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Characterizing the strong maximum principle

for constant coecient subequations

F. REESE HARVEY – H. BLAINE LAWSON, JR.

Abstract: In this paper we characterize the degenerate elliptic equations F(D2u) = 0
whose subsolutions (F(D2u) ≥ 0) satisfy the strong maximum principle. We introduce
an easily computed function f on (0,1) which is determined by F, and we show that

the strong maximum principle holds depending on whether
R
0+

dy
f(y)

is infinite or finite.

This is in the spirit of previous work characterizing the ordinary maximum principle in
terms of the geometry of the set of symmetric matrices F = {F ≥ 0}. Along the way,
radial subsolutions are characterized, and, as an application, a sufficient condition for
strong comparison is established. A number of examples, important for the theory of such
equations, are examined.

1 – Introduction

This paper is concerned with di↵erential equations of the form F(D2u) = 0 where
F is degenerate elliptic, and attention is focused on the set F (X) of viscosity sub-
solutions (F(D2u) ≥ 0) on an open set X ⇢ Rn as defined in the seminal papers
[7] or [8]. Our interest here is in the theory of such equations, rather than concern
with specific cases. The main point of the paper is to address the following.

Question. When do the subsolutions satisfy the strong maximum principle?

By the maximum principle and the strong maximum principle for F we
mean the following. Given a bounded domain ⌦ ⇢ Rn, let F (⌦) denote the space
upper semi-continuous functions on ⌦ which are subsolutions on ⌦. Consider the
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implications:

u 2 F (⌦) ) sup
⌦

u  sup
@⌦

u (MP)

u 2 F (⌦) has an interior maximum point ) u is constant. (SMP)

We say that the (MP)/(SMP) holds for F if it is true for all such ⌦ and u. Of
course, (SMP) ) (MP).

There is, of course, a huge literature concerned with the (SMP) for viscosity
subsolutions of nonlinear equations (for just a few examples see [2, 3, 5, 18, 20] and
the references therein. We note in particular the landmark paper [3] and refer the
reader to Remark 8.10 for a discussion of its relationship to the results here.) How-
ever, these authors typically make structural assumptions such as uniform ellipticity
or homogeneity.

Here we confine our attention to the special case of constant coefficient, pure
second-order (degenerate elliptic) equations in Rn, sometimes having an invariance
property. No other structural assumptions are made. The point of this paper is
that in this special but important setting one can give a complete and somewhat
unexpected characterization of exactly when the (SMP) holds.

This work is a natural outgrowth of the results in [11] where the ordinary (MP)
is characterized, in several equivalent ways, in terms of the geometry of the set
F ⌘ {A : F(A) ≥ 0}. They are given in Theorem 2.1 below. We have reviewed
these (MP) results in Section 2 for two reasons. First, they are scattered in var-
ious remarks throughout [11]. Secondly, these geometrically elegant and complete
characterizations available for the (MP) provide the motivation for our discussion
of the (SMP) in this paper.

Our discussion of the (SMP) divides into three cases. The first case is relatively
simple and classical, and the (SMP) always holds:

F(0) < 0 ) The (SMP) holds. (1.1)

The second case is also simple and classical, and the (SMP) always fails. To de-
scribe this case we set some notation. Given a non-zero vector e 2 Rn, let P

e

and
P
e

? denote orthogonal projection onto the line spanned by e and the hyperplane
perpendicular to e respectively, so that P

e

+ P
e

? = I. Our second case is the
following.

F(−µP
e

) ≥ 0 for some µ > 0, e 6= 0 ) (SMP) fails. (1.2)

Consequently, we concentrate on the remaining case, which will be referred to as
the borderline case.

In this paper a key role is played by the increasing radial subsolutions. They are
determined by a “characteristic function” f of F, which is defined as follows. For
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simplicity we first assume the following weak form of invariance: For all λ, µ 2 R,

F(λP
e

? − µP
e

) ≥ 0 for one e 6= 0

) F(λP
e

? − µP
e

) ≥ 0 for all e 6= 0.
(1.3)

This holds, for example, if F is invariant under a group such as O
n

or SU
n/2 acting

transitively on the n − 1 sphere in Rn (a condition called ST-invariance in [15]).
Given an invariant F, the characteristic function f associated to F for 0  λ < 1
is defined by

f(λ) ⌘ sup {µ : F (λP
e

? − µP
e

) ≥ 0} . (1.4)

The borderline cases are exactly the cases where f(0) = 0 (see Lemma 3.4).
Now we can state our main result, simplified by assuming invariance.

Theorem A. Suppose F is invariant and borderline. Then

The (SMP) holds for F ()
Z

0+

dy

f(y)
= 1.

The general (non-invariant) version of this result is given below in Theorem A0.
The characteristic function f determines the following one-dimensional variable

coefficient operator

⇣

R"
f

 
⌘

(t) ⌘ min

⇢

 0(t),  00(t) + f

✓

 0(t)

t

◆�

. (1.5)

The next result is of general interest, and probably classical in the C2-case.

Proposition B. A radial function u(x) =  (|x|) with  increasing, is an F-

subsolution if and only if  is an R"
f

-subsolution.

The “only if” part of this result requires a technical lemma for general upper
semi-continuous functons, which is given in Appendix A.

These two results lead to the following.

Question. Given an upper semi-continuous, increasing function f : [0,1) !
[0,1] with f(0) = 0, is there a way to describe all the equations F which have f as
their characteristic function, or equivalently (by Proposition B) have the same set
of increasing radial subsolutions.

This question is answered here. First, such equations F always exist for any
such f (as above). Here are two crucial examples. Let λ1(A)  · · ·  λ

n

(A) denote
the ordered eigenvalues of a symmetric matrix A so that λmin = λ1 and λmax = λ

n

.
Define

F
min/max
f

�

D2u
�

⌘ min
�

λmax

�

D2u
�

,λmin

�

D2u
�

+ f
�

λmax

�

D2u
�� 

, and

F
min/2
f

�

D2u
�

⌘ min
�

λ2
�

D2u
�

,λmin

�

D2u
�

+ f
�

λ2
�

D2u
�� 

.
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Both have associated characteristic function f (see Lemma 8.3). In fact, they are
the largest and the smallest such examples. (A priori it is not clear that there is a
largest or a smallest.)

Theorem C. If F is invariant and borderline with characteristic function f ,
then its subsolutions satisfy

F
min /2
f

(X) ⇢ F (X) ⇢ F
min /max
f

(X).

Conversely, these containments imply that F must have characteristic function f .

Our first main result, Theorem A above, extends to F’s which are not necessarily
invariant as follows. We define the upper and lower characteristic functions f and
f for F by:

f(λ) ⌘ sup {µ : F (λP
e

? − µP
e

) ≥ 0 for some e 6= 0}
f(λ) ⌘ sup {µ : F (λP

e

? − µP
e

) ≥ 0 for all e 6= 0} .

When F(0) = 0, we have f(0) = f(0) = 0.

Theorem A0. Suppose that F is borderline and has upper and lower character-
istic functions f and f .

(a) If

Z

0+

dy

f(y)
= 1, then the (SMP) holds for F.

(b) If

Z

0+

dy

f(y)
< 1, then the (SMP) fails for F.

Now that our main result has been stated in the traditional manner using nonlinear
operators F, we switch to the geometric point of view (pioneered by Krylov [19])
which replaces F with the subset F = {F ≥ 0} of Sym2(Rn), the space of n ⇥ n
symmetric matrices. This is particularly appropriate for discussing questions such
as ours concerning the (MP) and (SMP) since they only depend on the space of
subsolutions F (X) which in turn only depends on the geometry of the subset F and
not on the operator F used to define it. (The situation is analogous to studying
submanifolds independently of any implicit defining function.) Let

P ⌘ {A 2 Sym2(Rn) : A ≥ 0}.

Instead of “operators” we consider subequations which by definition are closed
subsets F ⇢ Sym2(Rn) satisfying the weakest form of ellipticity, namely:

F + P ⇢ F, (P)
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called positivity. Subsolutions are defined in the usual manner, except that one
requires D2

x

' 2 F , rather than F(D2
x

') ≥ 0, for test functions ' at x. To em-
phasize the parallels with potential theory in several complex variables, we will use
the terminology F -subharmonic rather than F-subsolution. The key topological
property of F is that:

F = IntF . (T)

This follows easily from (P) and the assumption that F is closed.

Some Technical Points: With the operator F replaced by the set F ⌘ {F ≥ 0}, the
positivity condition for F is weaker than degenerate ellipticity for the operator F.
Positivity is equivalent to requiring that: F(A) ≥ 0 ) F(A + P ) ≥ 0 for all
A 2 Sym2(Rn), P 2 P. (Weak ellipticity is the requirement that F(A+P ) ≥ F(A)
for all such A and P .)

Our notion of a supersolution v is (for some F) more restrictive than the classical
notion F(D2v)  0. We require −v to be subharmonic for the dual subequation
eF = −(⇠ IntF ). This has an advantage over the standard notion of supersolution.
For example, we were able to prove that comparison always holds for any subequa-
tion F ⇢ Sym2(Rn) ([11, Theorem 6.4]). For degenerate elliptic operators F, the
statement becomes: comparison holds if and only if {F  0} is the complement
of the interior of {F ≥ 0}. The reader is referred to the “Pocket Dictionary” in
Appendix A of [13] for a more complete translation of concepts.

By comparison holding for a subequation F we mean

u+ w satisfies the (MP) for all u 2 F (⌦), w 2 eF (⌦). (C)

By strong comparison holding for a subequation F we mean

u+ w satisfies the (SMP) for all u 2 F (⌦), w 2 eF (⌦). (SC)

Unlike (C), strong comparison (SC) does not always hold for pure second-order
constant coefficient subequations (for instance F = P). In Section 9 we establish a
sufficient condition for (SC) utilizing a “monotonicity subequation” M

F

associated
to F .

Theorem D. If the dual gM
F

satisfies the strong maximum principle, then the
strong comparison principle holds for F .

We leave as an open question: When does the strong comparison principle (SC)

for F imply the (SMP) for gM
F

?
Surprisingly, not all monotonicity subequations M

F

are convex cones. In Section
10, utilizing such M

F

, we construct many new examples of borderline equations for
which strong comparison holds. Specifically, for each decreasing continuous function
g : [0,1) ! R with g(0) = 0 and g(x) < 0 for x > 0, we construct two equations
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Mg and fMg, with fMg borderline, and compute the characteristic function f of fMg

in terms of g.

Theorem E. If g is subadditive and
R

0+
dy

f(y) = 1, where f is the characteristic

function associated with fMg, then the strong comparison principle holds for Mg

and fMg.

Many such functions g exist. For further examples see (10.4) and [4], and see
Example 10.7 for a specific example related to the Hopf function (10.10).

We use “increasing” to mean non-decreasing throughout the paper.

2 – Characterizing the maximum principle

In this section we review and amplify the (MP) results in [11].

Let eP denote the subset of A 2 Sym2(Rn) with at least one non-negative eigen-
value, i.e., with λmax(A) ≥ 0. For the maximum principle we only need to consider

subequations F ⇢ eP, since if A /2 eP, then A is negative definite and hAx, xi violates
(MP). Note that eP is a subequation, that is, it is a closed set which satisfies (P).

In fact, eP is universal for (MP) in the following sense.

Theorem 2.1 (Part I). Suppose that F is a subequation.

(a) The (MP) holds for F () F ⇢ eP. (2.1)

Proof. It remains to show that (MP) holds for eP, which follows from Propo-
sition 2.3. ⇤

Definition 2.2. A function u is subane on X if it is upper semi-continuous
on X and

for all compact sets K ⇢ X and affine functions a(x) ⌘ hp, xi+ c,

u  a on @K ) u  a on K.

Subaffine functions clearly satisfy (MP) (take a(x) = c = constant in Definition
2.2).

Furthermore, for any pure second-order subequation F , the functions u 2 F (X)
satisfy (MP) if and only if they are subane, since the sum u + a of a function u
in F (X) and an affine function a is again in F (X). The subaffine fundtions have
an advantage over the larger class of functions satisfying the (MP) in that they are
determined by a local property.

Proposition 2.3.

u 2 eP(X) () u is subane on X.
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Proof. Suppose u is not subaffine. Then there exists a compact set K ⇢ X
and an affine function a so that (MP) fails for w ⌘ u− a on K, i.e., w has a strict

interior maximum point on K. This also holds for w + ✏ |x|
2

2 with ✏ > 0 sufficiently

small. Then ' = −✏ |x|
2

2 is a test function for w at the maximum point x̄ 2 IntK.

Since D2
x̄

' = −✏I < 0, we conclude that w /2 eP(X) and so u /2 eP(X).

If u /2 eP(X), then there exists a test function ' for u at a point x̄ 2 X with

D2
x̄

' /2 eP, i.e., A ⌘ D2
x̄

' < 0. Set a(x) ⌘ hD
x̄

', x − x̄i + '(x̄). Then u(x) 
a(x) + 1

4 hA(x− x̄), x− x̄i near x̄, showing that u is not subaffine on a small ball K
about x̄. ⇤

In particular, we have, as advertised, that if u 2 USC(X) is locally subaffine,

then u is subaffine. We will refer to eP as the subane subequation.
Note that in addition to Theorem 2.1(a) we have established the following addi-

tional characterizations of the maximum principle. (The condition in (2.3) implies
0 2 IntF by positivity.)

Theorem 2.1 (Continued).

(b) The (MP) holds for F () 0 /2 IntF. (2.2)

(c) The (MP) fails for F () − ✏
|x|2

2
is F subharmonic for some ✏>0. (2.3)

Remark 2.4. Part (a) of Theorem 2.1 states that eP is the “universal” subequa-
tion for the maximum principle. Part (b) provides the simplest test for the (MP) to

hold for F . Part (c) states that the function −✏ |x|
2

2 is a “universal” counterexample
to the maximum principle.

An obvious corollary of Theorem 2.1(b) is the following.

Corollary 2.5 (Localization).

If two subequations F and G agree

in a neighborhood of the origin in Sym2(Rn), then (2.4)

(MP) holds for F () (MP) holds for G.

A discussion of the subaffine subequation is not complete without mentioning its
duality with the convex subequation P.

2.1 – Duality

For any subset F of Sym2(Rn), the Dirichlet dual eF is defined to be:

eF = − (⇠ IntF ) = ⇠ (−IntF ) . (2.5)
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One can calculate the key property that

F̂ +A = eF −A for each A 2 Sym2(Rn). (2.6)

This can be used to show that

F satisfies (P) ) eF satisfies (P). (2.7)

Other properties of the subequations and their dual subequations include:

F1 ⇢ F2 ) eF2 ⇢ eF1, F̂1 \ F2 = eF1 [ eF2, (2.8)

e

eF = F Int eF = −(⇠ F ) @ eF = −@F. (2.9)

The first assertion in (2.9) follows from IntF ⇢ e

eF ⇢ F combined with condition
(T) for F . The second assertion in (2.9) is a restatement of the first.

The Dirichlet dual of P can be computed as follows. Let λmin(A) and λmax(A)
denote the smallest and the largest eigenvalues of A 2 Sym2(Rn). By definition

P = {A : λmin(A) ≥ 0}. (2.10)

Since λmin(−A) = −λmax(A) it is easy to see that the dual of P is

eP = {A : λmax(A) ≥ 0}, (2.11)

justifying the notation eP for the subaffine subequation.

3 – Characterizing the strong maximum principle – three cases

Given a subequation F , we consider the following three mutually exclusive cases.

The Stable Case. F \ (−P) = ;.
The Algebraic Counterexample Case. (F − {0}) \ (−P) 6= ;.
The Borderline Case. F \ (−P) = {0}.
The first case is stable or generic among subequations where the (SMP) holds, while
in the second case the (SMP) fails via a quadratic counterexample. They are both
very easy to analyze.

Theorem 3.1.

(a) If F is stable, then the (SMP) holds for F (and for all subequations in a small
distance neighborhood of F ).

(b) If F falls into the algebraic counterexample case, then the (SMP) fails for F .
(c) If F is borderline, then the (MP) holds but the (SMP) may or may not hold.
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Proof. (a) For completeness first note the equivalent ways of saying that F is
stable.

F \ (−P) = ; () F ⇢ Int eP () 0 /2 F (3.1)

(by positivity, if A 2 F , A  0, then 0 2 F ). Suppose the (SMP) fails for F .
Then for some domain ⌦ there exists u 2 F (⌦) non-constant, but with an interior
maximum point x0. The constant function M ⌘ sup⌦ u is a test function for u at
x0. Hence, 0 = D2

x0
M 2 F , so F is not stable. The second claim in (a) follows from

the last part of (3.1).
(b) By positivity,

(F − {0}) \ (−P) 6= ; () 9A  0, A 6= 0 and A 2 F,

() −µP
e

2 F for some µ > 0 and e 6= 0,
(3.2)

in which case the functions u(x) = 1
2 hAx, xi and −µ

2 he, xi
2
are counterexamples to

the (SMP) on any domain ⌦ containing the origin.
(c) The (MP) follows from Theorem 2.1(b). Borderline examples where (SMP)

holds and where (SMP) fails will be given in Section 8 after we prove our main
result. ⇤

The rest of this section is devoted to further discussion of the borderline case.

3.1 – Borderline subequations

There are several equivalent ways of describing the borderline subequations.

Lemma 3.2. A subequation F is borderline if and only if any (or all) of the
following equivalent conditions holds for F .

(1) 0 2 @F and F − {0} ⇢ Int eP.

(1)0 0 2 @ eF and P − {0} ⇢ Int eF .

(2) 0 2 @F and − µP
e

/2 F 8µ > 0, e 6= 0.

(2)0 0 2 @ eF and µP
e

2 Int eF 8µ > 0, e 6= 0.

Proof. Since Int eP =⇠ (−P), (1) is a rephrasing of the definition of borderline.
The equivalences (1) () (1)0 and (2) () (2)0 follow from (2.8) and (2.9).

Condition (1) implies Condition (2) because −µP
e

/2 Int eP for µ > 0. Condition (2)0

implies Condition (1)0 since, by (P), Int eF + P ⇢ Int eF , and P − {0} is the convex
hull of the elements µP

e

for µ > 0 and e 2 Rn. ⇤
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3.2 – The characteristic function of a subequation

In order to further analyze (not necessarily borderline or invariant) subequations
we associate two functions f  f with F . We begin by considering a general
subequation F . The motivation and more details will be provided later in Section
5. First we associate the following two closed sets in R2 with F , called the upper
(larger) and lower (smaller) radial profiles of F :

⇤ ⌘ {(λ, µ) : λP
e

? + µP
e

2 F for some e 6= 0} ,
⇤ ⌘ {(λ, µ) : λP

e

? + µP
e

2 F for all e 6= 0} .
(3.3)

Since F is P-monotone,

⇤ and ⇤ are R+ ⇥R+ monotone. (3.4)

Closed subsets ⇤ ⇢ R2 which are R+ ⇥R+-monotone can be classified in several
ways. The classification we need is in the following lemma.

Lemma 3.3. A set ⇤ ⇢ R2 is closed and R2
+-monotone () there exists

a lower semi-continuous, decreasing function h : R ! R [ {±1} such that ⇤ =
{(λ, µ) : µ ≥ h(λ)}.

Proof. Given ⇤, for each λ 2 R, define h(λ) = inf{µ : (λ, µ) 2 ⇤}, with
h(λ) = −1 if this set is all of R and h(λ) = 1 if this set is empty. The R2

+-
monotonicity implies that h is decreasing. Now ⇤ is closed if and only if h is lower
semi-continuous. The remainder of the proof is left to the reader. ⇤

It is more convenient to replace h by the function f ⌘ −h so that f : R !
R [ {±1} is upper semi-continuous, increasing and

⇤ ⌘ {(λ, µ) : µ+ f(λ) ≥ 0}. (3.5)

Thus the radial profiles ⇤ and ⇤ of F can be used interchangeably with the following
associated functions f and f describing them.

Definition 3.4. Suppose that F is a subequation. The upper (larger) and
lower (smaller) characteristic functions f and f associated with F are
defined by:

f(λ) ⌘ sup {µ : λP
e

? − µP
e

2 F for some e 6= 0}
f(λ) ⌘ sup {µ : λP

e

? − µP
e

2 F for all e 6= 0} .

Summarizing, we have

λP
e

? + µP
e

2 F for some e 6= 0 () µ+ f(λ) ≥ 0. (3.6)

λP
e

? + µP
e

2 F for all e 6= 0 () µ+ f(λ) ≥ 0. (3.7)

We will use the following fact to further analyze the borderline case.
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Lemma 3.5.

F is borderline () f(0) = f(0) = 0. (3.8)

Proof. Use Definition 3.4 and condition (2) in Lemma 3.2. ⇤
The asymptotic structure of F near 0 is reflected in the asymptotic behavior of

f and f near 0. Now we can state the main result of this paper. Note that only

the behavior of f(λ) and f(λ) for λ positive (and small) a↵ects the outcomes.

Theorem 3.6. Suppose that F is a borderline subequation with upper and lower
characteristic functions f and f .

(a) If

Z

0+

dy

f(y)
= 1, then the (SMP) holds for F.

(b) If

Z

0+

dy

f(y)
< 1, then the (SMP) fails for F.

The only case not covered is when
R

0+
dy

f(y)
< 1 and

R

0+
dy

f(y) = 1. In this case F

will be referred to as a gap subequation.

Definition 3.7 (Weakly invariant subequations). For most equations of inter-
est, f = f , and in this case Theorem 3.6 gives a necessary and sufficient condition for

F to satisfy the (SMP). First note that f = f if and only if ⇤ = ⇤, or equivalently,
for all λ, µ:

If λP
e

? + µP
e

2 F for some e 6= 0, then λP
e

? + µP
e

2 F for all e 6= 0. (3.9)

We take this as the definition of F being weakly invariant, and for simplicity we
shall refer to it by just saying that F is invariant. Note also that P

e

? , P
e

have
the same span as I, P

e

, and therefore, for any subequation F which is invariant
under the action of a group G acting transitively on the unit sphere Sn−1 ⇢ Rn,
the characteristic functions f and f are equal. Among possibilities for G are SO

n

acting on Rn, SU
n

acting on R2n = Cn, Sp
n

acting on R4n = Hn, G2 acting on
R7 and Spin7 acting on R8.

Some Examples 3.8. Suppose χ : R ! R is odd (χ(−t) = −χ(t)) and strictly
increasing. Fix 1  k  n and define F = F

χ,k

to be the set of A 2 Sym2(Rn) such
that

σ
`

(χ(A)) ≥ 0 for ` = 1, ..., k,

where σ
`

denotes the `th elementary symmetric function. That is, A 2 F if and
only if

σ
`

(χ(λ1(A)), ...,χ(λ
n

(A))) ≥ 0 for ` = 1, ..., k,
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where λ1(A), ...,λn(A) are the eigenvalues of A. One checks that F satisfies Condi-
tion (P) and is therefore a subequation. Direct calculation shows that the charac-
teristic function f = f = f is

f(λ) = χ−1
n⇣n

k
− 1

⌘

χ(λ)
o

. (3.10)

One concludes thatif χ is smooth, or just Lipschitz, in a neighborhood of 0, then
the (SMP) holds.

A basic case is where χ(t) = sign(t)|t|β for β > 0. For example, if k = 1 and

β = 1
3 , then F = {A : tr(A

1
3 ) ≥ 0}. In these cases f(λ) = (n

k

− 1)
1
β λ, and so the

(SMP) holds.

In fact, by Theorem 8.5 below, this basic example is contained in the cone

subequation Pmin/max
↵

with ↵ ⌘ (n
k

− 1)
1
β . Now subequations which are cones can

be treated more classically. Nevertheless, they are useful in understanding our main
result in the non-invariant case, so we examine them next.

3.3 – Local cone subequations

Perhaps the simplest examples where Theorem 3.6 applies are the cone subequa-
tions. The results in this case are not really new, but they give a nice illustration
of our geometric point of view and parallel the characterizations obtained for the
(MP) as described in Remark 2.4.

We say that a subset F ⇢ Sym2(Rn) is a cone if tF ⇢ F for all t > 0, and a
local cone if for some δ > 0 we have that F \B

δ

(0) is the cone on the (non-empty)
link F \ @B

δ

(0).

Theorem 3.9 (n ≥ 2). Suppose that F is a local cone subequation.

(a) The (SMP) holds for F () F − {0} ⇢ Int eP.

(b) The (SMP) holds for F () − ✏P
e

/2 F 8 ✏ > 0 and |e| = 1.

(c) The (SMP) fails for F () − ✏

2 he, xi
2
is F -subharmonic for some

✏ > 0 and some |e| = 1.

Moreover,

Z

0+

dy

f(y)
= 1 is both necessary and sucient for the (SMP) (3.11)

(cf. Theorem 3.6(a)), and is equivalent to F being borderline.
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Proof. For a local cone subequation we have 0 2 @F . Hence by Lemma 3.2,
part (2)

F is borderline () −✏P
e

/2 F 8 ✏ > 0 and e 6= 0. (3.12)

Said di↵erently, F is not borderline () −✏P
e

2 F for some ✏ > 0 and e 6= 0. This
proves that

either F is borderline or h(x) ⌘ − ✏

2 he, xi
2
=−✏2 hPe

x, xi is F subharmonic, (3.13)

in which case the (SMP) fails for F .
Define 0  ↵  1 by

↵ ⌘ sup
n

↵ : δp
n−1+↵2

(P
e

? − ↵P
e

) 2 @B
δ

(0) \ F for some |e| = 1
o

. (3.14)

The local cone condition implies that if ↵ < 1, then

f(λ) = ↵λ for λ  λ0 (3.15)

where λ0 = ( 1
1+↵2 )

1
2 . Hence,

R

0+
1
f

= 1
↵

R

0+
dλ

λ

= 1, in which case by Theorem

3.6(a), F satisfies the (SMP). On the other hand, if ↵ = 1, then since F \ @B
δ

(0)
is closed, one has that −δP

e

2 F for some |e| = 1, and hence the (SMP) fails.
Finally, note that conditions in (a) and (b) are just two ways of saying that F

is borderline (cf. Theorem 3.6(a)). In addition, this proves (3.11). ⇤
The Remark 2.4 describing Parts (a), (b) and (c) of Theorem 2.1 has the follow-

ing parallel describing parts (a), (b) and (c) of Theorem 3.9.

Remark 3.10 (The (SMP) for local cones)). Part (a) states that Int eP is a “uni-
versal” set for the (SMP), while part (b) gives the simplest test for the (SMP). Part
(c) says that one-variable quadratic functions such as −1

2x
2
1 provide a “universal”

set of counterexamples to the (SMP).

Remark 3.11. The hard half of Theorem 3.9 (a) or (b) says that borderline
cone subequations satisfy the (SMP). This is easy to prove using the classical “Hopf
Lemma” construction, and so, in this sense, Theorem 3.9 is not new.

Example 3.12 (Gap cone subequations)). These are cone subequations where
R

0+
(1/f) = 0 (equivalently, ↵ = 1) and

R

0+
(1/f) = 1 (equivalently, ↵ < 1).

Neither Part (a) nor Part (b) of Theorem 3.6 applies. However, Theorem 3.9 does
apply (see (3.11)) to show that the (SMP) fails for all gap cone subequations.

Such subequations are easy to construct. For example, on R2 define F by:
u
xx

≥ 0 or, if u
xx

< 0, then u
yy

+ ↵u
xx

≥ 0.
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4 – The radial subequation associated to F

Supppose  is of class C2 on an interval contained in the positive real numbers.
Also consider  (|x|) as a function of x on the corresponding annular region in Rn.

Lemma 4.1.

D2
x

 =
 0(|x|)
|x| P

x

? +  00(|x|)P
x

.

Proof. First note that D(|x|) = x

|x| , and therefore D2(|x|) = D( x

|x| ) =
1
|x|I −

x

|x|2 ◦ x

|x| =
1
|x| (I − P

x

) = 1
|x|Px

? . Hence,

D
x

 =  0(|x|) x

|x| and

D2
x

 =  0(|x|)D
✓

x

|x|

◆

+  00(|x|) x

|x| ◦
x

|x| =
 0(|x|)
|x| P

x

? +  00(|x|)P
x

. ⇤

Corollary 4.2. The second derivative D2
x

 has eigenvalues  

0(|x|)
|x| with multi-

plicity n− 1 and  00(|x|) with multiplicity 1.

For simplicity we shall now assume that F is invariant as in Definition 3.7 and
let f = f = f denote its characteristic function. Recall from (3.6), or (3.7), that

λP
e

? + µP
e

2 F 8 e 6= 0 () µ+ f(λ) ≥ 0. (4.1)

With motivation from Lemma 4.1 this leads to a subequation R
f

on (0,1). Let
p =  0(t) and a =  00(t) denote jet coordinates.

Definition 4.3. The radial subequation R
f

associated to F is defined by

R
f

: a+ f
⇣p

t

⌘

≥ 0 0 < t < 1 (4.2)

where f is the characteristic function associated with the subequation F .

It follows immediately from these definitions and Lemma 4.1 that if  (t) is a
C2-function defined on a subinterval of (0,1), with u(x) ⌘  (|x|) defined on the
corresponding annular region in Rn, then

u(x) ⌘  (|x|) is F subharmonic ()  (t) is R
f

subharmonic. (4.3)

This is extended to upper semi-continuous functions in Appendix A (Theorem A.1).
The proof of the implication ) is elementary, whereas the proof of ( requires some
details. However, note that u(x) =  (|x|) is upper semicontinuous ()  (t) is
upper semicontinuous.
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Remark 4.4. The radial subequation R
f

associated to F satisfies the topological
conditions (T) in [12]. Namely,

(i) R = IntR, (ii) R
t

= IntR
t

, (iii) Int
t

R
t

= (IntR)
t

,

where R
t

is the fibre of R above t and Int
t

denotes the interior in R
t

. Note that IntR
is not defined by a + f(p

t

) > 0 but by a + f−(
p

t

) > 0 where f−(y) ⌘ lim
z!y

− f(z)
is lower semi-continuous. The proof is left to the reader.

Remark 4.5 (Radial Harmonics). If  (t) is R
f

-harmonic on an interval I ⇢
(0,1), then for any constants r > 0 and k 2 R, the 2-parameter family of functions
 
r

(t) ⌘ r2 (t/r) + k consists of R
f

-harmonics on rI. This follows since ' is a test
function for ± if and only if '

r

is a test function for ± 
r

, and the assertion is true
for C2-functions.

5 – Increasing radial subharmonics for borderline subequations

As in the last section, we assume for simplicity that F is invariant, i.e., f = f = f .
Because of the next result we focus on radial subharmonics which are increasing.

Lemma 5.1. Suppose that F is borderline and u(x) =  (|x|) is a radial F -
subharmonic function. There is only one way that u(x) can violate the (SMP).
Namely, for some r,  (t) must satisfy:

 (t) < M for t < r and  (t) ⌘ M for t ≥ r. (5.1)

Moreover,

 must be increasing on (ā, r), for some ā < r. (5.2)

Proof. By the borderline hypothesis the (MP) holds for F . Since u satisfies
the (MP), so does  (t). If  has an interior maximum point at t0 on an interval
[a, b], then either  is equal to the maximum value M on [a, t0] or on [t0, b] since
otherwise  violates the (MP) on an interval about t0. If  equals this maximum
value on [a, t0], we can extend u(x) to the ball of radius b (to be constant on the ball
of radius a) as an F -subharmonic function which violates the (MP). This proves
(5.1).

Pick ā to be a minimum point for  on [a, b]. Then  must be increasing on
[ā, b]. Otherwise, there exist ↵,β with ā < ↵ < β < r and  (↵) >  (β). In this case
 (↵) >  (ā) also (since  (β) ≥  (ā)), and this violates the maximum principle on
[ā,β]. ⇤
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Definition 5.2. Suppose that F is borderline. The increasing radial sub-
harmonic equation R"

f

on (0,1) is defined by

R"
f

: a+ f
⇣p

t

⌘

≥ 0 and p ≥ 0, (5.3)

where f is the characteristic function of F .

For C2-functions  (t) it is obvious that:

 (t) is R"
f

subharmonic ()  (|x|) is F \ {x · p ≥ 0} subharmonic (5.4)

where F \{x ·p ≥ 0} is a variable coefficient subequation on Rn depending on both
the first and second derivatives. The equivalence (5.4) is extended using Theorem
A.1.

Theorem 5.3 (Increasing radial subharmonics). Suppose that F is borderline.
The function u(x) =  (|x|) is F -subharmonic and radially increasing on an annular

region in Rn if and only if  (t) is R"
f

-subharmonic on the corresponding subinterval
of (0,1).

Proof. Theorem A.1 states that: u is F -subharmonic ()  is R
f

-
subharmonic. By definition u(x) is radially increasing if u satisfies the first-order
variable coefficient subequation {p · x ≥ 0}. It remains to show that

u satisfies the subequation {p · x ≥ 0} ()  satisfies  0(t) ≥ 0. (5.5)

Suppose  (|x|) is {x · p ≥ 0}-subharmonic and that '(t) is a test function for  (t)
at a point t0. Then '(|x|) is a test function for u(x) at x0 if |x0| = t0. Now

D
x0
' = '0(|x0|)

x0

|x0|
and hence x0 ·Dx0

' = |x0|'0(|x0|). (5.6)

Thus '0(t0) ≥ 0 proving that  (t) is increasing. Conversely, if  (t) is increasing
and '(x) is a test function for u(x) at x0, then '(t) ⌘ '( tx0

|x0| ) is a test function for

 (t) at t0 = |x0|. Hence, '0(t0) ≥ 0. However, '0(t0) = (D
x0') · x0. ⇤

Remark 5.4 (Decreasing radial subharmonics). For borderline F we define the

decreasing radial subharmonic equation R#
f

on (0,1) by

R#
f

: a+ f
⇣p

t

⌘

≥ 0 and p  0, (5.7)

where again f is the characteristic function of F . We leave it to the reader to show
the following. For  upper semi-continuous,

 (t) is R#
f

subharmonic ()  (|x|) is F \ {x · p  0} subharmonic. (5.8)
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6 – Proof of the (SMP)

In this section we prove Part (a) of Theorem 3.6. The subequation F is assumed to
be borderline, and we can assume that it is O

n

-invariant because of the following
construction. Set

F# ⌘
[

g2On

g(F ). (6.1)

First note that F# is also a subequation. Now from Definition 3.4 of the character-
istic function f of F and the fact that P

e

? , P
e

have the same span as I, P
e

, it is easy
to see that the characteristic function for F# is f . Moreover, F# is an O

n

-invariant
subequation which contains F so that it suffices to prove Theorem 3.6(a) for F#.

From now on we assume that F is an O
n

-invariant borderline subequation, and
we let f denote the restriction of f = f to [0,1). Hence f(0) = 0 and f is

increasing. Furthermore, let both R"
f

and R"
F

denote the subequation defined by
(5.4).

Part (a) of Theorem 3.6 follows from two implications.

Lemma 6.1. Suppose F is an O
n

-invariant borderline subequation. Then

Z

0+

dy

f(y)
= 1 ) (SMP) for R"

f

, and (6.2)

(SMP) for R"
F

) (SMP) for F. (6.3)

Proof. We prove the second implication (6.3) first. Suppose u is a counterex-
ample to the (SMP) for F on a bounded domain ⌦. We will show this leads to a

counterexample to the (SMP) for R"
F

. ⇤
First, for all sufficiently small r > 0, there exists a ball B

r

(x0) ⇢ ⌦ of radius r
such that the maximum M ⌘ sup⌦ u satisfies

(a) u(x) < M for all x 2 B
r

(x0) and

(b) u(x) = M for some x 2 @B
r

(x0).
(6.4)

This can be seen as follows. Since (SMP) is false, there exist points in ⌦ which are
not in the maximum set {u = M}. Pick such a point x0 closer to {u = M} than to
@⌦ and set r ⌘ dist(x0, {u = M}). Let B

t

⌘ B
t

(x0) and M(t) ⌘ sup
@Bt

u.
Second, choose an annulus

A = A(r,R) ⌘ {x : r  |x− x0|  R} ⇢ ⌦ (6.5)

containing @B
r

in its interior. i.e., with r < r < R. Then

u(x) = M at x 2 IntA, while on @A : u
�

�

@Br
< M and u

�

�

@BR
 M. (6.6)
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Since F is borderline, 0 2 @F , and hence by Theorem 2.1 the (MP) holds for u on B
t

since u is F -subharmonic on ⌦. Therefore M(t) must be increasing for r < t < R.
Hence, by (6.4) and (6.6)

M(t) < M for r < t < r̄ and M(t) = M for r̄  t < R. (6.7)

That is, the (SMP) for M(t) on r  t  R fails. It remains to show that M(t) is

R"
F

-subharmonic.

Lemma 6.2. For any upper semi-continuous function u, the function M(t) ⌘
sup

@Bt
u is upper semi-continuous.

Proof. Assume the balls B
t

are centered at the origin. Given δ > 0,

N
δ

⌘ {x : u(x) < M(t) + δ}

is an open set containing @B
t

= {x : |x| = t}. Hence the annulus {x : t− ✏  |x| 
t+ ✏} is contained in N

δ

for ✏ > 0 small. Thus M(r) < M(t)+ δ if t− ✏  r  t+ ✏.
This proves that M(t) is upper semi-continuous. ⇤

Since M(t) satisfies the subequation {p ≥ 0} it remains to show that M(t)
satisfies the subequation R

F

. By Theorem A.1 it suffices to show that M(|x|) is
F -subharmonic on r < |x| < R. The next result completes the proof of (6.3).

Lemma 6.3. If u is F -subharmonic on an annulus, then M(|x|) is also F -
subharmonic on the same annulus where M(t) ⌘ sup|x|=t

u.

Proof. By Lemma 6.2 M(t) is upper semi-continuous, and hence M(|x|) is
upper semi-continuous. Let u

g

(x) ⌘ u(gx) with g 2 O
n

. Each u
g

is F -subharmonic
since F is O

n

-invariant. Thus

M(|x|) = sup
g2On

u
g

(x) (6.8)

is F -subharmonic by the standard “families locally bounded above” property
for F . ⇤

6.1 – A one-variable result

The point of this subsection is to prove the one-variable result (6.2) which completes
the proof of Theorem 3.6 part (a). We assume throughout that f : [0,1) ! [0,1]
is an upper semi-continuous, increasing function with f(0) = 0, and we define the

subequation R"
f

on (0,1) by (5.4).
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Proposition 6.4.
Z

0+

dy

f(y)
= 1 ) The (SMP) holds for R"

f

.

To prove this we first consider the following one-variable constant coefficient sube-
quation E defined by

E : a+ f(p) ≥ 0 and p ≥ 0. (6.9)

Proposition 6.5.
Z

0+

dy

f(y)
= 1 ) The (SMP) holds for E.

Proof that 6.5 ) 6.4. Suppose that the (SMP) fails for R"
f

on [r1, r2] ⇢
(0,1). Choose r with 0 < r < r1. Consider the constant coefficient subequation
E

r

defined by

E
r

: a+ f
⇣p

r

⌘

≥ 0 and p ≥ 0. (6.10)

If t > r, then a+ f
�

p

t

�

≥ 0 implies that a+ f
�

p

r

�

≥ 0 since f is increasing. That

is, each fibre (R"
f

)
t

⇢ E
r

if t > r, so that on a neighborhood of [r1, r2], if  is

R"
f

-subharmonic, then  is E
r

-subharmonic. Therefore the (SMP) fails for E
r

. The
function f(y

r

) satisfies the same conditions as the function f . Hence, by Proposition

6.5,
R

0+
dy

f(y) = 1
r

R

0+
dy

f( y
r )

< 1. ⇤

Proof of Proposition 6.5. Suppose that  is a counterexample to the (SMP)
for E. Since  is upper semi-continuous and increasing, there exists a point r0 such
that

 (t) < M for t < r0, and  (t) ⌘ M for r0  t. (6.11)

By sup-convolution we may assume that  is quasi-convex and still satisfies E with a
new r0 slightly smaller than the old one. Since f is increasing we have the following.

Lemma 6.6. The derivative  0 can be assumed to be absolutely continuous.

Proof. Since  (t) + 1
2λt

2 is convex for some λ > 0, the second distributional
derivative  00 = µ−λ where µ ≥ 0 is a non-negative measure. Consider the Lebesgue
decomposition µ = ↵ + ⌫ of µ into its L1

loc-part ↵ and its singular part ⌫. Since ⌫
is supported on t  r0, there exists a unique convex function β with β00 = ⌫ and
β ⌘ 0 on r0  t. It follows easily that β(t) ≥ 0 and β is decreasing. Therefore
 ̄(t) ⌘  (t)−β(t)   (t) and  ̄(t) is increasing. Hence  ̄ also satisfies (6.11). Now
 ̄00 = ↵−λ, and therefore  ̄0 is absolutely continuous. Since ⌫ is singular, β00(t) = 0
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a.e., and since β is decreasing,  ̄0(t) =  0(t)− β0(t) ≥  0(t) a.e.. Therefore, since f
is increasing and  is E-subharmonic,

 ̄00(t) + f( ̄0(t)) ≥ 0 a.e. (6.12)

This almost-everywhere inequality is all that will be used to complete the proof of
Proposition 6.5. However, in general, if a quasi-convex function satisfies a sube-
quation F a.e., then it must be F -subharmonic (see Corollary 7.5 in [11] for pure
second-order case and (7.3) below for the general case). ⇤

Now let '(t) ⌘  0(t). This function ' is absolutely continuous since '0(t) ⌘
↵(t)−λ. The properties that  is increasing and  (t) ⌘ M for t ≥ r0 translate into
the properties:

'(t) ≥ 0 and '(t) = 0 if t ≥ r0. (6.13)

The inequality (6.12) states that

'0(t) + f('(t)) ≥ 0 a.e. (6.14)

Note that at a point t where ' is di↵erentiable, if '(t) = 0, then this implies that
'0(t) ≥ 0. Thus (6.14) can be rewritten as

−'0(t)

f('(t))
 1 a.e. (6.15)

where the LHS equals −1 at points where '(t) = 0. Therefore, for any measurable
set B we have

−
Z

B

'0(t)

f('(t))
 |B|. (6.16)

On the set B− where ' is di↵erentiable and '0(t) < 0, the inequality (6.16) has

content. Otherwise the integrand −'0(t)
f('(t))  0.

Choose s1 and s0 so that r1 < s1 < s0 < r0 and 0 < '(s0) < '(s1). We will
show that

Z

'(s1)

'(s0)

dy

f(y)
 r0 − r1 for all such s0 > s1. (6.17)

Because of (6.13) the point s0 with '(s0) > 0 can be chosen arbitrarily close to r0.
Then taking the limit as s0 increases to r0 proves that

Z

'(s1)

0

dy

f(y)
 r0 − r1 < 1.
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It remains to prove (6.17). Let N('
�

�

A

, y) denote the cardinality of {t 2 A : '(t) =
y}. Set A = [s1, s0], and let V

A

(') denote the total variation of ' on A. Since ' is
absolutely continuous, we have, by [10, Theorem 2.10.13, page 177], that

V
A

(') is finite, and V
A

(') =

Z

N
�

'
�

�

A

, y
�

dy. (6.18)

Now set

f
✏

(y) ⌘ max{f(y), ✏} where ✏ > 0.

Then
Z

1

f
✏

(y)
N
�

'
�

�

A

, y
�

dy  1

✏
V
A

(') < 1.

Hence, the second half of [10, Theorem 3.2.6 (p. 245)] applies to yield

Z

'(s0)

'(s1)

1

f
✏

(y)
dy = −

Z

s0

s1

'0(t)

f
✏

('(t))
dt. (6.19)

Since 1
f✏(y)

 1
f(y) on the set B− where ' is di↵erentiable and '0(t) < 0, we have

Z

B

−

−'0(t) dt

f
✏

('(t))

Z

B

−

−'0(t) dt

f('(t))
 |B−|  r0 − r1 (6.20)

by (6.16). Combining (6.19) and (6.20) proves that

Z

'(s0)

'(s1)

dy

f
✏

(y)
 r0 − r1,

since
R

⇠B

−
−'0(t) dt
f✏('(t))

 0. By the Monotone Convergence Theorem this proves

(6.17). ⇤

Remark 6.7. In the proof of Proposition 6.5, the fact that f is increasing was
only used in Lemma 6.6. Therefore, if a subequation E is defined by an upper
semi-continuous function f : [0,1) ! [0,1] with f(0) = 0 and f(y) > 0 for y > 0,
then we have that:

Z

0+

dy

f(y)
= 1 ) the (SMP) holds

for all E-subharmonic functions  for which  0 is absolutely continuous.
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7 – Radial (harmonic) counterexamples to the (SMP)

In this section we give the proof of Part (b) of Theorem 3.6 by constructing a
radial counterexample to the (SMP) for F . Let f denote the restriction of f to
[0,1), where f is the (smaller) characteristic function (Definition 3.4) of the given
borderline subequation F . Then

f : [0,1) ! [0,1] is upper semicontinuous, increasing and f(0) = 0. (7.1)

More precisely we prove the following.

Theorem 7.1. Suppose that F is a borderline subequation with f as described
above. If

R

0+
dy

f(y) < 1, then there exists a radially increasing F -subharmonic

function u(x) =  (|x|) on |x| > 1 where  is of class C1,1 on (1,1) and satisfies

 (t) < m for 1 < t < t0 and  (t) = m for t ≥ t0. (7.2)

By Theorem 5.3, it suffices to construct an increasing C1,1-function which is R"
f

-
subharmonic and satisfies (7.2).

In order to explicate the proof we will use the “almost-everywhere theorem” for
quasi-convex functions, which holds for the most general possible subequations F .
This AE Theorem states that for a quasi-convex function u

If u has its 2− jet in F a.e., then u is F subharmonic, (7.3)

and was established in [16]. We will also make use of the fact (cf. [17, 9], or [16])
that

u is of class C1,1 () u and − u are quasiconvex. (7.4)

Proof Theorem 7.1 We start by solving the constant coefficient subequation
E on R defined by

E : a+ f(p) ≥ 0 and p ≥ 0, (7.5)

which is simpler than R"
f

. ⇤

Lemma 7.2. If
R

0+
dy

f(y) < 1, then there exists an E-subharmonic function '(s)

of class C1,1 on (0,1) with

'(s) < m strictly increasing on (0, s0) and '(s) ⌘ m on [s0,1).
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Proof. Set s(y) =
R

y

0
dy

f(y) for y ≥ 0. For 0  y1 < y2  y0 we have

y2 − y1
f(y2)


Z

y2

y1

d t

f(t)
= s2 − s1. (7.6)

Therefore, this function s(y) is strictly increasing until f equals +1 (and is constant
afterwards). In particular, it is a homeomorphism from [0, y0] to [0, s0] for some
y0 > 0 with s0 = s(y0) < 1. Let y(s) denote the inverse, which is also strictly
increasing with y(0) = 0. The inequality (7.6) implies that y(s) is Lipschitz on
[0, s0] with Lipschitz constant f(y0), since f(y2)  f(y0) if y2  y0.

Taking y1 = 0, y2 = y(s) yields y(s)  sf(y(s)) which implies that y is di↵eren-
tiable from the right at s = 0 with y0(0) = 0. Moreover, since y(s) is Lipschitz, it
is di↵erentiable a.e. and

y0(s) = f(y(s)) a.e. (7.7)

Fix m and consider the function '(s) defined on (0,1) by '(s0) = m and

'0(s) ⌘
(

y(s0 − s) if 0 < s  s0

0 if s ≥ s0.

Since '0(s) is continuous and strictly decreasing to zero on (0, s0], '(s) must be
strictly increasing to m on (0, s0] and identically equal to m afterwards.

Since ' is twice di↵erentiable at s = s0, with '
0(s0) = '00(s0) = 0, the function

' is class C1,1 on all of (0,1). Moreover, (7.7) implies that

'00(s) + f('0(s)) = 0 a.e. on (0,1). (7.8)

By (7.4) and (7.3) this implies that ' is E-subharmonic on (0,1). ⇤
We will use Lemma 7.2 applied to the subequation E0 defined by

E0 : a+ p+ f(p) ≥ 0 and p ≥ 0, (7.9)

rather than E. Now consider the radial subequation R"
f

on (0,1) defined by

R"
f

: a+ f
⇣p

t

⌘

≥ 0, and p ≥ 0 (7.10)

which depends on the variable t 2 (0,1).

Proposition 7.3. Suppose '(s) is the E0-subharmonic function given by Lemma
7.2 applied to E0 rather than E. Then the function  (t) defined on (1,1) by

 0(t) = t'0(log t) and  (t0) = m, (7.11)

where t0 = es0 , is a C1,1 subharmonic for R"
f

. Moreover,

 (t) is strictly increasing with

 (t) < m on 1 < t < t0 and  (t) ⌘ m on t0  t.
(7.12)
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Proof. That '0 is Lipschitz implies that  0 is Lipschitz. Therefore  is class
C1,1. At a point of di↵erentiability we have  00(t) = '0(log t)+'00(log t), and hence

 00(t) + f( 
0(t)
t

) = '00(log t) + '0(log t) + f('0(log t)) = 0. Therefore  (t) satisfies
(7.10) a.e. (Since '0(s) is continuous and > 0 on (0, s0),  

0(t) is also continuous
and > 0 on (1, t0). Thus  is strictly increasing on (1, t0).) Thus by (7.4) and (7.3),

 is R"
f

-subharmonic. The properties (7.12) are straightforward. ⇤

Remark 7.4 (F -Harmonicity). The F -subharmonic function u(x) =  (|x|) con-
structed in this section is, in fact, F -harmonic if F is invariant as in Definition 3.7.
We leave it to the reader to show that − is eR"

f

-subharmonic and hence −u is

eF -subharmonic. One can show that

a+ f(p) = 0, p ≥ 0 ) (p, a) 2 @E, (7.13)

but the converse is not true if f has a jump.

Example 7.5. One of the simpler examples where Theorem 7.1 applies is the
subequation F defined by λmax(A) ≥ 0 and λmin(A)+

p

λmax(A) ≥ 0 (See Example

8.1 below). The characteristic function is f(λ) =
p
λ. However, carrying out the

construction of the F -harmonic counterexample provided in the proof of Theorem
7.1 involves taking a complicated inverse. To obtain more explicit harmonics con-
sider the subequation F defined by λmax(A) ≥ 0 and λmin(A) + f(λmax(A)) ≥ 0
where

f(λ) ⌘
p
λ

✓

4R
p
4R+ λ+

p
λ

◆

=
p

λ2 + 4Rλ− λ.

The characteristic function is f(λ), and lim
λ!0 f(λ)/

p
λ = 2

p
R so that

R

0+
1/f <

1, and hence again Theorem 7.1 applies.

The increasing radial harmonics for this subequation F on Rn − {0} are very
explicit:

h(x) ⌘
(

− R

3r (r − |x|)3 + k for |x|  r

0 for |x| ≥ r.
(7.14)

A general version of this example is provided in 8.13 in the next section.

8 – Subequations with the same increasing radial subharmonics

In order to begin to understand examples and applications of the main Theorem
A, it is helpful to describe all the borderline invariant subequations with a given
characteristic function f .
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Remark. By Theorem 5.3, this problem is equivalent to describing all border-
line invariant subequation with the same set of increasing radial subharmonics (or,
equivalently, the same set of increasing radial harmonics) satisfying

R"
f

:  0(t) ≥ 0 and  00(t) + f

✓

 0(t)

t

◆

≥ 0 (8.1)

on (↵,β) ⇢ (0,1).

We assume that an increasing upper semi-continuous function

f : [0,1) ! [0,1) with f(0) = 0 (8.2)

is given. The problem is to determine all subequations (if any) with this character-
istic function f .

We start with the two examples that play a central role. Given A 2 Sym2(Rn),
let λ1(A)  · · ·  λ

n

(A) denote the ordered eigenvalues of A. In particular, the
minimum and maximum eigenvalues are λmin(A) = λ1(A) and λmax(A) = λ

n

(A)
respectively. Recall the monotonicity λ

k

(A+ P ) ≥ λ
k

(A) for P 2 P.

Example 8.1 (The f -min/max subequation).

F
min/max
f

⌘ {A : λmax(A) ≥ 0 and λmin(A) + f(λmax(A)) ≥ 0}.

Example 8.2 (The f -min/2 subequation).

F
min/2
f

⌘ {A : λ2(A) ≥ 0 and λmin(A) + f(λ2(A)) ≥ 0}.

Proposition 8.3. The sets F
min/max
f

and F
min/2
f

are subequations which are
borderline and O

n

-invariant. Moreover, for both subequations, the characteristic
function restricted to [0,1) equals f .

Proof. Since f is upper semi-continuous, both sets are closed. Since f is
increasing, positivity follows from the P-monotonicity of the ordered eigenvalues.
To prove these subequations are borderline, suppose A lies in the larger subequation

F
min/max
f

and A 2 −P, i.e., λmax(A)  0. Then λmax(A) = 0 and since f(0) = 0,
λmin(A) = 0. Hence, A = 0. Invariance follows because the ordered eigenvalues
themselves are O

n

-invariant.
To complete the proof we compute the full radial profiles (not just the increasing

part).

The subequation F
min/max
f

has radial profile

{(λ, µ) : λ ≥ 0 and µ+ f(λ) ≥ 0} [ {(λ, µ) : µ ≥ 0 and λ+ f(µ) ≥ 0}. (8.3)
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For n ≥ 3, the subequation F
min/2
f

has radial profile

{(λ, µ) : λ ≥ 0 and µ+ f(λ) ≥ 0}. (8.4)

We see this as follows. Note that the radial profile of F
min/max
f

is symmetric about
the diagonal. Recall that if A ⌘ λP

e

? +µP
e

belongs to any borderline subequation,
then either λ ≥ 0 or µ ≥ 0.

For (8.3), suppose A ⌘ λP
e

? + µP
e

2 F
min/max
f

. If λ ≥ µ, then λ = λmax ≥ 0
and µ = λmin satisfies λmin + f(λmax) ≥ 0. If µ ≥ λ, then µ = λmax ≥ 0 and
λ = λmin satisfies λmin + f(λmax) ≥ 0.

For (8.4), suppose A ⌘ λP
e

? + µP
e

2 F
min/2
f

. Since n ≥ 3, λ = λ2 ≥ 0 and
either µ = λ1 or µ > λ. In either case λ ≥ 0 and µ+ f(λ) ≥ 0. ⇤

Corollary 8.4. Both F
min/max
f

and F
min/2
f

have their increasing radial sub-

harmonics u(x) =  (|x|) determined by the subequation R"
f

defined in (8.1).

The subequations F
min/max
f

and F
min/2
f

are of central importance because they
are the largest and smallest possible under our invariance hypothesis (3.9) on F :

λP
e

? + µP
e

2 F for some e 6= 0 ) λP
e

? + µP
e

2 F for all e 6= 0. (3.9)

Theorem 8.5. Suppose F is invariant. Then F has characteristic function f , or
equivalently, the radial increasing subharmonics u(x) =  (|x|) for F are determined

by R"
f

as in (8.1), if and only if

F
min/2
f

⇢ F ⇢ F
min/max
f

. (8.5)

Proof. Each A 2 Sym2(Rn) can be written as a sum A = λ1Pe1
+ · · ·+λ

n

P
en

using the ordered eigenvalues of A. Set B0 ⌘ λ1Pe1 + λ2P
e

?
1

and B1 ⌘ λ1Pe1 +
λ
n

P
e

?
1
, and note that B0  A  B1.

If A 2 F
min/2
f

, then λ2 ≥ 0 and λ1 + f(λ2) ≥ 0. Thus B0 ⌘ λ1Pe1 + λ2P
e

?
1
2

F
min/2
f

. Since F
min/2
f

and F have the same radial profile in the half-plane {λ ≥ 0}
by (8.4), we conclude that B0 2 F . However, B0  A proving that A 2 F .

For the other inclusion, pick A 2 F . Since F ⇢ eP we have λmax ≥ 0. Now A 
B1 implies B1 2 F . By the invariance hypothesis and (8.3), F and F

min/max
f

have

the same same radial profile in the half-plane {λ ≥ 0}. Therefore, B1 2 F
min/max
f

,

i.e., λ
n

≥ 0 and λ1 + f(λ
n

) ≥ 0. This implies by definition that A 2 F
min/max
f

. ⇤
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Remark 8.6. Theorem 8.5 can be used to construct vast numbers of invariant
borderline subequations which satisfy the (SMP), or, if one prefers, which do not
satisfy the (SMP).

Remark 8.7. Dropping the invariance assumption (3.9), the proof of Theorem
8.5 shows that for any borderline subequation F with characteristic functions f

and f

F
min/2
f

⇢ F ⇢ F
min/max

f

. (8.50)

The subequation F# defined by (6.1) as the O
n

-orbit of F , has characteristic func-
tion f . It satisfies

F ⇢ F# ⇢ F
min/max

f

, (8.6)

and is the smallest O
n

-invariant subequation containing F .

8.1 – Explicit borderline examples

It is natural to look for the largest possible subequations which satisfy the (SMP).
Because of Theorem 3.6(a) and Theorem 8.5 these are max-min subequations F
whose characteristic function f is as large as possible subject to the condition
R

0+
dy

f(y) = 1. Since this only depends on the behavior of the germ at 0+ of f ,

we can also localize F at the origin in Sym2(Rn) by replacing f on [✏,1) by the
function ⌘ +1, which yields a larger subequation. We present three examples
where the (SMP) holds, and two where the (SMP) fails.

If F is a cone, then by (3.15) f(λ) = ↵λ, and the corresponding min/max-

subequation F
min/max

f

containing F is given as follows.

Example 8.8 (Min/Max cones). (0 < ↵ < 1)

f(y) = ↵y

✓

and hence

Z

0+

1

f
= 1

◆

. (a)

The borderline O
n

-invariant cone subequation

Pmin/max
↵

: λmin(A) + ↵λmax(A) ≥ 0 satisfies the (SMP). (b)

Thus all subequations F which are contained in Pmin/max
↵

for some ↵ > 0 satisfy
the (SMP). The increasing radial harmonics  (|x|) are important classical functions
given (with p ⌘ ↵+ 1) by:

 (t) = at2−p + b with a > 0 if 1  p < 2

 (t) = a log t+ b with a > 0 if p = 2

 (t) = − a

tp−2
+ b with a > 0 if p > 2.

(8.7)
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We leave the computation of M
F

for this F as an open problem.
This example can be localized.

Example 8.9 (8.9. (Localizing the Min/Max cone). (0 < ↵ < 1 and ✏ > 0)

(a) f(y) ⌘
(

↵y if 0  y < ✏

+1 if ✏  y.

(b) The borderline O
n

-invariant cone subequation

Pmin/max
↵,loc : Either λmin(A) ≥ ✏ or λmin(A) + ↵λmax(A) ≥ 0

satisfies the (SMP). Thus

All subequations F which are contained in Pmin/max
↵,loc

for some ↵ satisfy the (SMP).
(8.8)

Remark 8.10 (The Barles and Busca Hopf Lemma 3.2 [3]). Under their hypoth-
esis “(F3b)” they prove that the (SMP) holds. This landmark paper on comparison
covers a wide range of subequations. For the constant coefficient, pure second-order
subequations considered here their hypothesis can be restated as follows:

8λ > 0, 9µ, δ > 0 such that

E ⌘ {t (λP
e

? − µP
e

) : 0 < t < δ and |e| = 1}
is contained in the complement of the subequation F.

(F3b)

Now the assertion that E ⇢ (⇠ F ) is equivalent to saying that f(y) < µ

λ

y for all
0 < y < λδ. By Theorem 8.5 and Remark 8.7 this proves that the condition (F3b)
is equivalent to

F ⇢ Pmin/max
↵,loc for some ↵

(take ↵ = µ

λ

). Thus, the Hopf Lemma (3.2) in [3], when restricted to subequations
of the type considered here, is equivalent to the corollary (8.8) of Theorem 3.6(a).

Example 8.11 (A localized Hopf subequation). (0 < k < ↵ < 1 and 0 < ✏  1)

(a) f(y) =

(

y
⇣

↵+ k log 1
y

⌘

if 0  y < ✏

+1 if ✏  y

is an upper semi-continuous increasing function with associated min/max subequa-
tion

(b) H(↵) : Either λmin(A) ≥ ✏ or λmin(A)+λmax(A) (↵− k log λmax(A)) ≥ 0.
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This subequation satisfies the (SMP) since

Z

dy

y(↵− k log y)
= −1

k
log(↵− k log y)

which implies
R

0+
du

f(y) = 1. The increasing radial harmonics satisfy

 0(t) = βtect
k

where log β =
1 + ↵

k
(8.9)

and c is the constant of integration. For example, if we take k = 2 and set c = −β/2,
we see that  0(t) = βte

−βt2

2 integrates to

 (t) = e
−βR2

2 − e
−βt2

2 (8.10)

which is the standard Hopf function (cf. [6]). Here f(y) = y(2 log(β
y

) − 1) for y
small.

Obviously,
Pmax/min
↵

⇢ P loc
↵

⇢ H
↵

, (8.11)

and for larger ↵ each subequation is larger. Our notation suppresses the dependence
of P loc

↵

on ✏ and of H
↵

on ✏ and k.

Example 8.12 (The (SMP) Fails)). Let f : [0,1) ! [0,1) be defined by

f(y) = Ny
N−1
N (N > 1). (8.12)

Since
R

dy

f(y) = y
1
N , we have

R

0+
dy

f(y) < 1. Therefore the (SMP) fails for the

corresponding min/max subequation

F : λmin(A) +Nλmax(A)
N−1
N ≥ 0 and λmax(A) > 0. (8.13)

The associated constant coefficient subequation

E : a + Np
N−1
N and p ≥ 0

has radial harmonics

 (t) ⌘ − 1

N + 1
(R− t)N+1+k for t  R and  (t) ⌘ 0 for t ≥ R, (8.14)

but the radial harmonics for R"
f

are more complicated. Note that a better example

(i.e., f is smaller) where (SMP) fails is f(y) ⌘ y(log y)2 < yβ (0 < β < 1 and y
small), since

R

dy

f(y) = 1 + 1
log y

< 1 for y > 0 small.
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Example 8.13 (The (SMP) fails with explicit harmonics). However, fixingR > 0
there exists a modification of (8.13) of the form

F : λmin(A)+N(λmax(A)g(λmax(A)))
N−1
N ≥ 0 and λmax(A) ≥ 0 (8.15)

with g defined below so that F has the simple/explicit radial harmonics:

 (|x|)⌘ −r2

(N + 1)R2
(r − |x|)N+1+k for |x|  r and  (|x|) ⌘ 0 for |x| ≥ r. (8.16)

The proof is omitted.

The characteristic function for F is

f(y) = N(yg(y))
N−1
N . (8.17)

The function g(y) is defined to be the inverse of y(t) ⌘ (R − t)N/t =  0(t)/t for
0  t  R. Since y(t) is strictly decreasing from 1 to 0 on [0, R], the function g(y)
is strictly decreasing from R to 0 on [0,1]. One can show that x = 1

N

f(y) has
inverse

y(x) =
x

N
N−1

R− x
N

N−1

,

and hence is strictly increasing on [0,1] from 0 to NRN−1 ensuring that F is a
subequation.

9 – Strong comparison and monotonicity

By the strong comparison principle for a subequation F we mean the follow-
ing.

If u 2 F (⌦) and v 2 eF (⌦), then the (SMP) holds for u+ v on ⌦. (SC)

This is, of course, immediate if u+ v is G-subharmonic for some subequation G for
which the strong maximum principle holds. In this section we address the question
of when such a G exists. The geometric point of view is, we think, an advantage
here. This question is reduced to algebra by the following.

Theorem 9.1 (Addition). If three subequations satisfy

F +H ⇢ G,

then
F (⌦) +H(⌦) ⇢ G(⌦).
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Remark. This result is immediate from sup-convolution and either of the classical
Jensen or Slodkowsky Lemmas (which are in a strong sense equivalent, cf. [16]). It
is referred to as “Transitivity of inequalities in the viscosity sense” on [1, page 745],
and is proved in the book [3] of Ca↵arelli-Cabré (Proposition 2.9) in the case where
F and H are uniformly elliptic. See also classic works of Crandall and Crandall,
Ishii and Lions [7, 8].

Thus the (SC) question is reduced to asking when is F + eF contained in G,
where G satisfies the (SMP).

Using the fact (2.6) that F̂ +A = eF − A one can show that for any two sube-
quations F and G

F + eF ⇢ G () F + eG ⇢ F.

Rewriting this with eG replaced by M gives

F +M ⇢ F () F + eF ⇢ fM. (9.1)

A subequation M satisfying F +M ⇢ F will be called a monotonicity subequa-
tion for F . It is easy to show that M is a monotonicity subequation for F if and
only if M is monotonicity subequation for eF . (See (5) below.)

Theorem 9.2 (Strong comparison). Suppose that M is a monotonicity subequa-
tion for F . Then

(SMP) for fM ) (SC) for F. (9.2)

Proof. By (9.1) and Theorem 9.1, F + M ⇢ F ) F + eF ⇢ fM )
F (⌦) + eF (⌦) ⇢ fM(⌦). ⇤

9.1 – The largest monotonicity subequation for F

Increasing the size of a subequation M satisfying F +M ⇢ F decreases the size of
G = fM , thereby increasing the liklyhood that G = fM satisfies the (SMP). Hence,
it is natural to look for the largest subequation M satisfying F + M ⇢ F . It is
somewhat surprising that there is such a subequation. We define themonotonicity
subequation for F to be the set

M
F

⌘ {A 2 Sym2(Rn) : F +A ⇢ F}. (9.3)
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We leave the following facts as an exercise.

(1) M
F

is a subequation, (2) 0 2 @M
F

and fM
F

⇢ eP,

(3) M
F

is its own monotonicity subequation, in particular M
F

is additive,

(4) If M
F

is a cone, then M
F

is a convex cone subequation,

(5) M e
F

= M
F

, in fact, for any A, F +A ⇢ F () eF +A ⇢ eF ,

(6) IntfM
F

⇢ F + Int eF ⇢ F + eF ⇢ fM
F

, and hence fM
F

= Cl(F + eF ). (9.4)

Definition 9.3. A subequation M such that 0 2 M and M is additive, i.e.,
M +M ⇢ M , will be called a monotonicity subequation.

M is a monotonicity subequation ()
M = M

F

for some subequation F.
(9.5)

Proof. In fact M is its own monotonicity subequation, because if M+A ⇢ M ,
then 0 2 M ) A 2 M . ⇤

Note that M
F

is maximal, that is, it contains every monotonicity subequation
for F . Consequently, Theorem 9.2 could be restated equivalently as follows.

Theorem 9.20

fM
F

satisfies the (SMP) ) F satisfies (SC). (9.20)

For most subequations F , even when F is not a cone, M
F

is a cone. These subequa-
tions F will be referred to as normal subequations. If F is normal, then in fact,
by (4) above, M

F

is a convex cone. The verious criteria in Theorem 3.9 apply to
fM

F

. In addition, uniform ellipticity can be added to the list since M
F

is a convex
cone.

Proposition 9.4. Suppose F is a normal subequation (i.e., M
F

is a cone).
Then

(SMP) holds for fM
F

() −P
e

/2 fM
F

8 e 6= 0 () P
e

2 IntM
F

8 e 6= 0

() M
F

is a convex conical neighborhood of P
() F is uniformly elliptic.

Proof. The first equivalence is just part (b) of Theorem 3.9. The second
follows from the definition of the dual of M

F

. The third follows since M
F

is a
convex cone. The last follows from Lemma B.1 in Appendix B. ⇤
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We note that since M
F

is maximal, there is the possibility that the reverse
implication in (9.2)0 holds. We leave this as an open question even in the case
where F is a cone. However, the following is a partial answer in this case.

Proposition 9.5. Suppose that F is a normal subequation and F + eF = fM
F

.
Then

(SC) holds for F () the (SMP) holds for fM
F

.

Proof. Suppose that the (SMP) fails for fM
F

. Then by Proposition 9.4 we

have −P
e

2 fM
F

for some e. By the hypothesis that F + eF = fM
F

, we have

−P
e

= Q+ eQ with Q 2 F and eQ 2 eF . (9.6)

Let w(x) ⌘ 1
2 he, xi

2
, u(x) ⌘ 1

2 hQx, xi, and v(x) ⌘ 1
2 h eQx, xi denote the correspond-

ing quadratic functions. Then w = u + v, u 2 F (Rn), v 2 eF (Rn) but the (SMP)
fails for w. Hence, u and v provide a counterexample to (SC) for F . ⇤

The following corollary probably comes as no surprise.

Corollary 9.6. Suppose that F is a convex cone subequation. Then

(SC) holds for F () F is uniformly elliptic.

Proof. If A,B 2 F , then 1
2 (A+B) 2 F by convexity, and since F is a cone, this

proves F +F ⇢ F which implies F ⇢ M
F

. Since 0 2 F , M
F

= 0+M
F

⇢ F +M
F

⇢
F . Thus, M

F

= F , and so fM
F

= eF . By (5) above, eF + F ⇢ eF = fM
F

, while
fM

F

= eF ⇢ eF +0 ⇢ eF +F . This proves that eF +F = fM
F

= eF so that Proposition
9.5 applies. Finally, by Proposition 9.4 the (SMP) holds for eF = fM

F

() F is
uniformly elliptic. ⇤

The hypothesis F + eF = fM
F

in Proposition 9.5 can be analyzed further be-
cause the set F + eF can be explicitly computed. For this we introduce the strict
monotonicity set S

F

for F

S
F

⌘ {A 2 Sym2(Rn) : F +A ⇢ IntF}, (9.7)

along with a secondary notion for the dual, this time for an arbitrary subset G,
namely,

G⇤ ⌘ −(⇠ G) = ⇠ (−G). (9.8)

Remark 9.7. Although we restrict attention in this paper to subequations F ⇢
Sym2(Rn), it is worth noting that the next result holds for an arbitrary subequation
F ⇢ J2(X) on a manifold X.

Lemma 9.8. For any subequation F

F + eF = S⇤
F

.

Proof. Note that E 2 S⇤
F

() −E /2 S
F

() 9A 2 F such that

−B = A− E /2 IntF () E = A+B for some A 2 F and B 2 eF . ⇤
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Remark 9.9 (Reformulating F+ eF = fM
F

). For any subequation F the following
are equivalent statements.

(1) fM
F

⇢ F + eF

(2) fM
F

⇢ S⇤
F

(3) S
F

⇢ IntM
F

(4) S
F

\ @M
F

= ;.

The reverse containments in (1), (2) and (3) are always true. Thus if any of (1)
through (4) are true, then equality holds in (1) through (3).

Proof. Assertions (1) and (2) are equivalent since S⇤
F

= F + eF Assertions

(2) and (3) are equivalent since (fM
F

)⇤ = IntM
F

, (S⇤
F

)⇤ = S
F

, and taking the
secondary dual (·)⇤ reverses containments. Assertions (1) and (2) are equivalent
since S

F

⇢ M
F

. ⇤

Example 9.10 (F + eF = fM
F

is true). Let F be a convex cone subequation. We

saw, in the proof of Corollary 9.6, that F + eF = fM
F

. Here we give a second proof
involving S

F

. Note that S
F

= IntM
F

= IntF , since any B 2 @M
F

= @F cannot
be in S

F

(because B 2 S
F

would imply 0 + B 2 IntF by definition). Therefore

S⇤
F

= eF = fM
F

. Now apply Lemma 9.8.

Example 9.11 (F + eF = fM
F

is false). The simplest example is the Monge-
Ampère equation F : detA ≥ 1, A > 0. Here M

F

= P, but S
F

= P − {0} is larger

than IntM
F

. Thus, S⇤
F

is smaller than fM
F

. In fact, S⇤
F

= (Int eP) [ {0} = F + eF

does not contain −P
e

for any e 6= 0, but −P
e

2 fM
F

.

This example does not contradict the equivalence of (SC) for F and the (SMP)

for fM
F

since both conditions fail in this case. To see that (SC) fails for the Monge-
Ampère equation F , one employs the classical Pogorelov harmonics

h
↵

(t, x) ⌘ |x|2− 2
n

f
↵

(t)1−
2
n

where f 00
↵

+ fn−1
↵

= 0, and f
↵

(0) = ↵ > 0.

Then near t = 0, h2↵ − h
↵

 0 attains the maximum value zero on the t-axis.

This section leads to the question: are there examples where M
F

is not a cone
(i.e., F is not normal)? The answer is yes. This involves some intriguing new
subequations discussed in the next section.
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10 – Examples of exotic monotonicity subequations which are not cones

The examples will be constructed as follows.

Definition 10.1. Suppose g : [0,1) ! R is a continuous decreasing function
with g(0) = 0 and g(x) < 0 for x > 0. Set

Mg ⌘ {A : trA ≥ 0 and λmin(A) ≥ g(trA)}. (10.1)

Proposition 10.2. Mg is a subequation which is orthogonally invariant with

Mg \ {trA = 0} = {0} and P − {0} ⇢ IntMg. (10.2)

Proof. Since g is continuous, Mg is a closed set. Recall that

λmin(A+B) ≥ λmin(A) + λmin(B). (10.3)

This combined with the fact that g is decreasing easily implies that positivity (P)
holds for Mg. Obviously Mg is O

n

-invariant.
If A 2 Mg and trA = 0, then since g(0) = 0, the minimum eigenvalue λmin(A) ≥

g(0) = 0. But then trA = 0 implies A = 0.
If P ≥ 0 and P 6= 0, then trP > 0. Since x > 0 implies g(x) < 0, we have

g(trP ) < 0. Thus λmin(P ) ≥ 0 > g(trP ) which implies that P 2 IntMg, since g is
continuous. ⇤

Corollary 10.3. The dual subequation gMg is borderline.

Proof. The first part of (10.2) implies that 0 2 @Mg = −@gMg. Combined with
the second part of (10.2), this is condition (1)0 in Lemma 3.2 for the subequation

F = gMg, which proves that gMg is borderline. ⇤

Proposition 10.4. The subequation Mg is additive, i.e., Mg + Mg ⇢ Mg, if
and only if g is subadditive, i.e., g(x+ y)  g(x) + g(y).

Proof. Use (10.3) and tr(A+B) = trA+ trB. ⇤
If g(x) ⌘ −δx (δ > 0), then Mg ⌘ P(δ) is the convex cone subequation dis-

cussed in Appendix B. However, there are plenty of other subadditive decreasing
functions g.

Suppose g is concave on [0, a] with g(0) = 0. Then, as noted in the introduction
to [4], the extension of g(x) from [0, a] to [0,1) defined by

g(x) ⌘ jg(a) + g(x− ja), ja  x  (j + 1)a, j = 1, 2, ... (10.4)

is subadditive on [0,1) and has the property that g ≥ h for any other subadditive
function h on [0,1) which agrees with g on [0, a]. The elementary proof is omitted.
Summarizing, we have the following.
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Theorem 10.5. Suppose that g : [0,1) ! R is the extension of a decreasing
concave function on [0, a] defined by (10.4) with g(0) = 0. Then Mg is a mono-

tonicity subequation (orthogonally invariant), and its dual gMg is borderline.

Lemma 10.6. The dual subequation gMg is defined by

gMg : trA ≥ 0 or λmax(A) ≥ −g (−trA) (with trA  0).

Proof. Note that

A 2 gMg () −A /2 IntMg () λmin(−A)  g (−trA) or tr(−A)  0

() λmax(A) ≥ −g (−trA) or tr(A) ≥ 0

since λmax(A) = −λmin(−A). ⇤

Proposition 10.7. The characteristic function f for the dual subequation gMg

on Rn is f(λ) = g−1(−λ) + (n− 1)λ for λ ≥ 0.

Proof. The increasing radial profile of gMg is by definition

⇤ ⌘ {(λ, µ) : λP
e

? + µP
e

2 gMg and λ ≥ 0}.

Note that trA = (n − 1)λ + µ if A ⌘ λP
e

? + µP
e

. If λ ≥ 0 and A 2 gMg with
trA  0, then

λ ⌘ λmax ≥ 0, µ  0, and hence λ ≥ −g (−(n− 1)λ− µ) .

Set x ⌘ −(n − 1)λ − µ ≥ 0 and y ⌘ −λ  0. Then y  g(x) is equivalent to
x  g−1(y) since g is decreasing and g(0) = 0. Thus −(n − 1)λ − µ  g−1(−λ),
or µ + g−1(−λ) + (n − 1)λ ≥ 0. Since f is defined by µ + f(λ) ≥ 0 for such pairs
(λ, µ),this completes the proof. ⇤

Example 10.8 (An explicit example where (SC) holds but the subequation is
not contained in a uniformly Elliptic subequation). Define g : [0, a] ! [−b, 0] via
its inverse by

g−1(−λ) ⌘ λ(↵− 2 log λ) 0  λ  a. (10.5)

Here ↵ is a constant chosen first, and then a is chosen small enough so that h(λ) ⌘
g−1(−λ) is strictly increasing on [0, a], and finally we set −b = g(a). Note that
h0(λ) = ↵− 2− 2 log λ. Also, h00(λ) = − 2

λ

< 0. Therefore g is concave and strictly
decreasing on [0, a] with g(0) = 0. Applying Theorem 10.4 we see that

Mg is a monotonicity subequation whose dual gMg is borderline. (10.6)

By Proposition 10.7

The dual gMg has characteristic function f(λ)=λ(↵+n−1−2 log λ) on [0, a]. (10.7)
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Recall the subequation H(↵0) discussed in Example 8.11. If we take y = λ, k = 2,
and the ↵ there to be the ↵0 ⌘ ↵+n− 1 for (10.7), then the characteristic function

f(λ) for gMg is the same as the characteristic function for H(↵0), for λ small. Since
R

0+
1
f

= 1, as shown there, this proves

Proposition 10.9. The (SMP) holds for this dual subequation gMg, and so the
(SC) holds for Mg.

It is easy to see that gMg is not contained in a uniformly elliptic subequation
since f(λ)/λ = ↵+ n− 1− 2 log λ! 1 as λ! 1.

Finally we remark that, as in Example 8.11, if β ⌘ e
1
2 (1+↵), then the Hopf

function

 (|x|) ⌘ e−βR
2
/2 − e−β|x|

2
/2 is gMg harmonic for |x| small. (10.8)

(This function  (|x|) is also a harmonic for the subequations F
min/2
f

⇢ gMg ⇢
F

min/max
f

described in Theorem 8.5.)

11 – Another application – product subequations

In this section we apply our main result to study the (SMP) for product subequa-
tions. Let F ⇢ Sym2(Rn) and G ⇢ Sym2(Rm) be invariant pure second-order
subequations, and consider the product subequation H ⌘ “F ⇥G” ⇢ Sym2(Rn+m)
defined, for coordinates (x, y) 2 Rn⇥Rm, by requiring that D2

x

u 2 F and D2
y

u 2 G.
In other words, u is separately F -subharmonic in x and G-subharmonic in y.

One easily checks that if either F or G is stable, then H is stable. On the other
hand, if either F or G has a counterexample to the (SMP), so does H (take the same
counterexample considered as a function of all the variables). For the remaining
case we have the following. The proofs are omitted.

Theorem 11.1. Let F and G be invariant borderline subequations for which the
(SMP) holds. Let f and g denote their respective characteristic functions. Suppose
one of these, say g, satisfies

g(y)− g(x)

y − x
is bounded for 0 < x < y small. (11.1)

Then the (SMP) holds for the product subequation H ⌘ “F ⇥G”.

Outline of Proof. The first step is the following.

Proposition 11.2. Let h and h be the upper and lower characteristic functions
of H. Then

h(λ) = f(λ) + g(λ) + λ and h(λ) = min{f(λ), g(λ)}.



100 F. REESE HARVEY – H. BLAINE LAWSON, JR. [38]

The next step is that

Z

0+

1

f
= 1 and

Z

0+

1

g
= 1 and (11.1) )

Z

0+

1

f + g
= 1

and therefore )
Z

0+

1

f + g + λ
= 1.

Theorem 11.1 now follows from Theorem A0. ⇤

Remark 11.3. There exist functions f, g > 0 with
R

0+
1
f

=
R

0+
1
g

= 1 but
R

0+
1

f+g

< 1.

Appendix

A – Radial subharmonics

Since our characterization of radial subharmonics is useful for many purposes, it is
separated out in this appendix. Recall the characteristic lower function f associated
with a subequation F and the radial subequation R

f

defined by

 00 + f

✓

 0

t

◆

≥ 0 on 0 < t < 1.

In the following we drop the bar, letting f denote f .

Theorem A.1 (Radial subharmonics). The function u(x) ⌘  (|x|) is F -subhar-
monic on an annular region in Rn if and only if  (t) is R

f

-subharmonic on the
corresponding sub-interval of (0,1).

Proof. ()): Suppose u(x) ⌘  (|x|) is F -subharmonic. If '(t) is a test
function for  (t) at t0, then '(|x|) is a test function for  (|x|) at any point on the
t0-sphere in Rn. Therefore D2

x0
' 2 F . Applying the formula (Lemma 4.1) for D2

x0
'

in terms of '0(t0) and '00(t0), the equivalence (4.3), and the definition of (R
F

)
t0
,

we have J2
t0
' 2 R

F

. This proves that  (t) is R
F

-subharmonic.
((): Suppose that  (t) is R

F

-subharmonic. We must show that u(x) ⌘  (|x|)
is F -subharmonic. That is, given a test function '(x) for u(x) at a point x0, we
must show that D2

x0
' 2 F .

Suppose that there exists a smooth function  (t), defined near t0 = |x0|, such
that '(x) ⌘  (|x|) satisfies

u(x)  '(x)  '(x) (A.1)
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near x0. Then  (t) is a test function for  (t) at t0. Hence, the 2-jet of  at t0
belongs to R

F

. By Lemma 4.1 and the discussion above, this implies thatD2
x0
' 2 F .

The inequality '(x)  '(x) (with equality at x0) implies that D2
x0
' = D2

x0
' + P

for some P ≥ 0, which proves that D2
x0
' 2 F as desired.

To complete this argument by finding  (t) there is some flexibility given by [12,
Lemma 2.4] so that not all test functions '(x) need be considered. First we may
choose new coordinates z = (t, y) near x0 so that t ⌘ |x|. (Thus t = constant
defines the sphere of radius t near x0.) Furthermore, we may assume that '(z) is
a polynomial of degree  2 in z = (t, y) and that it is a strict local test function,
i.e., u(z) < '(z) for z 6= z0. Now Lemma A.2 below ensures the existence of
'(x) =  (|x|) satisfying (A.1). ⇤

Let z = (t, y) denote standard coordinates on Rn = Rk ⇥ R`. Fix a point
z0 = (t0, y0) and let u(t) be an upper semi-continuous function (of t alone) and
'(z) a C2-function, both defined in a neighborhood of z0.

Lemma A.2. Suppose u(t) < '(z) for z 6= z0 with equality at z0. If '(z) is a
polynomial of degree  2, then there exists a polynomial '(t) of degree  2 with

u(t)  '(t)  '(z) near z0. (A.2)

Proof. We may assume z0 = 0 and u(0) = '(0) = 0. Then

'(z) = hp, ti+ hq, yi+ hAt, ti+ 2hBt, yi+ hCy, yi.

We assume u(t) < '(t, y) for |t|  ✏ and |y|  δ with (t, y) 6= (0, 0).

Setting t = 0, we have 0 = u(0) < hq, yi + hCy, yi for y 6= 0 sufficiently small.
Therefore, q = 0 and C > 0 (positive definite). Now define

'(t) ⌘ hp, ti+ h(A−BtC−1B)t, ti. (A.3)

The inequalities in (A.2) follow from the fact that for t sufficiently small,

'(t) = inf
|y|δ

'(z) = hp, ti+ hAt, ti+ inf
|y|δ

{2hBt, yi+ hCy, yi}. (A.4)

To prove (A.4) fix t and consider the function 2hBt, yi+hCy, yi. Since C > 0, it has
a unique minimum point at the critical point y = −C−1Bt. The minimum value is
−hBtC−1Bt, ti. If t is sufficiently small, the critical point y satisfies |y| < δ, which
proves (A.4). ⇤
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B – Uniform ellipticity

This is a geometric discussion of uniform ellipticity. A family of convex cone sube-
quations {M

δ

} is said to be a fundamental neighborhood system for P if given any
conical neighborhood G of P (this means that P−{0} ⇢ IntG and G is a cone), there
exists δ with M

δ

⇢ G. Given such a family {M
δ

}, a subequation F is uniformly
elliptic if one of the M

δ

is a monotonicity subequation for F . That is,

F +M
δ

⇢ F for some δ. (B.1)

This definition is easily seen to be independent of the choice of the neighborhood
system {M

δ

} for P. (The monotonicity condition (B.1) can always be rephrased
classically, in terms of the operator defining M

δ

, as two inequalities – see, for ex-
ample, (4.5.1)0 in [14]).

The standard choice made in the literature consists of the Pucci cones

P
λ,⇤ ⌘ {A : λtrA+ + ⇤trA− ≥ 0}

with 0 < λ < ⇤, where A = A+ + A− is the decomposition of A into positive and
negative parts. Another good choice is the δ-uniformly elliptic regularization
P(δ) of P

P(δ) ⌘ {A : A+ δ(trA)I ≥ 0} (δ > 0).

Both P
λ,⇤ and P(δ) are convex cone subequations as required. See [13, Section 4.5]

for more details regarding P
λ,⇤ and P(δ) (The Riesz characteristics are computed

in Example 6.2.5.)
Since there is a largest monotonicity subequation M

F

for F , uniform ellipticity
can be defined equivalently as

M
F

contains a convex conical neighborhood of P, or as (B.10)

fM
F

⇢ ]P(δ) for some δ > 0. (B.100)

Lemma B.1. If F is normal, i.e., M
F

is a cone (and hence a convex cone), then
F is uniformly elliptic () M

F

is a conical neighborhood of P () P
e

2 IntM
F

for all e 6= 0 () −P
e

/2 fM
F

for all e 6= 0 () fM
F

is borderline.

The next remark is to be applied to F = M
G

where G is normal.

Remark B.2 (Cone subequations and the Riesz characteristic). For simplicity
suppose that f = f = f is the characteristic function for a cone subequation F .
Then f(tλ) = tf(λ) for t > 0, and hence the characteristic function reduces to two
numerical invariants

↵ ⌘ f(1) and ↵⇤ ⌘ −f(−1), 0  ↵,↵⇤  1 (B.2)
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where we have

f(λ) = ↵λ for λ > 0 and f(λ) = ↵⇤λ for λ < 0. (B.3)

The radial profile ⇤ is defined by

µ+ ↵λ ≥ 0 if λ ≥ 0 and λ+ ↵⇤µ ≥ 0 if λ  0. (B.4)

Note that ↵ = 1 () P
e

? − µP
e

2 F for all µ () −P
e

2 F () F is not
borderline. That is,

F satisfies the (SMP) () ↵ ⌘ ↵
F

< 1. (B.5)

The invariant p
F

⌘ ↵
F

+ 1 is called the Riesz characteristic of F because of its
connection with Riesz kernels. See [14], [15] for applications, examples and a fuller
discussion, where it is proved, in particular, that ↵↵⇤ ≥ 1.
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