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The class of Lucas-Lehmer polynomials

PIERLUIGI VELLUCCI – ALBERTO MARIA BERSANI

Abstract: In this paper we introduce a new sequence of polynomials, which follow the
same recursive rule of the well-known Lucas-Lehmer integer sequence. We show the most
important properties of this sequence, relating them to the Chebyshev polynomials of the
first and second kind.

1 – Introduction

In this paper we study a class of polynomials L

n

(x) = L

2
n−1(x) − 2, which, at the

best of our knowledge, are here introduced for the first time, created by means of
the same iterative formula used to build the well-known Lucas-Lehmer sequence,
employed in primality tests [18, 17, 21, 6, 16]. It is clearly crucial to choose the first
term of the polynomial sequence. In this paper we considerL0 = x.

In this paper we show some properties of these polynomials, in particular dis-
cussing the link among the Lucas-Lehmer polynomials and the Chebyshev poly-
nomials of the first and second kind [2, 12, 22]. The Chebyshev polynomials are
well-known and, although they have been known and studied for a long time, con-
tinue to play an important role in recent advances in many areas of mathematics
such as Algebra, Numerical Analysis, Di↵erential Equations and Number Theory
(see, for instance: [1, 3, 5, 7, 10, 13, 19, 23, 26, 4]) and new other properties of
theirs continue to be discovered ([3, 7, 8, 11]).

In particular, in the spirit of some existing results on the Chebyshev poly-
nomials and the nested square roots (see, for example, [20, 25]), we show that
the zeros of the Lucas-Lehmer polynomials can be written in terms of nested
radicals.

Key Words and Phrases: Chebyshev polynomials – Lucas-Lehmer primality test
– Lucas-Lehmer primality numbers – orthogonal polynomials – zeros of polynomials.
A.M.S. Classification: 42C05, 33C05.
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There are many classes of polynomials which are related to the Chebyshev poly-
nomials, such as [5, 9, 14, 15, 24]. In the spirit of some of these works - if L

n

(x),
T

n

(x), U
n

(x) denote (respectively) the nth Lucas-Lehmer polynomials, the Cheby-
shev polynomials of the first and second kind - we can consider the polynomials L

n

as a generalization of the so-called modified or shifted Chebyshev polynomials, by
introducing an appropriate change of variable t = f(x).

We will now outline the content of this paper. In Sections 2 and 3 we introduce
the Lucas-Lehmer polynomials and we show their main properties. Furthermore,
we give a recursive formula for the sequence of the first nonnegative zeros of L

n

(x),
in terms of nested radicals. In Section 4 we show some relations among the Lucas -
Lehmer polynomials L

n

(x) and the Chebyshev polynomials of the first and second
kind, determining several new properties for the former.

In Section 5 we show some generalizations of the Lucas-Lehmer map, having
the same properties of L

n

. In Section 6 we list some further perspectives and
developments of the theory.

2 – First iterations of the Lucas-Lehmer map

Let us consider the iterative map

L

n

(x) = L

n−1(x)
2 − 2 ; L0(x) = x . (2.1)

Assuming L0 = x as the initial value, let us construct the first terms of the sequence.
The function L1(x) = x

2 − 2 represents a parabola with two zeros z1,2 = ±
p
2

and one minimum point in (0,−2); L2(x) = (x2 − 2)2 − 2 = 2
⇣

1− 2x2 + x

4

2

⌘

,

shown in Figure 1 contains four zeros: z1÷4 = ±
p

2±
p
2. From the derivative of

L2(x), L
0
2(x) = 4x · (x2 − 2) = 4x · L1(x) it is possible to determine the critical

points of the function: x1 = 0 (minimum), x2,3 = ±
p
2 (maximum). Since L2(x) =

2
⇣

1− 2x2 + x

4

2

⌘

= 2 cos(2x) + o(x3), for x ! 0 we have L2(x) ⇠ 2 cos(2x).

Figure 1 comparison between L2(x) and 2 cos(2x).
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Figure 2 comparison between L3(x) and 2 cos(4x).

The zeros of the function L3(x) = ((x2− 2)2− 2)2− 2 = 2
�

1− 8x2 + o(x3)
�

, whose

graph is shown in Figure 2, are eight: z1÷8 = ±
q

2±
p

2±
p
2. The critical points

are: x1 = 0, x2,3 = ±
p
2, x4,5,6,7 = ±

p

2±
p
2. Besides L3(x) ⇠ 2 cos(4x) for

x ! 0.

Figure 3 comparison between L4(x) and 2 cos(8x).

The zeros of the function (shown in Figure 3) L4(x) = (((x2 − 2)2 − 2)2 − 2)2 − 2

are sixteen: z1÷16 = ±

r

2±
q

2±
p

2±
p
2. The critical points follow the same

general rule which is possible to guess observing the previous iterations; moreover
it results again L4(x) ⇠ 2 cos(8x) for x ! 0. It must be noted that: L1(±

p
2) =

0, L2(±
p
2) = −2, L

n

(±
p
2) = 2 8n ≥ 3; L0(0) = 0, L1(0) = −2, L

n

(0) =
2 8n ≥ 2; L0(−2) = −2, L

n

(−2) = 2 8n ≥ 1; L

n

(2) = 2 8n ≥ 0. Let
us observe that the numerical sequence L

n

(
p
6) (OEIS, On-Line Encyclopedia of

Integer Sequences, http://oeis.org/A003010) was used, as we said before, in the
Lucas-Lehmer primality test [16, 21, 6].
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3 – Zeros and critical points

Taking into account the considerations of the previous section, we can in gen-
eral state the following proposition (whose proof is quite simple and is omitted
for brevity)

Proposition 3.1. At each iteration the zeros of the map L

n

(n ≥ 1) have the

form

±

v

u

u

t

2±

s

2±

r

2±
q

2± ...±
p
2 (3.1)

How can we order these zeros? Considering only positive zeros (being L

n

a symmet-
ric function), the first sign on the left inside the root must be negative. Let us set
p

2±p
x2 =:

p
x1 and

p

2±p
y2 =:

p
y1 be two generic roots chosen from those

expressed in (3.1). We wonder when
p
x1 >

p
y1. Then we have several options.

opz1 If x1 = 2+
p
x2, y1 = 2+

p
y2 we have that:

p
x1 >

p
y1 $ 2+

p
x2 > 2+

p
y2

whence x2 > y2, that is the examination moves to the next step (and we apply
again opz1,2,3,4).

opz2 If x1 = 2−p
x2, y1 = 2+

p
y2 we have that:

p
x1 >

p
y1 $ 2−p

x2 > 2+
p
y2,

that is impossible, so we have
p
x1 <

p
y1.

opz3 If x1 = 2+
p
x2, y1 = 2−p

y2 we have that:
p
x1 >

p
y1 $ 2+

p
x2 > 2−p

y2,
always satisfied and we have

p
x1 >

p
y1.

opz4 If x1 = 2 − p
x2, y1 = 2 − p

y2 we have that:
p
x1 >

p
y1 $ 2 − p

x2 >

2 − p
y2, whence x2 < y2 then we have to check the following step (we apply

again opz1,2,3,4).

We show now what we argued in the previous steps.

Theorem 3.2. For n ≥ 2 we have

L

n

(x) = 2 cos(2n−1
x) + o(x3) (3.2)

Proof. Taking into consideration the McLaurin expansion of the cosine, to
prove formula (3.2) is equivalent to show that

L

n

(x) = 2− 22n−2
x

2 + o(x3) = 2− 4n−1
x

2 + o(x3) . (3.3)

Let us proceed by means of induction principle. For n = 2 we have L2(x) =
(x2 − 2)2 − 2 =x

4 − 4x2 + 2 = 2 − 4x2 + o(x3). Consider then the McLaurin
polynomial of the second order of 2 cos(2x): it is 4

3x
4 − 4x2 + 2, which proves the
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relation for n = 2. Suppose now as true formula (3.2) for a generic index n and
proceed to check the case n+ 1:

L

n+1 = L

2
n

− 2 = [2− 4n−1
x

2 + o(x3)]2 − 2 =

= 2− 4nx2 + o(x2)
(3.4)

It is also known that McLaurin polynomial of 2 cos(2nx) is 2 − 22n · x2 + R3. We
can therefore conclude that 2 cos(2n−1

x) and L

n

(x) have the same coefficients up
to the second order, which concludes the proof. ⇤

We are interested in determining the distribution of minima and maxima for
each L

n

. To this aim, now we are going to show an important property of the
polynomials L

n

.

Lemma 3.3. For each n ≥ 2 we have

d

dx

L

n

(x) = 2n x

n−1
Y

i=1

L

i

(x) (3.5)

Proof. Let us proceed by induction. If n = 2

d

dx

L2(x) =
d

dx

[(x2 − 2)2 − 2] = 4x(x2 − 2) = 4x L1(x) (3.6)

Now we are going to check it for n+ 1. For the function (2.1)

d

dx

L

n+1(x) =
d

dx

[L2
n

(x)] = 2L
n

(x)
d

dx

L

n

(x) (3.7)

Replacing it with (3.5) we will have at the end:

d

dx

L

n+1(x) = 2L
n

(x) ·
"

2n x

n−1
Y

i=1

L

i

(x)

#

= 2n+1
x

n

Y

i=1

L

i

(x) (3.8)

⇤
Let M

n

be the set of the critical points and be Z

n

the set of the zeros of L
n

(x); we
obtain the following results.

Proposition 3.4. For each n ≥ 2 we have

M

n

= M

n−1 [ Z

n−1 = M1 [
n−1
[

i=1

Z

i

(3.9)

with card(Z
n

) = 2n.
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Proof. Let us first find the critical points of L
n

(x), imposing d

dx

L

n

(x) = 0,
from which it results

2L
n−1(x)

d

dx

L

n−1(x) = 0 (3.10)

which vanishes either if L
n−1(x) = 0 (finding the points of Z

n−1) or if
d

dx

L

n−1(x) =
0 (determining the points of M

n−1). Therefore it is proved that M
n

= M

n−1[Zn−1.
To prove the second equality, it is sufficient to observe that the right hand side of
(3.5) vanishes either if x = 0 or if L

i

(x) = 0 for some i = 1, ..., n−1; thus we obtain

the set
S

n−1
i=1 Z

i

, which proves the statement. ⇤

Proposition 3.5. For each n 2 N we have card(M
n

) = 2n − 1. Furthermore,

let M

+
n

be the set of the positive critical points of L

n

(x); we have that card(M+
n

) =
2n−1 − 1.

Proof. We must show that card(M
n

) = 2n − 1; proceeding by induction: if
n = 1, then L1(x) = x

2 − 2 is a parabola having only a minimum, at the point
(0,−2). Now we are going to check it for n+1, having assumed it true for a generic
n ≥ 2. From proposition 3.4, we have, for n > 1:

M

n+1 = M

n

[ Z

n

) card(M
n+1) = card(M

n

) + card(Z
n

) (3.11)

(the intersection between M

n

and Z

n

being empty). From proposition 3.4, we have
that card(Z

n

) = 2n; besides, by hypothesis, we know that card(M
n

) = 2n − 1.
Then card(M

n+1) = 2n − 1 + 2n = 2n+1 − 1. Furthermore, if we don’t consider
the maximum in the origin, we will have 2n − 2 critical points, half of which are
positive. Therefore card(M+

n

) = 2n−1 − 1, ⇤
Proposition 3.3 is very useful because allows us to obtain some interesting prop-

erties for the critical points of L
n

(x). We already observed that, for every n ≥ 2, if

x = 0, then
�

(0− 2)2...
�2 − 2 = 2 and the point is a maximum. Moreover, for every

natural number j such that 1 < j < n − 1 we have that the points x0 such that

L

j

(x0) = 0 are maximum points for L
n

. Indeed
⇣

...( L
j

|{z}

=0

−2)2...
⌘2

−2 = 2. Instead,

the points x such that L
n−1(x) = 0, being L

n

(x) = L

2
n−1(x)
| {z }

=0

−2 = −2, are minimum

points for L

n

. Now, from proposition (3.3) there aren’t other critical points; thus

we have shown that the set of maximum points of L
n

(x) is:
S

n−2
i=1 Z

i

[ {x = 0},
while the set of minimum points of L

n

(x) is Z
n−1.

Remark 3.6. Minimum points for L
n

(x) become maximum points for L
n+1(x),

maximum points for L
n

(x) remain maximum points for L
n+1(x). This implies that

all the local maxima of every L

n

are equal to 2.
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Corollary 3.7. All zeros and critical points ofL

n

belong to the interval (−2, 2)1.

4 – Relationships between Lucas-Lehmer polynomials and Chebyshev
polynomials of the first and second kind, and additional properties

As we know [22, 2, 12], the Chebyshev polynomials of the first kind satisfy the
recurrence relation

(

T

n

(x) = 2xT
n−1(x)− T

n−2(x) n ≥ 2

T0(x) = 1, T1(x) = x

from which it easily follows that for the n-th term:

T

n

(x) =

�

x−
p
x

2 − 1
�

n

+
�

x+
p
x

2 − 1
�

n

2
(4.1)

This formula is valid in R for |x| ≥ 1; here we assume instead that T

n

, defined in
R, can take complex values, too.

Proposition 4.1. For each n ≥ 1 we have

L

n

(x) = 2 T2n�1

✓

x

2

2
− 1

◆

(4.2)

Proof. We must show that

L

n

(x) =

0

@

x

2

2
− 1−

s

✓

x

2

2
− 1

◆2

− 1

1

A

2n�1

+

0

@

x

2

2
− 1 +

s

✓

x

2

2
− 1

◆2

− 1

1

A

2n�1
(4.3)

This formula is real for |x| ≥ 2 and complex for |x| < 2 and is true for n = 1:

L1(x)=x

2−2=

2

4

x

2

2
− 1−

s

✓

x

2

2
−1

◆2

− 1

3

5+

2

4

x

2

2
− 1 +

s

✓

x

2

2
− 1

◆2

− 1

3

5

. (4.4)

1
Because of the symmetry of Lucas-Lehmer polynomials, we will study only positive zeros.
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We assume true (4.2) for a natural n and write:

L

n+1(t(x)) = L

2
n

(t(x))− 2

=
⇣

t−
p

t

2 − 1
⌘2n

+
⇣

t+
p

t

2 − 1
⌘2n

+ 2
h⇣

t−
p

t

2 − 1
⌘ ⇣

t+
p

t

2 − 1
⌘i2n�1

− 2

(4.5)

where t(x) = x

2

2 − 1. Observing that
�

t−
p
t

2 − 1
� �

t+
p
t

2 − 1
�

= 1, we lastly
obtain

L

n+1(t(x)) =
⇣

t−
p

t

2 − 1
⌘2n

+
⇣

t+
p

t

2 − 1
⌘2n

(4.6)

which concludes the proof.

It is observed that the (4.6) is true for a generic function t(x). If n = 1, instead,

the only function that satisfies the (4.6) is t(x) = x

2

2 − 1. ⇤

Proposition 4.2. The polynomials L

n

(x) are orthogonal with respect to the

weight function

1
4
p
4−x

2
defined on x 2 [−2, 2].

Proof. Let us consider Chebyshev polynomials of the first kind; then:

Z 1

−1

(1− x

2)−1/2
T

n

(x)T
m

(x)dx = 0

if m 6= n and m,n 2 N. Using this relationship, we must prove that:

1

4

Z 2

−2

1p
4− x

2
L

n

(x)L
m

(x)dx = 0 m 6= n (4.7)

or, by (4.2):

2

Z 2

−2

1p
4− x

2
T2n�1

✓

x

2

2
− 1

◆

T2m�1

✓

x

2

2
− 1

◆

dx (4.8)

for m 6= n and m,n 2 N. From symmetry of the integrand function, putting

t = x

2

2 − 1 and solving the integral we obtain the thesis. ⇤
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Corollary 4.3. Let x = 2 cos ✓, then the polynomials L

n

(x) admit the repre-

sentation

L

n

(2 cos ✓) = 2 cos (2n✓) (4.9)

Proof. Note that, in this case, |x|  2. Therefore we need to work with
radicals of negative numbers. Substituting x = 2 cos ✓ in (4.3) we have:

L

n

(2 cos ✓) = (cos 2✓ − ı sin 2✓)
2n�1

+ (cos 2✓ + ı sin 2✓)
2n�1

which can be rewritten by applying Euler’s identity :

�

e

−ı2✓
�2n�1

+
�

e

+ı2✓
�2n�1

= 2 cos (2n✓) ⇤
We resume approximation (3.2) of L

n

(x) to prove that locally and for |x0|  2 the
function L

n

(x) behaves like a cosine, while globally, in [−2, 2], it oscillates with
shorter and shorter periods in the neighborhoods of the endpoints, by means of the
following theorem.

Theorem 4.4. Let x0 a generic maximum point of L

n

(x). For n ≥ 2 we have

L

n

(x) = 2 cos(2n−1
k(x− x0)) + o((x− x0)

2) (4.10)

where k is such that |k| ≥ 1 and is increasing with x0, for fixed n.

Proof. For n = 2 it is sufficient recall Theorem 3.2. In this case k = 1. Let
us now suppose the claim to be true for some natural n and proceed by induction
for n+ 1:

L

n+1(x) =L

2
n

(x)− 2 = [2 cos(2n−1
k(x− x0)) + o((x− x0)

2)]2 − 2

= 4 cos2[2n−1
k(x− x0)] + o[(x− x0)

4]

+ 4 cos[2n−1
k(x− x0)] o[(x− x0)

2]− 2

(4.11)

from which, by means of well known trigonometric formulas, we arrive to L

n+1(x) =
L

2
n

−2 = 2 cos(2nk(x−x0))+ o((x−x0)
2) if x ! x0. From Remark (3.6), the point

x0 is a maximum point for L
n

(x) and L

n+1(x). Now we aim to prove that |k| ≥ 1.
The second-order Taylor expansion of the right hand side of (4.10), centered in x0,
is

2− 22(n−1)
k

2(x− x0)
2 + o((x− x0)

2) (4.12)

For what concerns the left hand side of (4.10), we observe that L
n

(x0) = 2, being
x0 a maximum point. Let us observe that equation (4.3)

L

n

(x) =

 

x

2

2
− 1 +

r

⇣

x

2

2
− 1
⌘2

− 1

!2n�1

+

 

x

2

2
− 1−

r

⇣

x

2

2
− 1
⌘2

− 1

!2n�1

= L

+
n

(x) + L

−
n

(x)

(4.13)
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must be understood with values in the complex field, because, due to

s

2 +

r

2 +

q

2 + ...+
p
2

| {z }

n

= 2 cos
⇣

⇡

2n+1

⌘

< 2

all the critical points have absolute value less or equal to 2. Then the derivative of
L

n

(x) is

L

0
n

(x) =
d

dx

�

L

+
n

(x) + L

−
n

(x)
�

(4.14)

with
d

dx

L

+
n

(x) = 2n−1 x L

+
n

(x)
q

�

x

2

2 − 1
�2 − 1

and
d

dx

L

−
n

(x) = −2n−1 x L

−
n

(x)
q

�

x

2

2 − 1
�2 − 1

whence

L

0
n

(x)=2n−1 x

q

�

x

2

2 − 1
�2 − 1

⇥

L

+
n

(x)− L

−
n

(x)
⇤

=
2np
x

2 − 4

⇥

L

+
n

(x)− L

−
n

(x)
⇤

(4.15)

which must vanish when calculated in x = x0, maximum point. For the sake of
simplicity, let us consider only x > 0. The second order derivative is

L

00
n

(x) =
2n
n

(x2 − 4)
h

d

dx

L

+
n

(x)− d

dx

L

−
n

(x)
i

− x (L+
n

(x)− L

−
n

(x))
o

(x2 − 4)
p
x

2 − 4
(4.16)

which can be rewritten as

L

00
n

(x) = 2n

"

d

dx

(L+
n

(x)− L

−
n

(x))
p
x

2 − 4
− xL

0
n

(x)

2n(x2 − 4)

#

= 2n


2n (L+
n

(x) + L

−
n

(x))

(
p
x

2 − 4)2
− xL

0
n

(x)

2n(x2 − 4)

�

.

(4.17)

We calculate it in x = x0:

L

00
n

(x0) = 2n


2nL
n

(x0)

x

2
0 − 4

− x0L
0
n

(x0)

2n(x2
0 − 4)

�

=
22nL

n

(x0)

x

2
0 − 4

=
22n+1

x

2
0 − 4

(4.18)
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since L

0
n

(x0) = 0 and L

n

(x0) = 2. Thus we have the Taylor expansion

L

n

(x) = 2 +
22n

x

2
0 − 4

(x− x0)
2 + o((x− x0)

2) . (4.19)

Equating it to (4.12) gives

22n

x

2
0 − 4

= −22(n−1)
k

2 ) 4

4− x

2
0

= k

2 ) k = ± 1
p

1− x

2
0/4

(4.20)

It is easy to verify that k is such that |k| ≥ 1 and increasing with x0 > 0. ⇤
As those of the first kind, the Chebyshev polynomial of the second kind are

defined by a recurrence relation [22, 2, 12]:
(

U0(x) = 1, U1(x) = 2x

U

n

(x) = 2xU
n−1(x)− U

n−2(x) 8n ≥ 2

which is satisfied by

U

n

(x) =

n

X

k=0

(x+
p

x

2 − 1)k(x−
p

x

2 − 1)n−k 8x 2 [−1, 1] . (4.21)

This relation is equivalent to

U

n

(x) =

�

x+
p
x

2 − 1
�

n+1 −
�

x−
p
x

2 − 1
�

n+1

2
p
x

2 − 1
(4.22)

where the radicals assume real values for each x 2 (−1, 1). From continuity of
function (4.21), we observe that (4.22) can be extended by continuity in x = ±1,
too. It can therefore be put U

n

(±1) = (±1)n(n+ 1) in (4.22).

Proposition 4.5. For each n ≥ 1 we have

n

Y

i=1

L

i

(x) = U2n−1

✓

x

2

2
− 1

◆

(4.23)

Proof. Also in this case, the formulas are defined on complex numbers. By
(4.22) we must demonstrate that:

n

Y

i=1

L

i

(x) =

✓

x

2

2 − 1 +

q

�

x

2

2 − 1
�2 − 1

◆2n

2

q

�

x

2

2 − 1
�2 − 1

+

✓

x

2

2 − 1−
q

�

x

2

2 − 1
�2 − 1

◆2n

2

q

�

x

2

2 − 1
�2 − 1

.

(4.24)
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We proceed by induction on n. First of all, let us observe that when n = 1 we have

L1(x) = x

2 − 2 = U1

⇣

x

2

2 − 1
⌘

.

For the inductive step, let n > 1 be an integer, and assume that the proposition
holds for n; by multiplying both sides of (4.23) by L

n+1(x) we obtain:

n+1
Y

i=1

L

i

(x) = U2n−1

✓

x

2

2
− 1

◆

L

n+1(x) (4.25)

Thus, the proposition holds for n+ 1 if

U2n+1−1

✓

x

2

2
− 1

◆

= U2n−1

✓

x

2

2
− 1

◆

L

n+1(x). (4.26)

Let’s focus on the right hand side, setting t = x

2

2 − 1:

=
2n−1
X

k=0

(t+
p

t

2 − 1)k+2n(t−
p

t

2 − 1)2
n−1−k

| {z }

B

+

2n−1
X

k=0

(t+
p

t

2 − 1)k(t−
p

t

2 − 1)2
n+1−1−k

| {z }

A

(4.27)

where

A =

2n+1−1
X

k=0

(t+
p

t

2 − 1)k(t−
p

t

2 − 1)2
n+1−1−k

−
2n+1−1
X

k=2n

(t+
p

t

2 − 1)k(t−
p

t

2 − 1)2
n+1−1−k

B =

2n−1
X

k=0

(t+
p

t

2 − 1)k+2n(t−
p

t

2 − 1)2
n−1−k

=

2n+1−1
X

j=2n

(t+
p

t

2 − 1)j(t−
p

t

2 − 1)2
n+1−1−j

(4.28)

therefore A+B is just equal to U2n+1−1 (t), and this completes the proof. ⇤
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After having calculated L

n

(2 cos ✓) in (4.9), now let us calculate U2n−1(x
2
/2−1)

for x = 2 cos ✓ by (4.24).

n

Y

i=1

L

i

(2 cos ✓) =
(cos 2✓ + ı sin 2✓)

2n − (cos 2✓ − ı sin 2✓)
2n

2ı sin 2✓

from which and Euler identity, we get

n

Y

i=1

L

i

(2 cos ✓) =

�

e

+ı2✓
�2n −

�

e

−ı2✓
�2n

2ı sin 2✓
=

sin
�

2n+1
✓

�

sin 2✓
. (4.29)

For |x|  2 we can show another formula for L
n

. Let us come back to (4.3):

L

n

(x) =

0

@

x

2

2
− 1−

s

✓

x

2

2
− 1

◆2

− 1

1

A

2n�1

+

0

@

x

2

2
− 1 +

s

✓

x

2

2
− 1

◆2

− 1

1

A

2n�1
(4.30)

In this case |x|  2; we change the sign inside the radical, factorizing out the
imaginary unit:

L

n

(x) =

0

@

x

2

2
− 1− ı

s

1−
✓

x

2

2
− 1

◆2
1

A

2n�1

+

0

@

x

2

2
− 1 + ı

s

1−
✓

x

2

2
− 1

◆2
1

A

2n�1
(4.31)

We then calculate the powers of two complex conjugate numbers L

+
n

and L

−
n

, de-
pending on the variable x. With the notation introduced in (4.13), the absolute
value of both complex numbers is unitary, since

|L+
n

| = |L−
n

| =

s

✓

x

2

2
− 1

◆2

+ 1−
✓

x

2

2
− 1

◆2

= 1 . (4.32)

Moreover, since L1(±
p
2) = 0 ; L2(±

p
2) = −2 ; L

n

(±
p
2) = 2 8n ≥ 3 , then the

argument of L
n

(±
p
2) is 0 for every n ≥ 3. In the other cases, since, when |x|  2,
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we can write x = 2 cos(#), thus x

2

2 − 1 = cos(2#); thus for |x| 6=
p
2 we can also put

#(x) =
1

2
arctan

2

4

q

1−
�

x

2

2 − 1
�2

x

2

2 − 1

3

5+ b⇡ (4.33)

where b is a binary digit; thus, using (4.9), we obtain L

n

(x) = 2 cos (2n#(x)).
By setting further

✓(x) =
1

2
arctan

2

4

q

1−
�

x

2

2 − 1
�2

x

2

2 − 1

3

5 (4.34)

we can write:

L

n

(x) = 2 cos (2n✓(x) + 2nb⇡) = 2 cos (2n✓(x)) . (4.35)

On the other hand, for very large |x|, considering the iterative structure of the map

L

n

, we deduce immediately the asymptotic formula L

n

(x) ⇠ (x2 − 2)2
n�1

.

5 – M

a

n

= 2a
�

M

a

n−1

�2 − 1
a

map

The considerations made in the previous sections on the map L

n

can be extended to

an entire class of maps, obtained through the iterated formula M

a

n

= 2a
�

M

a

n−1

�2−
1
a

, a > 0, with M

a

0 (x) = x. It follows that

M

a

0 (x) = x ; M

a

1 (x) = 2ax2 − 1

a

; M

a

2 (x) = 8a3x4 − 8ax2 +
1

a

... (5.1)

Note that the map L

n

is a particular case of Ma

n

, obtained by setting a = 1/2. We
briefly show that the map M

a

n

satisfies similar properties as those proven for L
n

.

Proposition 5.1. For n ≥ 2 we have

M

a

n

(x) =
1

a

· cos(a 2nx) + o(x2) (5.2)

Proof. We must show that:

M

a

n

(x) =
1

a

− a22n−1
x

2 + o(x2) (5.3)

where we take into account the McLaurin polynomial of cosine. We proceed by
induction. For n = 2:

M

a

2 (x) = 2a

✓

2ax2 − 1

a

◆2

− 1

a

=
1

a

− 8ax2 + o(x2) (5.4)
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Let us consider the second order McLaurin polynomial of 1
a

· cos(4ax): it is just
1
a

− 8ax2 + o(x2), thus verifying the relation for n = 2. Let us now assume (5.2) is
true for a generic n, and deduce that it is also true for n+ 1:

M

a

n+1 = 2a (Ma

n

)
2 − 1

a

= 2a



1

a

− a22n−1
x

2 + o(x2)

�2

− 1

a

=
1

a

− a22n+1
x

2 + o(x2)

(5.5)

which is in fact the McLaurin polynomial of 1
a

· cos(a 2n+1
x). ⇤

Proposition 5.2. At each iteration the zeros of the map M

a

n

(n ≥ 1) have the

form

± 1

2a
·

v

u

u

t

2±

s

2±

r

2±
q

2± ...±
p
2 (5.6)

Proof. It is obvious that at n = 1 this statement is valid. Now assume that
the (5.6) is valid for n. We have to prove that it is valid for n+ 1:

x

2 =
1

2a2
± 1

4a2
·

v

u

u

t

2±

s

2±

r

2±
q

2± ...±
p
2 (5.7)

and placing under the radical sign

x = ±

v

u

u

u

t 1

2a2
± 1

4a2
·

v

u

u

t

2±

s

2±

r

2±
q

2± ...±
p
2 (5.8)

the thesis is obtained. ⇤

Proposition 5.3. For each n ≥ 1 we have

M

a

n

(x) =
1

a

T2n�1

�

2a2x2 − 1
�

(5.9)

Proof. We must show that

M

a

n

(x) =

✓

2a2x2 − 1−
q

(2a2x2 − 1)
2 − 1

◆2n�1

2a

+

✓

2a2x2 − 1 +

q

(2a2x2 − 1)
2 − 1

◆2n�1

2a

(5.10)
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This is verified for n = 1:

M

a

1 (t(x)) =
t+

p
t

2 − 1 + t−
p
t

2 − 1

2a
=

2t

2a
= 2ax2 − 1

a

(5.11)

where t=2a2x2−1.By assumption, we suppose (5.9) true for n and byM

a

n+1(t(x)) =
2a(Ma

n

)2(t(x))− 1
a

; we get finally the thesis for n+ 1:

M

a

n+1(t(x)) =

�

t−
p
t

2 − 1
�2n

2a
+

�

t+
p
t

2 − 1
�2n

2a
(5.12)

⇤

Remark 5.4. For |x|  1
a

, substituting x = 1
a

cos ✓ in (5.10) we obtain:

M

a

n

✓

1

a

cos ✓

◆

=
1

a

cos (2n✓) . (5.13)

Proposition 5.5. For each n ≥ 1 we have

n

Y

i=1

M

a

i

(x) =

✓

1

2a

◆

n

U2n−1

�

2a2x2 − 1
�

(5.14)

Proof. We must first show that the formula is true for n = 1:

1

2a
U1(t) =

�

t+
p
t

2 − 1
�2 −

�

t−
p
t

2 − 1
�2

4a
p
t

2 − 1
=

t

a

(5.15)

which is true because t

a

= 2ax2− 1
a

= M

a

1 (x). We assume, then, that formula (5.14)
is true for n. We must now show that it is also true for n + 1. To this aim, let us
multiply both sides of (5.14) by M

n+1(t), expressed in (5.12); the right-hand side
becomes

✓

1

2a

◆

n+1 �
t+

p
t

2 − 1
�2n+1

−
�

t−
p
t

2 − 1
�2n+1

2
p
t

2 − 1

=

✓

1

2a

◆

n+1

U2n+1−1

�

2a2x2 − 1
�

(5.16)

⇤
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Proposition 5.6. For each n ≥ 2 we have

d

dx

M

a

n

(x) = (4a)n x

n−1
Y

i=1

M

a

i

(x) (5.17)

Proof. We have first to prove it is true for n = 2:

d

dx

M

a

2 (x) =
d

dx

"

2a

✓

2ax2 − 1

a

◆2

− 1

a

#

= 4axMa

1 (x) (5.18)

Assume it is true for n and deduce that (5.17) is true for n + 1, too. In fact
M

a

n+1 = 2a(Ma

n

)2 − 1
a

. Write

d

dx

M

a

n+1(x) = 2a
d

dx

(Ma

n

)2 = 4aMa

n

d

dx

M

a

n

(5.19)

and using (5.17) we arrive to:

d

dx

M

a

n+1(x) = 4aMa

n

·
"

(4a)n x

n−1
Y

i=1

M

a

i

(x)

#

= (4a)n+1
x

n

Y

i=1

M

a

i

(x) (5.20)

⇤

Remark 5.7. It can be easily shown that, when |x|  1
a

, replacing x = 1
a

cos ✓
in the expression of U2n−1

�

2a2x2 − 1
�

and taking into account that 2a2x2 − 1 =
cos(2✓):

⇣

2a2x2−1+
p

(2a2x2 − 1)2 − 1
⌘2n

−
⇣

2a2x2 − 1−
p

(2a2x2 − 1)2 − 1
⌘2n

2
p

(2a2x2 − 1)2 − 1
(5.21)

we again get the trigonometric expression (4.29).

Factorizing out the minus sign in (5.10) and carrying out the imaginary unit
from radical, we obtain:

M

a

n

(x) =
1

2a

h

(Ma,+
n

)2
n�1

+ (Ma,−
n

)2
n�1
i

The module of both complex numbers Ma,+
n

and M

a,−
n

is unitary; in fact:

|Ma,+
n

(x)| = |Ma,−
n

(x)| =
q

(2a2x2 − 1)
2
+ 1− (2a2x2 − 1)

2
= 1 (5.22)
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Then

M

a

n

(x) =
e

i2n#(x) + e

−i2n#(x)

2a
=

1

a

cos (2n#(x))

#(x) =
1

2
arctan

2

4

q

1− (2a2x2 − 1)
2

2a2x2 − 1

3

5+ b⇡ = ✓(x) + b⇡

(5.23)

with b a binary digit, and

M

a

n

(x) =
1

a

cos (2n✓(x) + 2nb⇡) =
1

a

cos (2n✓(x)) (5.24)

If x = ±
p
2

2a : M
a

1 (±
p
2

2a ) =
1
a

cos
�

⇡

2

�

= 0; Ma

2 (±
p
2

2a ) =
1
a

cos (⇡) = − 1
a

; Ma

n

(±
p
2

2a ) =
1
a

cos
�

2n−2
⇡

�

= 1
a

; n ≥ 3. Then the argument of Ma

n

⇣

±
p
2

2a

⌘

is 0 for every n ≥ 3.

For very large |x|, considering the iterative structure of the map M

a

n

, we deduce
immediately the asymptotic formula:

M

a

n

⇠ (2a)2
n�1−1

✓

2ax2 − 1

a

◆2n�1

,

8n ≥ 1.

6 – Conclusions and perspectives

In this paper we introduced a class of polynomials which follow the same recursive
formula as the Lucas-Lehmer numbers. We showed several properties of the poly-
nomials, including important links with the Chebyshev polynomials, proving their
orthogonality with respect to a suitable weight.

This paper intended just to introduce this new class of polynomials. Much more
aspects need to be deepened, concerning the properties of the polynomials and their
applications.

A further progress in our work will consist in studying the distribution of the
zeros of L

n

. This topic is the subject of a paper in preparation. By Section 4,
the zeros, expressed in terms of nested radicals, allow us to generalize in infinite
ways a well-known formula for the approximation of ⇡. This formula allows us to
obtain several other notable mathematical constants as limits of suitably weighted
sequences of zeros of the Lucas-Lehmer polynomials L

n

and M

a

n

.
Thanks to their strict link with the Chebyshev polynomials, we could determine

other properties of the Lucas-Lehmer polynomials, mainly of integral and asymp-
totic type. These topics will be subject of future studies. Moreover, it would be
interesting to determine and study di↵erent classes of Lucas-Lehmer polynomials,
for example modifying suitably the first term of the sequence.
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Finally, it is well known that Chebyshev polynomials can be applied in several
fields of Mathematics, for example in Numerical Analysis and Combinatorics (see,
for instance: [3, 5, 7, 13, 19, 23, 26, 4] and references therein). We think that also
the Lucas-Lehmer polynomials could be adapted to solve similar problems.
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[13] M. Gülsu – Y. Öztürk – M. Sezer: On the solution of the Abel equation of the
second kind by the shifted Chebyshev polynomials, Appl. Math. Comp., 217 (2011),
4827–4833.

[14] M. E. Hoffman – W. D. Withers: Generalized Chebyshev polynomials associated
with affine Weyl groups, Trans. Amer. Math. Soc., 308 (1988), 91–104.

[15] A. Horadam: Vieta polynomials, Trans. Amer. Math. Soc., 40 (2002), 223–232.
[16] T. Koshy: Fibonacci and Lucas numbers with applications, John Wiley and Sons,

New York, 2001.
[17] D. H. Lehmer: An Extended Theory of Lucas Functions, Ann. Math., 31 (1930),

419–448.
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