω |δ∆|) exp−ω dist(∆,Λc
�=)

6 – The surface tension

In this section we prove (2.5), Proposition 3.3.3 and Theorem 3.3.4.
Now we prove that

(6.1) lim
s→0

θβ,s = lim inf
k→∞

lim
s→0

lim inf
L→∞

θβ,s(L, k) = θβ(ν)

which clearly implies (2.5). We observe that (6.1) shows also that it is possible
to obtain the same value by taking limits in the reverse order. To simplify the
notation we omit the dependence on β writing θs instead of θβ,s. First of all we
want to prove that

(6.2) lim
s→0

θs(L, K) = θ(L, K) := inf
m∈L∞(R(L,K);[−1;1])

F
(
mR(L,k)|χR(L,k)c

)
.

Let m and B be so that

Ld−1θs(L, k) = Fs

(
mR(L,k)|χR(L,k)c ;B

)
.

Then for s small enough there exists ε

Fs

(
mR(L,k)|χR(L,k)c ;B

)
≥ F

(
mR(L,k)|χ0

R(L,k)c

)
− ε ≥ Ld−1θ(L, K)− ε

where χ0(r) = mβ1xd≥0 −mβ1xd≤0.
On the other hand let m̃ such that

Ld−1θ(L, k) = F
(
m̃R(L,k)|χ0

R(L,k)c

)
.
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By straigthforward computation it is possible to show that

(6.3) |F
(
m̃R(L,k)|χ0

R(L,k)c

)
− Fs

(
m̃R(L,k)|χ0

R(L,k)c ;B
)
| ≤ sKLd−1

and

(6.4) Fs

(
m̃R(L,k)|χ0

R(L,k)c ;B
)
≥ Fs

(
m̃R(L,k)|χR(L,k)c ;B

)
+ s2Ld.

Then, using (6.3) and (6.4)

θ(L, K) ≥ lim
s→0

θs(L, K).

Hence (6.2) is proved.
The next step is

(6.5) lim
s→0

θs ≤ lim inf
k→∞

lim
s→0

lim inf
L→∞

θs(L, k) ≤ lim inf
k→∞

lim inf
L→∞

θ(L, k).

It is easy to check that θs(L, k) is a non increasing function of K, i.e.

lim inf
k→∞

θs(L, k) = inf
K

θs(L, k) := θs(L).

This implies that

θs(L) ≤ θs(L, k) lim inf
L→∞

θs(L) ≤ lim inf
L→∞

θs(L, k).

By letting first s → 0 and then k → ∞ we obtain the first inequality in (6.5).
The last inequality follows from (6.2) and by letting the limits in the following
order: first L →∞, s → 0 and then k →∞. Using again (6.2) we can obtain

(6.6) lim inf
k→∞

lim inf
L→∞

θ(L, k) ≤ lim
s→0

θs

that together with (6.5) completes the proof of (2.5).

6.1 – Proof of Proposition 3.3.3

By definition of χ,∫
C(L)

|m(r)− χ(r)|dr =
∫

C−(L)

|m(r)−m−
β,s|dr +

∫
C+(L)

|m(r)−m+
β,s|dr.

We define
Aζ =

{
r ∈ C−(L) s.t. |m(r)−m−

β,s| ≤ ζ
}
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and Aη the analogous on C+(L). Then

∫
C(L)

|m(r)− χ)|dr ≤ (ζ + η)Ld +
∫

Ac
ζ

|m−m−
β,s|dr +

∫
Ac

η

|m−m+
β,s|dr.

In Ac
ζ we have that

∫
Ac

ζ

|m−m−
β,s|dr ≤ c

(ζ2 ∧ h)

∫
Ac

ζ

f−
h (m) ≤ c

(ζ2 ∧ s)
δLd.

With same arguments in Ac
η we obtain

∫
C(L)

|m(r)− χ(r)|dr ≤ (ζ + η)Ld +
c

(ζ2 ∧ s)
δLd +

c

(η2 ∧ s)
δLd ≤ δ′Ld.

6.2 – Proof of the Theorem 3.3.4

We define the i-th layer, i ∈ Z,

(6.7) Si = {x ∈ C(L) : (xd − �+i) ∈ [−�+/2, �+/2)}.

Let

(6.8) N = min{n ∈ IN : 2n�+ ≥
√

δL}.

Supposing
√

δ small enough, we define, for any 1 ≤ n ≤ N

Σn := S2n−1 ∪ S2n ∪ S2n−1+2N ∪ S2n+2N

and in the same way Σ−n, observing that |Σn ∪ Σ−n| = 8|S0|.
We will use the estimates of Section 5 in the boxes delimited by Σn and Σ−n

respectively, to conclude that in the center layer of the boxes we can replace m
by m+

β,s and m−
β,s , and h by ±s. Let

(6.9) an =
1

8|S0|

{∫
Σn∪Σ−n

dr|m− χ|+
∫

Σn∪Σ−n

dr|hB − χ̃|
}

.

Where χ̃ is defined as (3.13) with C±(L) instead of R±
i . Then

(6.10) a = min
n≤N

an ≤ C
√

δ.
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In fact, by assumption

3δLd ≥
∫

C(L)

dr|m− χ|+
∫

C(L)

dr|hB − χ̃| ≥

≥
N∑

i=1

8|S0|an ≥ 8|S0|aN = 8Ld−1N�+a ≥ 4
√

δLda

which proves (6.10).
Call n the integer where the minimum in (6.10) is achieved. Now we are

going to use the analysis of Section 5. We shorthand η(·; ·) for η(ζ,�−)(·; ·) and
we define:

• C0(L) is the union of all cubes C ∈ D(�+) such that both C and δ
�+
out[C]are

in C(L).
• Mn is the union of all cubes C ∈ D(�−) contained in Σn where η(m; ·) < 1

and C ∩B �= 0, of those in Σ−n where η(m; ·) > −1 and C ∩Bc �= 0 and of
the set

δ
�+
out[C

0(L)]  {"|j|≤4NSj}.

We want to estimate the free energy cost changing m and hB into new functions
φ and h̃B set respectively equal to χ and χ̃ on Mn and unchanged everywhere
else. We need an estimate on the volume |Mn|. It’s easy to prove that for a
suitable constant c the following estimate holds:

(6.11) |Mn| ≤ c
√

δLd−1.

Then there is a constant c0 > 0 so that

(6.12) Fs(mC(L)|mC(L)c ;B) ≥ Fs̃(φC(L)|φC(L)c ;B)− c0|Mn|.

Indeed the first term in the functional does not increase when replacing m by φ
and the other changes are proportional to the volume where have been made.

Recalling the definition of C0(L) and since

Fs̃(φC(L)|φC(L)c ;B) ≥ Fs̃(φC0(L)|φC0(L)c ;B).

We have

(6.13) Fs(mC(L)|mC(L)c ;B) ≥ Fs̃(φC0(L)|φC0(L)c ;B)− C0c
√

δLd−1.

Let then Λ+ be the box in C0(L) union of all Sj C0(L) with 2n < j ≤ 2n+2N−1
and let Λ− be its reflection around xd = 0. We are going to apply the Corollary
5.5.6 with Λ = Λ+ and ∆ = S2n+N  C0(L) and then with their images under
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reflecion around xd = 0. By symmetry we only consider the former and drop the
sub fix +. The hypotheses of Corollary are here met because:

(6.14) η(φ; r) = 1, r ∈ δ
�+
out[Λ] Λc

�= ⊂ {S2n−1 ∪ S2n+2N}

thus

(6.15) dist(∆,Λc
�=) ≥ �+N/2.

There is ψ equal to φ outside Λ± and equal to χ on S2n+N C0(L) and S−2n−N 
C0(L) such that

(6.16) Fs̃(φC0(L)|φC0(L)c ;B) ≥ Fs̃(ψC0(L)|ψC0(L)c ;B)− (2cωeω|S0|)e−ω�+N/2.

Setting

(6.17) U :=
⋃

|j|<2n+N

{Sj  C0(L)}.

We get

(6.18) Fs̃(ψC0(L)|ψC0(L)c ;B) ≥ Fs̃(ψU |ψUc ;B) = Fs̃(ψU |χUc ;B)

U is a rectangle whose basis is a cube of side b, L ≥ b ≥ L− 2�+; denoting by k
the height of U we then have, recalling (3.12),

(6.19) Fs̃(ψU |χUc ;B) ≥ bd−1θβ,s(b, k).

Given ε > 0, we may choose Lε > 0 so large that θβ,s(b, k) > θβ,s(k)− ε/2, and
by letting k →∞ and using (6.13) we obtain (3.18).
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Analysis of the Laplacian of an incomplete

manifold with almost polar boundary

JUN MASAMUNE

Abstract: Motivated by recent interest in global analysis of singular manifolds,
we establish the essential self-adjointness of a Laplacian, a Liouville property of sub-
harmonic functions, conservativeness and parabolicity of an incomplete manifold. These
results are applicable for manifolds with fractal Cauchy boundary.

Let M be a connected C1,1-Riemann manifold without boundary. In our
previous paper [13], we had studied that if the Cauchy boundary ∂M = M \
M , where M is the completion of M , is almost polar (see Definition 3), then
a Laplace-Beltrami operator (hereafter, Laplacian, in short) is essentially self-
adjoint. We call such a manifold a manifold with almost polar boundary. The
present paper is a continuation of this previous work. Here we will investigate the
spectral theory of an incomplete manifold such as: The essential self-adjointness
of the Laplacian, conservativeness and parabolicity of the manifold, a Liouville
property of sub-harmonic functions.

The typical example M = N \Σ is a complete manifold N deleted a closed
manifold Σ of co-dimension ≥ 2. More crucial example is: M itself is a manifold
but the completion M is no more a manifold. For example, M may be an alge-
braic variety with singular set, a football, an orbifold, a Met1-surface, so called
singular manifolds. We allow ∂M to be a fractal (see Section 5 for examples).

Key Words and Phrases: Laplacian – Essential self-adjointness – Lioville property
– Conservativeness – Parabolicity – Incomplete manifold – Singular manifold.
A.M.S. Classification: 58J35 – 60J65 – 53C43
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We consider a Laplacian ∆ = div ·∇ with the following domain: the domain
D(∇) of ∇ is the set of C1,1-functions f such that both f and ∇f are square
integrable. Similarly, the domain D(div) of div is the set of C1,1-vector fields
X such that X and divX are square integrable. Then let the domain D(∆) of
∆ be the set of functions f ∈ D(∇) such that ∇f ∈ D(div). M is said to have
negligible boundary if −div is a formal adjoint of ∇. The following is our main
result.

Theorem 1. Let M be a connected C1,1-Riemann manifold without bound-
ary. If ∂M is almost polar, then M has negligible boundary. Moreover,

(i) If M has negligible boundary, then the Laplacian ∆ is essentially self-adjoint.
(ii) ∆ is essentially self-adjoint if and only if two Sobolev spaces W0 and W

coincide, and moreover, then the L2-closure ∆ coincides with both Dirichlet
and Neumann Laplacians.
In the sequel, assume ∆ to be essentially self-adjoint.

(iii) If the volume v(r) of the ball B(x, r) of radius r centered at an arbitrary but
fixed point x ∈ M satisfies

(1)
∫ ∞ r

log v(r)
= ∞,

then M is conservative. If v(r) satisfies

(2)
∫ ∞ r

v(r)
= ∞,

then M is parabolic.
(iv) Every sub-harmonic function f belonging to D(∆) or to L∞ ∩ Lp for an

arbitrary p > 1, is a constant.

It is known that condition (1) (resp. (2)) of Theorem 1 implies the conser-
vativeness (resp. parabolicity) of a complete manifold [8].

An immediate application of Theorem 1 is

Corollary 1. Let us assume M satisfies the condition of Theorem 1
and ∆ is essentially self-adjoint. If M is not bounded and the Ricci curvature is
non-negative, then the following holds.

(i) Every harmonic 1-form α such that |α| ∈ D(∆) is 0.
(ii) Every harmonic map f : M → N such that the energy is in D(∆) is

constant, where N is a complete smooth manifold whose sectional curva-
ture is non-positive. The condition such that M is not bounded and the
Ricci curvature is non-negative may be replaced to that the Ricci curvature
is positive at some point.
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We organize the paper in the following manner.
In Section 1, we establish notation.
In Section 2, we discuss Sobolev spaces W 1,2

0 and W 1,2. The nature of
the research through the paper is the fact two Sobolev spaces W 1,2

0 and W 1,2

coincide if ∂M is almost polar (Theorem 2). This result has been well known for
an incomplete manifold M = N \Σ, where N is a complete manifold and Σ is a
closed almost polar set. Let us explain why our setting covers this case. Since
Σ is almost polar, it has volume 0, hence any ball centered at arbitrary point
x ∈ Σ has intersection with N . Therefore, there exists a sequence in N that
converges to x. This shows N = M , because N is complete. The contribution
of our study is to generalize the previous result to an incomplete manifold such
that whose completion is no more a manifold.

In Section 3, we study the essential self-adjointness of the Laplacian. In
general, if a symmetric operator on a Hilbert space has a unique self-adjoint
extensions, it is called essentially self-adjoint. This problem has been introduced
to Riemannian geometry by M. P. Gaffney [6]. He established a sufficient
condition for a manifold called M has negligible boundary so that the Laplacian ∆
on forms is essentially self-adjoint. We present two alternative proofs of Gaffney
theorem. Subsequently, together with the main result in [5], Gaffney proved the
essential self-adjointness of the Laplacian on forms of complete manifolds. We
prove the Laplacian is essentially self-adjoint if and only if W = W0.

In Section 4, we study the conservativeness, parabolicity, and a Liouville
property. The idea of our study of conservativeness and parabolicity bases on
the following fact. Consider again M = N \ Σ, where N is a complete manifold
and Σ is a closed almost polar set. Then the Brownian motion of N does not
hit Σ, accordingly, if N is conservative or parabolic, then so is M . On our
setting, we discuss without asking if Brownian motion hits ∂M or not, because
we do not know if the Brownian motion could be extended to M .

In order to establish the conservativeness, we decompose M into M1 and M2,
where ∂M ⊂ ∂M1, M1 has finite volume. We impose Neumann boundary condi-
tion to both manifolds. Then both manifolds are conservative (A.Grigor’yan [8]
proved that (1) in Theorem 1 is a sufficient condition for the conservativeness of
a complete manifold or a manifold with boundary of Neumann condition). As
we had seen M has no boundary condition (Theorem 2), we will obtain the con-
servativeness of M . One may prove the parabolicity in the same way, however,
we present a different proof.

In Section 5, we provide examples. P. Li and G. Tian [11] proved the
essential self-adjointness of the Laplacian, the conservativeness of an incomplete
manifold M \ Σ, where M ⊂ CP

n is an algebraic variety deleted the singular
set Σ of co-dimension not less than 3. Since M has finite volume and the singular
set is almost polar, M \Σ is not only conservative but more strongly, parabolic.
See more detailed proof for their result in [24]. The main reason why we study
the manifold of class C1,1 is because the most simple but non-trivial manifold
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with fractal boundary is merely C1,1 (Example 7). Finally, let us introduce
some related topics to our result. The Laplacian ∆C on the set of forms with
compact support of a complete manifold is essentially self-adjoint [20]. This
result contains the Gaffney theorem on a complete manifold because ∆C ⊂ ∆.
However, ∆C is not necessarily essentially self-adjoint on a manifold with polar
boundary, while the corresponding Markov form (E , C∞

0 ) has unique Dirichlet
extension. Indeed, ∆C on R

3 \ {0}, where {0} is almost polar, has infinitely
many self-adjoint extensions [9], [2]. The Laplacian ∆C on M \N , where M is
a complete and N is a closed sub-manifold, is essentially self-adjoint if and only
if the co-dimension of N is greater than 3 [13].

S. Ozawa [16], studied the behavior of the first eigenvalue λε of M \ Bε

where M is a compact manifold as ε → 0. P. Li and G. Tian established an
eigenvalue estimate of an algebraic variety deleted the singular set [11]. The
author and W. Rossman proved the Weyl’s asymptotic formula for an incomplete
manifold [14]. G. C. Papanicolaou and S. R. S. Varadhan [17] analyzed
the asymptotic behavior of the solution of the heat equation on a domain of an
Euclidean space punched out small balls.

1 – Notation

We list up notation for convenience of reading. Most of them will be ex-
plained also in the main body of the paper.

M - a connected Riemann manifold of class C1,1 without boundary. M
admits an atlas such that every coordinate transformation is C1,1 and Riemann
metric is Lipschitz on every compact set.

– µ - the Riemann measure.
– d - the intrinsic distance of M - see Section 2.
– r := d(·, x) - the radius function from the point x ∈ M .
– M - the completion of M with respect to d.
– ∂M := M \M .
– B(Σ, r) := {x ∈ M | d(Σ, x) < r} - the r-neighbourhood of the set Σ ⊂ M .
– ∆ := div∇ - the Laplace-Beltrami operator on M .
– ∆ - the L2-closure of ∆ - see Section 2.
– ∆D (resp. ∆N ) - Dirichlet (resp. Neumann) Laplacian - see Section 3.
– p(t, x, y) - the heat kernel associated with 1

2∆ - see Section 4.
– Ω - a bounded domain of M .
– Cl - the set of real-valued functions of class l on M .
– Cl

0(Ω) - the set of functions f ∈ Cl with compact support in Ω.
– V l - the set of real-valued vector fields of class l on M .
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– V l
0 (Ω) - the set of vector fields in V l with compact support in Ω.

– f |Ω - the function f restricted to Ω.

– Lp := Lp(M, µ) - the completion of C1,1
0 with respect to the norm ‖f‖p :=

(
∫

fp)1/p := (
∫

M
fp(x) dµ(x))1/p. Especially 〈f, g〉 :=

∫
fg for f, g ∈ L2.

– etT - the semi-group generated by a non-positive self-adjoint operator T
on L2.

– W := W 1,2(M, µ), W0 := W 1,2
0 (M, µ), and H := H1

2 (M, µ) - Sobolev spaces
of order (1, 2) - see Section 2.

– E(f, g) := 〈∇f,∇g〉 - the Dirichlet integral of f, g ∈ W .

– Cap(Σ) - the capacity of a Borel set Σ ⊂ M - see Section 2.

2 – Sobolev spaces

The main purpose of this section is to prove; if ∂M is almost polar, then
W = W0. On a complete manifold, where the Cauchy boundary is empty, this
goes back to Gaffney [5]. He cuts off the function f ∈ W out side of a ball
B(r), and prove that the modified function fr belongs to W0 and converges to f
as r →∞. If a manifold is incomplete, one should cut off f also near the Cauchy
boundary ∂M . We will prove that if ∂M is almost polar, then this modified
function fn belongs to W0 and converges to f (Theorem 2).

Definition 1. Denote by W the completion of the set of real-valued C1,1-
functions f on M such that ‖f‖1,2 = ‖f‖2 + ‖∇f‖2 < ∞, where ‖ · ‖2 stands for
the L2-norm, with respect to the norm ‖ · ‖1,2. The set W0 is the completion of
the set of functions in C1,1 with compact support C1,1

0 in W . Another Sobolev
type space H consists of measurable functions f such that both f and ∇f are
square integrable.

The Riemann distance does not work on a C1,1-manifold, so we work with
the intrinsic distance [1].

Definition 2. The intrinsic distance d is defined by

d(x, y) = sup{ψ(x)− ψ(y)|ψ ∈ C1,1, ‖∇ψ‖∞ ≤ 1} for x, y ∈ M.

We impose

Assumption 1. d is non-degenerate and generates the original topology
of M .

Remark 1. It is known that d coincides with the Riemann distance, if the
manifold is class C2,1 [7].
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Example 1. K. Th. Sturm [21] developed the conservativeness, parabol-
icity, and Lp-Liouville property of a local Dirichlet space utilizing the canonical
intrinsic distance associated to the Dirichlet form. A local Dirichlet space is a
generalization of a Riemann manifold, so his result covers complete manifolds,
however, his assumption excludes incomplete manifolds.

We define the capacity for M .

Definition 3. Let Σ ⊂ M be a Borel set. Denote by O the family of open
sets O of M such that Σ ⊂ O. Let L(O) be the set of functions f ∈ W0 such
that

0 ≤ f ≤ 1 and f |O = 1.

The capacity Cap(Σ) of Σ is

Cap(Σ) = inf
O∈O

Cap(O),

where
Cap(O) = inf

f∈L(O)
‖f‖1,2.

We say Σ is almost polar if Cap(Σ) = 0.

Remark 2. The Brownian motion on M hits Σ ⊂ M if and only if Cap(Σ) >
0, so the Brownian motion on M and that of M \ Σ (in order to make M \ Σ a
manifold, Σ should be closed) are the same almost surely, if Σ is almost polar. If
Σ is a manifold and co-dimension is not less than 2, or a fractal with Hausdorff
co-dimension greater than 2, then it is almost polar.

Example 2. See Section 5 for examples of manifolds M with almost polar
boundary such that M is not a manifold.

Recall the definition of the closure of an operator.

Definition 4. An operator S : H1 → H2, where H1 and H2 are Hilbert
spaces, is called closed if the graph G(S) is closed in H1×H2. S is called closable
if it has a closed extension. The operator T whose graph G(T ) coincides with the
the completion of G(S) in H1 ×H2 is called the L2-closure (hereafter, closure,
for short) of S and denoted by S.

It is well known in functional analysis that

Proposition 1. Every closable operator S has its closure S.

We may state the main result of this section.

Theorem 2. Let M be a C1,1-manifold without boundary. Then the
following holds.

(i) W = H.
(ii) If Cap(∂M) = 0, then W0 = W .
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Proof. We start to prove (i). For f ∈ W , let fn ∈ C1 be a sequence such
that fn → f in W as n →∞. By Stokes theorem,

〈f,divX〉 = lim
n→∞

〈fn,divX〉 = lim
n→∞

〈∇fn, X〉 = 〈∇f, X〉

for every X ∈ V 1
0 . This shows f ∈ H.

Conversely, let f be in H. Let {Uα, ψα}α>0 be a local chart, where each
Uα is relative compact, and {ρα}α be an associated partition of unity such that
ρα ∈ C1,1

0 (Uα). We claim fα := ραf ∈ H. Let X be the weak derivative of f .
Then it holds

〈ραX + f∇ρα, Y 〉 = 〈f,−div(ραY )〉+ 〈f∇ρα, Y 〉 = 〈fα,divY 〉

for every Y ∈ V 1
0 . Hence −(ραX + f∇ρα) ∈ L2 is the weak derivative of fα. So

fα ∈ H. Denote by Jε the Friedrich mollifier. Define Jεfα ∈ C1,1 by

Jεfα :=
∫

Jε(·, y)fα(y) µ(dy).

Since Jε(x, ·) has support in B(x, ε), for every α > 0, there exists εα > 0 such
that Jεfα ∈ C1,1

0 (Uα) for every 0 < ε < εα. Due to compactness argument,

‖Jεfα − fα‖1,2 → 0

as ε → 0. For α > 0 and δ > 0, let εα > 0 be such that

‖Jεα
fα − fα‖1,2 < 2−αδ.

Then fδ =
∑

α Jεα
fα ∈ C1,1 satisfies

‖fδ − f‖1,2 < δ.

This shows f ∈ W . Now we have completed the proof of (i).
Next, we prove (ii). We would like to show that for every f ∈ W there

exists fn ∈ W0 such that fn → f in W as n →∞. First, we claim that we may
assume f to be bounded. Define

f ∨ g := max{f, g},
f ∧ g := min{f, g}.

Then fn := (f ∨(−l))∧ l → f in W as l →∞ [11]. Hence, hereafter we assume f
is bounded.
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Next we claim that we may assume that f is 0 on some neighbourhood of
∂M . Since ∂M is almost polar, there exists a sequence en ∈ W such that

(a) 0 ≤ en ≤ 1,
(b) there exists an open set ∂M ⊂ On ⊂ M such that en|On

=1,
(c) ‖en‖1,2 → as n →∞.

From condition (c), we may assume that en tends to 0 almost everywhere as
n →∞. Set fn = (1− en)f . Because of condition (a), fn ∈ W . Then

(3) ‖f − fn‖1,2 ≤ ‖enf‖2 + ‖en∇f‖2 + ‖f∇en‖2.

The first and second terms of R.H.S. of (3) tends to 0 as n → ∞ by Lebesgue
theorem. The third term of R.H.S. of (3) tends to 0 as n → ∞ because f
is bounded. Due to (b), hereafter, we assume f is 0 on some neighbourhood
of ∂M .

Finally, we are going to cut off f outside of a big ball. Define a function
ηn by

(4) ηn(r) = ((2− n−1r) ∨ 0) ∧ 1,

where r is the radius function from an arbitrary but fixed point x ∈ M . Put
B(r) := B(x, r). We note that B(r) has finite volume for every r > 0. Indeed,
since ∂M is almost polar, there exists an open set ∂M ⊂ O with finite volume,
and as B(r) \O ⊂ M is compact because of Assumption 1, it has finite volume.
Due to the definition of the intrinsic distance, ‖∇r‖∞ ≤ 1, and thus ηn(r) ∈ W
for every n > 0. As ηn is bounded,

fn := fηn ∈ W for every n > 0.

Since ‖∇ηn‖∞ ≤ 1/n, we have

(5) ‖f − fn‖1,2 ≤ ‖(1− ηn)f‖2 + n−1‖f‖2 + ‖(1− ηn)∇f‖2.

By Lebesgue theorem, R.H.S. of (5) tends to 0 as n →∞. Now we may assume f
has compact support. By the mollifier techniques as in the proof of (i) above,
we obtain a sequence fn ∈ C1,1

0 such that fn → f in W . This shows W0 = W ,
and we have completed the proof.
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3 – Essential self-adjointness

A symmetric operator is called essentially self-adjoint if it has a unique self-
adjoint extension. In a series of papers, M. P. Gaffney studied this problem
for the Laplacian of a manifold. In [6] he established a criterion called M has
negligible boundary (see Definition 5) so that the Laplacian is essentially self-
adjoint. Subsequently, in [5] he showed that a complete manifold has negligible
boundary. In our previous paper [13] we had showed that if W = W0, then M
has negligible boundary. In this section, we will prove that the converse is also
true, namely

Theorem 3. The Laplacian is essentially self-adjoint if and only if W =W0.

First, we will present alternative two different proofs of Gaffney theorem
(Theorem 4). Then Theorem 3 will follow immediately.

In order to make ∆ symmetric, we need

Definition 5. We say M has negligible boundary if∫
div(fX) = 0

for every f ∈ D(∇) and X ∈ D(div).

The following Gaffney theorem says the assumption such that M has negli-
gible boundary makes ∆ not only symmetric but also essentially self-adjoint.

Theorem 4. ∆ is essentially self-adjoint if and only if M has negligible
boundary.

Before starting the proof, let us present a corollary which is the (i) of The-
orem 1.

Corollary 2. If M has almost polar boundary, then ∆ is essentially
self-adjoint.

Proof. Let f ∈ D(∇) and X ∈ D(div). Due to Theorem 2, there exists
fn ∈ C1,1

0 such that fn → f in W . Then

〈∇f, X〉 = lim
n→∞

〈∇fn, X〉 = −〈f,divX〉.

Hence M has negligible boundary, and ∆ is essentially self-adjoint by Theo-
rem 4.
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The first proof is to combine Lemma 1 and 2. We prove that the closure ∆
is self-adjoint, because if T is a self-adjoint extension of ∆ then

∆ ⊂ ∆ ⊂ T = T ∗ ⊂ ∆
∗

= ∆∗,

which shows ∆ = ∆
∗

implies ∆ = T , the essential self-adjointness of ∆.

Lemma 1. If M has negligible boundary, then div · ∇ is self-adjoint.

Proof. We would like to show −div = ∇∗, where ∇∗ stands for the adjoint-
operator of ∇, because then by Von Neumann theorem, div · ∇ = −∇∗ · ∇ is
self-adjoint. One direction is obvious, because by the definition of negligible
boundary, −div ⊂ ∇∗ and since ∇∗ is closed, −div ⊂ ∇∗.

Conversely, let X ∈ D(∇∗). Because D(∇∗
C) = H = W where ∇C is

the restriction of ∇ to the set of functions with compact support, there exists
a sequence Xn ∈ D(div) such that Xn → X in W as n → ∞. This means
X ∈ D(div).

Lemma 2. If M has negligible boundary, then ∆ = div · ∇.

Proof. As Lemma 1 says ∆ ⊂ div · ∇, we only prove the converse. Let
{Uα, ψα}α>0 be a local chart, where each Uα is relative compact, and {ρα}α be
an associated partition of unity such that ρα ∈ C1,1

0 (Uα). Suppose f ∈ D(div·∇).
Then fα := ραf belongs to D(div · ∇). By the definition of a closed operator,
for every α > 0 and ε > 0, there exists a vector field Xα,ε ∈ V 1,1

0 (Uα) such that

(6) ‖∇fα −Xα,ε‖1,2 < ε.

Due to Kodaira-Morrey-Eells decomposition, there exist fα,ε ∈ D(∇) and Yα,ε ∈
div−1(0) such that

Xα,ε = ∇fα,ε + Yα,ε.

Since the div−1(0) component of ∇fα,ε is 0, we have

(7) ‖∇fα −∇fα,ε‖2 ≤ ‖∇fα −Xα,ε‖2
and

(8) ‖div · ∇fα − div ·∇fα,ε‖2 = ‖div · ∇fα − divXα,ε‖2.
By (6), (7), (8) and Poincaré inequality, for every α > 0 and ε > 0, there exists
hα,ε ∈ D(∆) such that

‖fα − hα,ε‖2 + ‖div · ∇(fα − hα,ε)‖2 < 2−αε.

Define a function fε ∈ D(∆) by

fε =
∑
α

fα,ε.

Then we have
‖f − fε‖2 + ‖div · ∇f −∆fε‖2 < ε.

Since ε > 0 is arbitrary, now we have completed the proof.



[11] Analysis of the Laplacian of an incomplete etc. 119

We proceed to the second proof. Let us recall two self-adjoint Laplacians.
Both of them are an extension of the Laplacian on C1,1

0 . The Dirichlet Laplacian
∆D is the self-adjoint operator defined on the set of functions f ∈ W0 such that
∆f ∈ L2. The Neumann Laplacian ∆N is the self-adjoint operator defined on
the set of functions f ∈ W such that 〈∆f, ψ〉 = −〈∇f,∇ψ〉 for every ψ ∈
W [18]. Denote by ∆D,0 (resp. ∆N,0) the Laplacian defined on C1,1 ∩ D(∆D)
(resp. C1,1 ∩D(∆N )).

Lemma 3. ∆D,0 (resp. ∆D,0) is essentially self-adjoint and its closure is
∆D (resp. ∆N ).

The proof is similar to that of main result of [15]. For the sake of complete-
ness, we present the proof.

Proof. We would like to show ∆D,0 = ∆D. Let f ∈ D(∆D). Then by
hypo-ellipticity of ∆,

ft = et∆Df ∈ D(∆D,0).

By definition of et∆D ,
ft → f in L2 as t → 0,

and
∆ft = et∆D∆Df → ∆Df in L2 as t → 0.

Hence ft ∈ D(∆D,0) is a Cauchy sequence with respect to the graph norm of
∆D,0, and thus, f = limn→∞ ft ∈ D(∆D,0). Obviously, the same proof applies
for ∆N,0.

As ∆D,0 ⊂ ∆, if ∆ is symmetric, then it is essentially self-adjoint. This
completes the second proof of Theorem 4.

Now we prove Theorem 3.

Proof. In the proof above, we have observed that if M has negligible
boundary, then ∆ is essentially self-adjoint and the closure ∆ is the Dirichlet
Laplacian. Now we would like to see that the closure coincides also to the
Neumann Laplacian, because if it is true, then the quadratic forms

√
−∆D and√

−∆N coincide, where

D(
√
−∆D) = W0 and D(

√
−∆N ) = W,

and accordingly, W = W0 [18].
Suppose f is in D(∆N,0). Then

〈∆f, ψ〉 = −〈∇f,∇ψ〉 for every ψ ∈ W

shows ∇f ∈ D(∇∗). Hence ∇f ∈ D(div) by Lemma 1, and f ∈ D(∆) by
Lemma 2. Thus, ∆D = ∆ = ∆N and we have the proof.
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Remark 3. Consider the Laplacian ∆ = ∂δ + δ∂ on forms with following
domain [6]. The domain D(∂) of ∂ is the set of C1-forms α such that both α and
∂α are square integrable. Similarly, the domain D(δ) of δ is the set of C1-forms
α such that both α and δα are square integrable. Then let the domain D(∆) of
the Laplacian ∆ be the set of C1-forms α ∈ D(∂) ∩D(δ) such that ∂α ∈ D(δ)
and δα ∈ D(∂). One may prove the essential self-adjointness of ∆ by a similar
method of the second proof presented above. In fact, assume ∆ is symmetric.
Then, for the Friedrich self-adjoint extension ∆F of ∆,

αt = e−t∆F α ∈ D(∆),

and both αt and ∆αt converges to α and ∆α, respectively, as t → 0.

4 – Conservative, parabolic, and Liouville property

In this section we prove conservativeness, parabolicity and a Liouville type
property. Let us start from definitions. The heat kernel p associated to 1

2∆ is
the smallest positive fundamental solution to the heat equation

1
2
∆ut =

∂

∂t
ut.

J. Dodziuk [3] showed that every Riemann manifold (whether it is complete or
incomplete) admits the heat kernel. Let us recall

Definition 6. A manifold M is called conservative if the heat kernel p
satisfies ∫

p(t, x, y) dµ(y) = 1

for every t > 0 and x ∈ M .

Let (E , D(E)) be a Dirichlet form on L2 and T be the generator. (E , D(E))
is called conservative if for every fn ∈ L2 such that 0 ≤ fn ≤ 1, fn → 1, it holds
etT fn → 1 as n → ∞ for every t > 0. For further study of a Dirichlet form, we
refer [4]. Denote by ∆D the Dirichlet Laplacian. Then, since

et∆Df =
∫

p(t, ·, y)f(y) dµ(y) for every f ∈ L2,

the conservativeness of M is equivalent to that of the Dirichlet form (E , W0).
As (E , W0) generates the Brownian motion, M is conservative if and only if the
Brownian motion Xt starting from an arbitrary point of M may be found on M
almost surely at every time t > 0. The terminology conservative originates on
this fact.
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A manifold with boundary is never conservative in the sense above, because
the Brownian motion will be absorbed at the boundary. So instead of the heat
kernel, we consider the Neumann heat kernel. In such case, the corresponding
Dirichlet form is (E , W ) and the Brownian motion is reflected at the boundary.
A manifold with boundary of Neumann condition is conservative if it has volume
growth condition (1) of Theorem 1 [8].

We start the proof of conservativeness.

Proof. Our argument bases on the following [4].

Theorem 5. The Dirichlet form (E , D(E)) is conservative if and only if
there exists a sequence fn ∈ D(E) such that

0 ≤ fn ≤ 1, lim
n→∞

fn = 1, and lim
n→∞

E(fn, ψ) = 0 for everyψ ∈ D(E) ∩ L1.

Let ∂M ⊂ On be a decreasing family of open sets of M such that ∂On∩M is
C1,1 for every n > 1, and Cap(On) → 0 as n →∞. The manifold with boundary
M \ On is conservative with Neumann condition [8] for every n > 1. Hence, by
Theorem 5, for every n > 0 there exists a sequence fn,l ∈ W (M \On) such that
0 ≤ fn,l ≤ 1 on M ,

lim
l→∞

fn,l = 1, and lim
l→∞

E(fn,l, ψ) = 0 for every ψ ∈ W (M \On) ∩ L1.

Set hn,l = en ∨ fn,l, where en is the equilibrium potential of On ∩M , that is the
function en ∈ W0 such that 0 ≤ en ≤ 1 on M ,

en|On∩M = 1, and Cap(On ∩M) = ‖en‖1,2.

Then hn,l ∈ W , and

(9) |E(hn,l, ψ)| ≤ |〈∇en,∇ψ〉|+
∣∣∣ ∫

M\On

〈∇fn,l,∇ψ〉
∣∣∣.

The R.H.S. of (9) tends to 0 as n, l → ∞. Since hn,l ∈ W0 for every n, l > 1,
and hn,l → 1 as n, l →∞, M is conservative by Theorem 5.

A manifold is said to be parabolic if it does not admit a non-negative Green
function G. By definition,

G(x, y) =
∫ ∞

0

p(t, x, y) dt, for every x, y ∈ M.

This shows M is parabolic if and only if the Brownian motion is recurrent. The
concept of recurrence may be extended to general Dirichlet form, and it holds [4].

Theorem 6. The Dirichlet form (E , D(E)) is recurrent if and only if there
exists a sequence fn ∈ D(E) such that

0 ≤ fn ≤ 1, lim
n→∞

fn = 1, and lim
n→∞

E(fn, fn) = 0.
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We proceed to prove the parabolicity.

Proof. The volume growth condition (2) of Theorem 1 implies

∑
n>0

2n+1

v(2n+1)− v(2n)
= ∞,

where v(r) stands for the volume of the ball B(x, r) with arbitrary but fixed
x ∈ M . Hence,

(10) lim
n→∞

v(2n+1)− v(2n)
22n

= 0.

Let ηn ∈ W be the function defined by (4). Then

E(ηn, ηn) =
v(2n+1)− v(2n)

22n
.

By (10) and Theorem 6, the Brownian motion is recurrent.

Remark 4. The parabolicity may be proved by the same idea of the proof
of conservativeness presented above. More precisely, decompose M = M1 ∪M2,
where ∂M ⊂ M1 and M1 has finite volume. Imposing Neumann condition to
both M1 and M2, by condition (2) of Theorem 1, both manifolds are parabolic.
As M does not have boundary condition, it is parabolic.

Finally, we prove a Liouville property.

Proof. Let ηn ∈ W be the function defined by (4). Let f be a non-negative
sub-harmonic function. Assume f ∈ D(∆). Since ∆ = ∆D ((ii) of Theorem 1),

0 ≤ 〈∆f, η2
nf〉 = −2〈∇f, ηnf∇ηn〉 − 〈∇f, η2

n∇f〉,

and hence

(11) ‖ηn∇f‖2 ≤ 2‖f∇ηn‖2.

The R.H.S. of (11) tents to 0 as n →∞ by Lebesgue theorem. Therefore ∇f = 0.
If one puts h = fp/2, then h is sub-harmonic and f ∈ L2. Essentially the

same proof described above applies to show ∇h = 0, so we omit it.

Remark 5. It is known that there exists non-constant non-negative sub-
harmonic function such that f /∈ Lp for any p > 1 on a complete manifold. The
next two examples show that we may not remove the additional assumption such
that f is bounded and ∂M is almost polar.

Consider M = R
3 \{0} and f = (r−2−1)∨0, where r is the radius from the

origin. Obviously, M has almost polar, f is sub-harmonic, and f ∈ L5/4. Then,
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a standard smoothing technique of sub-harmonic functions on Euclidean space
yields a non-negative, non-bounded, non-constant C2-sub-harmonic function in
L5/4.

Consider M = R \ {0} and f = ((r + 1)−1 − 4) ∨ 0. Then {0} is not almost
polar, f is bounded sub-harmonic and belongs to Lp with every p > 1.

Remark 6. A similar estimate in the proof of parabolicity may be found
in [10]. The conservativeness and parabolicity can be proved by the main result
in [10]. The original proof of Liouville property of complete manifolds can be
found in [22].

5 – Examples

In this section, we consider some examples. Let us recall a sufficient condi-
tion of ∂M to be almost polar [13].

Definition 7. The lower Minkowski co-dimension of a Cauchy boundary
∂M is

lim inf
ε→0

log vol(Nε)
log ε

where Nε is the ε-tubular neighbourhood of ∂M .

Theorem 7. If the lower Minkowski co-dimension of ∂M is greater
than 2, then it is almost polar. In particular, if ∂M is a manifold, and its lower
Minkowski co-dimension is not less than 2, then the same conclusion holds.

Example 3. Consider the incomplete manifold M\Σ, where M ⊂ CP
n is an

algebraic variety in complex projective space with singular set of co-dimension 2.
P. Li and G. Tian [11] showed the essential self-adjointness of the Laplacian,
conservativeness, and established an estimate of eigenvalues. As they proved
that Σ is almost polar (Theorem 4.1), and M has finite volume, their manifold
is not only conservative but more strongly, also parabolic. For a detailed proof,
we refer [24].

Example 4. Let M be a compact orbifold with singular locus Σ of codimen-
sion ≥ 2. In the same way as in [11], one may show that the Riemann manifold
M \ Σ has almost polar Cauchy boundary. The spectrum of the L2-closure of
the Laplacian is studied in [19].

Example 5. Consider an incomplete 2-dimensional manifold of finite vol-
ume having constant curvature = 1 with isolated conical singularities. Such a
manifold is called Met1-surface and is important for the study of minimal sur-
faces [12].
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Example 6. Consider the so called “football”. Set M := C \ {0}

g =
4(dx2 + dy2)

(1 + r2)2
, f =

µrµ−1(1 + r2)
1 + r2µ

, µ ∈ R+, h = f2g,

where r is the distance from the origin. Then {0} is almost polar. In [14], we show
that the Laplacian has pure point spectrum and it satisfies Weyl’s asymptotic
formula.

The next example has fractal Cauchy boundary.

Example 7. Let us recall the Cantor set Σ in a real-line. Consider the
union of 2n-segments

Σn = [0, 3−n] ∪ [2 · 3−n, 3−n+1] ∪ . . . ∪ [1− 3−n, 1] ⊂ R.

Then Σ is defined by Σ = limn→∞ ∩1<l<nΣl. Let (M, g) = (N \ Σ, fgo) be
an incomplete manifold defined as follows; N is a 3-dimensional complete C2-
manifold with metric go ∈ C2, Σ is a Cantor set, by this we mean there exists
a local chart (U, ψ) of N such that C ⊂ U and ψ(Σ) is a Cantor set in R. The
metric g = fgo is defined as follows. Denote by r the distance from Σ with
respect to go, and set

f(x) =
{

r2ε, if x ∈ B;
1, otherwise,

where ε > log 2−log 3
2 log 3−log 2 and B = {x ∈ N | r(x) < 1}.

Proposition 2. M is a C1,1-manifold with almost polar boundary.

Proof. Since M is of class C2 and g is Lipschitz on every compact set,
M is of class C1,1. Let us assume ψ(Σ) lies in x-axis. We claim ∂M = Σ.
Indeed, for every a = (x, 0, 0) ∈ Σ (hereafter we identify Σ with ψ(Σ)) and
an = (x, 0, 1/n) ∈ M , there exists C > 0 such that

d(a− an) < C

∫ 1
n

0

zε dt → 0 as n →∞,

where d is the Riemann distance with respect to g. As N is complete, ∂M =
Σ. Denote by Vn the volume of B(Σn, 3−1) with respect to g. By an explicit
computation of Vn and letting n →∞, Minkowski dimension of Σ is

dim(Σ) = 3 +
log Vn

n log 3
≤ 1 +

log 2
log 3

− 2ε + 1
ε + 1

.

Hence, co-dimension of Σ ⊂ M is greater than 2 if ε > log 2−log 3
2 log 3−log 2 . By Theorem 7,

∂M is almost polar.
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