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Microstructures and scaling limits

ERRICO PRESUTTI

Abstract: These are notes of a Colloquium given on May 30, 2005, at the Math-
ematical Department of the University of Roma La Sapienza. The notes based on
researches of the author in statistical mechanics are intended to underline contiguities
with other disciplines as probability theory, calculus of variations, geometrical measure
theory, PDE’s.

1 – Introduction

The title of the talk reflects the attempt to present some of my researches
in statistical mechanics in a more general frame, underlining contiguity with
different areas, like variational calculus, geometric measure theory, probability
and PDE’s.

A crucial point of the whole approach is a “macroscopic-microscopic duality”
which I will first try to explain through an example taken from every-day life.
Technology is so advanced that if you go to the movies, sound and images are
now so accurate and sharp that you feel you are in the middle of a real scene.
Sometimes however you need more, as in Rising Sun with Sean Connery, where
to investigate a homicide he was asking to magnify a frame of a movie and
through this he was able to see an image of the killer in a mirror. If one takes
the procedure to the extremes, he will reduce the movie to a huge sequence of 0
and 1, which to some extent is paradoxical: the whole beauty of the movie has
gone, its true content is just a binary sequence! But if you look at it from the
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opposite side, here you have a dull string of digits, yet through it you can watch
a nice movie!

The moral of the story is that one should be flexible, sometimes it is neces-
sary to do a continuum limit and sometimes to go to atomistic and in both cases
there are surprises.

Another key word in this talk is “microstructures”. Here I follow Stefan
Müller’s terminology in his Lecture Notes at the CIME Summer School in Ce-
traro, [14], from where I am also borrowing the content of the next section. Thus
microstructures are structures intermediate between the atomic and the macro-
scopic scales of which nature is a great source of examples. In many biological
systems there are such structures like in leaves or, for instance, repetitive pat-
terns in the growth of cactuses; other example can be found by examining the
fine structures of rocks; some solid materials have fine phase mixtures. In all
these examples the macroscopic properties of the systems depend on such struc-
tures which are sometimes responsible for enhanced stability and resistance of
the body.

2 – Elastic crystals

In a certain range of values of the parameters, crystals of Cu-Al-Ni exhibit
“fine twinning” at an atomic resolution, which schematically appears as a laminar
pattern where two different lattice deformations alternate. The phenomenon
can be explained in the context of continuum theories. In such theories the free
energy of a solid body is given by a functional of the form

(2.1) I(u) =

∫

Ω

W (Du)

where Ω ⊂ IR3, u : Ω → IR3 the displacement vector, Du the 3× 3 displacement
matrix and W (Du) ≥ 0 the free energy density stored in the body and due to the
deformation Du. To explain laminar patterns we then suppose that there are two
matrices A and B such that W (A) = W (B) = 0 and want to investigate when
they can appear in a fine mixtures with still an “infinitesimal free energy”. The
analysis is beyond the purposes of this talk, thus, referring to [14] and references
therein, I will just discuss here a toy model of the problem.

2.1 – The Bolza-Young functional

Let u : [0, 1] → IR, u(0) = u(1) = 0, and

(2.2) I(u) =

∫ 1

0

(u2
x − 1)2 + u2 .
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As in the previous discussion, there are two optimal slopes ux = ±1 but also a
penalty for u to detach from 0. Without such a penalty any polygonal graph with
slopes ±1 with values 0 at x = 0, 1 would be a minimizer. The functional (2.2)
cannot be 0, because in such a case ‖u‖2 = 0 and the first term in (2.2) would be
strictly positive. The inf over u however is 0, just consider any polygonal graph
with slopes ±1 which is contained in the strip 0 ≤ u ≤ ε, ε = 1/(2N), N ∈ IN.
Then I(u) ≤ ε2 and I(u) → 0 as ε → 0.

Thus optimality of the functional forces fast oscillations on smaller and
smaller scales. To get a connection with statistical mechanics it is convenient
to look further on this example trying to characterize the optimizing sequences,
namely which are the common features present in all minimizing sequences. This
leads us to the notion of Young measures.

2.2 – Young measures

We consider a minimizing sequence un, namely such that I(un) → 0. We
set zn = (un)x, then un(x) =

∫ x

0
zn(y). Since I(un) → 0, un → 0 in L2 and

consequently zn → 0 weakly. On the other hand
∫ 1

0
(z2

n − 1)2 → 0 so that poly-
nomials of zn converge weakly to something different that the polynomial of the
weak limit of zn. This is due to fast oscillations, microstructures, which are the
object that we want to investigate and Young measures have been devised just
for dealing with cases like this one.

With reference to the present context, a Young measure is a family (νx)x∈[0,1]

of probability measures on IR such that for any f ∈ C0(IR), the integral νx(f) is
a measurable function of x.

Let zn be a sequence of measurable functions on [0, 1] and suppose that
there is a positive function w(r), r ≥ 0, limr→∞ w(r) = ∞, such that

(2.3) lim sup
n→∞

∫ 1

0

w(|zn|) < ∞ .

By the Young theorem (whose validity extends the present context) there is then
a subsequence znk

and a Young measure (νx)x∈[0,1] such that

(2.4) lim
nk→∞

∫ 1

0

φ(x)f(znk
(x)) =

∫ 1

0

φ(x)νx(f)

for all f ∈ C0(IR) and all φ ∈ L1([0, 1]).
Referring to the literature for a proof of the theorem (see for instance [14])

which is sketched in Appendix A in a form useful for the analysis in Section 3,
I will just mention here that if we consider a piecewise constant test function φ,
then in each interval I where φ is constant, we define a positive measure νI;n on
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IR given by the distribution of zn restricted to I under the Lebesgue measure on
I normalized to 1, so that −

∫
I
f(zn) = νI,n(f). By (2.3), νI;n is a probability and

by compactness it converges weakly by subsequences as n → ∞ to a probability
νI . The collection of all such νI and then a diagonalization procedure over test
functions piecewise constant on finer and finer partitions of [0, 1] leads in the end
to the Young measure.

Let us now see how the theorem applies in the case of the Bolza functional.
In such a case there is a constant c so that ‖zn‖4 ≤ c for all n, so that (2.3)
holds with w(r) = r4. Let a > 2, ga(r) = (r2 − 1)2 if |r| ≤ 2, ga(r) = ga(2)
for 2 ≤ |r| ≤ a, ga(r) = 0 for |r| ≥ a + 1 and finally ga(r) linearly interpolates
between a and a + 1.

By (2.4) with φ = 1,

lim
nk→∞

∫ 1

0

ga(znk
) =

∫ 1

0

νx(ga) = 0

because
∫ 1

0
ga(znk

) ≤ I(znk
) and limn→∞ I(zn) = 0. By taking a → ∞,

∫ 1

0

νx(g) = 0, g(r) = min{(r2 − 1)2, 9}

hence νx = λ(x)δ−1 + (1 − λ(x))δ1. Since un(x) =
∫ x

0
zn(x′) and un → 0 in L2,

by (2.4) with φ the characteristic function of [0, x],

∫ x

0

νx({Id}) = 0, {Id}(r) = r, r ∈ IR

hence
∫ x

0
1 − 2λ(y) = 0 for almost all x so that νx = 1

2 [δ−1 + δ1].
Thus the common feature to all minimizing sequences is that their Young

measure is the family of identical elements 1
2 [δ−1 + δ1]. According to the heuristic

considerations above, this means that in a neighborhood of each point x ∈ [0, 1]
the statistics of slopes on the elements of a minimizing sequences have a frequency
of appearance of ±1 close to 1/2.

3 – Hydrodynamic limits

An analogue of Young measures appears in the analysis of the collective
behavior of interacting particle systems. We will use the notion to establish a
bridge toward Gibbs measures and statistical mechanics.



[5] Microstructures and scaling limits 21

3.1 – Exclusion processes

The exclusion process is a Markov process on {0, 1}Zd

that we consider here
in d = 1. An element η ∈ {0, 1}Z is interpreted as a configuration of particles
by putting a particle at any site x where η(x) = 1 and leaving all other sites
empty. We will first consider the asymmetric case, where only jumps to the right
and on empty sites are allowed. The generator called Ld then acts on cylindrical
functions f(η) (i.e. f(η) depends only on finitely many entries η(x) of η) as

(3.1) Ldf(η) =
∑

x∈Z
η(x)[1 − η(x + 1)]

{
f(η − δx + δx+1) − f(η)

}

where δz is the element in {0, 1}Z equal to 1 at z and to 0 otherwise. The
exclusion process is a Markov process {η(x, t), x ∈ Z, t ≥ 0} where the transition
probabilities are given by the semigroup generated by Ld, see [8] for instance.
The well definiteness of the process is evident in the periodic version that I will
consider in the sequel where Z is replaced by a circle with N sites or, in other
words, by Z modulo N , N a positive integer. In such a case Ld is defined by
(3.1) but with the sum over x restricted to [1, N ] and with η(x ± N) = η(x).
Then Ld is the generator of Markov process {η(x, t), x ∈ [1, N ], t ≥ 0} with state
space [0, 1][1/n] whose law will be denoted by P (N) and we define η(x, t) for all
x ∈ Z by requiring that η(x+N, t) = η(x, t) and eventually study the limit when
N → ∞.

3.2 – Continuum limit

With Sx : {0, 1}Z → {0, 1}Z, the translation by x on particles configuration,
i.e. [Sxη](y) = η(x + y), for any φ ∈ C∞

0 (T × R+) and any cylindrical function
f on {0, 1}Z we define for any realization {η(x, t)} of the exclusion process

〈〈φ, f〉〉N =
1

N

∫ ∞

0

〈φ, f〉N,t(3.2)

〈φ, f〉N,t =
1

N

N∑

x=1

φ

(
x

N
,

t

N

)
f
(
Sxη(·, t)

)
(3.3)

The double bracket is to remind that there are two averages one in space the
other in time, while the single bracket is for spatial averages only.

Calling ηx the function on {0, 1}Z which on η has value η(x), as a particular
case of (3.2),

(3.4) 〈〈φ, η0〉〉N =
1

N

∫ ∞

0

1

N

N∑

x=1

φ

(
x

N
,

t

N

)
η(x, t) .
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The variables (3.4) are the density fields, their limits as N → ∞ define the density
profiles which are the quantity of interest of the continuum theory. However, as
in Section 2, non linear effects force to consider as well the “non linear functions
of η” defined in (3.2).

The continuum limit involves the limit distribution of these variables when
N → ∞. There is an analogue of the Young theorem for the limit of the vari-
ables (3.2), with the measures νx of the previous section replaced by measures
νx,t on {0, 1}Z. Recall however that η is random so that we will end up with
random Young measures.

3.3 – A Young theorem for the exclusion process

A Young measure now is a collection ν = {νx,t, (x, t) ∈ T × IR+}, of
probabilities on {0, 1}Z such that for any cylindrical f , νx,t(f) is a measurable
function of (x, t). We call M the collection of all Young measures and equip M
with the Borel structure generated by the functions

(3.5) ν → Xφ,f (ν) :=

∫ ∞

0

∫ 1

0

φ(x, t)νx,t(f)

when φ varies in C∞
0 (T × R+) and f among the cylindrical functions. The

analogue of the Young theorem is

Theorem 3.1. There is a subsequence Nk and a probability P on M so
that for any n, any bounded continuous functions F [r1, . . . , rn] on IRn, any test
functions φ1, . . . , φn in C∞

0 (T ×R+) and any cylindrical functions f1, . . . , fn,

(3.6) lim
Nk→∞

P (Nk)
(
F [. . . , 〈〈φi, fi〉〉N , . . . ]

)
= P

(
F [. . . , Xφ,f (ν), . . . ]

)

Moreover, denoting by G the set of all translational invariant and stationary
measures on {0, 1}Z (i.e. ν(f(η)) = ν(f(Sxη)) and ν(f) = ν(Ldf) for all x and
all cylindrical f)

(3.7) P
(
(ν ∈ M : νx,t ∈ G for almost all x, t

)
= 1 .

The proof is essentially as in the Young theorem. The space and time
invariance stated in (3.7) are the outcome of the space and time averages involved
in the definitions. Some details are given in Appendix B.
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3.4 – Time 0 assumptions

We will suppose convergence of the initial datum to a smooth density profile
ρ0 ∈ C∞(T , [0, 1]) in the following sense. For any φ ∈ C∞(T × IR+) and any
δ > 0,

(3.8) lim
N→∞

P (N)

(∣∣∣∣〈φ, η0〉N,0 −
∫ 1

0

φρ0

∣∣∣∣ > δ

)
= 0 .

3.5 – A first characterization of the limit law

The purpose now is to characterize more precisely the support of the limit
probability P and in this way to determine the hydrodynamic equations for
the exclusion process. The starting point is a Martingale relation which is a
particular example of a relation valid in general in Markov processes:

(3.9) g
(
η(·, t), t

)
=g

(
η(·, 0), 0

)
+

∫ t

0

{
d

ds′
g
(
η(·, s), s′

)∣∣
s′=s

+Ldg
(
η(·, s), s

)}
+Mt

g(η, t) a bounded measurable function smooth in t and Mt a martingale. We
will use (3.9) with g

(
η(·, t), t

)
= 〈φ, η0〉N,t thus getting

(3.10) 〈φ, η0〉N,t = 〈φ, η0〉N,0 +
1

N

∫ t

0

{〈φs, η0〉N,s + N〈φ, (Ldη0〉N,s} + Mt

where again Mt is a martingale. Ldη0 = η−1[1 − η0] − η0[1 − η1], so that after
an integration by parts,

(3.11)

N〈φ, Ldη0〉N,s = 〈DNφ, η0(1 − η1)〉N,s ,

DNφ(r, t) = N

{
φ

(
r +

1

N
, t

)
− φ(r, t)

}

DNφ is the discrete derivative of φ and it is bounded uniformly in N .
An analogous computation involving martingale calculus and then use of

Doob’s martingale theorem, for details see for instance [9] and Appendix B,
shows that for any τ > 0 and δ > 0,

(3.12) lim
N→∞

P (N)

({
sup

t≤τN
|Mt| ≥ δ

})
= 0 .

Since φ ∈ C∞
0 (T × R+) there is τ > 0 so that 〈φ, η0〉N,t = 0 for t ≥ τN . For

such t we then get, using (3.8), (3.11) and Theorem 3.1,

(3.13)

P

({∫ 1

0

φ(x, 0)ρ0(x)

+

∫ τ

0

∫ 1

0

φt(x, t)νx,t(η0) + φx(x, t)νx,t

(
η0(1 − η1)

)})
= 1 .

To derive an equation we need to relate νx,t(η0) and νx,t(η0(1 − η1)).
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3.6 – The symmetric exclusion

Before proceeding further, let us examine the symmetric case which is much
simpler: the process is then defined by the generator L0 = Ld + Ls, where

Lsf(η) =
∑

x∈Z
η(x)[1 − η(x − 1)]{f(η − δx + δx−1) − f(η)} .

By summing the contributions of Ld and Ls in (3.11) the non linear terms cancel
out and we get (omitting dependence on time)

(3.14)

〈φ, L0η0〉N =
1

N

N∑

x=1

[η(x) − η(x + 1)]

({
φ

(
x + 1

N

)
− φ

( x

N

)})

=
1

N

N∑

x=1

η(x)

({
φ

(
x + 1

N

)
+ φ

(
x − 1

N

)
− 2φ

( x

N

)})
.

The last curly bracket is equal to N2D2
Nφ, D2

Nφ the discrete laplacian of φ.
The desired extra factor N2 can be obtained by scaling times by N2. We thus
redefine the averages by setting

(3.15) 〈〈φ, f〉〉N =
1

N2

∫ ∞

0

〈φ, f〉〉N,t, 〈φ, f〉N,t =
1

N

N∑

x=1

φ

(
x

N
,

t

N2

)
f
(
Sxη(·, t)

)

and, with such a new terminology,

(3.16) 〈φ, η0〉N,t = 〈φ, η0〉N,0 +
1

N2

∫ t

0

{〈φt, η0〉N,s + N2〈φ, D2
Nη0〉N,s} + Mt .

Taking t = τN2 we have for τ large enough

(3.17) P

({∫ 1

0

φ(x, 0)ρ0(x)+

∫ τ

0

∫ 1

0

φt(x, t)νx,t(η0)+φxx(x, t)νx,t(η0)

})
=1 .

Calling ρ(x, t) := νx,t(η0),

(3.18) P

({∫ 1

0

φ(x, 0)ρ0(x) +

∫ τ

0

∫ 1

0

φt(x, t)ρ(x, t) + φxx(x, t)ρ(x, t)

})
= 1

deducing that P is actually supported by Young measures ν such that

(3.19) ρt = ρxx, ρ(x, 0) = ρ0(x)

(3.19) is the hydrodynamic equation associated to the symmetric simple exclu-
sion, which is thus a model for the heat equation.
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3.7 – Gradient systems and propagation of chaos

We call “gradient” the interacting particle systems where the analogue of
the computations (3.11) or (3.14) can be carried out getting respectively a first
or a second discrete derivative: in the former case the system is called hyper-
bolic, in the latter parabolic. Thus the asymmetric exclusion is a hyperbolic
gradient system, the symmetric exclusion a parabolic gradient systems. For gra-
dient systems in general the above procedure applies and in this way several
other systems in dimensions d ≥ 1 have been studied deriving relations of the
form (3.13) or (3.18) if the system is parabolic.

Let us now go back to the asymmetric exclusion process for which we have
deduced (3.13). To obtain the hydrodynamic equations it is necessary to specify
further the support of P . The first step is the ergodic problem: determine the set
G of all stationary, translational invariant measures. G is a convex set, which for
the exclusion process has been completely characterized, see [8]. The collection
Gextr of its extremal elements is in fact the set of all the Bernoulli measures
μp, p ∈ [0, 1], μp({η(x) = 1, x ∈ X}) = p|X|. Thus any μ ∈ G is of the form

μ =
∫ 1

0
μpλ(dp), λ a probability on [0, 1].

Definition 3.1. P is a local equilibrium measure and propagation of chaos
holds, if P is supported by Young measures ν such that for almost all x, t,
νx,t ∈ Gextr, i.e. in the case of the exclusion process, if νx,t is Bernoulli.

Failure of local equilibrium may occur due to fast oscillations on a meso-
scopic scale intermediate between macroscopic and lattice. The averages involved
in the definition of Young measures may then pick up different extremal measures
which after averaging give rise to a non extremal one. Such a possibility has been
ruled out in some parabolic systems by proving the absence of such oscillations
(the two block estimates in [9]), and/or supposing some good properties of the
initial law.

Propagation of chaos has been proved to hold for the exclusion process,
see [8]. Then for almost all x, t νx,t = μρ(x,t) for some ρ(x, t) ∈ [0, 1] and (3.11)
yields

P

({∫ 1

0

φ(x, 0)ρ0(x)+

∫ τ

0

∫ 1

0

φt(x, t)ρ(x, t) + φx(x, t)ρ(x, t)[1 − ρ(x, t)]

})
=1 ,

ρt + [ρ(1 − ρ)]x = 0, ρ(x, 0) = ρ0(x) (weakly) .(3.20)

Thus the hydrodynamic equation associated to the asymmetric simple exclusion
process is the Burgers equation. It is also proved that P is supported by the
entropic solutions of (3.20) so that P is actually supported by a singleton. The
picture emerging from this analysis can then be read on two levels. First it states
that for each macroscopic space-time point (x, t) there is a density ρ(x, t) and
the collection of all such density values satisfy a hydrodynamic equation (which
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is the Burgers equation for the asymmetric exclusion). The second level I was
referring to is that ρ(x, t) is actually a parameter which specifies an equilibrium
state in Gextr which describes the local state of the system around the macroscopic
point (x, t).

As mentioned the above picture has been established in several stochastic,
interacting particle systems but its validity should in principle extend to de-
terministic evolutions as well, the most known example from where the above
terminology is derived is the Boltzmann equation for which it has been shown
that in the macroscopic (Grad-Boltzmann limit) the hydrodynamic equations
are indeed the Euler equations, see [4].

4 – Gibbs measures and phase transitions

The ergodic problem of characterizing the set Gextr is in general hard, also
for stochastic systems. There is however an important class of models where the
problem does not even arise, they are the systems with Glauber and Kawasaki
dynamics, which are constructed with the requirement that all Gibbs measures
are invariant.

Occurrence of singularities in the hydrodynamic equations require the in-
troduction of additional properties, for instance the formation of shocks in the
Burger equations involve the proof of an additional property, namely that the
solution should be “entropic”. Here we discuss another source of singularities
which arise when the values of the order parameter (the parameter labelling the
elements of Gextr, i.e. the density in particle systems or the magnetization density
in spin systems) is not connected. Such a pathology is due to the occurrence
of a phase transition. Let us go back to the case of Gibbs measures, recalling
that a Gibbs measure assigns a probability proportional to e−βH to a configura-
tion whose energy is H, β the inverse temperature. The dynamical problem of
characterizing Gextr becomes then the typical equilibrium statistical mechanics
problem of finding the extremal Gibbs measure, a problem which has been solved
in a variety of cases. Referring to the Ising model with Glauber dynamics, if β is
large enough in d ≥ 2 dimensions, Gextr is made of two elements, μ±mβ

, mβ > 0,
μ±mβ

(σ(0)) = ±mβ , σ(0) the spin at the origin.
If propagation of chaos holds, there will be for each t a set where νx,t = μmβ

while, in the complement νx,t = μ−mβ
. and the macroscopic equations become

the geometric evolution of such sets. Clearly the mechanisms which rule the
evolution depend upon the structure of the system at the interface, i.e. on sets
of codimension 1 (if the evolution is regular) which from the point of view of the
Young measure are irrelevant. A new approach is required and let us start from
macroscopics.
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5 – Phase coexistence, inputs from Geometric Measure theory

Thermodynamics says that the free energy excess in a body to create a
bubble of the opposite phase (say the phase with magnetization mβ) in a regular

region E of the domain Ω ⊂ IRd (thus the magnetization density is m(r) = mβ

when r ∈ E and = −mβ when r ∈ Ω \ E) is given by

(5.1) I(m) =

∫

∂E

τβ(n(r))Hd−1(dr)

where n(r) is the outward unit normal to ∂E at r; τβ(n) = τβ(−n) is the surface
tension of a flat surface with normal n; Hd−1(dr) is the Hausdorff measure on ∂E.

Thus the cost of a bubble is determined by its geometry and the surface
tension which are therefore the control parameters for phase coexistence. This
immediately raises the question: where is the regularity assumption on E coming
from? According to (5.1) the likelihood of a bubble depends on its cost I(m)
and the first problem is to characterize all regions E which can be approximated
by regular ones keeping the cost uniformly bounded. These are the physically
relevant bubbles, regular ones are only models to help intuition and simplify
computations.

Geometric measure theory gives a complete answer to the question, the
regions E which have finite cost are the sets of bounded variations, see for in-
stance [7]. Such sets are pretty regular, one can define a perimeter measure
on ∂E proving that modulo zero the surface is C1-regular and a normal is well
defined almost everywhere. Then a formula like (5.1) still holds.

The relaxation of an initial state with a bubble under a dynamics which
preserves the total magnetization [it is physically conjectured that it] will lead
to a state where the free energy is minimal under the given magnetization con-
straint. Such minimizers are the equilibrium states at the given magnetization
and they are the solutions of the variational problem:

(5.2) inf

{
I(m),−

∫

Ω

m = α

}
, α ∈ (−mβ , mβ)

the well known Wulff problem. Consider for instance perfect (Neumann) bound-
ary conditions on ∂Ω, namely when the functional (5.1) is replaced by

(5.3) Ineum(m) =

∫

∂E\∂Ω

τβ(n(r))Hd−1(dr) .

It is then known that in d = 2 there is αc > 0 so that for |α| > αc the minimizer
is made by a bubble which is a quarter of a circle with center a vertex of Ω. For
|α| < αc is a rectangle with three sides contained in ∂Ω. In d ≥ 3 it is not known
if the same picture holds, it is known that for α = 0 the minimizer is half of Ω
and for α close to the extremes is again a quarter of circle, but the shape for
intermediate values of α are not known, [17].
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6 – Sharp interface limits, Gamma convergence

It is clear from the discussion in Section 5 that all the relevant physics is at
the interface. The approach used to study thermodynamic limits is then com-
pletely inadequate as we need to identify the Young measure in sets of codimen-
sion one (in the limit) where the system is not in local equilibrium and we have
again a problem of microstructures. To investigate the structure of the interface
we need a blow up. Continuum theories approach the question by magnifying
up to a mesoscopic scale, intermediate between macroscopic and microscopic,
and defined in such a way that on such a scale the interface width has order 1.
In the Ginzburg-Landau approximation, the thermodynamics of the system is
completely described by an excess free energy functional of the form:

(6.1) FΛ(m) =

∫

Λ

W (m) + |Dm|2, W (m) =
1

4
(m2 − mβ)2

(in general W (m) is taken as a double well function whose minimum is 0). The
function reflects the assumption that a penalty appears when either m deviates
from the equilibrium values ±mβ or when m has spatial variations. Thus the
minimizers are the homogeneous equilibria m(±) = ±mβ . A bubble like in the
macroscopic theory where there is a sharp transition between ±mβ has here
infinite cost due to the penalty term |Dm|2. Thus, in the Ginzburg-Landau
theory, interfaces are diffuse, they have a finite width which will turn out to be
of the order of unity in the length units used to write (6.1).

Preliminary to the microanalysis of the interface we want compatibility with
the macroscopic theory of Section 5, in particular we want to identify the surface
tension in (6.1). The idea like in the hydrodynamic limits is that the macroscopic
model describes the behavior of the mesoscopic one on large scales. Let us fix
a macroscopic region Ω, for instance a cube of side 1 and center 0 (with perfect
walls in the sense described in Section 5). We then consider the functional
Fε−1Ω(m) with Neumann conditions, (Dm · n) = 0 at the boundaries of ε−1Ω.
A macroscopic bubble, i.e. a function u = mβ in E ⊂ Ω and = −mβ in Ω \E, is
δ-approximated mesoscopically by functions m ∈ L1(ε−1Ω) such that −

∫
Ω|u(r)−

m(εr)| ≤ δ. Thus modulo δ, the cost of the bubble (per unit area) is given by

(6.2) inf

{
εd−1Fε−1Ω(m), −

∫

Ω

|u(r) − m(εr)| ≤ δ

}

hence the De Giorgi proposal to identify the macroscopic cost of the bubble with
either one of the two quantities

(6.3)

I<(u) := lim
δ→0

lim inf
ε→0

inf

{
εd−1F (m), −

∫

Ω

|u(r) − m(εr)| ≤ δ

}

I>(u) := lim
δ→0

lim sup
ε→0

inf

{
εd−1F (m), −

∫

Ω

|u(r) − m(εr)| ≤ δ

}
.
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By writing v(r) = m(ε−1r), r ∈ Ω, m ∈ L1(ε−1Ω), v ∈ L1(Ω) and

(6.4) εd−1Fε−1Ω(m) =

∫

Ω

ε−1W (v) + ε|Dv|2 = Fε(v)

which is the functional studied by Modica, [11], Modica and Mortola, [12], and
Luckhaus and Modica [10]. The above derivation clarifies the meaning of the
small parameter ε > 0, it is the ratio between macroscopic and mesoscopic unit
lengths; the sharp interface limit is the limit when the ratio vanish.

In the above references it is proved that Fε Γ-converges to I (see for in-
stance [5] for definitions and results), namely that

(6.5) I<(u) = I>(u) = I(u)

with I(u) as in (6.1) and τβ(n) = F (1)(m̄) independently of n, where F (1) is the
d = 1 version of (6.1) and m̄(x) = mβ tanhmβx is the antisymmetric solution of
the Euler-Lagrange equation for F (1), namely mxx = W ′(m), with “boundary
conditions” ±mβ at ±∞.

7 – Sharp interface limit and motion by curvature

If ∂E, E := {u = −mβ}, is regular, an optimizing sequence can be defined
by setting (in mesoscopic units)

(7.1) m(ε)(r) = m̄
(
d(r, ∂E)

)

where d(r, ∂E) is the signed distance of r from E, i.e. the distance from E if
r /∈ E and minus the distance if r ∈ E. We thus have a candidate for the
structure of the interface (at least in the present context) and we can then go
back to dynamical problems. Dynamics in mesoscopic theories is usually defined
as a gradient flow:

(7.2) mt = −C
δF (m)

δm
= C[Δm − W ′(m)]

where C is a positive function which has the meaning of a mobility coefficient
and that we take for simplicity equal to 1. Notice that by (7.2),

(7.3)
d

dt
F (m) = −C

∫ (
δF (m)

δm

)2

≤ 0

thus, by construction, dynamics enjoys the correct property to make the free
energy decrease, the decrease is strict unless m is a critical point of F .
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The problem we want to discuss is about the behavior of (7.2) (taken in IRd,
d > 1) with initial datum (7.1) in the limit as ε → 0. Analogously to (6.4), it is
convenient to go to macroscopic units defining v(ε)(r, t) = m(ε−1r, ε−2t). Then

(7.4) v
(ε)
t = Δv(ε) − ε−2W ′(v(ε)), v(ε)(r, 0) = m̄

(
ε−1d(r, ∂E)

)
.

The setup in (7.4) reminds of the Boltzmann equation in the Grad-Boltzmann
limit, where an Hilbert expansion shows convergence to the Euler equation, [4].
Indeed De Mottoni and Schatzmann have actually carries out the analogy by
proving under suitable assumptions of regularity that in the limit ε → 0 there is
a geometric motion E(t), E(0) = E, characterized by the fact that any point of
∂E(t) moves with velocity directed along the outward normal given by the mean
curvature at that point (the signs are such that convex bodies shrink). Such a
motion is well defined if E is regular at least for small positive times, but in
d > 2 there are examples where singularities may develop. The evolution can
then be extended by using the notion of “viscosity solutions” and indeed it has
been proved by several authors in several papers that if the viscosity solution
has “no fattening” then the limit of (7.4) is actually given by the viscosity so-
lution. By using the De Giorgi ideas of “barriers”, Barles and Souganidis, [3],
have proved that for systems where a comparison theorem holds, if there is con-
vergence to motion by curvature in the classical case, then there is convergence
to the viscosity solution if the latter has “no fattening”. With this result it is
sufficient to restrict to regular cases and the De Mottoni and Schatzmann work
covers automatically also cases with singularities (but no fattening).

8 – A non local functional

With the ultimate goal of establishing a connection with microscopic systems
of statistical mechanics, following the approach initially proposed by van der
Waals and then pursued in the 70’s first by Kac and then by Lebowitz and
Penrose, we will consider here a variant of the Ginzburg-Landau functional. Let
m ∈ L∞(Λ, [−1, 1] and

(8.1) FΛ(m) =

∫

Λ

W (m) +
1

4

∫

Λ2

J(r, r′)[m(r) − m(r′)]2

where J(r, r′) = J(0, r′ − r) ≥ 0 is a smooth probability kernel supported in
|r − r′| ≤ 1. W (m) ≥ 0 is given by

(8.2) W (m) = −m2

2
− S(m)

β
− Cβ

S(m) = − 1−m
2 log{ 1−m

2 } − 1+m
2 log{ 1+m

2 } is the entropy with magnetization m
(of a Bernoulli measure) and Cβ is chosen so that min W (m) = 0.
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It has been proved, [1], [2], [3], that the analysis of Section 6 and 7 can be
extended to the above functional. In particular the surface tension τβ(n) which
here depends on the unit vector n is given by F (n)(m̄) where F (n)(m̄) is the
version of (8.1) on the line with J replaced by J (n)(x, y), where

(8.3) J (n)(x, y) =

∫

r·n=0

J(0, n(y − x) + r)Hd−1(dr)

and m̄ is the unique antisymmetric non zero solution of

(8.4) m̄ = tanh{βJ (n) ∗ m̄} := tanh{β
∫

J (n)(x, y)m̄(y)dy} .

Defining the evolution by means of the equation

(8.5) mt = −m + tanh{βJ ∗ m}

under the scaling used in Section 7 we obtain again in the limit motion by
curvature, see [2] and [3]. In particular in d = 2 the velocity of a point is
proportional to the curvature with a proportionality coefficient equal to μ[τβ +
τ ′′
β ], where, representing n in terms of an angle θ with τβ = τβ(θ), then τ ′′

β is the
second derivative w.r.t. θ. The expression [τβ + τ ′′

β ] is known as “the stiffness
coefficient”. μ = μ(θ) is a mobility coefficient, it is related to the speed of a
travelling front under forcing by an external magnetic field, see [2] for details.

The next steps will be to relate the functional to Gibbs measures in Ising
systems with Kac potentials and carry out the continuum limit. The program
has been partially successful and it is still under investigation, but its description
goes beyond the aims of this presentation and I rather refer to the literature, in
particular to a book I am writing and which is almost completed, [16].

– Appendix A

For any positive integer n, partition IR into the intervals 2−n[j, j+1), j ∈ Z.

Call I
(n)
x the interval which contains the point x. φ is called I(n)-measurable if

it is constant on each one of the intervals I(n).
Let ν

(n)
x;k be the measure on IR such that for any interval [a, b],

ν
(n)
x;k ({r ∈ [a, b]}) =

∣∣{y ∈ I
(n)
x : zk(y) ∈ [a, b]}

∣∣
|I(n)

x |

and for any f ∈ C0(IR) and any I(n)-measurable function φ,

ν
(n)
x;k (f) = −

∫

I
(n)
x

f(zk),

∫ 1

0

φf(zk) =

∫ 1

0

φν
(n)
x;k (f) .
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By (2.3), for k large enough, ν
(n)
x;k (w(|r|) ≤ 2n

∫ 1

0
w(|zk|) ≤ c, which implies that

ν
(n)
x;k is a probability and that the set {ν(n)

x;k}x∈IN+
is tight, [15]. Then there

is a subsequence k
(n)
j and probabilities {ν(n)

x }x∈[0,1] so that {ν(n)

x;k
(n)
j

} converges

weakly to ν
(n)
x for all x ∈ [0, 1], ν

(n)
x constant in each one of the intervals I(n).

Thus, for any I(n)-measurable function φ

lim
k
(n)
j

→∞

∫ 1

0

φf(z
k
(n)
j

) =

∫ 1

0

φ(x)ν(n)
x (f) .

We suppose inductively that for each n, k
(n+1)
j is a convergent subsequence of

k
(n)
j and then have

ν(n)
x = −

∫

I
(n)
x

ν(n+1)
y dy

which implies that for each f ∈ C0(IR) the family of functions Mn(x) = ν
(n)
x (f),

x ∈ [0, 1], is a martingale. Then, by Doob’s martingale convergence theorem, [6],

for any f ∈ C0(IR), ν
(n)
x (f) converges as n → ∞ for almost all x in [0, 1] to a

limit Lx(f). Let D be a countable dense subset in C0(IR), then there is a subset
I in [0, 1] of measure 1 where Lx(f) is defined for all f ∈ D and by continuity
Lx extends to a probability νx on IR and for any x we have

ν(n)
x (f) = −

∫

I
(n)
x

νy(f)

and for any I(n)-measurable function φ

∫ 1

0

φ(x)ν(n)
x (f) =

∫ 1

0

φ(x)νx(f)

hence, along the convergent subsequence,

(A.1) lim
kj→∞

∫ 1

0

φf(zkj ) =

∫ 1

0

φ(x)νx(f)

(A.1) holds for any n, any I(n)-measurable function φ and any f ∈ C0(IR). By
continuity, it then holds for all φ ∈ L1([0, 1]).
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– Appendix B

Denote by ξ a pair I, {0, 1}I , where I is a finite subset of Z, The collection
of all ξ is denoted by

(B.1) Ξ =
⋃

I⊂Z,|I|<∞
{0, 1}I .

Let ξ ∈ Ξ, I the interval associated to ξ and

(B.2) 1ξ(η) =

{
1 if η(x) = ξ(x), for all x ∈ I

0 otherwise .

Denote by I(n) intervals in [0, 1] × IR+ of the form {(x, t) : x ∈ 2−n[j, j + 1); t ∈
2−n[k, k + 1), j, k ∈ IN}; call I(n)-measurable a function of x, t constant on each
one of the intervals I(n). Let then X be the collection of functions indexed by
the pairs (ξ, n) so that an element X ∈ X is such that Xξ,n is a I(n)-measurable
function with values in [0, 1]. X has then the structure of a product space with
factors which are compact (under the natural topology), thus X is compact in
the product topology.

To each element {η(x, t)} of the exclusion process we can associate an ele-
ment in X by setting

(B.3) {η(x, t)} → Xξ,n(x, t) =
〈〈1

I
(n)
x,t

,1ξ〉〉N
〈〈1

I
(n)
x,t

, 1〉〉N
.

Under the above map the probability P (N) induces a probability Q(N) on X . By
compactness there is a subsequence Nk such that Q(Nk) converges weakly on X
to a limit probability Q. Thus

(B.4)

lim
Nk→∞

P (Nk)
(
F [. . . , 〈〈φi,1ξi

〉〉N , . . . ]
)

= Q

(
F

[
. . . ,

∫ ∞

0

∫

x∈[0,1]

φi(x, t)Xξi,ni(x, t), . . .

])

where F = F (r1, . . . , rm) is a bounded continuous function; φi, i = 1, . . . , m are
I(ni)-measurable functions and ξi ∈ Ξ, i = 1, . . . , m.

Call X 0 the set of X ∈ X which are “additive”, “normalized” and “compat-
ible”. Additivity means that if

∑
ξi = ξ then for all n, x and t,

(B.5)
∑

Xξi,n(x, t) = Xξ,n(x, t) .
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Normalized means that if
∑

ξi = 1 then

(B.6)
∑

Xξi,n(x, t) = 1 .

Finally compatibility means that for all ξ, n, x, t

(B.7) −
∫

I
(n)

(x,t)

Xξ,n+1(y, s) = Xξ,n(x, t) .

By (B.4) it then follows that

(B.8) P (X 0) = 1 .

On the other hand if X ∈ X 0, for any n, x, t, Xξ,n(x, t) extends to an additive
measure on the algebra of all cylinder sets in {0, 1}Z. Then by the Caratheodory

reconstruction theorem, there is a unique probability measure ν
(n)
x,t on {0, 1}Z

such that

(B.9) Xξ,n(x, t) = ν
(n)
x,t (1ξ) .

Moreover, by the martingale convergence theorem as in Appendix A, we then
conclude that there is a probability νx,t such that

(B.10) ν
(n)
x,t (f) = −

∫

I
(n)
x,t

ν(n)
y,s (f)

which proves (3.5) with P the law of {νx,t} under Q.
The proof that P

(
νx,t ∈ G, for a.a. x, t

)
= 1 follows from the following

general properties. Referring to (3.9), we have

P (N)

(
sup
s≤t

M2
s

)
≤ 4P (N)

(
M2

t

)
(B11)

P (N)
(
M2

t

)
=

∫ t

0

P (N)
(
{Ldg

2(η(·, s), s)−2g(η(·, s), s)Ldg(η(·, s), s)}
)

.(B.12)

Finally if f1 and f2 are cylindrical functions which depend on η(x) with x ∈ I1

and, respectively, x ∈ I2 and dist(I1, I2) > 1, then

(B.13) Ldf1f2 = f1Ldf2 + f2Ldf1 .

We then have by (3.10) with η0 replaced by a cylindrical function f ,

(B.14) 〈〈φ, Ldf〉〉N = − 1

N
〈φ, Ldf〉N,0 −

1

N
MτN .
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The first term on the r.h.s. vanishes in sup norm as N → ∞. For the other one
we write

(B.15) P (N)(M2
τN ) =

∫ τN

0

P (N)
(
{Ld〈φ, f〉2N,t−2〈φ, f〉N,tLd〈φ, f〉N,t}

)
≤ cτN

having used (B.13). Thus P (N)( 1
N |MτN | ≥ δ) → 0 for any δ > 0, proving that P

is supported by stationary Young measures. Invariance by translations follows
easily from the spatial averages involved in the definition of Young measures and
Theorem 3.1 is proved.
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[2] G. Bellettini – P. Buttà – E. Presutti: Sharp interface limits for non local
anisotropic interactions, Arch. Rational Mech. Anal., 159 (2001), 109-135.

[3] G. Barles - P. E. Souganidis: A new approach to front propagation problems:
theory and applications, Arch. Rational Mech. Anal., 141 (1998), 237-296.

[4] R. Caflish: The fluid dynamic limit of the non linear Boltzmann equation, Com-
mun. Pure Appl. Math., 33 (1980), 651-666.

[5] G. Dal Maso: An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
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