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The “form” of a triangle

ALAIN CHENCINER

Abstract: Heron’s formula, maybe due to Archimedes, expresses the squared area
of a triangle as a polynomial in the squared lengths of its sides. A true understanding
of this formula comes from an adequate coding of the shape of a triangle, i.e. of the
triangle up to translations, rotations and reflexions. One can then build a “space of
triangle shapes” which, if orientation is added becomes the “shape sphere” and possesses
very nice symmetries which were recently used in researches on the 3-body problem. The
invariant interpretation of the shape sphere in turn sheds light on the nature of Heron’s
formula.

This is the english version (with an appendix added) of a text in French which
will appear in a book dedicated to the memory of Gilles Chatelet. The french title
“la forme de n corps”, has a pun, hard to render into English because it plays
on the two meanings of the french word “forme”: shape and quadratic form.

– Introduction: Heron’s formula

The form is quadratic and the bodies are points, even if of celestial origin.
At the beginning, there is the formula of Heron of Alexandria [H] for the
area |Δ| of a triangle whose sides have lengths α, β, γ:

(H) 16|Δ|2 = (α + β + γ)(−α + β + γ)(α − β + γ)(α + β − γ) .

Key Words and Phrases: Heron’s formula – Volumes – Inertias – Dispositions –
Invariants.
A.M.S. Classification: 51K05 – 34C14 – 15A63 – 70E15



2 ALAIN CHENCINER [2]

The last three factors are easily understood as they vanish when the triangle is
flat (the second when the length of the longest side is α, the third if it is β, the
fourth if it is γ). If one sets

a = α2, b = β2, c = γ2 ,

the formula becomes

16|Δ|2 = 2ab + 2bc + 2ca − a2 − b2 − c2 .

Surfaces and determinants have much in common and so it is not too astonishing
to discover that this formula takes the form of the Cayley determinant

(C) −16|Δ|2 = det

⎛
⎜⎝

0 1 1 1
1 0 c b
1 c 0 a
1 b a 0

⎞
⎟⎠ .

Nevertheless, a 2× 2 determinant would be less surprising(1) than a 4× 4 deter-
minant. What follows originates from work ([AC], see also [A3] and [C1]) done
in collaboration with Alain Albouy on the symmetries of the n-body Problem
and their reduction. That work generalizes Lagrange’s fundamental memoir [L]
to more than three bodies. In it one understands that the above determinant
is simply a means of computing a subtler determinant, namely that of an en-
domorphism of a two-dimensional vector space which possesses no privileged
basis. (Think of the plane of equation x + y + z = 0 in IR3. This plane is nat-
urally equipped with the three lines of intersection with the coordinate planes
x = 0, y = 0 and z = 0 but certainly not with a canonical basis.) Choices or
tricks are necessary to compute in such a plane.

1 – The “dispositions” and the reduction of translations

Let us consider a triangle in the plane IR2 or the space IR3. Its area is not
affected by a rigid motion or by a symmetry. This is the fundamental property
that we want to exploit. It explains why the area depends only on the lengths
of the sides and not on the absolute positions of the vertices.

(1)Indeed, if X is the matrix whose columns are the components of the two vectors
�V , �W ∈ IR2, det X is the oriented area of the parallelogram generated by the two vectors
and dettXX is the squared area.
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Fig. 1: Invariance of the area by translation.

The way to compute “up to translations” goes back to the works of Jacobi
on the n-body Problem [J]. What follows is a formalization of his ideas. Giving
n points �r1, �r2, . . . , �rn in the space E ≡ IRk, k = 1, 2, 3, . . . is the same as giving
the linear mapping X : IRn → E defined by X(ξ1, ξ2, . . . , ξn) =

∑n
i=1 ξi�ri. In

other words, one represents the “configuration” of n points (bodies) in E by the
k×n matrix, whose ith column consists of the coordinates of �ri in E ≡ IRk. This
representation was introduced by Alain Albouy in his PhD thesis [A1].

The source IRn of the mapping X represents the “side of the bodies”, the
target E represents the “side of space”.

Now, let D∗ be the subspace of IRn which consists of the n-tuples (ξ1, ξ2, . . . ,
ξn) whose sum equals 0:

D∗ =

{
(ξ1, ξ2, . . . , ξn) ∈ IRn,

n∑

i=1

ξi = 0

}
.

Whatever be �t ∈ E and (ξ1, ξ1, . . . , ξn) ∈ D∗, we have

n∑

i=1

ξi(�ri + �t) =

n∑

i=1

ξi�ri .

Hence, the restriction x of X to D∗ no longer distinguishes the two n-tuples
(�r1, �r2, . . . , �rn) and (�r1 +�t, �r2 +�t, . . . , �rn +�t). Yet, it gives the differences �ri −�rj

and hence the positions of the bodies once the position of one of them has been
fixed. It follows that giving n points up to a translation in E is the same as
giving the mapping x : D∗ → E.

Such a mapping can be represented by the k × n matrix whose columns
consist in the components of the vectors �ri ∈ IRk but as well by the matrix
whose columns consist in the components of the vectors �ri + �t, where �t ∈ IRk.
It is only after we choose a basis of D∗ that we can get a representation by a
(k − 1) × n matrix.
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But where does D∗ come from? One has to interpret the subspace
D∗ as the dual of the space D of n-tuples of points on the real line up to a
translation. This latter space, called the disposition space, is the quotient of IRn

by the line generated by the vector (1, 1, . . . , 1): whatever be t ∈ IR, the n-tuples
(x1, x2, . . . , xn) and (x1 + t, x2 + t, . . . , xn + t) represent the same element in
D. To (ξ1, ξ2, . . . , ξn) ∈ D∗ and (x1, x2, . . . , xn) representing an element of D,
the duality associates the well defined real number

∑
ξixi =

∑
ξi(xi + t). A

homomorphism x : D∗ → E may then be interpreted as an element of the tensor
product D⊗E. The representation of x by an equivalence class of k×n matrices
corresponds to the one of D⊗E as the quotient of IRn⊗E ≡ En by the diagonal
action of the translations in E.

2 – From the “side of space” to the “side of the bodies”: the reduction
of rotations and symmetries

The invariance under translations of the area |Δ| means that it depends
only on x; its invariance under linear isometries (i.e. rotations and symmetries
with respect to a vector subspace) means that it depends in fact only on the
Gram matrix, whose coefficients are the scalar products 〈�ri, �rj〉E . In particular,
if x is represented by the k × n matrix X whose columns are the components of
the vectors �ri ∈ E ≡ IRk, |Δ| depends only on the n × n matrix tXX.

The Gram matrix must of course be interpreted as the matrix of a quadratic
form β on D∗ (and not on IRn). This quadratic form is a complete coding for
the shape (“forme” in french) defined by the n points up to isometries; it may
be written:

β(ξ, η) =
∑

i,j

〈�ri, �rj〉E ξiηj =
∑

i,j

(
−1

2
r2
ij

)
ξiηj ,

where rij = ||�ri − �rj || is the distance between i and j. Notice that the last
equality does not hold on IRn but only on D∗.

Fig. 2: Invariance of the area by rotation and symmetry.
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Remark. One can show that the mutual distances rij are the coordinates
of β in a natural basis of the vector space of quadratic forms on D∗. Hence
giving these is the same as giving β and no mention has to made of the ambient
space E. We have passed from “the side of space” to “the side of the bodies”.

From the definition of β one deduces that β(ξ, ξ) = ||∑i ξi�ri||2E ≥ 0. The
following theorem states that the converse holds (see [Bo], [AC]):

Theorem (Borchart 1866). The real numbers rij are the mutual distances
of n points in an euclidean space E (whose dimension is not imposed) if and only
if the quadratic form β =

∑
i,j

(
− 1

2r2
ij

)
ξiηj on D∗ is non negative. Moreover,

on can choose E of dimension k if and only if the rank of β is less than or equal
to k.

This theorem was rediscovered several times. See for example [S] and [Bl].

3 – Masses and volumes

Let us transform the points �ri into “bodies”, possibly “celestial bodies”, by
assigning positive masses mi to them. A classical way of reducing the translation
symmetry is to fix at the origin of IRn the center of mass xG = (1/

∑
mi)

∑
mixi

of an n-tuple (x1, x2, . . . , xn). Doing so, one identifies D to the hyperplane of
IRn with equation

∑
mixi = 0. In restricting to this hyperplane the mass scalar

product (or kinetic energy scalar product) defined on IRn by the formula

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) =

n∑

i=1

mixiyi ,

one turns D into an Euclidean space whose scalar product may be written

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) =

n∑

i=1

mi(xi − xG)(yi − yG) .

To this euclidean structure we associate the isomorphism

μ : D → D∗, μ(x1, x2, . . . , xn) =
(
m1(x1−xG), m2(x2−xG), . . . , mn(xn−xG)

)

which endows D∗ with the euclidean scalar product

(ξ1, ξ2, . . . , ξn) · (η1, η2, . . . , ηn) =

n∑

i=1

1

mi
ξiηi .
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Using this scalar product we can turn the quadratic form β into a symmetric
endomorphism B of the euclidean space D∗, defined by

β(ξ, η) = B(ξ) · η = ξ · B(η) .

We come back to the case of 3 bodies, where dimD∗ = 2. We can give now
an interpretation of the 4 × 4 determinant in formula (C) as an artefact in the
computation of the determinant of an endomorphism of a two-dimensional space
without privileged basis.

Proposition. The formula (C), which expresses the squared area |Δ|2 of
the triangle with vertices �r1, �r2, �r3 as a Cayley determinant, is equivalent to the
equation

det B =
m1m2m3

m1 + m2 + m3
(2|Δ|)2 .

Proof. The proof is a sequence of exercises in elementary linear algebra, the
tricks of which were announced in the introduction. After a possible translation,
one can assume that the center of mass of the �ri lies at the origin of IR2.

1) One defines the extension B̂ of B to an endomorphism of IR3 by the con-
dition that B̂ sends to 0 the vector (m1, m2, m3) (this vector generates the
orthogonal of D∗ for the scalar product dual to the mass scalar product on
(IR3)∗ ≡ IR3. Show that the matrix of B̂ in the canonical basis of IR3 is

B̂ = (b̂ij)1≤i,j≤3, b̂ij = mi < �ri, �rj > .

2) Working in the basis of IR4 = IR× IR3 formed by (1, 0, 0, 0), (0, m1, m2, m3),
(0, a1, b1, c1), (0, a2, b2, c2), where the (ai, bi, ci), i = 1, 2, generate D∗, show
that

det B = − 1

M
det B̃ ,

where M =
∑n

i=1 mi is the sum of the masses and B̃ is the 4 × 4 matrix

obtained by adding on top of B̂ the line ( 0 1 1 1 ) and on the left the
column ( 0 m1 m2 m3 ).

3) Use the identities

< �ri, �rj > − < �r1, �rj > − < �ri1, �r1 >=< �ri1, �rj1 > ,

< �ri, �rj > −1

2
‖�ri‖2 − 1

2
‖�rj‖2 = −1

2
r2
ij ,

to conclude, with the help of line and column operations, that on the one
hand

det B̃ = det

⎛
⎜⎝

0 1 1 1
m1 0 0 0
m2 0 m2 < �r21, �r21 > m2 < �r21, �r31 >
m3 0 m3 < �r31, �r21 > m3 < �r31, �r31 >

⎞
⎟⎠
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is the product by −m1m2m3 of the squared area of the parallelogram gen-
erated by the vectors �r21, �r31, and that on the other hand

det B̃ = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1

m1 0 −1

2
m1r

2
12 −1

2
m1r

2
13

m2 −1

2
m2r

2
21 0 −1

2
m2r

2
23

m3 −1

2
m3r

2
31 −1

2
m3r

2
32 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

equals the product by 1
4m1m2m3 of the determinant which appears in for-

mula (C).
4) Deduce the proposition by recalling that the area of any of the parallelo-

grams generated by the �ri equals twice the area of the triangle they define.
5) More generally, show that

det(IdD∗ − λB) = 1 − Iλ +
m1m2m3

m1 + m2 + m3
4|Δ|2λ2 ,

where I = traceB = 1
M (m2m3r

2
23 + m3m1r

2
31 + m1m2r

2
12) = 1

M (m2m3a +
m3m1b + m1m2c) is the moment of inertia of the three masses with respect
to their center of mass.

Remark. All this generalises with the same proof to the case of n bodies
in a finite dimensional euclidean space (exercise). The characteristic polynomial
of B is given by the formula

det(IdD∗ − λB) = 1 − η1λ + · · · + (−1)n−1ηn−1λ
n−1 ,

ηk−1 =
1

M

∑

i1<···<ik

mi1 · · ·mik
[(k − 1)!voli1···ik

]2, M =

n∑

i=1

mi ,

where voli1···ik
is the (k−1)-dimensional volume of the simplex with vertices the

bodies �ri1 , . . . , �rik
. In particular, the squared (n − 1)-dimensional volume V of

the simplex whose vertices are the n points is given by the formula

det B =
m1 · · ·mn

M

(
(n − 1)!V

)2
, or

(−1)n2n−1(n − 1)!2V 2 = det

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 1
1 0 . . . .
. . . . r2

ij .
. . . . . .
. . r2

ji . 0 .
1 . . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.
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4 – Back to ambient space: inertias

The map x which represents the n-body configuration (�r1, �r2, . . . , �rn) up to a
translation is the restriction to the hyperplane D∗ of the linear map X : IRn → E
defined by X(ξ1, ξ2, . . . , ξn) =

∑n
i=1 ξi�ri. The transposed map sends the dual

E∗ of E into the dual of D∗, which is canonically identified with D. But the
euclidean structures of E = IRk and D give an identification of each of these
spaces with its dual. Finallly, the transposed tx : E → D∗ of x may be defined
by the formula:

∀e ∈ E,∀ξ ∈ D∗, e · x(ξ) =t x(e) · ξ ,

where the scalar products · are respectively taken in E and in D∗.
The endomorphism B : D∗ → D∗ now becomes B =t x ◦ x. But the

endomorphism I = x ◦t x : E → E is well-known by mechanicians, at least
in dimension three where the bivectors can be identified with vectors once an
orientation has been chosen. It is the dual inertia form of the rigid body defined
by the n point masses (which one supposes to be held rigidly to each other by
massless rods). Indeed, if n = k = 3, �ri = (xi, yi, zi) and

∑
i mi�ri = 0, x and tx

may be represented respectively by the matrices

X =

⎛
⎝

x1 x2 x3

y1 y2 y3

z1 z2 z3

⎞
⎠ and tX =

⎛
⎝

m1x1 m1y1 m1z1

m2x2 m2y2 m2z2

m3x3 m3y3 m3z3

⎞
⎠ ,

and the extension B̂ of B to IR3 introduced in Paragraph 3 becomes B̂ = tXX
while

I = XtX =

⎛
⎜⎜⎜⎜⎜⎝

∑

k

mkx2
k

∑
k mkxkyk

∑
k mkxkzk

∑

k

mkykxk

∑
k mky2

k

∑
k mkykzk

∑

k

mkzkxk

∑
k mkzkyk

∑
k mkz2

k

⎞
⎟⎟⎟⎟⎟⎠

.

Let us call J : ∧2E∗ → ∧2E the inertia operator, which turns the instantaneous
rotation of a rigid body motion of the configuration x into its angular momentum.
After identifying its source and target with IR3, it is represented by the matrix:

J =

⎛
⎜⎜⎜⎜⎜⎝

∑

k

mk(y2
k + z2

k) −∑
k mkxkyk −∑

k mkxkzk

−
∑

k

mkykxk

∑
k mk(z2

k + x2
k) −∑

k mkykzk

−
∑

k

mkzkxk −∑
k mkzkyk

∑
k mk(x2

k + y2
k)

⎞
⎟⎟⎟⎟⎟⎠

= (traceI)Id−I .

In particular, the knowledge of the spectrum of any one of the three operators
B, I,J implies that of the other two. Fixing B is therefore equivalent to fixing up
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to rotation the inertia ellipsoid of the configuration. Hence B deserves the name
of intrinsic inertia. Defined on the side of the bodies and no more on the side of
ambient space, it is invariant under the group O(IRk) of linear isometries of E =
IRk and covariant under the group O(D) of linear isometries of D (the so-called
“democracy group” of physicists); on the contrary, the inertia of mechanicians
(I or J , which define the inertia ellipsoid in IRk) is invariant under O(D) and
covariant under O(IRk).

Remark. Once the masses are given, the newtonian potential function
U(�r1, �r2, . . . , �rn) =

∑
i<j

mimj

rij
depends only on the rij , i.e. on β. Let us call

the isospectral manifold the set of all quadratic forms β on D∗ such that the
corresponding endomorphism B has a given spectrum; this manifold consists of
the set of shapes whose inertia ellipsoid is fixed up to an isometry of E. One
defines in [AC] the balanced configurations (= configurations équilibrées) of n
positive masses to be the critical points of the restriction of U to an isospectral
manifold. One shows that these are exactly the configurations which admit a
homographic motion in some space E of arbitrary dimension (recall that a homo-
graphic motion is one along which the shape does not change up to similarity).
This is another example of how ambient space is forgotten. These configurations
generalise the classical central configurations which share the same property but
only in a space E of dimension less or equal to 3. Indeed, the central configu-
rations are the critical points of the restriction of U to the set of configurations
whose moment of inertia I = trace B with respect to the center of mass is fixed.

5 – The 3-body problem in the plane: from area to oriented area and
from Heron’s formula to the theory of invariants

In the quadrant IR3
+ consisting of triplets (a, b, c) of non negative real num-

bers, the triplets which represent the squared side lengths of a triangle are those
which belong to the cone of equation 2ab + 2bc + 2ca − a2 − b2 − c2 ≥ 0. This
follows from Borchart’s theorem above, as this inequality is equivalent to the
non negativity of the quadratic form β defined on D∗ by

β(ξ, η) = −1

2
(aξ2η3 + bξ3η1 + cξ1η2) .

Fixing arbitrarily positive masses, this amounts to the non negativity of the trace
and the determinant of the corresponding endomorphism B. As a, b, c ≥ 0, this
is equivalent to the stated condition. One can say that the positivity of the right
hand side of Heron’s formula embodies the three triangle inequalities.

We now fix the size of the triangles by imposing that their moment of inertia
with respect to the center of mass be equal to 1:

I = trace B = m2m3a + m3m1b + m1m2c = 1 .
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The intersection of this affine plane with the cone above is an elliptic domain T
(a disc if the three masses are the same): it parametrizes the set of triangles with
fixed inertia up to an isometry. The boundary of this domain corresponds to the
flat triangles, whose area is zero. It contains three marked points, the collision
points which label the degenerate triangles with two coincident vertices (fig. 3).

When the ambient space E is of dimension 2, one can take the quotient
by the rotations (i.e. the linear isometries which preserve orientation). This
leads to the space of oriented triangles with fixed inertia: it is a sphere S (the
shape sphere), obtained by gluing along their boundaries two copies of T which
correspond to the two possible orientations. We indicate in what follows a more
conceptual way of getting this sphere and the structures which are naturally
associated to it.

Fig. 3: In IR3.

The first remark is that we can now enrich the notion of area by attaching
to it a sign which depends on the orientation of the triangle. We shall denote by
Δ this oriented area. Analytically, Δ = 1

2�u1 ∧ �u2, where �u1 is the vector with
origin at the first body and extremity at the second and �u2 is any vector with
origin on the segment between the two first bodies and extremity at the third
body (if masses are attributed to the bodies and if the origin of �u2 is the center
of mass of the the first two bodies, �u1 and �u2 are the Jacobi coordinates in the
space Hom(D∗, IR2) ≡ D⊗ IR2 ≡ D2 of planar three-body configurations modulo
translation; these coordinates can be obtained by choosing an orthogonal basis
in D∗).

The equation (C), which expresses Δ2 as a function of the squared mutual
distances a = r2

23, b = r2
31, c = r2

12, defines a quadratic cone in IR4 (coordinates
a, b, c,Δ) or a half-cone C if one is interested only in the quadrant a ≥ 0, b ≥
0, c ≥ 0. The shape sphere S identifies with the set of generatrices of C, i.e. with
the quotient of C \ {0} by homotheties (fig. 4).

It follows that the cone C and the sphere S appear respectively as a realiza-
tion of the quotient of D2 by the action of rotations or by the action of oriented
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similarities (rotations and homotheties). To make this point more precise, let us
notice that the action of the group SO(2) of rotations of IR2 endows the space
Hom(D∗, IR2) ≡ D ⊗ IR2 ≡ D2 of planar 3-body configurations modulo transla-
tion with the structure of a vector space on the field C of complex numbers, the
multiplication by i corresponding to the rotation by +π

2 in IR2 ≡ C. In other
words, if (u, v) ∈ D2, i(u, v) = −(v, u).

Fig. 4: In IR4.

To go further on, one has to get rid of the choice of coordinates and, for
this, give an intrinsic interpretation of the space IR4 that we have introduced and
of the cone C that it contains. The key remark is that the squared mutual dis-
tances a, b, c and the oriented area Δ are quadratic functions with real values on
the vector space D2, i.e. functions which in any system of linear coordinates on
D, are expressed as second degree polynomials in these coordinates. Moreover,
these functions are invariant under rotation: they are quadratic invariants under
the action of the rotation group SO(2). Now, it is classical in algebraic geometry
to characterize a space by the space of functions that one can define on it. In the
case we are interested in, the problem of understanding the quotient D2/SO(2) of
D2 by the action of the group SO(2) of complex numbers with modulus 1 is equiv-
alent to the problem of understanding the set of real polynomials P : D2 → IR
invariant under this action, i.e. of polynomials P such that P (λv) = P (v) for all
λ ∈ C with modulus 1. But any such polynomial can be expressed as a polyno-
mial in the quadratic invariant polynomials. Indeed, if one chooses a basis of D2

on the field of complex numbers, i.e. if one identifies D2 with C2 (say by the choice
of Jacobi coordinates associated with a choice of masses), the action of SO(2)
becomes λ · (z1, z2) = (λz1, λz2) and a polynomial P (z1, z2) =

∑
aijklz

i
1z̄

j
1z

k
2 z̄l

2

is invariant if and only if aijkl = 0 ⇒ i− j + k − l = 0. One deduces that P is a
polynomial in the quadratic invariants |z1|2, |z2|2,Rez̄1z2, Imz̄1z2. It follows that
we need only understand the quadratic invariants, i.e. the real four-dimensional
vector space Q(D2) generated by the above functions. This space is of course
independant of the choice of a basis in D2. As quadratic invariants are enough
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to construct all the polynomial invariants, the quotient D2/SO(2) injects into
the space Q(D2), more precisely into its dual Q(D2)∗, by the evaluation map
e : D2 → Q(D2)∗ which to v ∈ D2 associates the linear form q �→ q(v).

But the image of this map is easy to determine. Choose a complex ba-
sis of D2 whose coordinates are noted z1, z2. Then Q(D2) is generated by
|z1|2, |z2|2, Rez̄1z2, Imz̄1z2, and the image C of D2 is defined by the sole quadratic
relation |Rez̄1z2|2 + |Imz̄1z2|2 = |z1|2|z2|2, to which must be added the inequal-
ities |z1|2 ≥ 0, |z2|2 ≥ 0. It is more pleasant to replace these last coordinates
by

w0 = |z1|2 + |z2|2, w1 = |z1|2 − |z2|2, w2 = 2Re(z̄1z2), w3 = 2Im(z̄1z2) ,

because the half-cone C, defined by the equations −w2
0+w2

1+w2
2+w2

3 = 0, w0 ≥ 0,
appears as the light cone in Minkowski space. In order to identify it with the
half-cone defined by (C), it remains to notice that a, b, c,Δ form another basis
of Q(D2): Heron’s formula expresses simply the quadratic relation satisfied by
the elements of this basis.

Remarks.
1) We have just seen that the image of the map H : C2 → IR4 defined by

(z1, z2) �→ (|z1|2 + |z2|2, |z1|2 − |z2|2, 2Re(z̄1z2), 2Im(z̄1z2))

is the half-cone defined by the equations −w2
0 + w2

1 + w2
2 + w2

3, w0 ≥ 0. Its
composition H = π0 ◦H : C2 → IR3 with the projection π0 parallel to w0 on
the subspace IR3 generated by w1, w2, w3 is the classical Hopf map, which
sends the unit sphere of C2 onto the unit sphere of IR×C by the even more
classical Hopf fibration.

2) The space of generatrices of the half-cone above is the intrinsic definition
(independent in particular of any choice of the masses) of the shape sphere.
One shows (see [M]) that it inherits a well defined conformal structure by
noticing that, independently of any choice of coordinates, one can define
the notion of circle as a set of generatrices of the half-cone contained in a
three-dimensional vector subspace (if one knows the circles, one knows in
particular the infinitesimal circles and one deduces a notion of angle, i.e. a
conformal structure). One obtains riemannian metrics in this conformal
class (i.e. defining the same notion of angle) by considering the shape sphere
as the set of oriented isometry classes classes of triangles whose moment of
inertia with respect to their center of mass is equal to 1. To check this, it
is enough, once the masses are given, to choose a basis on C of D2 coming
from an orthogonal basis of D∗ (Jacobi type coordinates). For example, for
the metric corresponding to equal masses, one can take z1 = 1√

2
(�r2 − �r1)

and z2 =
√

2
3 (�r3 − 1

2 (�r1 + �r2)). In any case, if one has chosen a basis which
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is orthonormal, the metric on D2 ≡ C2 ≡ IR4 is the standard euclidean
metric.

3) Topologically, the oriented situation is much richer than the non oriented
one: the shape sphere possesses a symmetry group with twelve elements
(the dihedral group D6, which is also the symmetry group of the regular
hexagon). Deprived of the three collision points, it acquires a fundamental
group isomorphic to the free group on two generators. Recent works have
shown that part of this richness shows up in the periodic solutions of the 3
body problem, but this is another story (see [C2]).

– Appendix. Darboux’s interpretation of the quadratic form β

In [D], Gaston Darboux gives the following interpretation of β in the case
when it is non degenerate i.e. when it describes a non degenerate n-simplex in
IRn−1 (he considers only the case n = 4 but this is immaterial; compare to
Proposition 14 of [A2]). To each point �r in IRn−1 he attaches its barycentric
homogeneous coordinates (ξ1, · · · , ξn) with respect to the given simplex, defined
(as an element of the projective space) by

(
n∑

i=1

ξi

)
�r =

n∑

i=1

ξi�ri ,

where �r1, · · · , �rn are the vertices of the simplex. This amounts to identifying
IRn−1 with the hyperplane T = 1 in IRn(coordinates X, Y, . . . , T ) and call-
ing ξ1, . . . , ξn the coordinates of any point on the line generated by (�r, 1) =
(x, y, . . . , 1) in the basis {(�r1, 1), . . . , (�rn−1, 1)} of IRn. Hence

�r =

(
X

T
,
Y

T
, . . .

)
∈ IRn−1, X =

n∑

i=1

ξixi, Y =

n∑

i=1

ξiyi, . . . , T =

n∑

i=1

ξi .

He then notices that in such coordinates the sphere circumscribed to the simplex
(defined by X2+Y 2+· · ·−R2T 2 = 0 if we suppose that the center �s of this sphere
is at the origin of IRn−1 and call R its radius) has equation

∑
i,j r2

ijξiξj = 0. A
direct proof is easily found; one can also, as explained to me by Martin Celli,
use Huyghens formula for the momentum of inertia:

∀�s ∈ IRn−1,

n∑

i=1

ξi|�s − �ri|2 =

n∑

i=1

ξi|�r − �ri|2 + (

n∑

i=1

ξi)|�s − �r|2 .

Choosing as �s the center of the circumscribed sphere, the formula becomes

−
n∑

i=1

ξi|�r − �ri|2 =

(
n∑

i=1

ξi

)(
X2

T 2
+

Y 2

T 2
+ · · · − R2

)
,
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which implies that an equation of this sphere is
∑n

i=1 ξi|�r − �ri|2 = 0 (recall
that for the points not at infinity,

∑n
i=1 ξi = 0). But, by the very definition of

barycentric coordinates,
∑n

i=1 ξi(�r − �ri) = 0 and it follows from a formula of
Leibniz that

−1

2

n∑

i,j=1

ξiξjr
2
ij = −

⎛
⎝

n∑

j=1

ξj

⎞
⎠

n∑

i=1

ξi|�r−�ri|2 =

(
n∑

i=1

ξi

)2(
X2

T 2
+

Y 2

T 2
+ · · · − R2

)
,

that is

−1

2

n∑

i,j=1

ξiξjr
2
ij = X2 + Y 2 + · · · − R2T 2 ,

so that the equation of the circumscribed sphere is
∑n

i,j=1 ξiξjr
2
ij = 0.

In particular, the quadratic form β(ξ, ξ) appears as the restriction of the
equation of this sphere to the hyperplane at infinity.

Let us see now how Darboux deduces the formula for the squared volume of
an n-simplex (see end of Section 3) from the consideration of the “contravariant”
of the triple formed by the equation of the circumscribed sphere X2 +Y 2 + · · ·−
R2T 2 = 0 (in coordinates with the origin at the center of the sphere) and twice
the linear form T = 0 defining the “hyperplane at infinity”. This means that he
deduces the formula from the computation of the determinants of both sides of
the following identity (the notations are those of Section 3 and the identity is
obvious either directly or as a consequence of what is proved in 3):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 . . 1

1 0 . . . .

1 . 0 . −1

2
r2
ij .

. . . . . .

. . −1

2
r2
ji . 0 .

1 . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛
⎜⎜⎜⎝

1 0 0 . 0
0 x1 y1 . 1
0 x2 y2 . 1
. . . . .
0 xn yn . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 . . 1
0 1 . . 0
0 0 . . .
0 . . 1 0
1 0 . . −R2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 . . 0
0 x1 x2 . xn

0 y1 y2 . yn

0 . . . .
0 1 1 . 1

⎞
⎟⎟⎟⎠ .

This identity expresses the transformation of the “contravariant” formed by the
quadratic form and the two linear forms under the action of the linear group
GL(n, IR) through its natural extension to GL(n+1, IR) in which it acts only on
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the last n coordinates. In the same way, one deduces immediately the formula

det

⎛
⎜⎜⎜⎝

0 . . . .
. . . r2

ij .
. . . . .
. r2

ji . 0 .
. . . . 0

⎞
⎟⎟⎟⎠ = (−1)n+12n

(
(n − 1)!V R

)2

from the identity

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . .

. . . −1

2
r2
ij .

. . . . .

. −1

2
r2
ji . 0 .

. . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

=

⎛
⎜⎝

x1 y1 . 1
x2 y2 . 1
. . . .

xn yn . 1

⎞
⎟⎠

⎛
⎜⎝

1 0 . . 0
0 1 . . .
0 . . 1 0
0 0 . . −R2

⎞
⎟⎠

⎛
⎜⎝

x1 x2 . xn

y1 y2 . yn

. . . .
1 1 . 1

⎞
⎟⎠ .
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Alain Chenciner – Astronomie et Systèmes Dynamiques – IMCCE, UMR 8028 du CNRS – 77,
avenue Denfert-Rochereau – 75014 Paris, France – et
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