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Ekeland sequences compact in L*

LUCIO BOCCARDO

dedié a Ivar Ekeland

ABSTRACT: In this paper we use Ekeland’s e-variational principle and we prove that,
for some integral functionals, there exists a minimizing sequence compact in L.

1 — Introduction
Let us recall Ekeland’s e-variational principle (see [8, 9]).

LEMMA 1.1. Let (V,d) be a complete metric space, and let F : V — (—o00, +0]
be a lower semicontinuous function such that infy F is finite. Let ¢ >0 andu € V
be such that
< inf .
Flu) < Jrelv]-'(v) +e

Then there exists v € V such that

(i) d(u,v) < Ve;
(i) F(v) < F(u);
(iii) v minimizes the functional G(w) = F(w) + /€ d(v, w).

Many papers used the above e-variational principle in many different frameworks:
it is impossible to quote all of them; we only recall [1, 10, 11, 12, 17, 18, 20] (and
the references therein) and the papers referred below.

In this paper we carry on the study of additional properties of the Ekeland
sequences (begun in [5] and developed in [7]), in the case of functionals defined
through multiple integrals.
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In [5], we considered some properties of the minimizing sequences for integral
functionals J. Thanks to the Ekeland Lemma, we proved the existence of a minimiz-
ing sequence compact in L*(Q) or in C% for functionals which do not need to have
a minimum, without using the integral representation of the relaxed functional J*.

In [7], we improved the study done in the paper [5], under the assumption that
the functional J has a minimum belonging to L>(£2). Using again Ekeland’s e-
variational principle, we proved that there exists a minimizing sequence uniformly
converging to a minimum wu.

In this paper, we prove similar results if the coefficients satisfy a control assump-
tion (quite natural and introduced in [2]; see (2.3) below).

2 — Setting and statement of the result

Let © be an open, bounded subset of RY, N > 2. and let p be a real number, with

2 <p < N. We will denote by p* the Sobolev exponent of p: p* = NN—_’;.

Let j: Q x RN — R be a Carathéodory function (i.e., measurable with respect
to = for every £ € R, and continuous with respect to ¢ for almost every z € Q)
convex with respect to &, and such that

algl” <, &) < BIEP, (2.1

for almost every = € €, for every ¢ € RN, where «, 3 are positive real numbers.
Let J : Wy P(€2) — R be defined by

10 = [ o)+ [ @l = [ e vewire),

r>1, (2.2)

and the coefficient b(z) and the datum f(z), belonging to L!(2), satisfy the domi-
nated assumption

there exists Q € RT such that |f(z)| < Qb(x). (2.3)

where

Note that (2.1) implies

) za [ v+ [ ool - [ 1@)v)

First of all, we point out that the assumptions (2.3) and (2.2) imply

L[ v = [ w1 [l - [ @l

— [ @l QI+ [ bl - @l
lo|"" 12 Q o7~ <@
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where b(z) [|[v]" "t = Q]|v| is positive on the set {|[v|"~! > Q} and b(z)[[v|" "t —Q]|v|
belongs to L! on the set {|v|"~! < Q}.

Thus, under the above assumptions J is well defined on W,"*(€2) even though f
is only in L'(Q); possibly with value +oc.

Since J is both weakly lower semicontinuous and coercive on VVO1 P(Q), there
exists a minimum w of J.

Moreover the assumption (2.1) and the inequality (2.4) say that the functional
J is strongly lower semicontinuous in VVO1 ’1(9), so that it is possible to apply the
Ekeland Lemma 1.1.

Also we have the following results on the summability of minima of J.

PROPOSITION 2.1. Let u be a minimum of J on W, "*(2). Then

(i) in [19] (see also [14]) is proved that, if b(z) =0, f € L™(Q}) , m > %, then u
belongs to L*>(£2);

(ii) in [4] is proved that, if b(z) =0, f € L™(Q) , 1 <m < %, then u belongs to
L7(Q), o = (p;:b)*’.

(iii) in [2] is proved that, under the assumptions (2.2) and (2.3), u € L*°(Q), with
the explicit bound

u(z)] < Q7. (2.5)

REMARK 2.2. Let {@,} be a minimizing sequence. Recall the definitions (k > 0)

Grls) = (Is| — k)* W

Before proving Theorem 2.3, note that, under the assumptions (2.1), (2.2), (2.3),
1

Ti(s) = s — Gi(s).

since we have estimate (2.5), the sequence {u,}, with w, = Ty (@), M = Q= 1,
en — 0, satisfies

Q

< it J()+6n+;/ (@) | Tat ()" =[] /f ) Gar(iin)

vEW, P (Q) Q

< inf J0)+ent /Q (@) Gar(@n)

vEWP(Q)

and since

lim_ / (@) o (i) = / f(@) Car(u) =

we have that

/j(x,vunHl b(x)|unr—/f(x)un< inf () +E,.
Q rJo Q
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That is, the sequence {u,} is a minimizing sequence for .J, and it is bounded in
L>(Q): |up(x)] < M.

We assume that
there exists a(z,§) = je(x, &), which satisfies the Leray-Lions assumptions (2.6)

(see [16]); that is a : © x RN — R¥ is a Carathéodory function such that the
following holds for almost every = € Q, for every £ #n € RV:

a(x,§)
la(z,§
la(z, ¢

= algfr,

)| < BlEFP, (2.7)
) —a(z,n)](§—n) >0,

where «, 8 are positive constants. Then the minimum u € Wol’p(ﬂ) NL>®() is a
solution of the Euler-Lagrange equation

/ a(z, Vu)Ve —|—/ b(x) ulu|""2p = / f@) e, YoeW,P(Q)NL2(Q). (2.8)
Q Q Q
With respect to the above Remark 2.2, if we assume (2.6), in Theorem 2.3, we
prove more (as in [7], even with different assumptions): thanks to the e-variational
principle, it is possible to build a minimizing sequence not only bounded in L*>(Q),
but also strongly convergent to u in the same space.

Our main result is the following.

THEOREM 2.3. We assume (2.1), (2.2), (2.3). Let u be a minimum of J on
Wy () N L®(), and let {@,} be any minimizing sequence for .J,

g, < M = Qr%l, thanks to Remark 2.2. (2.9)

Then the minimizing sequence {u,, } built after {, } using the e-variational principle
satisfies

nl;rrgo lten, — u”W(}*p(Q) =0, (2.10)
and
the sequence {u,} is compact in L (). (2.11)
PRroOF.

STEP 1. Let &, be a sequence of positive real numbers, converging to zero, and
let @, be such that, for every n € N,

J(t,) < inf  J(w)+e,.
vEW, P (Q)
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Let us now consider the complete metric space WO1 - (©), endowed with the distance

1
dn(w,v):\/?/QWw—VvL

Thanks to Fatou lemma, to the fact that j(z,£) > 0 and to (2.4), we have that J
is strongly lower semicontinuous on VVO1 1(Q) Thus, in view of Lemma 1.1, there
exists a sequence {u,} in W' (2) such that

/ Vit — Viin| < v/er,
Q

and
J(un) < J(un) < inf  J(v) +en, (2.12)
1)EW01’p(Q)
J(uy) < J(w) + /e / 'V, — Vuwl, Yw e Wy (). (2.13)
Q

Using the growth properties of J we now prove that the sequence {u, } is bounded
in Wy?(€). By (2.1), we have (recall (2.4))

/Qj(a:,Vun) + /{uner} E b(z)|un|” — f(x) un]

< [ @)+ [ @l = [ f@.
Thus

Oz/Q [Vu,|P < J(up) < inf  J@w)+e, +/ {f(m) Up — % b(m)|un|r]

vEW, P (Q) {Jun|""1< Q}

and

a/ Vu, P < J(u,) < inf J(v)+e, + Co,
Q vEW, P (Q)

which implies that the sequence {u,} is bounded in W,"*(£2). Thus ||un||W1,p(Q) <
0
R and, up to subsequences, still denoted by {u,}, there exists a function w in

WP (€2) such that
Up —> U weakly in () and almost everywhere in . (2.14)

By the weak lower semicontinuity of J on W, (), and by (2.12), u is a minimum
of J on this space.
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Now we follow a classic method by I. Ekeland and we use (2.6). Choosing
w = u, — t¢ in (2.13), where t is a positive real number and ¢ is a function in
WP () N L®(£2), we obtain

Tt — 1) — J(un) + /on t /Q V| > 0.

Dividing by ¢, and letting ¢ tend to zero, we get, since J is differentiable,

—<J'<un>,w>+¢a/ﬂ|w| >0,

so that
(J'(un), ¥) < Vem A V| (2.15)

Recalling that J'(u) = 0 since u is a minimum, we have
(') = T ).0) < VE7 [ 190,

for every ¢ in W, *(€2) N L>°(£2). Observe that

() v) = [

Q

al, V) Vi /Q f@), (2.16)
that is

(T (1) =T (), ) = /

o lal@, Vi) = al, v“>]V¢"‘/Q b() (wn|un|"~2 = ulul"?)1h.

Choosing 1 = Ty (u, —u), and using the fact that s — s|s|"~2 is monotone, we have

/ [a(z, Vu,) — alz, Vu)]V(u, —u)

lun—u|<k
<en / VT (un —u)| < \en / |V (up —u)| < Cr/En .
Q Q
Here we use the Fatou lemma, as k — oo, and we obtain
/ [a(x, Vu,) — alz, V)]V (u, —u) < Cry/eEn -
Q

A result by J. Leray and J.-L. Lions says that the above limit implies that

Vu,(x) converges a.e. to Vu(x). (2.17)
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Then in [6] is proved that, under our assumption on the function a(x, &), this a.e.
convergence implies (2.10).

STEP 2. Let 0 < ¢ < 1 be a smooth function and let ¢ (t) = T1[G(t)], with
k> M = Q1. Choose ¢) = v (un) CP in (2.15); then we have

/ (2, Vi)V o (n) €] + / b() thn |2 (1) CP — / £ (@) or (1) €
Q Q Q
< /e / IVl (un) €7]]

Q

and, recalling (2.3), (2.4), (2.9),

/Q a(x, Vun)V]er (uy) CP)
< Ve [ 1Vln() ) +/{ 1y MNQ = fual ]
— Ve / IV ok () €711,

which implies (with B,y = {z € Q : k < |u,(2)] <k + 1}, App={z€Q:k <

1 (2)]1).
v np 4
a /B IVl
<V /B IVl /Q 19¢] ()| 7
98 / (V] )P~V ok ()|
and
« |Vu,|PCP
< Ven |V, |CP +p V¢ | on(un)| ¢P1
+pp (|Vun|<)p_1|VCH<p (un)|
Since

+oo
> enlt) =G,
k=j
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we have (note that Vu, G;(u,) = VG,(u,)Gj(u,) and use the Young inequality
with 0 < B < §)

@ /Q VG () [PCP
< / (VG5 (un) [ CICP +p /Q V]G ()| P
08 [ (IVC; )] P [VCIIG ()],

Q
<B /Q VG, ()P P + Ca(yan)? / v

An,j

+01/Q|V<|p|Gj(un)|p+Cz/A ¢P

n,j

+B/Q|VGj(un)|pCp+CB/Q|V<|p|Gj(un)|p.

Thus we have

<a—2B>/Q VG, (un) PP < (C14+Cp) /Q IVCPIG (un) P+ (Cot-C(y/En)P) /A e,

n,j

This estimate implies (see [13, 15]) that the sequence {u,} is bounded in the De
Giorgi class Bz (2, M); that is the functions u,, are equi-Hdlder continuous in 2 and
we proved the statement (2.11). O

REMARK 2.4. In [3] we presented a different method to prove the compactness
in Wy() of minimizing sequences proved in (2.10).
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