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A new class of bivariate refinable functions

suitable for cardinal interpolation
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Dedicated to Prof. Laura Gori in occasion of her 70th birthday.

Abstract: In this paper a new class of bivariate refinable functions is constructed
by means of the directional convolution product between the tensor product of two uni-
variate refinable functions belonging to a particular class, shortly recalled in this paper,
with a third one in the same class. The new functions have many properties useful
in applications, such as compact support, positivity, central symmetry, refinability and
linear independence of the integer translates. Moreover, the so constructed functions
turn out to be suitable for solving the cardinal interpolation problem.

1 – Introduction

There has been a variety of recent results on the construction of multivari-
ate refinable functions, that is functions φ : Rs → R which are solutions of a
refinement equation of type

(1.1) φ(x) =
∑

α∈Zs

aαφ(Mx − α), x ∈ Rs .

The integer matrix M is the so-called dilation matrix with all eigenvalues having
modulus greater than 1. Equivalently, M satisfies limk→∞ M−k = 0. The matrix
sequence a = {aα, α ∈ Zs} is a compactly supported sequence called the refi-
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nement mask (see, for instance, [1], [9] and references therein). In the bivariate
case, there are several examples of nonseparable, i.e. non tensor product based,
refinable functions known. Beside the box splines [2], [8], satisfying the refine-

ment equation with M = 2I, there are refinable functions with M =
(

1 −1

1 1

)

or M =
(

1 1

1 −1

)
[3], [12]. The use of nonseparable refinable functions is more

appropriate for certain applications in image processing. Though, in general,
their construction and the analysis of their properties are more involved than
the tensor product based functions. This is not the case with box splines whose
construction uses directional convolution of B-splines and, thus, is simple and
their properties easily follow from the properties of the B-splines.

We remark that the convolution product is a simple tool commonly used to
improve the smoothness and the order of approximation of a function or a family
of functions when approximating a curve or surface (see [1] or [9]). For instance,
in [5] repeated convolutions are used to define new families of refinable function
vectors with increasing smoothness, degree and approximation order.

The above considerations motivated us in constructing and investigating
a new family of bivariate refinable functions which are obtained by directional
convolution. A first approach was proposed in [6] where the concept of direc-
tional convolution product has been used with one univariate function being the
characteristic function of the interval [0, 1). Here, we consider a more general
case: given a bivariate function which is a tensor product of compactly sup-
ported univariate refinable functions, we construct a new bivariate function by
means of directional convolution of the given function and some other univariate
refinable function. We so obtain a wide class of bivariate functions tuned by free
parameters which permit to control and improve smoothness and polynomial
reproducibility. We observe that the functions introduced in [6] are contained in
the family here presented so that the results on polynomial reproducibility and
cardinal interpolation of Section 3 and 4 applied also to those functions.

The univariate functions here used belong to a large class of compactly
supported refinable functions introduced in [10], which we will call GP functions.
The GP functions have many useful properties, such as total positivity and
central simmetry, like the B-splines with integer knots which are a particular
case of them. The differences between the B-splines and the GP functions are
mainly due to the fact that their masks contain one or more extra parameters.
These parameters are additional degrees of freedom allowing to use GP functions
more effectively in several applications (see, for instance, [7], [11]). In particular,
GP functions apply better than B-splines in the cardinal interpolation of non
smooth functions [16]. This is why we here investigate the behaviour of the newly
constructed bivariate refinable functions when solving the cardinal interpolation
problem.

The outline of the paper is as follows. In Section 2 the definition and the
main properties of the GP refinable functions are recalled. In Section 3 the new
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class of convolved bivariate refinable functions is characterized and their main
properties are investigated. Section 4 is devoted to the discussion of the solution
of cardinal interpolation problem. Finally, in Section 5 some examples are given.

2 – Preliminaries

Let Φ : R2 → R and ϕ : R → R be two refinable functions, bivariate and
univariate, respectively. Here, we consider the special case M = 2I.

The convolution product between Φ and ϕ along the direction e ∈ Z2 is
defined as

(2.1) Ψ(x) := (Φ ∗e ϕ)(x) :=

∫

R
Φ(x − et)ϕ(t) dt, x ∈ R2 .

If aΦ and aϕ are the refinement mask of Φ and ϕ, respectively, it is easy to show
that Ψ is refinable too, with mask

(2.2) aΨ =
1

2
(aΦ ∗e aϕ), that is aΨ

α =
1

2

∑

β∈Z
aΦ

α−eβ aϕ
β , α ∈ Z2 .

In order to construct a new class of bivariate refinable functions we choose Φ as
tensor product of two univariate refinable functions, so that

(2.3) Ψ = (ϕ1 ⊗ ϕ2) ∗e ϕ3 .

In particular, as convolution factors ϕi, i = 1, 2, 3, we choose univariate GP refin-
able functions which are compactly supported, centrally symmetric and totally
positive functions with prescribed smoothness. Therefore, before proceeding, we
recall the main properties of the GP functions (see [10] for more details).

Let us denote by ϕ(n,h), a GP refinable function of support [0, n+1], n ≥ 2.
For any (n, h), 1 ≥ h ≥ [n/2], held fixed, ϕ(n,h) depends on h real parameters

b
(n,h)
α,0 , α = 0, 1, . . . , h − 1, satisfying

(2.4)

⎧
⎪⎪⎨
⎪⎪⎩

b
(n,h)
h,0 = 22h−n − 2

h−1∑

α=0

b
(n,h)
α,0 ,

det (b
(n,h)
2α−β ;α, β = 1, . . . , p) > 0, p = 1, . . . , 2h ,

with symmetric conditions

(2.5) b
(n,h)
2h−α,0 = b

(n,h)
α,0 , α = 0, 1, . . . , 2h .



64 COSTANZA CONTI – FRANCESCA PITOLLI [4]

The corresponding mask a(n,h) = {a(n,h)
α , 0 ≤ α ≤ n + 1} turns out to be

(2.6)

⎧
⎪⎪⎨
⎪⎪⎩

a
(n,h)
α =

h∑

β=0

b
(n,h)
β,β

(
n + 1 − 2β

α − β

)
, α = 0, . . . , n + 1 ,

a
(n,h)
α = 0, otherwise ,

where the coefficients b
(n,h)
β,β are defined recursively as follows:

(2.7) b
(n,h)
α,β = b

(n,h)
α,β−1−

(
2h − 2β + 2

α − β + 1

)
b
(n,h)
β−1,β−1, β = 1, 2, . . . , α, α = 1, . . . , h .

(We assume
(
α
β

)
= 0 for β ≤ 0 or β > α.)

The properties of ϕ(n,h) are related to the structure of the symbol

(2.8) a(n,h)(z) :=
∑

α∈Z
a(n,h)

α zα = (1 + z)n−2h+1 q
(n,h)
2h (z) ,

where

(2.9) q
(n,h)
2h (z) =

2h∑

α=0

b
(n,h)
α,0 zα, q

(n,h)
2h (1) = 2−n+2h .

Due to the factor (1+z)n−2h+1 in (2.8), the function ϕ(n,h) belongs to Cn−2h(R)
and reproduces polynomials up to degree n − 2h. Moreover, ϕ(n,h) is positive
in (0, n + 1) and it is symmetric with respect to the center of its support, i.e.
ϕ(n,h)(x) = ϕ(n,h)(n + 1 − x).

The Fourier transform ϕ̂(n,h)(ω) satisfies the refinement equation

(2.10) ϕ̂(n,h)(ω) = a(n,h)
(
e−i ω

2

)
ϕ̂(n,h)

(ω

2

)
, ω ∈ R ,

thus, since on the unit circle a(n,h)(z) vanishes if and only if z = −1, from (2.10)
it follows that ϕ̂(n,h)(ω) vanishes if and only if ω ∈ 2πZ \ {0}. In other words,
the GP functions do not have real periodic zeros.

Concerning the integer translates of ϕ(n,h), it is known that the function
system {ϕ(n,h)(x − α), α ∈ Z} is linearly independent, stable, totally positive
and forms a partition of unity so that any GP refinable function generates a
multiresolution analysis on L2(R). We recall that linear independence of the
integer translates of a functions is equivalent to the property that its Fourier
transform has no periodic complex zeros [15].

As a final remark, we observe that classical B-splines on integer knots are a
particular case of GP functions. In fact, by choosing

(2.11) b
(n,h)
0,0 =

1

2n
, b

(n,h)
α,0 =

(
2h

α

)
b
(n,h)
0,0 , α = 1, 2, . . . , h − 1 ,

the mask (2.6) reduces to the mask of the B-spline of degree n.
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3 – A new class of bivariate refinable functions

Using in (2.3) the GP refinable functions, we here construct a convolved
function Ψ(n,h) where n = (n1, n2, n3) and h = (h1, h2, h3). Let us call admis-
sible all the values (n,h) such that ni ≥ 2 and 1 ≥ hi ≥ [ni/2], i = 1, 2, 3. The
bivariate function Ψ(n,h) turns out to have the following expression

(3.1)

Ψ(n,h)(x1, x2) : = (ϕ(n1,h1) ⊗ ϕ(n2,h2)) ∗e ϕ(n3,h3)(x1, x2) =

=

∫

R
ϕ(n1,h1)(x1 − e1t)ϕ

(n2,h2)(x2 − e2t)ϕ
(n3,h3)(t) dt ,

where e = (e1, e2). From now on, we are going to consider e ∈ {−1, 0, 1}2.
From the properties of ϕ(ni,hi) it follows that Ψ(n,h) is compactly supported on
D ⊂ [0, n1 + 1 + e1 · (n3 + 1)]× [0, n2 + 1 + e2 · (n3 + 1)], symmetric with respect
to the center of D, and non negative. Moreover, its symbol is

(3.2)
a(n,h)(z1, z2) = (1 + z1)

n1−2h1+1(1 + z2)
n2−2h2+1(1 + ze1

1 ze2
2 )n3−2h3+1×

× q
(n1,h1)
2h1

(z1) q
(n2,h2)
2h2

(z2) q
(n3,h3)
2h3

(ze1
1 ze2

2 ) .

Proposition 3.1. For any admissible (n,h), the function Ψ(n,h) has lin-
early independent integer translates and generates a MRA on L2(R2).

Proof. To prove the linear independence, it is sufficient to show that the
set of the complex periodic zeros of Ψ̂(n,h) is empty [15] that is

ZC
Ψ(n,h) = {θ ∈ C2|Ψ̂(n,h)(θ + 2πα) = 0, α ∈ Z2} = {∅} .

This follows from the fact that

Ψ̂(θ1, θ2) = ϕ̂(n1,h1)(θ1)ϕ̂
(n2,h2)(θ2)ϕ̂

(n3,h3)(e1θ1 + e2θ2)

and the univariate GP functions have no periodic complex zeros.
Concerning the stability, we have to prove that the set of the real periodic

zeros of Ψ̂(n,h) is empty, that is

ZR
Ψ(n,h) = {ω ∈ R2|Ψ̂(n,h)(ω + 2πα) = 0, α ∈ Z2} = {∅} .

Now, as the Fourier transform of a GP function vanishes if and only if ω+2πα ∈
2πZ2, and

Ψ̂(n,h)(ω + 2πα) = Φ̂(ω + 2πα)ϕ̂(e · (ω + 2πα)) ,

where Φ̂ = ϕ̂(n1,h1) ⊗ ϕ̂(n2,h2) and ϕ̂ = ϕ̂(n3,h3), it follows that if ω is not a
multiple of 2π, then ω + 2πα /∈ 2πZ2 and Φ̂(ω + 2πα) = 0, ϕ̂(e · (ω + 2πα)) = 0,
so that ω is not a periodic zero. If ω is a multiple of 2π, then ω + 2πα ∈ 2πZ2

and Φ̂(ω + 2πα) vanishes for any value α ∈ Z2 except α = α0 := − ω
2π . But, for

α = α0 one has ϕ̂(e · (ω + 2πα0)) = ϕ̂(0) = 1, so that ω is not a periodic zero
and ZR

Ψ(n,h) is empty.
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The approximation properties of a given refinable function can be derived
from the reproduction of polynomial spaces by projection on the space of its
integer translates. For the just constructed refinable functions the following
proposition holds.

Proposition 3.2. Let Πp := span{xμ := xμ1

1 xμ2

2 : |μ| = μ1 + μ2 ≤ p}, be
the space of the bivariate polynomials of degree p. For any admissible (n,h), the
refinable function Ψ(n,h) reproduces bivariate polynomials up to degree

(3.3) p = min(n1 − 2h1 + |e1| · (n3 − h3 + 1) , n2 − 2h2 + |e2| · (n3 − h3 + 1) ) .

In particular,
∑

α∈Z2 Ψ(n,h)(· − α) = 1.

Proof. From (3.2) it follows that Dμ(a
(n,h)
Ψ (z))|z=(−1,−1)γ = 0 for all γ ∈

{(1, 0), (0, 1), (1, 1)} and |μ| ≤ p, where

p = min(n1 − 2h1 + |e1| · (n3 − h3 + 1), n2 − 2h2 + |e2| · (n3 − h3 + 1)) .

Thus, the polynomial reproduction follows from Proposition 2.1 in [4].

4 – The cardinal interpolation problem

Aim of this section is to show that any function Ψ(n,h) with admissible
(n,h) can be profitably used in applications as cardinal interpolation.

By cardinal interpolation problem (for short, CIP) with the translates of a
compactly supported function F we mean the following.

Given a data sequence d = {dα, α ∈ Z2} and the system {F (· −α), α ∈ Z2}, we
seek a sequence c = {cα, α ∈ Z2} such that the function

(4.1) s(x) :=
∑

α∈Z2

cαF (x − α), x ∈ R2 ,

satisfies

(4.2) s(β) = dβ , β ∈ Z2 .

It is well known that if the trigonometric polynomial F̃ (ω) :=
∑

α∈Z2 F (α)×
×e−iαω does not vanish for all ω in R2, then there exists a unique solution of
the CIP (see, for instance, [13, Sect. 3]). In that case the CIP is said to be
solvable and we have C̃(ω) = D̃(ω)/F̃ (ω), where D̃(ω) =

∑
α∈Z2 dαe−iαω and

C̃(ω) =
∑

α∈Z2 cαe−iαω, so that the sequence c can be obtained by inverse
discrete Fourier transform.

Theorem 4.1. Let us denote by Ψ
(n,h)
c the shift of a given Ψ(n,h) centered

at 0. For any Ψ
(n,h)
c with admissible (n,h), the CIP is solvable.
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Proof. From the Poisson summation formula we can write
∑

α∈Z2

Ψ(n,h)
c (α)e−iαω =

∑

α∈Z2

Ψ̂(n,h)
c (2πα − ω) ,

and by the symmetry

∑

α∈Z2

Ψ̂(n,h)
c (2πα − ω) =

∑

α∈Z2

Ψ̂(n,h)
c (2πα + ω) .

Since {Ψ(n,h)
c (x−α), α∈Z2} are linearly independent, it follows that {Ψ̂(n,h)

c (ω+
2πα), α ∈ Z2} are linearly independent as well [14, Theorem 5.1], so that∑

α∈Z2 Ψ
(n,h)
c (α)e−iαω = 0 and the CIP is solvable.

Obviously, the solvability of the CIP for any Ψ
(n,h)
c with admissible (n,h)

guarantees the existence of the fundamental function L(n,h) such that L(n,h)(β)=
δβ,0 for all β ∈ Z2. As showed in [2, Chapter 9], L(n,h) has the analytical
expression

(4.3) L(n,h)(x) :=
∑

α∈Z2

�(n,h)
α Ψ(n,h)

c (x − α), x ∈ R2 ,

where the sequence ���(n,h) = {�(n,h)
α , α ∈ Z2} decays exponentially as ‖α‖ goes

to infinity. Thus, L(n,h) also decays exponentially and the interpolating function
s(n,h) can be represented as

(4.4) s(n,h)(x) :=
∑

α∈Z2

dα L(n,h)(x − α), x ∈ R2 .

We remark that the exponential decay of L(n,h), implies the convergence of the
above given series also in case the data sequence d has power growth.

5 – A few examples

In this section we shall give some examples of GP functions and we shall
construct the corresponding bivariate refinable functions for solving the cardinal
interpolation problem.

In case h = 1 the mask (2.6) depends on one parameter b
(n,1)
0,0 that for

easy computation we set as b
(n,1)
0,0 = 2−k, where k ≥ 2 is a real number. In

the following we shall denote the corresponding mask and refinable function as
a(n,k) and ϕ(n,k), respectively. From (2.6) it follows

(5.1) a(n,k)
α =

1

2h

[(
n + 1

α

)
+ 4(2k−n − 1)

(
n − 1

α − 1

)]
, α = 0, . . . , n + 1 ,



68 COSTANZA CONTI – FRANCESCA PITOLLI [8]

so that the symbol is

(5.2) a(n,k)(z) =
1

2k
(1 + z)n−1(z2 + (2k−n+2 − 2)z + 1) .

To have an idea of the behavior of the GP functions in fig. 1 the graphs of ϕ(n,k)

for n = 3 and k = 3, 4, 8 are shown. The corresponding masks are a(3,3) =
1
23 {1, 4, 6, 4, 1}, a(3,4) = 1

24 {1, 8, 14, 8, 1}, a(3,8) = 1
28 {1, 128, 254, 128, 1}. Note

that ϕ(3,3) is just the cubic B-spline with integer knots.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Fig. 1: Graphs of ϕ(3,3)(−), ϕ(3,4)(−−) and ϕ(3,8)(.−).

Using three GP functions ϕ(ni,ki), i = 1, 2, 3, in (3.1), we can construct the
bivariate function

(5.3) Ψ(n,k) = (ϕ(n1,k1) ⊗ ϕ(n2,k2)) ∗e ϕ(n3,k3) .

In particular, we consider here the case when (n1, k1) = (n2, k2) = (n3, k3) =
(n, k) and e = (1, 1). For shortness in the following, we use the unique superscript
(n, k). The mask of the convolved functions for (n, k) = (3, 3) and (n, k) = (3, 8)
are

a(3,3) =
1

27

⎡
⎢⎢⎢⎢⎢⎣

0 1 4 6 4 1
1 8 22 28 17 4
4 22 48 52 28 6
6 28 52 48 22 4
4 17 28 22 8 1
1 4 6 4 1 0

⎤
⎥⎥⎥⎥⎥⎦
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and

a(3,8) =
1

217

⎡
⎢⎢⎢⎢⎢⎣

0 1 128 254 128 1
1 256 16638 32640 16385 128

128 16638 65024 80900 32640 254
254 32640 80900 65024 16638 128
128 16385 32640 16638 256 1
1 128 254 128 1 0

⎤
⎥⎥⎥⎥⎥⎦

.

The associated refinable functions are shown in fig. 2. Note that the function
having mask a(3,3) is a three directional box-splines.

Fig. 2: Graph of the bivariate functions Ψ(3,3) (left) and Ψ(3,8) (right).

Finally, we consider the solution of the CIP first for data taken from the
non continuous function χ[−4,4]2 . In particular the left picture displays the result

we get by using the three directional box-spline Ψ(3,3) while the right picture
concerns the use of Ψ(3,8). The reduction of the Gibbs effect when increasing
k is evident: the overshoot of the interpolating function is 7% in the first case
and 3% in the second one.
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Fig. 3: Solution of the CIP with Ψ(3,3) (left) and Ψ(3,8) (right).

As a second example we consider the solution of the CIP for data taken from
the pyramid having losang shape support with vertices {(2, 0), (0, 2), (−2, 0),
(0,−2)}; the pyramid is central symmetric and reaches the maximum value 2
at the origin. Again the left picture displays the result we get by using the
three directional box-spline Ψ(3,3) while the right picture is the result with the
convolved function Ψ(3,8). The picture shows that also in this case the Gibbs
effect near the basis of the pyramid is reduced when k increases; moreover, while
the interpolant constructed by means of Ψ(3,3) shows some smoothing of the
edges of the pyramid, the interpolant constructed by means of Ψ(3,8) does not.

The examples show that the additional degree of freedom given by the extra
parameter allows us to choose, among the functions in the family, the one which
provides better performances in the application we are interested in.

Fig. 4: Solution of the CIP with Ψ(3,3) (left) and Ψ(3,8) (right).
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