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Abstract: In this paper we discuss a strategy to provide geometrical control of
algebraic grid surfaces by means of a re-parametrization procedure combined with the
use of quality parameters for grid surfaces. The re-parametrization phase is based on
a tensor product transformation following given directions. The free parameters in the
tensor product are set by solving an optimization problem that uses objective functions
based on grid quality measure parameters.

1 – Introduction

In dealing with the numerical grid generation for the approximation of par-
tial differential equations, we have developed methods and tools mainly for 2D
structured grid generation. We have defined either algebraic or elliptic ap-
proaches and recently their combination in an algebraic-elliptic algorithm [2].
In this paper we present and discuss a mixed algebraic method for the represen-
tation of surfaces in R3 in order to move the first step towards the surface grid
generation for which several methods have been proposed, for example, in [8]
and [9]. Indeed the numerical generation of complex grids quite always needs
surface discretizations to be carried out. Thinking of volume grid generation it
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results of evidence the role of surface grids as basic components of the whole dis-
cretization process. However a satisfactory surface grid can be achieved only by
an appropriate parametric representation of domain geometries which guarantees
times by times geometrical surface characteristics to be saved.

Given a physical surface S : [0, 1]2 → Ω ⊂ R3, we assume information
on the surface geometry is available in some way, for instance an appropri-
ate set of interior and boundary data. We look for a simple algebraic trans-
formation X : [0, 1]2 → Ω able to represent the physical surface. Unfortu-
nately, the available algebraic schemes mainly produce parametric surfaces with
a very poor parametrization so that the generated grid usually has no partic-
ular properties (as orthogonal feature or constant aspect ratio). Therefore, a
re-parametrization phase is necessary. Following the idea discussed in [3] in
this paper a re-parametrization technique based on tensor product of B-spline
bases is proposed and applied to an algebraic method for numerical grid genera-
tion. Thus, a new parameter distribution (of arbitrary size) is produced simply
through a sampling phase of the tensor product surface. The free parameters
(here called control directions) appearing in the tensor product play a key role
in the final location of the grid points. More in detail, the control directions
used in the tensor product, taken in the parameter domain [0, 1]2, are better
located in [0, 1]2 by solving an optimization problem of small dimension that
uses objective functions based on grid quality measure parameters. After the re-
parametrization phase the final grid will somehow preserve the features specified
by the selected objective functions (see Section 3) and shows a better behavior
in the interior of the domain.

The outline of this paper is as follows. In Section 2, an algebraic method used
to generate a surface grid from boundary information is given and its properties
are investigated. In Section 3, the re-parametrization phase using grid quality
measures is discussed. The closing Section 4 is devoted to a few numerical tests
showing the effectiveness of the proposed strategy.

2 – Transfinite algebraic surface generation with local control

As well known, transfinite interpolation methods are useful means to con-
struct a three dimensional surface interpolating a net of R3-curves. With the
help of transfinite interpolation methods based on local blending functions, in
this section we construct a mixed algebraic surface grid which both conforms
to the boundary of a given physical three dimensional domain and possess free
parameters for modeling the grid in the interior of the given domain. As already
noticed in our previous papers dealing with planar surfaces generated through
the so called “mixed schemes” (see for example [1], [5]), free parameters are
very helpful to overcome the drawback of classical transfinite interpolation tech-
niques [6] that have no control of the grid quality apart from the boundary. The
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analytic definition of a so called mixed scheme for generating grids on R3-surfaces
is fully similar to the planar case except for the third component which is now
needed. Nevertheless, for completeness, below we shortly discuss the definition
of a mixed scheme for R3 surfaces. It is worthwhile to note that we are going to
consider only the Lagrange case even though boundary given directions can be
also interpolated assuming they are specified.

Let Ω ⊂ R3 be such that ∂Ω = ∪4
i=1∂Ωi, with ∂Ω1∩∂Ω3 = ∅ ∂Ω2∩∂Ω4 = ∅

where ∂Ω1, ∂Ω2, ∂Ω3, ∂Ω4 are the supports of four regular curves γi : [0, 1] →
∂Ωi, i = 1, . . . , 4, taken counterclockwise. Furthermore, we assume that the
curve intersections occur only at the end points of the boundary curves γi, i =
1, . . . , 4 i.e.

γ1(0) = γ4(1), γ1(1) = γ2(0), γ2(1) = γ3(0), γ4(0) = γ3(1) .

We define φ1(ξ) := γ1(ξ), φ2(ξ) := γ3(1 − ξ), ξ ∈ [0, 1] and ψ1(η) := γ4(1 −
η), ψ2(η) := γ2(η), η ∈ [0, 1]. Note that each curve has three components, for
example φ1(ξ) = (φx

1(ξ), φy
1(ξ), φ

z
1(ξ)).

A transfinite blending surface interpolating the four boundary curves is de-
fined by the linear operators P1 and P2 blending two “opposite” curves, i.e.

(2.1) P1[φ](ξ, η) :=

2∑

i=1

αi(η)φi(ξ) , P2[ψ](ξ, η) :=

2∑

j=1

αj(ξ)ψj(η) ,

and by the action of P1 when applied to P2 blending the four corner points,

(2.2) P1P2[φ,ψ](ξ, η) :=

2∑

i=1

αi(η)P2[ψ](ξ, i − 1) .

The blending functions αj(ξ), j = 1, 2 in (2.1) are dilated versions of classical

bases with support on Iξ
0 := [0, ūξ] and on Iξ

1 := [1− ũξ, 1] being 0 < ūξ < 1 and
0 < ũξ < 1, for example the piecewise cubic polynomials

(2.3)

α1(ξ) :=
(
1 + 2

ξ

ūξ

)(
1 − ξ

ūξ

)2

, ξ ∈ Iξ
0 ,

α2(ξ) :=
(
3 − 2

ξ + ũξ − 1

ũξ

)(ξ + ũξ − 1

ũξ

)2

, ξ ∈ Iξ
1 .

The blending functions αj(η), j = 1, 2 in (2.1), (2.2) are analogously defined
with support on Iη

0 := [0, ūη] and on Iη
1 := [1 − ũη, 1]. With the above given

locally supported bases, the Lagrange blending surface

(2.4) (P1 ⊕ P2)[φ,ψ](ξ, η) = P1[φ](ξ, η) + P2[ψ](ξ, η) − P1P2[φ,ψ](ξ, η)
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is interpolating the boundary curves

(2.5)
(P1 ⊕ P2)[φ, ψ](j − 1, η) = ψj(η), j = 1, 2 ,

(P1 ⊕ P2)[φ,ψ](ξ, i − 1) = φi(ξ), i = 1, 2

and shows a localized support i.e.

(P1 ⊕ P2)[φ,ψ](ξ, η) = 0 for (ξ, η) ∈ [ūξ, 1 − ũξ] × [ūη, 1 − ũη] .

Now, to “fill the hole” we take into account a tensor product surface

(2.6) TP (ξ, η) :=

mp∑

i=1

np∑

j=1

QijBi,3(ξ)Bj,3(η)

with Bi,3(ξ) and Bj,3(η) denoting the usual cubic B-splines with knots
{ξi−2, ξi−1, ξi, ξi+1, ξi+2}, {ηj−2, ηj−1, ηj , ηj+1, ηj+2}, respectively. The set Q =
{Qij}mp,np

i,j=1 is a set of control points in R3. The B-splines knots are taken uni-
formly distributed except for the end knots that are assumed multiple i.e.

(2.7)

0 = ξ−1 = ξ0 = ξ1 = ξ2 < · · · < ξmp−1 = ξmp
= ξmp+1 = ξmp+2 = 1 ,

with ξi+1 − ξi =
1

mp − 3
, i = 2, . . . , mp − 2 ,

and similarly,

(2.8)

0 = η−1 = η0 = η1 < η2 < · · · < ηnp−1 = ηnp
= ηnp+1 = ηnp+2 = 1 ,

with ηl+1 − ηl =
1

np − 3
, l = 2, . . . , np − 2 .

The boundary knot repetition is to guarantee the interpolation of the end control
points. Next, setting ūξ = ξ3 − ξ2, ūη = η3 − η2, ũξ = ξmp−1 − ξmp−2, ũη =
ηnp−1 − ηnp−2, the tensor product surface is then added to the blending surface
to produce the so called mixed surface

(2.9) X(ξ, η) := TP (ξ, η) + (P1 ⊕ P2)
(
[φ,ψ] − TP

)
(ξ, η)

where the substraction of the surface

(P1 ⊕ P2)[TP ] := (P1 ⊕ P2)[TP (0, η), TP (1, η), TP (ξ, 0), TP (ξ, 1)]

is to keep the boundary interpolation. All considered, the transformation X
conforms the boundary as well, i.e.

(2.10) X(j − 1, η) = ψj(η) , j = 1, 2, X(ξ, i − 1) = φi(ξ) , i = 1, 2 ,
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and has the property

X(ξ, η) = TP (ξ, η), for (ξ, η) ∈ [ξ3, ξmp−2] × [η3, ηnp−2] .

The three dimensional grid X is then obtained by sampling X at a given set of
parameter values {(ξi, ηj)}mg,ng

i,j=1 i.e.

X := { X(ξi, ηj) = (x(ξi, ηj), y(ξi, ηj), z(ξi, ηj)) }mg,ng

i,j=1 .

For shortness we will also use the notation X = { Xi,j = (xi,j , yi,j , zi,j) }mg,ng

i,j=1 .
Before concluding this section we need to make clearer how to choose the

control points. When generating mixed grid on surfaces the location of the con-
trol points very much influences the grid shape, even more than in the planar
case. Without any additional information we suggest to suitably extract the
control points from a bilinear blending surface interpolating the four bound-
ary curves also called Coons patch. For further details and motivation of this
choice, though in the planar case, we refer the reader to [1]. Thus, defining the
interpolating Coons patch

(2.11)

L(ξ, η) = (1 − η)φ1(ξ) + ηφ2(ξ) + (1 − ξ)ψ1(η) + ξψ2(η)−
− (1 − η)

(
(1 − ξ)ψ1(0) + ξψ2(0)

)
−

− η
(
(1 − ξ)ψ1(1) + ξψ2(1)

)

and the parameter value sets {σi}mp

i=1 and {τj}np

j=1 in [0, 1] as

(2.12)

σ1 := 0, σ2 := σ1 +
1

3(mp − 3)
σ3 := σ2 +

2

3(mp − 3)

σi+1 := σi +
1

(mp − 3)
, i = 3, . . . , mp − 3 ,

σmp−1 := σmp−2 +
2

3(mp − 3)
σmp

:= σmp−1 +
1

3(mp − 3)
= 1 ,

τ1 := 0, τ2 := τ1 +
1

3(np − 3)
τ3 := τ2 +

2

3(np − 3)

τj+1 := τj +
1

(np − 3)
, j = 3, . . . , np − 3 ,

τnp−1 := τnp−2 +
2

3(np − 3)
τnp := τnp−1 +

1

3(np − 3)
= 1 ,

the control points are defined as

(2.13) Qij := L(σi, τj), i = 1, . . . , mp, j = 1, . . . , np .
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3 – Re-parametrization by using grid quality measures

The mixed surface grid generation method proposed in Section 2, as well as
any other algebraic method, is not always able to produce grids satisfying all the
application requirements so that a grid modifications can be looked for. This
can be achieved, for example, by a re-parametrization phase based on a B-spline
tensor product involving control directions. Thus, a new parameter distribution
is produced simply through a sampling phase of the tensor product. The control
directions used in the tensor product are better located in [0, 1]2 by solving an
optimization problem of small dimension that uses objective functions based on
grid quality measure parameters. Hence, extending to the surface case the work
in [4], in this paper we focus on optimized re-parametrization for algebraic grid
surface to control first-order geometrical properties (e.g. cell angles, areas, edge
lengths, and aspect ratios). The grid produced this way turns out to show a
different behavior in the interior of the physical domain.

To this purpose, we define the Jacobian matrix corresponding to the map-
ping X(ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η)),

(3.1) J :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

∂z

∂ξ

∂z

∂η

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix columns are vectors tangent to coordinate lines, therefore their
lengths control the edge lengths, their dot products are related to the angles
between coordinate lines and the determinant to the area of the cells. We con-
sider the following discretization of the Jacobian matrix at Xi,j

(3.2) Jij :=

⎛
⎝

xi+1,j − xi,j xi,j+1 − xi,j

yi+1,j − yi,j yi,j+1 − yi,j

zi+1,j − zi,j zi,j+1 − zi,j

⎞
⎠

and construct the corresponding discrete metric tensor Tij := JT
ijJij

(3.3) Tij :=

(
gij
11 gij

12

gij
21 gij

22

)
,

with

(3.4)
gij
11 = (xi+1,j − xi,j)

2 + (yi+1,j − yi,j)
2 + (zi+1,j − zi,j)

2 ,

gij
22 = (xi,j+1 − xi,j)

2 + (yi,j+1 − yi,j)
2 + (zi,j+1 − zi,j)

2 ,
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and with gij
12 = gij

21 given by

(3.5)
(xi+1,j − xi,j)(xi,j+1 − xi,j)+

+ (yi+1,j − yi,j)(yi,j+1 − yi,j) + (zi+1,j − zi,j)(zi,j+1 − zi,j) .

The symmetric matrix Tij determines cell angles, areas, edge lengths, but only
relative directions (angles which grid lines make with each other). Scalar cell
functions associated to the matrix Tij have been defined to measure important
local properties of a grid (see, for example, [7]).

Coming to the objective functions, let each grid cell Cij having vertices
{Xi,j , Xi+1,j , Xi,j+1, Xi+1,j+1} be approximated by the parallelogram Cp

ij as

in fig. 1. Defining with Hij(g
ij
11, g

ij
12, g

ij
22) the value of an appropriate smooth

positive function on the cell Cp
ij , an averaged global objective function based on

the discrete metric tensor has the general form

(3.6) fH =
1

(mg − 1) × (ng − 1)

mg−1∑

i=1

ng−1∑

j=1

Hij(g
ij
11, g

ij
12, g

ij
22)

and it specializes according to the quality measure we want to take in to con-
sideration. The global objective functions we worked with are listed below while
we refer to [4] for a discussion of grid quality measure parameters,

Length objective function.

(3.7) fL :=
1

(mg − 1) × (ng − 1)

mg−1∑

i=1

ng−1∑

j=1

P le
ij , where P le

ij := (gij
11 + gij

22) .

AO objective function.

(3.8) fAO :=
1

(mg − 1) × (ng − 1)

mg−1∑

i=1

ng−1∑

j=1

P ao
ij where P ao

ij := gij
11g

ij
22 .

Orthogonality objective function.

(3.9) fO :=
1

(mg − 1) × (ng − 1)

mg−1∑

i=1

ng−1∑

j=1

P sk
ij where P sk

ij :=
(gij

12)
2

gij
11g

ij
22

.

Area objective function.

(3.10) fA :=
1

(mg − 1)×(ng − 1)

mg−1∑

i=1

ng−1∑

j=1

(P ar
ij )2, where P ar

ij :=gij
11g

ij
22−(gij

12)
2 .
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Condition number objective function.

(3.11) fK :=
1

(mg − 1)×(ng − 1)

mg−1∑

i=1

ng−1∑

j=1

K2
2 (Tij) where K2(Tij)=‖Tij‖·‖T−1

ij ‖ .

We conclude with the following objective function having a different form from
(3.6) also taking in to consideration the area of the quadrilateral cells.

Difference area objective function.

(3.12) fDA := max
i,j=1,...,mg,ng

S(Cij) − min
i,j=1,...,mg,ng

S(Cij) .
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Fig. 1: Cij (left) and Cp
ij (right).

3.1 – The re-parametrization phase

To improve the quality of an algebraic grid with the help of a tensor product
re-parametrization, an univalent map R from the computational domain [0, 1]2

in to the parameter domain [0, 1]2 is here defined. The idea is to use only uniform
grid size on the computational domain and possibly non uniform grid size in to
the parameter domain [0, 1]2. The tensor product re-parametrization is based
on the transformation

(3.13) R : [0, 1]2 → [0, 1]2, R(u, v) :=

m∑

i=1

n∑

j=1

DijBi(u)Bj(v)

where Bi, i = 1, . . . , m and Bj , j = 1, . . . , n are, again, B-splines functions
with multiple end points. Note that the choice of multiple end points and the
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linear reproduction of B-splines is enough to guarantee the interpolation of the
boundary on [0, 1]2. Once the set of functions used in (3.13) is chosen, we need to
discuss how to choose the control directions Dij . We assume that D1j , Dmj , j =
1, . . . , n, belong to the boundary curves s = 0 and s = 1, respectively and
Di1, Din, i = 1, . . . , m to the remaining boundary curves t = 0 and t = 1,
respectively. The choice of the rest of the control directions will play a key role
for making advantage of the re-parametrization phase as it will be clarified in
the following algorithm.

Algorithm

1. Input m, n, mtab, ntab, φi, i = 1, 2, ψj , j = 1, 2.

2. Compute X as in (2.9) by using a suitable set of control points Q (or by means any
other algebraic method).

3. Construct the continuous transformation R by using (3.13) with an initial set of m · n
control directions Dij in [0, 1]2.

4. Compute the grid points XR := {X(R(l/(mtab − 1), k/(ntab − 1)))}mtab,ntab
l,k=0 .

5. Compute a new set of m · n control directions D∗
ij in [0, 1]2 solving an optimization

problem with one of the objective functions defined in Section 3 using the grid points XR.

6. Construct the new continuous transformation R∗ by using (3.13) with the new set of
control directions D∗

ij .

7. Compute the final grid X = {X(R∗(l/(mtab − 1), k/(ntab − 1)))}mtab,ntab
l,k=0 .

4 – Examples

In this section some simple surface grids are shown to better stress the capa-
bility of using the re-parametrization phase (that is moving the control directions
involved in (3.13)) while using the optimization procedure based on some of the
objective functions given in the previous section. The left figures we propose
refer to surface grids simply obtained by using the analytical expression of the
surface. The right figures refer to the surface grid obtained by minimizing the
objective functions specified in the caption of the figures. The routine constr of
the Matlab Optimization Toolbox is used in all cases. A more detailed investi-
gation of the implementation of the re-parametrization phase and a gallery of
resulting grids is in forthcoming paper.
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Fig. 2: Initial (left) and optimized grid based on the function fK (right).
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Fig. 3: Initial (left) and optimized grid based on the function fA (right).
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