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Abstract: A new class of refinable functions extending the GP class introduced
in [12] is presented. It is characterized by a symbol with fractional exponent that gives
rise to non-compactly supported refinable functions. Nevertheless, the decay and sta-
bility properties of these refinable functions allow them to generate a multiresolution
analysis (MRA) of L2(R). For suitable values of their parameters these refinable func-
tions reduce to the fractional B-splines introduced in [16], while, for integer α, they
interpolate the GP refinable functions. Furthermore, this class of refinable functions is
proved to be closed with respect to convolution and fractional differentiation, allowing
for its convenient the applicability to Sobolev spaces. The fractional refinable functions
introduced here show an useful order of polynomial exactness.

1 – Introduction

Cardinal B-splines are well known in the literature. Their appealing prop-
erties allow for their diverse applications in approximation theory. In particular,
in the context of multiresolution analysis, they exhibit crucial properties such
as refinability, polynomial reproduction, total positivity and useful differential
and convolution formulae. A class of totally positive, centrally symmetric and
compactly supported refinable functions is given in [12] as an extension of the
B-spline class which we will refer to as the class of the GP refinable functions.
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Due to their localized support, in many applications these GP refinable func-
tions give a better numerical results than the B-splines themselves [4], [8], [10]
and [11], [13], [14].

Recently, in [16], the class of cardinal B-splines has been extended by intro-
ducing a non integer exponent in the discrete Fourier transform. Following this
approach, we construct an extension of the GP refinable class and investigate its
MRA’s, approximation, differentiation and convolution properties. The paper is
organized as follows. In Section 2, we review some preliminary facts and estab-
lish some notations to be used later. In Section 3, a brief description of the class
of fractional B-splines is presented. In Section 4, a characterization and the main
features of the class of GP refinable functions as well as a convolutional property
are provided. In Section 5, the class of GP refinable functions is extended to
a fractional index in the mask giving rise to symbols with fractional exponent.
These new refinable functions generated in this way are no longer compactly sup-
ported nor positive. Nevertheless, we show that they generate a MRA of L2(R).
Moreover they are characterized by a simple convolution relation between suit-
able minimally supported refinable functions and suitable fractional B-splines.
Finally, in Section 6, the closure of this new class with respect to convolution and
differentiation is proved and a surprisingly high order of polynomial exactness
for the fractional refinable functions is proved.

2 – Preliminaries

In this section we introduce some notation and definitions. We call refinable
function ϕ a solution of a refinement equation

(1) ϕ(x) =
∑

k∈Z
akϕ(2x − k), x ∈ R

where the sequence

(2) a = {ak}k∈Z

is called the mask of ϕ and here is supposed to satisfy

(3)
∑

k∈Z
a2k =

∑

k∈Z
a2k+1 = 1 .

The Fourier transform of (1) yields

(4) ϕ̂(ω) =
1

2
m(ω/2)ϕ̂(ω/2) ,
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where ϕ̂ is the Fourier transform of ϕ, namely

(5) ϕ̂(ω) :=

∫
ϕ(x)e−iωx dx, ω ∈ R ,

and m is the trigonometric series of the mask a, i.e.

(6) m(ω) :=
∑

k∈Z
ake−iωk, ω ∈ R .

By the change of variable z = eiω, (6) gives rise to the symbol associated to the
mask a, i.e.

(7) b(z) :=
∑

k∈Z
akzk .

In the following we shall need the convolution product between the functions f
and g, defined as

(8) (f ∗ g)(x) :=

∫

R
f(τ)g(x − τ) dτ .

It is known that the convolution of two refinable functions is still refinable and its
discrete Fourier transform can be expressed through the product of their discrete
Fourier transforms [3]. It is also worthwhile to recall (see [7], [5], for instance)
that a refinable function enjoying suitable conditions generates a multiresolution
analysis (MRA) of L2(R), i.e. a nested sequence of closed subspaces Vj , j ∈ Z
of L2(R), such that

• (∪j∈ZVj) = L2(R);
• ⋂

j∈Z Vj = {0};
• ∃ a Riesz basis of V0, i.e. a basis {ek}k∈Z of V0 satisfying the Riesz condition

(9) A||c||l2 ≤
∥∥∥∥∥
∑

k∈Z
ckek

∥∥∥∥∥
L2

≤ B||c||l2 , ∀ (ck)k∈Z ∈ l2(Z) ,

for some positive constants A and B such that 0 < A ≤ B < ∞.

The space Vj j ∈ Z are generated from ϕ in the following way

(10) Vj := span{2j/2ϕ(2j • −k), k ∈ Z} ,

or equivalently by the Riesz property as

(11) Vj :=

{
f : f =

∑

l∈Z
cl2

j/2ϕ(2j • −k), (ck)k∈Z ∈ l2(Z)

}
.
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3 – Fractional cardinal B-splines

In the paper [16], the extension of the class of the cardinal B-splines is
provided by introducing the concept of fractional finite difference operator. Their
starting point is the definition of the classical cardinal B-spline, i.e. the B-spline
on integer knots. Let us consider the truncated power function

(12) Tn(x) := (max(0, x))n, x ∈ R

and the finite difference operator

(13) Δn f(x) :=

n∑

k=0

(
n

k

)
(−1)kf(x − k), , x ∈ R .

Then, the classical B-spline is defined in the following way

(14) Bn := Δn+1Tn .

From this definition Fourier transform of Bn comes

(15) B̂n(ω) =

(
1 − e−iω

iω

)n+1

, ω ∈ R .

Now, to extend the definition (14) to a real index α, consider the Gamma function

(16)

⎧
⎨
⎩

Γ(α) =

∫ +∞

0

xα−1e−x dx for α > 0 ,

Γ(α) = α−1Γ(α + 1) for α < 0 ,

and the generalized binomial coefficient,

(17)

(
α

k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α − k + 1)
, k ∈ Z ,

that, for integer α, reduces to the usual binomial coefficient. We note that,
from (16) it follows that lim Γ(α) = −∞ for α → 0− and lim Γ(α) = +∞ for
α → 0+ and hence, by recursion, that lim Γ(α) = (−1)|k|+1 ·∞ for α → k−, and
lim Γ(α) = (−1)|k| · ∞ for α → k+. These facts imply

(18)

(
α

k

)
= 0, for k < 0 ,

and

(19) sign

(
α

k

)
= (−1)k, for k > α − 1 .
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Hence, defining the fractional finite difference operator

(20) Δα f(x) :=
∑

k≥0

(
α

k

)
(−1)kf(x − k) ,

leads to the fractional cardinal B-spline

(21) Bα
+ :=

1

Γ(α + 1)
Δα+1 Tα

of [16]. The binomial theorem

(22)
(1 + z)β =

∑

k≥0

(
β

k

)
zk, β ≥ 0, |z| ≤ 1 ,

β ∈ R, z ∈ C ,

allows one to obtain the following expression for the Fourier transform of Bα
+,

(23) B̂α
+(ω) =

(
1 − e−iω

iω

)α+1

, ω ∈ R .

For non integer α, the authors prove that two properties of the classical B-
spline get lost, i.e. Bα

+ is no longer positive and no longer compactly supported;
nevertheless, they prove that Bα

+, for α > −1, is bounded and has a decay at
infinity proportional to |x|−α−2, i.e.

(24) Bα
+(x) = O

(
1

|x|α+2

)
, for |x| → ∞ .

However, most of the B-splines properties are preserved and in some cases im-
proved. They prove that Bα

+ is refinable with mask

bα
k =

1

2α

(
α + 1

k

)
,

and corresponding symbol

(25) bα(z) =
1

2α
(1 + z)α+1 .

Moreover, the functions {Bα
+(· − k)}k∈Z form a Riesz basis of V0, giving rise,

hence, to a MRA of L2(R).
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They prove also that Bα
+ fulfills other interesting properties, as the following

convolution relation

(26) Bα1
+ ∗ Bα2

+ = Bα1+α2+1
+ , α1, α2 > −1 ,

the following fractional differentiation relation

(27) DγBα
+(x) = ΔγBα−γ

+ (x), α > −1, γ ∈ R ,

where the operator Dγ is defined in the Fourier domain

(28) (D̂γf)(ω) := (iω)γ f̂(ω) .

Finally, Bα
+ has order of polynomial exactness d = �α� + 1, i.e. ∃ a sequence el

k

such that

(29) xl =
∑

k∈Z
el
kBα

+(x − k), l = 0, . . . , �α� .

Remark 1. Note that, for integer values of α, (20) reduces to (13), i.e. the
fractional B-splines interpolate the cardinal B-splines.

Remark 2. The decay in (24) implies that Bα
+ ∈ L1(R).

Remark 3. It is worthwhile to remark that (27) allows for the application
of such fractional B-splines to partial differential problems in Sobolev spaces
with fractional indices.

Remark 4. As for (29), we recall that the cardinal B-spline Bn reproduces
polynomials up to the degree n.

4 – On a class of MRAs on L2(R)

Our starting point is the class of refinable functions ϕn,h presented in [12]
and defined through an explicit expression of the masks. We show two different
subclasses of it. The first comes out to be

(30)
ah,k =

1

2h

[(
n + 1

k

)
+ 4(2h−n − 1)

(
n − 1

k − 1

)]
,

k = 0, 1, . . . , n + 1 ,

where h ≥ n is a real parameter and n ≥ 2, while the second is

(31) al,m,k =
1

2l

[(
n + 1

k

)
+(2m − 4)

(
n − 1

k − 1

)
+(2−n+4+l − 2m+2)

(
n − 3

k − 2

)]
,
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(32)
k = 0, 1, . . . , n + 1, with l ≥ n − 2 + log2(1 + 2m−1) ,

m ≥ n real parameters and n ≥ 2 .

We emphasize that (30) and (31) can be considered both as generalizations of
the masks of the cardinal B-splines to whom ϕn,h reduce for h = n, preserving
all their appealing properties. In fact, the refinable functions ϕ are compactly
supported on [0, n + 1], centrally symmetric and totally positive. Moreover, they
belong to Cn−2(R) and Cn−4(R) respectively and they have order of exactness
d = n − 1 ≥ 0 and d = n − 3 ≥ 0 respectively. Moreover, they give rise
to a MRA of L2(R). We shall call Φ2 and Φ4, the spaces generated by the
refinable functions ϕn,h ∈ Cn−2(R) corresponding to the masks in (30) and
by the refinable functions ϕn,H ∈ Cn−4(R), H = (l, m) corresponding to the
masks in (31), respectively. Moreover, from now on, the indices n, h in ϕn,h are
assumed to be n ∈ IN and h ∈ R. In [12], it is proved that the GP class is closed
with respect to the convolution and in [13] a relation for the convolution of two
functions in Cn−2(R), depending on the same parameter h, is given. Instead,
for any two refinable functions in Cn−2(R), the following general result holds.

Theorem 1. Let be ϕn1,h1
, ϕn2,h2

∈ Φ2, with h1 ≥ n1 and h2 ≥ n2. Then

(33) ϕn1,h1
∗ ϕn2,h2

= ϕn1+n2+1,H ∈ Cn1+n2−4 ,

being H = (l, m), with l = h1 + h2 + 1 and m = log2(2
h1−n1+2 + 2h2−n2+2 − 4).

Proof. We call bn1,h1 , bn2,h2 and bn1+n2+1,H the symbols of ϕn1,h1 , ϕn2,h2 ,
and ϕn1+n2+1,H , respectively. Hence, it is sufficient to prove that

(34) bn1,h1
(z) bn2,h2

(z) = bn1+n2+1,H(z) .

As matter of fact, one has

(35)

bn1,h1
(z) bn2,h2

(z) =

=
(1 + z)n1−1

2h1
(z2 + (2h1−n1+2 − 2)z + 1)×

× (1 + z)n2−1

2h2
(z2 + (2h2−n2+2 − 2)z + 1) =

= (1 + z)(n1+n2+1)−4+1 qH(z) =: bN,H(z) ,

with N = n1+n2+1, qH(z) = 1
2l (z

4+2mz3+(2−N+4+l−2−2m+1)z2+2mz+1),

l = h1 + h2 + 1 and m = log2(2
h1−n1+2 + 2h2−n2+2 − 4).
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In the following, we will need an explicit expression of the Fourier transform
of ϕn,h.

Let us begin with a first result on the zeros of ϕ̂n,h.

Theorem 2. Let be ϕ̂n,h the Fourier transform of ϕn,h, with n ≥ 2 and
h ≥ n, n ∈ IN, h ∈ R.

Then

(36) ϕ̂n,h(ω) = 0 if and only if ω = 2kπ, k ∈ Z\{0} ,

i.e. ϕ̂n,h has the same zeros as the function sinc(ω/2).

Proof. Recalling that ϕn,h has order of exactness d = n − 1 if h > n and
d = n + 1 if h = n, with n ≥ 2, the Strang and Fix condition

(37) ϕ̂(0)=1,
dlϕ̂

dωl
(2kπ) = 0, k ∈ Z\{0}, l = 0, . . . , d − 1 ,

implies that the points ω = 2kπ, k ∈ Z\{0}, are zeros of ϕ̂n,h. Viceversa, if
θ 
= 2kπ were a zero of ϕ̂n,h, then, for (4) all the values θ

2l , l ∈ Z, should be
zeros of ϕ̂n,h. The continuity of ϕ̂n,h would imply ϕ̂n,h(0) = 0 in contradiction
with (37).

Now we can prove semi-explicit formulae for ϕ̂n,h and for ϕn,h ∈ Φ2.

Theorem 3. Let be ϕ̂n,h the Fourier transform of ϕn,h ∈ Φ2, with n ≥ 2
and h ≥ n.

Then ϕ̂n,h can be written in the following way

(38) ϕ̂n,h(ω) =

(
1 − e−iω

iω

)n−1

fn,h(ω) ,

where

(39)

⎧
⎨
⎩

fn,h(ω) =

(
1 − e−iω

iω

)2

, for h = n ,

fn,h(2kπ) 
= 0, ∀k ∈ Z, for h > n ,

moreover, in the last case, fn,h verifies the following relation

fn,h(ω) = μ(ω/2)fn,h(ω/2) ,

with

(40) μ(ω/2) = 2n−h−2[e−iω + (2h−n+2 − 2)e−iω/2 + 1] .
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Proof. (38) and (39) are deduced from the Strang and Fix condition (37)
with the same observation on the exactness order of ϕn,h as in the previous
theorem, while (40) comes out substituting (38) in (4) and using the explicit
expression for the function m(ω) [12].

From (38), by antitransforming one deduces the following “zero at π”-
condition.

Theorem 4. Let be h ≥ n and n ≥ 2. Then for any GP refinable function
ϕn,h ∈ Φ2 one has

ϕn,h = (Bn−2 ∗ gn,h) ,

where Bn−2 is the B-spline of degree n−2 and ĝn,h does not vanish on the points
ω = 2kπ, k ∈ Z\{0}.

Proof. The result follows directly from (38) and (39), recalling (14) and
observing that, since ĝn,h(ω) ≡ fn,h(ω), for the Strang and Fix condition, gn,h

does not have any order of exactness.

Remark 5. Theorem 3 claims that any GP refinable function of Φ2, with
exactness order equal to n−1 is the convolution of the B-spline having the same
exactness order and a distribution. Hence, the part of the GP refinable function
that carries out the order of exactness is known explicitly, and that might allow
one to obtain explicit approximation formulae.

As for the numerical applications, when h is increasing, these refinable func-
tions show better performances if compared with the B-splines, due to the better
localization of their supports (see, for instance [4], [10], [11], [13], and [14]).

5 – Fractional refinable functions

Starting from (31), we consider an index α ∈ R+ and exploiting (17), (18)
and (19), we define the mask aα

h whose components are

aα
h,k =

1

2h

[(
α + 1

k

)
+ 4(2h−α − 1)

(
α − 1

k − 1

)]
,(41)

with k = 0, 1, . . . ,(42)

and h ≥ α. Note that, for h = α, one obtains

(43) aα
α,k =

1

2α

(
α + 1

k

)
, k ∈ Z ,
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that is the mask of the fractional B-spline Bα
+. Due to (22), the symbol associated

with the sequence aα
h is given, for |z| ≤ 1, by the formula

(44) bα
h(z) =

1

2h
[(1 + z)α+1 + 4(2h−α − 1)z(1 + z)α−1] ,

that can be extended analytically to the whole complex plane C; the correspond-
ing refinement equation turns out to be

(45) ϕα
h(x) =

∑

k≥0

aα
h,kϕα

h(2x − k), x ∈ R .

As first point, it comes interesting to characterize the class of functions ϕα
h

through a convolution formula between a suitable minimally supported GP re-
finable function and a suitable fractional B-spline.

Theorem 5. For any α ≥ 2 and for any h ≥ α, the following convolution
relation holds

(46) ϕα
h = (ϕ2,ĥ ∗ Bα−3

+ ) ,

where ĥ = h − α + 2, ϕ2,ĥ is a GP refinable function of Φ2 with support [0, 3]

and Bα−3
+ is the fractional B-spline of fractional degree α − 3.

Proof. The claim follows from Theorem 1, observing that, for ĥ = h−α+2,
one has

(47) bα
h(z) =

1

2
b2,ĥ(z)bα−3(z) ,

being b2,ĥ(z) = 1

2ĥ
(1 + z)(z2 + (2ĥ − 2)z + 1) the symbol associated to ϕ2,ĥ and

bα−3(z) = 1
2α−3 (1 + z)α−2 the symbol associated to Bα−3

+ .

As first consequence, (46) guarantees the refinability of the fractional func-
tions ϕα

h , since ϕα
h is the convolution of two refinable functions. Moreover, it

suggests to derive some properties of the fractional refinable functions from the
analogous properties of the fractional B-splines. In this regard, through (46) we
can analyze the decay of ϕα

h to the infinity.

Theorem 6. For any α > 2 and for any h ≥ α, one has

(48) ϕα
h ∈ L2(R) .
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Proof. The Fourier transform applied to (47) yields

(49) ϕ̂α
h(ω) = ϕ̂2,ĥ(ω)B̂α−3(ω) .

We observe that ϕ̂2,ĥ(ω) and B̂α−3(ω) are bounded on R. Also, since ϕ2,ĥ is

compactly supported and Bα−3 belongs to L2(R) for α > 2 [16], then for the
Parseval’s identity one has that ϕ̂2,ĥ and B̂α−3 are bounded functions of L2(R);
that implies the square integrability of ϕ̂α

h and hence of ϕα
h on R.

The convolution formula (46) allows one also to prove that the functions
ϕα

h(x − k) form a stable basis for the space V0.

Theorem 7. For any α > 2 and for any h ≥ α, the refinable functions
{ϕα

h(· − k)}k∈Z fulfill the Riesz condition:

(50) A||c||l2 ≤
∥∥∥∥∥
∑

k∈Z
c(k)ϕα

h(x − k)

∥∥∥∥∥
L2

≤ B||c||l2 , ∀c ∈ l2(Z) ,

with 0 < A ≤ B < ∞.

Proof. It is known (see for instance [5]) that (50) is equivalent to bound
the function

a(ω) :=
∑

l∈Z
|ϕ̂α

h(ω + 2lπ)|2

from above and from below with the constants A and B respectively. To find a
lower bound one observes that since a(ω) is symmetric and 2π-periodic, we can
restrict its study to ω ∈ [0, 2π]. So, for (46), we have

(51)

a(ω) =
∑

l∈Z
|ϕ̂ĥ,2(ω + 2lπ)|2|B̂α−3

+ (ω + 2lπ)|2 ≥ |ϕ̂ĥ,2(ω)|2|B̂α−3
+ (ω)|2 ≥

≥ m2
∣∣∣sinc

ω

2

∣∣∣
2α−4

≥ m2

(
2

π

)2α−4

=: A

where m := min |ϕ̂ĥ,2(ω)|2, ω ∈ [0, 2π] is non-zero since ϕ̂ has zeros only in

ωk = 2kπ, k ∈ Z\{0}.
As for the upper bound, one has

(52)

∑

l∈Z
|ϕ̂α

h(ω + 2lπ)|2 =
∑

l∈Z
|ϕ̂ĥ,2(ω + 2lπ)|2B̂α−3

+ (ω + 2lπ)|2 ≤

≤
∑

l∈Z
|ϕ̂ĥ,2(ω + 2lπ)|2

∑

l∈Z
|B̂α−3

+ (ω + 2lπ)|2 ≤ B1 B2 =: B ,

where B1 and B2 are the right Riesz constants associated to ϕĥ,2 and Bα−3
+

respectively.
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This theorem guaranties that the set {ϕα
h(· − k)}k∈Z is a Riesz basis for the

space V0 that it generates. Moreover, as consequence of the refinability and of
Theorems 4-5, it is possible to claim that ϕα

h gives rise to a MRA of L2(R). More
precisely, one has the following theorem.

Theorem 8. For any α > 2 and for any h ≥ α, ϕα
h generates a MRA of

L2(R).

Proof. The claim follows since ϕα
h belongs to L2(R), is refinable and {ϕα

h(·−
k)}k∈Z form a Riesz basis of V0.

6 – Some further properties

As for the convolution of the two fractional refinable functions the following
result holds.

Theorem 9. For any α1, α2 > 2 and for any h1 ≥ α1 and h2 ≥ α2, the
following convolution formula holds.

(53) (ϕα1

h1
∗ ϕα2

h2
)(x) = (ϕ5,H ∗ Bα1+α2−5)(x) ,

with ϕ5,H ∈ Φ4 and H as in Theorem 1.

Proof. From (46) and Theorem 1, the thesis follows by observing that

(ϕα1

h1
∗ϕα2

h2
)(x) = (ϕ2,ĥ1

∗ϕ2,ĥ2
)∗(Bα1−3

+ ∗Bα2−3
+ )(x) = (ϕ5,H ∗Bα1+α2−5

+ )(x) .

As for the order of polynomial exactness, we prove for the fractional refinable
functions the following surprising property.

Theorem 10. Let be α > 2 and h ≥ α.

Then the fractional refinable function ϕα
h has order of polynomial exactness

d = �α� − 1, i.e. there exist sequences pl
k such that

(54) xl =
∑

k∈Z
pl

kϕα(x − k), l = 0, . . . , �α� − 2 .
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Proof. It is known (see for example [3]) that (54) is equivalent to prove
the Strang and Fix condition (37) for ϕ̂α. Moreover, due to (46), one has

(55) ϕ̂α(ω) = ϕ̂2,ĥ(ω)B̂α−3
+ (ω) ,

where

B̂α−3
+ (ω) =

(
1 − e−iω

iω

)α−2

,

and for (38) ϕ̂2,ĥ(ω) =
(

1−e−iω

iω

)
fn,h(ω) with fn,h(2kπ) 
= 0, ∀k ∈ Z. Then,

the thesis comes by following steps similar to the derivation of relation (4.1)
in [16].

For the fractional differentiation, a formula similar to that of the fractional
B-splines holds.

Theorem 11. For any real α > 2 and for any real h ≥ α, the following
differential formula holds.

(56) Dγϕα(x) = Δγϕα−γ(x), α > 2, γ ∈ R+ .

Proof. Let Δ̂ the operator defined as follows

(57) Δ̂γ(ω) =
∑

k≥0

(−1)kγke−iωk = (1 − e−iω)γ .

We observe that the operator Δγ is a convolution operator, then, in the Fourier
domain, it becomes

(58) (iω)γϕ̂α(ω) = Δ̂γϕ̂α−γ(ω), α > 2, γ ∈ R+ .

So the result follows from (48).

Remark 6. As for (54), we recall that the GP refinable functions ϕn,h

reproduce polynomials up to the degree n − 2.
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7 – Some numerical features

We report, in figure 1, on the left side, the plots of ϕα
h for α = 3, 3.5, 4, 4.5, 5,

5.5, 6, 6.5, 7 and h = α, which provide some examples of fractional B-splines.
Note that, for integer values of α they reduce to the classical cardinal B-splines.
On the other side, setting h = α + 5, some examples of fractional GP refinable
functions which do not reduce to the classical B-splines, are shown. We observe
that both figures exhibit a decay that not only confirms what already claimed
in Theorem 6, but also makes the fractional refinable functions to look like
compactly supported functions. Moreover, we observe that the support of ϕα

h

for non integer α and �α� = n, looks strictly contained in the support [0, n + 1]
of ϕn,h, even though the order of exactness of ϕα

h is exactly the same as that of
ϕn,h, i.e. n − 1.
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Fig. 1: Plots of the fractional B-splines for α = 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 (left) and of
ϕα

h , h = α + 5 (right).
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