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Input-output techniques for the stability

of evolution families on the half-line

CIPRIAN PREDA

Abstract: The aim of the paper is to obtain general input-output conditions for
the uniform exponential stability of evolution families. Thus it is involved a very general
class of function spaces which are translation invariant. The present approach includes
as particular cases, many interesting situations among them we note the results obtained
by Y. Latushkin, S. Montgomery-Smith, T. Randolph, N. van Minh, F. Rabiger and
R. Schnaubelt.

1 – Introduction

Linear evolution equations in Banach spaces have seen important develop-
ments in the recent decades. An important role in the early development of
qualitative theory of differential systems, was played by the paper “Die Sta-
bilitätsfrage bei Differentialgleichungen” [13], where Perron gave a characteriza-
tion of exponential stability of the solutions to the linear differential equations

dx

dt
= A(t)x, t ∈ [0,+∞), x ∈ IRn, where

A(t) is a matrix bounded continuous function, in terms of the existence of
bounded solutions of the equations dx

dt = A(t)x + f(t), where f is a contin-
uous bounded function on IR+. After these seminal researches of O. Perron,
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valuable contributions concerning the extension of Perron’s problem in the more
general framework of infinite-dimensional Banach spaces were obtained, in their
pioneering monographs, by M. G. Krein and J. L. Daleckij [5], R. Bell-
man [1], J. L. Massera and J. J. Schäffer [11]. In last years, the input-ouput
techniques led to several results about exponential stability and exponential di-
chotomy for the case of exponentially bounded and strongly continuous evo-
lution families (see for instances the contributions of N. van Minh [10], [11],
F. Räbiger [10], Y. Latushkin [2], [6], [7], [8], P. Preda [13], [14], [15], [16],
T. Randolph [7], [8], R. Schnaubelt [8], [10], [17]. Generally, if the char-
acterizations of certain asymptotic properties rely on the use of the theory of
evolution semigroups, then the input space and the output space must be the
same (see [2] or [10]). Here, for instance the proofs are direct being based on
the use of appropriate input functions, so one obtains characterizations of di-
verse concepts such that the input and the output space may be distinct. In the
spirit of Perron’s idea and of all the above recent results, the aim of this paper
is to propose a general, unitary and complete study for the uniform exponential
stability of evolution families in terms of input-output conditions. Therefore,
we involve a general class of translation invariant function spaces and accord-
ingly to Massera and Schaffer (see [11, pag. 57]) we will call this class as the
set of all T -spaces. We want to emphasize that until now the most common
classes of spaces used as input or output spaces were the Lp or Mp spaces.
These are in particular T -spaces, so our treatment include as particular cases
almost all the situations required by the input-output techniques, among them
we note (Lp, Lq)-admissibility, (Mp, Mq)-admissibility, (Lp, Mq)-admissibility.
Thus, generalizations of the well-known results due to N. van Minh, F. Rabiger
and R. Schnaubelt, are also obtained. Moreover, the large class of Orlicz spaces
is also contained in this general context of T -spaces and from here other inter-
esting applications arise (as for instance Example 2.3 that present a T -space
contained in each Lp, p ∈ [1,∞) but different than any Lp-space, p ∈ [1,∞)).

2 – Preliminaries

Let B(X) be the Banach algebra of all linear and bounded operators acting
on the Banach space X. Also, we denote by M(IR+, X) the space of all Bochner
measurable functions from IR+ to X and by:

L1
loc(IR+, X) = {f ∈ M(IR+, X) :

∫

K

||f(t))||dt < ∞, for each compact

K in IR+}

Lp(IR+, X) = {f ∈ M(IR+, X) :

∫

IR+

||f(t)||pdt < ∞}, where p ∈ [1,∞)
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L∞(IR+, X) = {f ∈ M(IR+, X) : ess sup
t∈IR+

||f(t)|| < ∞}

Mp(IR+, X) = {f ∈M(IR+, X) : sup
t∈IR+

∫ t+1

t

||f(s)||pds < ∞} where p∈ [1,∞),

T (IR+, X) the space of all functions f ∈ L1
loc(I, X) with the property that there

exist (τn)n∈IN and (an)n∈IN two sequences of positive real numbers such that

∞∑

n=0

an < ∞ and ||f || ≤
∞∑

n=0

anχ[τn,τn+1] .

We note that Lp(IR+, X), L∞(IR+, X), Mp(IR+, X), T (IR+, X) are Banach spaces
endowed with the respectively norms:

||f ||p =

(∫

IR+

||f(t)||pdt

) 1
p

||f ||∞ = ess sup
t∈IR+

||f(t)||

||f ||Mp = sup
t∈IR+

(∫ t+1

t

||f(s)||pds

) 1
p

and

||f ||T = inf
{ ∞∑

n=0

an : where (an)n∈IN satisfy the above inequality
}

.

In order to simplify the notations we put Lp := Lp(IR+, IR), L∞ := L∞(IR+, IR),
Mp := Mp(IR+, IR), for all p ∈ [1,∞) and L1

loc = L1
loc(IR+, IR), T = T (IR+, IR).

Next we recall the definition of T -spaces.

Definition 2.1. A Banach space E is said to be a T -space if the following
conditions hold:

s1) E ⊂ L1
loc(IR+, IR) and for each compact K ⊂ IR+ there is αK > 0 such that

∫

K

|f(t)|dt ≤ αK ||f ||E , for all f ∈ E

s2) χ[0,t] ∈ E, for each t ≥ 0, where χ[0,t] denotes the characteristic function
(indicator) of the interval [0, t]

s3) If f ∈ E and h ∈ M(IR+, IR) with |h| ≤ |f |, then h ∈ E and ||h||E ≤ ||f ||E .

s4) If f ∈ E, t ≥ 0, gt : IR+ → IR, gt(s) =

{
0, s ∈ [0, t)

f(s − t), s ∈ [t,∞)
then gt ∈ E

and ||gt||E = ||f ||E .
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Example 2.1. It is a routine to verify that Mp, Lp, L∞ and T , the spaces
mentioned above, are T -spaces. One can easy remark that T ⊂ E ⊂ M1, for
any T -space E. (More results in this direction can be found in [9].)

Example 2.2. It can be observed that the Orlicz spaces are T -spaces, too.
For more convenience we recall in the next the definition of Orlicz spaces. Let
ϕ : IR+ → IR+ be a function which is non-decreasing, left-continuous, ϕ(t) > 0,
for all t > 0. Define

Φ(t) =

t∫

0

ϕ(s)ds .

A function Φ of this form is called a Young function. For f : IR+ → IR a
measurable function and Φ a Young function we define

MΦ(f) =

∞∫

0

Φ(|f(s)|)ds .

The set LΦ of all f for which there exists a k > 0 that MΦ(kf) < ∞ is easily
checked to be a linear space. With the norm

ρΦ(f) = inf
{

k > 0 : MΦ
(1

k
f
)
≤ 1

}

the space (LΦ, ρΦ) becomes a Banach space which is easy to check that verify the
conditions s2), s3), s4). Inorder to verify the condition s1) consider f ∈ LΦ, t >
0, k > 0 such that MΦ( 1

kf) ≤ 1. Then we have that

Φ
( 1

kt

t∫

0

|f(s)|ds
)
≤ 1

t

t∫

0

Φ
(1

k
|f(s)|

)
ds ≤ 1

t
,

and so
t∫

0

|f(s)|ds ≤ tΦ−1
(1

t

)
k

which implies that
t∫

0

|f(s)|ds ≤ tΦ−1
(1

t

)
ρΦ(f) ,

for all f ∈ LΦ, t > 0, and hence the condition s1) is also verified. The connection
between Orlicz spaces and the Lp spaces is given by
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Remark 2.1. LΦ = Lp if and only if Φ(t) = tp, for all t ≥ 0.
The “only if” part is obvious. Conversely if LΦ = Lp then ||χ[0,t]||Φ =

||χ[0,t]||p, for all t > 0, and so Φ−1(s) = s
1
p for all s > 0, which implies that

Φ(t) = tp, for all t ≥ 0.

From here other useful situations can arise. For instance, in order to verify
easier the admissibility condition it is important to find smaller input spaces.
Thus, since this approach offers a very large degree of liberty in choosing the
input-output spaces, we can construct easily an Orlicz space (and as it can be
seen implicit a T -space) which is contained in each Lp, for all p ∈ [1,∞), but
different than any Lp-space, p ∈ [1,∞).

Example 2.3. If we take Φ(t) = et − 1 then LΦ ⊂ Lp, for all p ∈ [1,∞).
Indeed one can see that tm ≤ m!Φ(t) for all t ≥ 0 and all m ∈ IN∗ which

implies that LΦ ⊂ Lm, for all m ∈ IN∗. Having in mind that Lm
⋂

Lm+1 ⊂ Lp for
all p ∈ [m, m+1], and all m ∈ IN∗, it follows that LΦ ⊂ Lp, for all p ∈ [m, m+1],
and all m ∈ IN∗.

If E is a T -spaces we denote by

E(X) = {f ∈ M(IR+, X) : t �→ ||f(t)|| : IR+ → IR+ is in E} .

Remark 2.2. E(X) is a Banach space endowed with the norm

||f ||E(X) = || ||f(·)|| ||E .

Remark 2.3. If {fn}n∈IN ⊂ E(X), f ∈ E(X), fn → f in E(X) when
n → ∞, then there exists {fnk

}k∈IN a subsequence of {fn}n∈IN such that

fnk
→ f a.e.

For a T -space E we denote by αE , βE : IR+ → IR+ the following functions:

αE(t) = inf
{

α > 0 :

∫ t

0

|f(s)|ds ≤ α||f ||E , for all (t, f) ∈ IR+ × E
}

,

βE(t) = ||χ[0,t]||E .

It is known (see for instance [9]) that αE , βE are nondecreasing functions and
moreover

(∗) t ≤ αE(t)βE(t) ≤ 2t, for all t ≥ 0 .

Example 2.4. It is easy to see that for Lp and Mp we have:

αLp(t) =

{
t1−

1
p , p ∈ [1,∞), t ≥ 0

t, p = ∞, t ≥ 0

βLp(t) =

{
t

1
p , p ∈ [1,∞), t ≥ 0

1, p = ∞, t ≥ 0
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t ≤ αMp(t) ≤ [t] + {t}1− 1
p , for each (p, t) ∈ [1,∞) × IR+, where [t] denotes the

largest integer less or equal than t and {t} = t − [t].

βMp(t) =

{
t

1
p , t ∈ [0, 1)

1, t ≥ 1

αLΦ(t) = tΦ−1
(1

t

)
βLΦ(t) =

(
Φ−1

(1

t

))−1

.

Definition 2.2. A B(X)-valued function U = {U(t, s)}t≥s≥0 is called an
evolution family if:

• the identity on X can be obtained as U(t, t), for each t ≥ 0;

• the evolution property U(t, s) = U(t, r)U(r, s) holds for all t ≥ r ≥ s ≥ 0;

• U(·, s)x is continuous on [s,∞), for all s ≥ 0, x ∈ X;

• U(t, ·)x is continuous on [0, t), for all t ≥ 0, x ∈ X;

• U = {U(t, s)}t≥s≥0 has an exponential growth (i.e. there are M, ω > 0 such
that

‖U(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0 .

Definition 2.3. The evolution families U = {U(t, s)}t≥s≥0 is called uni-
formly exponentially stable (u.e.s) if there exist two strictly positive constants
N, ν such that the following statement hold:

‖U(t, s)‖ ≤ Ne−ν(t−s) .

Definition 2.4. The pair (E, F ) is said to be admissible to U if for all

f ∈ E(X) the function xf : IR+ → X defined by xf (t) =
t∫
0

U(t, s)f(s)ds lies in

F (X).

3 – The main result

Let (E, F ) be a pair of T -spaces.

Lemma 3.1. If the pair (E, F ) is admissible to U then there is K > 0 such
that

||xf ||F (X) ≤ K||f ||E(X) .
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Proof. Let us define the linear operator T : E(X) → F (X), given by

(Tf)(t) =

∫ t

0

U(t, s)f(s)ds .

If {gn}n∈IN ⊂ E(X), g ∈ E(X), h ∈ F (X) such that

gn
E(X)−→ g, Tgn

F (X)−→ h

||(Tgn)(t) − (Tg)(t)|| ≤
∫ t

0

||U(t, s)(gn(s) − g(s))||ds ≤

≤
∫ t

0

Meωt||gn(s) − g(s)||ds ≤

≤ MeωtαE(t)||gn − g||E(X) ,

for all t ≥ 0 and all n ∈ IN.
It follows, using again the Remark 2.3, that Tg = h, and hence T is closed

and so, by the Closed-Graph theorem it is also bounded. So we obtain that

||xf ||F (X) = ||Tf ||F (X) ≤ ||T || ||f ||E(X), for all f ∈ E(X) as required .

Lemma 3.2. If F is a T -space, h ∈ F , h ≥ 0 and if there are two constants
a, b > 0 such that h(r) ≤ ah(t)+b, for all r ≥ t ≥ 0 with r− t ≤ 1, then h ∈ L∞.

Proof. By the hypothesis we have that

h(n + 1) ≤ ah(s) + b, for all n ∈ IN and all s ∈ [n, n + 1]

and from here

h(n + 1) ≤ a

∫ n+1

n

h(s)ds + b ≤ aαF (1)||h||F + b, for all n ∈ IN

which implies that
c = sup

n∈IN
h(n) < ∞ .

Using again the hypothesis, we obtain that

h(t) ≤ ah(n) + b ≤ ac + b, for all n ∈ IN, and all t ∈ [n, n + 1] .

We consider again E and F being two T -spaces and we have:

Lemma 3.3. If the pair (E, F ) is admissible to U then the following state-
ments hold :

i) for all f ∈ E(X) there exist a, b > 0 such that

||xf (r)|| ≤ a||xf (t)|| + b, for all r ≥ t ≥ 0 with r − t ≤ 1 ;

ii) the pair (E, L∞) is admissible to U .
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Proof. i) We have that:

xf (r) =

∫ r

0

U(r, s)f(s)ds =

=

∫ t

0

U(r, t)U(t, s)f(s)ds +

∫ r

t

U(r, s)f(s)ds =

= U(r, t)xf (t) +

∫ r

t

U(r, s)f(s)ds, for all r ≥ t ≥ 0 .

It results that

||xf (r)|| ≤ Meω(r−t)||xf (t)|| +
∫ r

t

Meω(r−s)||f(s)||ds ≤

≤ Meω||xf (t)|| + Meω

∫ t+1

t

||f(s)||ds ≤

≤ Meω||xf (t)|| + MeωαE(1)||f ||E(X)

for all r ≥ t ≥ 0 with r − t ≤ 1.
The condition ii) follows directly from i) and Lemma 3.2.

Lemma 3.4. Let g : {(t, t0) ∈ IR2 : t ≥ t0 ≥ 0} → IR+ be a function such
that the following properties hold :

1) g(t, t0) ≤ g(t, s)g(s, t0), for all t ≥ s ≥ t0 ≥ 0;

2) there exist M, a > 0 and b ∈ (0, 1) such that

g(t, t0) ≤ M, for all t0 ≥ 0 and all t ∈ [t0, t0 + a]

g(t0 + a, t0) ≤ b, for all t0 ≥ 0 .

Then there exist two constants N, ν > 0 such that

g(t, t0) ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0 .

Proof. Let t ≥ t0 ≥ 0 and n =
[

t−t0
a

]
, the largest integer less than or equal

with t−t0
a .

Then we have that

g(t, t0) ≤ g(t, t0 + na)g(t0 + na, t0) ≤

≤ g(t, t0 + na)bn ≤ Mbn = Me−νna ≤ Ne−ν(t−t0)

where ν = − 1
a ln b, N = Meνa, as required.

Now we can state the main result of this paper.
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Theorem 3.1. U is u.e.s. if and only if there exists a pair (E, F ) of T -
spaces, admissible to U with limt→∞ αE(t)βF (t) = ∞.

Proof. Necessity. It follows easily that the pair (L∞, L∞) is admissible
to U .

Sufficiency. First observe that if the pair (E, F ) is admissible to U then by
Lemma 3.3 the pair (E, L∞) is admissible to U .

Let x ∈ X, t0 ≥ 0 and f : IR+ → X,

f(t) =

{
U(t, t0)x, t ∈ [t0, t0 + 1]

0, t ∈ IR+ \ [t0, t0 + 1] .

It is easy to check that f ∈ E(X) and ||f ||E(X) ≤ MeωβE(1)||x|| and

xf (t) =

⎧
⎨
⎩

0, 0 ≤ t ≤ t0∫ t0+1

t0

U(t, s)f(s)ds, t ≥ t0 + 1 .

If t ≥ t0 + 1 then,

xf (t) =

∫ t0+1

t0

U(t, s)U(s, t0)xds = U(t, t0)x

which implies that

||U(t, t0)x|| = ||xf (t)|| ≤ ||xf ||∞ ≤ K||f ||E(X) ≤ KMeωβE(1)||x||

for all t ≥ t0 + 1, t0 ≥ 0 and all x ∈ X.

Hence there exits L > 0 such that

||U(t, t0)|| ≤ L, for all t ≥ t0 ≥ 0 .

Let t0 ≥ 0, δ > 0, x ∈ X and g : IR+ → X

g(t) =

{
U(t, t0)x, t ∈ [t0, t0 + δ]

0, t ∈ IR+ \ [t0, t0 + δ] .

Then g ∈ E(X), and ||g||E(X) ≤ LβE(δ)||x||. It follows that
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xg(t) =

∫ t

0

U(t, s)f(s)ds =

⎧
⎪⎨
⎪⎩

0, t ∈ [0, t0)

(t − t0)U(t, t0)x, t ∈ [t0, t0 + δ)

δU(t, t0)x, t ∈ [t0 + δ,∞)

and so

δ2

2
||U(t0 + δ, t0)x|| =

∫ t0+δ

t0

(s − t0)||U(t0 + δ, t0)x||ds ≤

≤
∫ t0+δ

t0

(s − t0)L||U(s, t0)x||ds =

= L

∫ t0+δ

t0

||xg(s)||ds ≤ LαF (δ)||xg||F (X) ≤

≤ KLαF (δ)||g||E(X) ≤

≤ KL2αF (δ)βE(δ)||x|| ≤ 4KL2δ2

αE(δ)βF (δ)
||x||

for all t0 ≥ 0, δ > 0, x ∈ X.

We obtain that

||U(t0 + δ, t0)|| ≤
8KL2

αE(δ)βF (δ)
, for all t0 ≥ 0, δ > 0 .

By Lemma 3.4 it results that there exist two constants N, ν > 0 such that

||U(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0 .

Now we conclude with

Theorem 3.2. The following assertions are equivalent

1) U is u.e.s;

2) there exists E a T -space, such that the pair (E, E) is admissible to U ;

3) there exist p, q ∈ [1,∞], (p, q) = (1,∞) such that the pair (Lp, Lq) is ad-
missible to U ;

4) there exists p, q ∈ [1,∞) such that the pair (Mp, Mq) is admissible to U ;

5) there exists p ∈ (1,∞], q ∈ [1,∞) such that the pair (Lp, Mq) is admissible
to U .
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Proof. Follows easily from Theorem 3.1 and Example 2.2.

Remark 3.1. From the statement (2) of the Theorem 3.2 and Example 2.2
it follows also that U is u.e.s. if and only if there is an Orlicz space LΦ such that
(LΦ, LΦ) is admissible to U .
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