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Foreword

Bruno de Finetti had a very versatile personality and was actively involved in
many different fields of Science and Culture. In fact, not only he gave his deter-
minant contributions to Mathematics and its applications, in particular Proba-
bility, Statistics, Financial and Actuarial Mathematics, but he was also deeply
interested in Epistemology, Philosophy, Economics, Politics. Still in our days,
the contributions that he gave to different fields are often revisited and, in many
cases, they have been discovered to contain foresight and fertile suggestions for
contemporary research.

Bruno de Finetti was born, from Italian parents, in Innsbruck on June 13,
1906. During 2006 a number of different events have been organized to celebrate
the centenary of his birth. Several scientific and cultural institutions have orga-
nized scientific events with the purpose of highlighting the different facets of his
scientific and human personality and to discuss his advanced contributions.

In particular, on November 15-17, 2006, in Rome, the International Sympo-
sium “Bruno de Finetti Centenary Conference” was held at the Department of
Mathematics of University “La Sapienza” and Accademia dei Lincei, two insti-
tutions of which he had been a member for many years.

Already in 1981, the celebration of the 75th birthday of Bruno de Finetti
offered University La Sapienza and Accademia dei Lincei the opportunity for the
organization of an international conference, that was specifically devoted to the
theme of Exchangeability (the contributions presented at that conference were
collected in the Volume Exchangeability in Probability and Statistics (G. Koch
and F. Spizzichino, Eds), North Holland, Amsterdam, 1982).

The Symposium held on November 2006 consisted of two different parts,
respectively devoted to the themes de Finetti’s Legacy in Probability Today and
Bruno de Finetti and Economic Analysis.

The Organizing Committee was formed by Edoardo Vesentini (Politecnico
di Torino and Accademia dei Lincei), Pierluigi Ciocca (Banca d’Italia), Giorgio
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Letta (Università di Pisa and Accademia dei Lincei) Giorgio Lunghini (Univer-
sità di Pavia and Accademia dei Lincei), Carlo Sbordone (Università Federico
II, Napoli, and Accademia dei Lincei), and Fabio Spizzichino (Università La
Sapienza, Roma). The Local Organizing Committee was formed by Giovanna
Nappo, Mauro Piccioni and Fabio Spizzichino at the Department of Mathematics
of Università La Sapienza.

The aim of the Symposium was just to discuss some problems, arising in the
frame of recent research in the fields of Probability and Economics, respectively,
and to trace the connections with ideas and anticipations contained in the work
by Bruno de Finetti.

In particular the Sessions on de Finetti’s Legacy in Probability Today were
devoted to rethink some purely mathematical aspects of the contributions that
he gave in the Thirties of last Century, and to present related developments that
have been obtained in recent times.

These sessions were constituted by general lectures, given by a few selected
speakers. Listed in the order they appeared in the Programme, the invited speak-
ers were Eugenio Regazzini (Università di Pavia), Olav H. Kallenberg (Auburn
University), Persi Diaconis (Stanford University), Steffen L. Lauritzen (Oxford
University), Paul Ressel (Katholische Universität Eichstatt), Yoseph Rinott (He-
brew University, Jerusalem), and Murad Taqqu (Boston University).

The complete scientific programme of the Symposium can be found in the
next pages.

More details about the Symposium can be found at the web-site:

www.mat.uniroma1.it/ricerca/convegni/2006/deFinetti/

The programme of the first session, in particular, included also an opening ad-
dress by Fulvia de Finetti, the daughter of Bruno de Finetti, the presentation
of Opere di Bruno de Finetti, and the Exhibition of Historical Books Probability
from Cardano to de Finetti.

With her kind permission, the text of the contribution by Fulvia de Finetti
is reported in this Volume.

Opere di Bruno de Finetti is a two Volumes edition published by Unione
Matematica Italiana (UMI); the first Volume, in particular, is devoted to his
contributions to Probability, Statistics and Decision Theory.

The book exhibition was held in the Library of the Department of Mathe-
matics and was organized by Giovanna Nappo with the precious collaboration
of the staff of the Library; more details can be found at the web-site address
http :// www.mat.uniroma1.it/ricerca/convegni/2006/deFinetti/mostra/histori-
cal-books-details.html

The present Volume, edited by Giovanna Nappo, Mauro Piccioni and Fabio
Spizzichino, collects the contributions that the Authors, invited to lecture on the
theme de Finetti’s Legacy in Probability Today, delivered after the Symposium.
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Wednesday, November 15 : Mathematical Session 1

De Finetti’s Legacy in Probability Today

Aula Magna
Università “La Sapienza”

Piazzale A. Moro, 5

8:30 – 9:15 Registration of Participants
9:15 Opening of Conference

Chairman: Marco Scarsini

9:45 – 10:45 Eugenio Regazzini (Università di Pavia, Italy)
De Finetti’s contribution to the theory of random functions

10.45 – 11.15 Coffee Break
11:15 – 12:00 Presentation of the Volumes

Opere di Bruno de Finetti Edited by Unione Matematica Italiana

Chairman: Giorgio Koch

15:00 – 16:00 Olav H. Kallenberg (Auburn University , USA)
Some highlights from the theory of multivariate symmetries

16:00 – 16:30 Coffee Break
16:30 – 17:30 Persi Diaconis (Stanford University, USA)

Exchangeability in the Twenty First Century

12:00 – 18:00 Exhibition of Historical Books
Probability from Cardano to de Finetti

Library of Department of Mathematics “G. Castelnuovo”

Thursday, November 16: Mathematical Session 2

De Finetti’s Legacy in Probability Today

Accademia Nazionale dei Lincei
Via della Lungara, 230

Ore 9:00 Opening

Chairman: Carlo Sbordone

10:00 – 11:00 Steffen L. Lauritzen (Oxford University, UK)
Exchangeable Rasch Models
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11:00 – 11:30 Coffee Break
11:30 – 12:30 Paul Ressel (Katholische Universitat Eichstatt, Germany)

Exchangeability and semigroups

Chairman: Wolfgang Runggaldier

15:00 – 16:00 Yoseph Rinott (Hebrew University, Israel)
Exchangeability, concepts of dependence, and statistical implications

16:00 – 16:30 Coffee Break
16:30 – 17:30 Murad Taqqu (Boston University, USA)

Dependence structures of some infinite variance stochastic processes

Friday, November 17: Economics Session

Bruno de Finetti and Economic Analysis

Accademia Nazionale dei Lincei
Via della Lungara, 230

Ore 9:00 Opening

Chairman: Siro Lombardini

9:30 – 10:30 Giorgio Lunghini (University of Pavia, Italy)
Bruno de Finetti and Economic Theory

10:30 – 11:00 Coffee Break
11:00 – 12:00 Luca Barone (Goldman-Sachs International, UK)

Mean-Variance Portfolio Selection: de Finetti scoops Markowitz
12:00 – 13:00 Flavio Pressacco (University of Udine, Italy)

B. de Finetti hero of the two worlds: (applied) mathematician
and (quantitative) economist

13:00 Conclusions and Closure of Conference
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Bruno de Finetti Centenary Conference

Rome, November 15, 2006

FULVIA DE FINETTI

It is a pleasure for me to be once more in this University where my father spent
many years of his academic career. As you all probably know my father left
the University of Trieste in 1954 when he conquered a chair in the University
of Rome and it was in 1961 that he moved from the Faculty of Economics to
the Faculty of Science to teach Probability. This was the happy end of a story
that goes back to 1927 when my father, just graduated, reached Rome to work
as head of the Mathematical Service of the Istituto Centrale di Statistica. He
had already in his mind Probability and after finishing his work at the Institute
he used to attend the seminars that took place in Panisperna Street, next door
to his office. He was particularly impressed by Enrico Fermi whose rapid career
became a target for him. He immediately gained the attention of the great
mathematicians that worked in Rome at that time: Guido Castelnuovo, Tullio
Levi-Civita, Federigo Enriques.

Guido Castelnuovo at that time taught probability and so he explained why
he found probability an interesting topic to teach: “Probability is a science of
recent formation; hence in it, better than in other branches of mathematics, one
can see the relationship between the empirical contribution and the one given by
reasoning, and between the process of inductive and deductive logic used in it.
The fact that it is a science in the making explains why it is appropriate to give
frequent examples to show the applications of known methods or to introduce
new ones.”

If you compare Castelnuovo’s sentence with what Bruno wrote to his mother
when student in Milan: . . . Mathematics is not by now a field already explored,
just to learn and pass on to posterity as it is. It is always progressing, it is
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enriching and lightening itself, it is a lively and vital creature, in full development
and just for these reasons I love it, I study it and I wish to devote my life to
it . . .

It will not surprise you to know that Castelnuovo often invited Bruno at his
home to see the progresses in the works of this promising young mathematician.
To open the door was a little girl wearing her hair in pigtails. She was Emma the
daughter of Castelnuovo. In a letter dated July 28, 1928 Castelnuovo examines
the work of Bruno, recognizes his capabilities as analyst, gives advices on how
to present the work and concludes, “I feel sure that you will be able to give
important contributions to Probability Calculus and its applications”. And so it
seems he did if important names in this field have accepted to come from U.S.A.
and Europe for this Centenary Conference.

When in 1961 the Faculty of Science decided to resume for Bruno the chair
of Probability that had been of Castelnuovo but extinguished when he left, the
main concern of my father was that the same thing might happen when he
would leave. In April 1973, Savage had already died, my father received from
the University of Michigan an invitation for the year 1973-74. I think it may
interest you to read part of the answer of my father to decline the invitation:
“...I am very pleased and honoured for such attracting invitation and for the
interest in my research . . . and in my point of view about subjective probability.
I would be surely willing to support it, especially in your University where L.J.
Savage spent several years of his admirable activity . . . “I am involved in many
programs here, highly depending on myself (my collaborators are too young to
be fully responsible for the courses).”

I am sure my father would be very happy to know that the Faculty of Science,
not only preserved the chair of Probability but even increased to three the num-
ber of chairs and that some of those “too young collaborators” are continuing
his teaching and research. Among them I want particularly to thank Profes-
sor Fabio Spizzichino who promoted and organized this International Centenary
Conference.
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Preface

GIOVANNA NAPPO – MAURO PICCIONI

FABIO SPIZZICHINO

De Finetti started his active research in Probability around 1927, at the age
of 21. At that time, his interest was mainly addressed to the foundations of
Probability. His interest on this topic focused on two different, even though
related, aspects: the meaning of the term probability of an event and the axioms
that should be imposed in the formalization of the mathematical theory.

In fact, the main motivations for his research can be traced back to his dis-
sent and his objections to ideas and viewpoints about probability that were com-
mon among mathematicians and other scientists. His reflections ripped his firm
opinion that probability cannot have but a subjective character. This conclusion
lead him to rethink the meaning of stochastic independence and to introduce the
concept of Exchangeability in the foundations of Probability and Statistics.

On the other hand he also strongly defended the idea that probability must
satisfy the simple-additivity property while, in his view, the stronger assumption
of countable additivity is not necessary and may give rise indeed to different
drawbacks.

Another topic which attracted his interest at that time was the definition
and the analysis of Stochastic Processes with Independent Increments. He first
analyzed the finite-dimensional distributions of these processes, thus arriving to
single out the class of infinitely divisible distributions. This piece of research was
carried out, later on, by himself, P. Lévy, A. Y. Khinchin, A. N. Kolmogorov and
others, in a series of papers devoted to the characterization of infinitely divisible
distributions.

The two basic topics mentioned so far constitute the primary elements for
the contributions collected in this Volume. The articles by Eugenio Regazzini
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with Federico Bassetti, Olav Kallenberg, Persi Diaconis with Svante Janson, Stef-
fen L. Lauritzen, and Paul Ressel are related to the theme of exchangeability,
whereas the article authored by Murad S. Taqqu with Joshua B. Levy, con-
cerns the developments of the theory of stochastic processes with independent
increments.

It is well known that exchangeability is nothing but a simple concept of
symmetry: a (finite-dimensional) vector of random variables is exchangeable if its
joint distribution is invariant under permutation of coordinates. A denumerable
sequence is exchangeable if and only if any finite subsequence is exchangeable.

The simplest example of an exchangeable sequence is the case of indepen-
dent, identically distributed random variables. A natural extension is the case of
sequence of conditionally independent, identically distributed random variables.
The celebrated de Finetti’s theorem about exchangeability guarantees that de-
numerable sequence of exchangeable variables are necessarily conditionally i.i.d..

Of course the notion of exchangeability can be extended and generalized to
cope with many other interesting situations, also in more abstract settings. The
interest for this topic dates back at least to late Thirties with de Finetti’s work
about partial exchangeability (“equivalence partielle”).

Among developments related to de Finetti’s theorem, a special type of prob-
lems stimulated the interest of several probabilists: to characterize the class of
exchangeable models manifesting some further conditions of invariance, under
different groups of transformations. A related problem, obtained by reversing
this point of view, is to find invariance properties which characterize all the joint
distributions obtained as mixture of i.i.d. variables with common distribution
belonging to a special class (e. g. the cases of conditionally i.i.d. Gaussian
variables or of conditionally i.i.d. exponential variables). This class of problems
is of basic importance in the construction and the theoretical study of statis-
tical models (especially in a Bayesian context) and is strictly related with the
theory of sufficient statistics. From the mathematical point of view this subject
translates into the problem of characterizing the extremal points of some convex
spaces. Results in this direction have been called de Finetti-type theorems.

The fields of exchangeability and de Finetti-type theorems have been exten-
sively developed in the last few decades and important contributions have been
given by Authors of articles that appear in the present collection. The articles
presented here contain recent results and also provide a review of relevant issues
from the literature.

The collection opens with the article by Eugenio Regazzini and Federico
Bassetti whose main purpose is to present a detailed review of the first paper
published by de Finetti on the theme of Exchangeability, which is not very well
known. In this paper de Finetti performed the analysis of exchangeable events by
means of the method of the characteristic functions. Since this was also the main
mathematical tool used in de Finetti’s studies about processes with independent
increments, this paper can be considered as a bridge between exchangeability
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and processes with independent increments. However, the interest of the article
by Regazzini and Bassetti goes beyond strictly historical aspects. In particular,
following a suggestion contained in the de Finetti’s paper, they obtain necessary
and sufficient conditions of an algebraic type for the extendibility of a finite
sequence of exchangeable events.

The article by Olav Kallenberg provides a useful review concerning the
area of probabilistic symmetries, that can be seen as a natural development of
the studies about exchangeability and partial exchangeability. An important
part of this theory has been systematically developed by Kallenberg himself in
a recent monograph (2005). In the present article representation theorems for
multi-dimensional arrays of random variables, which are invariant under suitable
groups of transformations, are discussed. More precisely, for two-dimensional ar-
rays, the following results are presented: the theorems by Aldous and Hoover
on the separate and joint exchangeability, the results by Kallenberg himself on
the equivalence between contractibility (the operation of taking minors) and ex-
changeability, and those about invariance under rotations (rotatability) obtained
by Aldous (in the separate case) and Kallenberg (in the joint case). In order
to discuss rotatability in dimension greater than 2, the framework of continuous
linear random fuctionals (CLRF) is introduced, which allows to obtain represen-
tations involving multiple Wiener-Ito integrals.

The article by Persi Diaconis and Svante Janson gives a somewhat different
perspective on the concept of partial exchangeability through random graphs.
The paper develops a theoretical framework with the purpose of giving a proba-
bilistic interpretation to the notions of convergence of graphs and of infinite graph
limits which have been recently investigated by Lovász and coauthors. Within
this framework, the Lovász-Szegedy characterization of infinite graph limits is
translated, in terms of adjacency matrix of the graph, into the Aldous-Hoover
representation for two dimensional jointly exchangeable arrays. A similar analy-
sis is performed for bipartite graphs (leading to separately exchangeable arrays)
and directed graphs, showing how the results discussed by Kallenberg in the
previous paper can be used in this graph theoretical setting.

Some general aspects of the field of de Finetti-type theorems are analyzed
in Paul Ressel’s article. This article discusses the central role of semigroups in
the description of the general mathematical structure that is at the basis of the
theory. Actually, the author proves a general theorem on the representation, as
a mixture of characters, of positive definite functions defined on a semigroup.
By using this result a method is provided to give alternative proofs to known
theorems on exchangeability, such as the Hewitt-Savage theorem, and charac-
terizations of mixtures of i.i.d. samples from specific parametric families. The
paper presents also an application to the exchangeable partitions introduced by
Kingman.

The contribution by Steffen L. Lauritzen deals with random infinite matri-
ces which are not only row-column exchangeable (called separately exchangeable
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by Kallenberg) but also row-column summarized (RCES). This means that their
finite-dimensional distribution is a function of the row and the column sums
(these sums are actually semigroups statistics, hence they fall within the theory
developed in the paper by Ressel). It is shown that, within the class of “regu-
lar” RCES random matrices, the random Rasch matrices (that were introduced
in mathematical psychology as models for intelligence tests) play a special role:
they constitute the extreme points. A similar analysis is performed for weakly
exchangeable matrices (called jointly exchangeable by Kallenberg). The rela-
tions with random graphs are also addressed in the article; in particular weakly
exchangeable Markov graphs, used in social network analysis, are discussed.

As mentioned, the contribution delivered by Murad S. Taqqu and Joshua B.
Levy is related with developments of the original de Finetti’s work on processes
with independent increments. Their contribution deals with the phenomenon
of long-range dependence of symmetric α- stable (S-α-S) log-fractional motions
with index α ∈ (1, 2). Any such process is self-similar with index H = 1

α and it
has infinite variance; therefore the structure of dependence between the values
of the process at two different time-instants cannot be described in terms of
the covariance, but rather through the use of the so-called codifferences and
covariations, whose behavior is described in detail.

Bruno de Finetti gave relevant contributions in many different areas and for
his contributions he has been often celebrated. But, first of all, he was a mathe-
matician. We are particularly glad to have the possibility, with the publication
of the present Volume, to honour the memory of him as a mathematician. For
this reason, we would like to thank all the authors for their enthusiastic and high
level collaboration.

We also thank Fulvia de Finetti for contributing this Volume with her open-
ing address and for her stimulating and friendly suggestions during the prepara-
tion of the Symposium.

We gratefully acknowledge the kind attitude of the Scientific Board of Ren-
diconti di Matematica in dedicating an issue of the Journal to these Proceedings.
In particular we thank our colleague Alessandro Silva, who promoted this edito-
rial initiative and gave us a friendly support along the whole publication process.
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The unsung de Finetti’s first paper

about exchangeability

FEDERICO BASSETTI – EUGENIO REGAZZINI

Abstract: It is a singular fact that the first and pithy de Finetti’s essay on ex-
changeability has not earned the same reputation as that of others of his papers about
the same subject. In fact, this paper contains, on the one hand, all the main results
on sequences of exchangeable events, together with the right subjectivistic interpretation
of the role they play in the study of the connections between probability and frequen-
cies. On the other hand, the paper makes use of mathematical methods abandoned,
immediately after its publication, by de Finetti himself. The center of this methods is
the so–called characteristic function of a random phenomenon. Independently of the
destiny of the paper, we think that, apart from its undoubted historical value, it con-
tains ideas susceptible of interesting new developments. Therefore, we have deemed it
suitable to give here a detailed and faithful account of its content, for the benefit of the
colleagues who are not in a position to understand Italian. Moreover, to emphasize
the value of the paper at issue, we develop de Finetti’s brief hint to the extendibility
of exchangeable sequences of events, to obtain a new explicit necessary and sufficient
condition of an algebraic nature.

1 – Introduction

Bruno de Finetti (1906–1985) is regarded as the founder of the theory of
sequences of exchangeable random variables or random exchangeable sequences
for short. His first important article about this subject dates back to 1930 (see
[6]). It appears as a Memoria, published in the proceedings of the Accademia

Key Words and Phrases: Characteristic function of a random phenomenon – De
Finetti’s contributions to probability – Exchangeable events – Extendibility of exchange-
able sequences.
A.M.S. Classification: 60G09, 60-03, 01A60
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dei Lincei, jointly presented to the Accademia by two of the most outstanding
Italian scientists of the time: Guido Castelnuovo (1865–1952) and Tullio Levi–
Civita (1873–1941). It is clear, from his biography, that de Finetti had examined
the problem of finding a probabilistic description and interpretation for random
phenomena – those which can be repeatedly observed under homogeneous en-
vironmental conditions – ever since his early approach to probability, a couple
of years before his degree in mathematics, obtained in 1927 at the University of
Milan. In fact, he presented a summary of the Memoria in a pithy communica-
tion at the International Mathematical Congress held in Bologna, in September
1928. The text of such a communication was published, in 1932, in the sixth
volume of the proceedings of the Congress. See [11].

The present paper aims at giving a precise idea of the content of the Memoria
and, especially, of the methods used therein, since they are different from those
employed in later de Finetti’s contributions to the same subject. This analysis is
split into six points which form Section 2. Some new developments of de Finetti’s
original methods are sketched in Section 4. The intermediate Section 3 reviews
a paper by Jules Haag (1882–1953) in which, so far as we know, the concept
of exchangeable events had been introduced and studied for the first time. A
comparison between this paper and de Finetti’s Memoria clarifies the complete
independence of the two papers, and it convinces of the prominent merits of de
Finetti in this field.

2 – Characteristic function of a random phenomenon

In view of the homogeneity of the environmental conditions which distin-
guishes random phenomena (with equivalent trials) from other types of phenom-
ena, de Finetti points out that a correct probabilistic translation of such an
empirical circumstance leads us to think of the probability of m successes and
(n−m) failures, in n trials, as invariant with respect to the order in which suc-
cesses and failures alternate, whatever n and m may be. Accordingly, he defines
a sequence (En)n≥1 of events to be equivalent if, for every finite permutation
π, the probability distribution of (IE1 , IE2 , . . . )

(1) is the same as the probability
distribution of (IEπ(1) , IEπ(2) , . . . ). So, if ω

(n)
k denotes the probability that the

random phenomenon, taken into consideration, comes true k times in m trials,
one gets

(1) ω
(m)
k =

n−m+k∑
h=k

ω
(n)
h

(
h
k

)(
n−h
m−k

)(
n
m

)
whenever 1 ≤ m ≤ n and k = 0, . . . , m.

(1)For any event E, IE will stand for its indicator.
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Nowadays, the term equivalent is replaced by the more expressive and un-
ambiguous word exchangeable, proposed perhaps by Pólya (cf.[13], [14]) or by
Fréchet (cf. [16]).

From (1) de Finetti derives a difference–differential equation for the prob-
ability generating function and, consequently, for the characteristic function, of
the frequency of success in n trials. Such a characteristic function and its limit,
as n → +∞, in the case of an infinite sequence, becomes the center of de Finetti’s
treatment of exchangeability.

From a methodological viewpoint, the use of characteristic functions joins
the Memoria to the contemporaneous de Finetti’s studies on processes with
stationary independent increments, based on the analysis of the derivative law
defined in terms of the characteristic function ψλ of the λ–th coordinate of the
process; [5]. See also [24].

As already recalled in the first section, the application of the characteristic
functions method to the study of exchangeable sequences is a peculiarity of
the Memoria. In point of fact, on Khinchin’s advice, in all subsequent papers
on exchangeable random elements, de Finetti uses more direct tools such as
probability distribution functions, moments, and so on. We have experimented
that the original de Finetti approach has some remarkable merits with respect
to some important problems like, for instance, concrete assessment of finitary
exchangeable laws and extendibility of exchangeability. So, we believe that an
accurate and faithful account of that approach could come in handy to all scholars
who are unable to read Italian scientific literature.

2.1 – Fundamental recurrence relation.

Our description starts with Author’s remark that (1), for m = n−1, reduces
to

nω
(n−1)
k = (n− k)ω(n)

k + (k + 1)ω(n)
k+1

with ω
(0)
0 = 1. Thus, for any sequence of N exchangeable events, he deduces the

difference–differential equation

(2) nΩn−1(z) = nΩn(z) + (1− z)Ω′
n(z)

valid for n = 1, . . . , N and any complex number z, where Ωn is the probability
generating function defined by

(3) Ωn(z) :=
n∑

h=0

ω
(n)
h zh (n = 1, 2, . . . , N ; z ∈ C)

with Ω0(z) ≡ 1.
Firstly, (2) is used to prove the identity

1
m!

(dmΩn

dzm

)
(1) =

(
n

m

)
ω(m)

m
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and, consequently, to write

(4) Ωn(1 + z) =
∑
h≥0

(
n

h

)
ω

(h)
h zh.

At this stage, de Finetti defines the characteristic function of the frequency(2)

(
∑N

i=1 IEk
/N)

t �→ ΨN (t/N) := ΩN (eit/N ) (t ∈ R)

to be the characteristic function of the (finite) class {E1, . . . , EN} of exchange-
able events. Clearly, such a function characterizes the probability distribution
of the random vector (IE1 , IE2 , . . . , IEN

). Notice that this distribution is also
determined by the sole knowledge of the probabilities ω

(h)
h , h = 0, 1, . . . , N , with

ω
(0)
0 = 1. To see this, combine (3) with (4).

From a practical viewpoint, the following proposition – that the Author
states in Section 35 of the Memoria – may be useful.

Proposition 1. Any sequence (ω̃(N)
h )h=0,...,N , satisfying

ω̃
(N)
h ≥ 0 (h = 0, . . . , N) and

N∑
h=0

ω̃
(N)
h = 1,

generates a unique exchangeable law, for the class of events {E1, . . . , EN}, ac-
cording to which the probability that a random phenomenon comes true k times
in n trials (1 ≤ n ≤ N, k = 0, . . . , m) is given by

(5)
N−n+k∑

h=k

ω̃
(N)
h

(
h
k

)(
N−h
n−k

)(
N
n

) .

Indeed, consider the partition defined by

Ah := {
N∑

k=0

IEk
= h} h = 0, 1, . . . , N

in a probability space such that ω̃
(N)
h is the probability of Ah. If the event Ah

occurs, then h white balls along with (N − h) black balls are placed into an
urn. Now, consider an individual who just assesses the quantities ω̃

(N)
h as the

(2)Throughout the paper, the term frequency is used to designate what other authors
call relative frequency.
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probabilities for the events Ah and who randomly draws n balls from the urn
(n ≤ N), without replacement. So, if he sees the N(N − 1) . . . (N − n + 1)
possible outcomes as equally probable, whatever n may be, then the probability
that the sample contains exactly k white balls is given by (5). In other words, any
N–exchangeable {0, 1} sequence is a mixture of hypergeometric N–sequences.

After establishing these basic elementary facts, de Finetti moves on to the
analysis of infinite sequences of exchangeable events. Such analysis is focused
on the study of the pointwise limit of the characteristic function ΨN (t/N), as
N → +∞. As a matter of fact, in all later writings on exchangeability, he will
consider a different approach, based on a law of large numbers for exchangeable
sequences. As already mentioned, he adopter this approach following a sugges-
tion of Alexander Khinchin (1984–1969), he met on the occasion of the Congress
of Bologna. See [12], [20] and [21].

2.2 – Representation theorem

Given an infinite sequence (En)n≥1 of exchangeable events, consistently with
the previous notation define ω

(h)
h to be the probability of E1 ∩ · · · ∩ Eh, for

h = 1, 2, . . . , and set

Ω(1 + z) :=
∑
h≥0

ω
(h)
h

zh

h!
(z ∈ C).

In Section 6 of the Memoria de Finetti proves the following preliminary:

Proposition 2. For any strictly positive a and ε there is an integer N1 =
N1(a, ε) such that

sup
|z|≤a

|Ω(1 + z)− Ωn(1 + z/n)| ≤ ε (n ≥ N1).

Then, he uses this fact to prove a more important statement concerning the
limiting behavior of the characteristic function Ψn(t/n), as n → +∞:

Proposition 3. For every τ > 0 and ε > 0, there is N2 = N2(ε, τ) such
that

sup
|t|≤τ

|Ψ(t)−Ψn(t/n)| ≤ ε

holds true for every n ≥ N2 and

Ψ(t) := Ω(1 + it) =
∑
h≥0

ω
(h)
h

(it)h

h!
(t ∈ R).
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It is important to note that Proposition 2 and Proposition 3 are valid uni-
formly with respect to Ω and Ψ, respectively. In other words, given ε, a and τ ,
N1 and N2 do not depend on Ω and Ψ, respectively. See next Subsection 2.5 for
a different situation apropos of the connection between frequency and predictive
distribution.

So, if one assumes that Ψ is a characteristic function (see the next subsec-
tion), then the corresponding random variable must take values in [0, 1], with
probability one. Moreover, if Φ is the corresponding probability distribution
function, since Ψ can be extended as an entire function, one gets

Ψ(t) =
∫

[0,1]

eitξdΦ(ξ), ω
(h)
h =

∫
[0,1]

ξhdΦ(ξ) (h = 0, 1, . . . ).

This, in turn, combined with (4), gives

Ωn(1 + z) =
∫

[0,1]

(1 + zξ)ndΦ(ξ)

and ∑
h≥0

ω
(n)
h zh = Ωn(z) =

∫
[0,1]

(1− ξ + zξ)ndΦ(ξ)

=
∑
h≥0

(
n

h

)
zh

∫
[0,1]

ξh(1− ξ)n−kdΦ(ξ).

This encompasses the celebrated de Finetti’s representation theorem, viz.:

Proposition 4. The events (En)n≥1 are exchangeable if and only if there
is a probability distribution function Φ supported by [0, 1] such that the probability
of {IE1 = x1, . . . , IEn = xn} is given by

∫
[0,1]

ξσn(1− ξ)n−σndΦ(ξ)

for every (x1, . . . , xn) in {0, 1}n for which x1 + · · · + xn = σn, and for every
n = 1, 2, . . . . Moreover, Φ is the limit (in the sense of weak convergence of prob-
ability distributions) of the probability distribution function Φn of the frequency
of success in the first n trials, as n → +∞.
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2.3 – Important remark

The previous argument is based on the presumption that the limit, Ψ, of
Ψn is a characteristic function. Nowadays, the validity of such an assertion is
proved in any good probability textbook. On the contrary, the reference books at
de Finetti’s disposal – [1] and [22] – although they were superb, they contained
the form of the continuity theorem according to which ”if Ψn converges to a
characteristic function, uniformly on any compact interval, then ...”. Clearly,
the argument in Subsection 2.2, apart from the fact that t �→ Ω(1+it) is the limit
– uniform on any compact interval – of a sequence of characteristic functions,
does not give further indications about the fact that the limit is a characteristic
function. So, to complete the proof of the representation theorem, de Finetti was
obliged to check whether the above–mentioned limiting condition was enough to
assert that t �→ Ω(1 + it) was a characteristic function. He deferred the solution
of the problem to the Appendix of the Memoria, where he proved the desired
completion of the continuity theorem – perhaps for the first time – consistently
with the fact that he was dealing with finitely (i.e., not necessarily completely)
additive distributions of general real–valued random variables. In point of fact,
he explicitly assumes that the sequence of distributions corresponding to (Ψn)n≥1

is tight.

2.4 – Strong law of large numbers

In the following Sections 11 and 12, de Finetti deals with the extension of
Cantelli’s strong law for frequencies of Bernoulli trials to frequencies of more
general exchangeable trials. Define the random frequency f̄n of success in the
first n trials of a random phenomenon characterized by an infinite sequence
(En)n≥1 of exchangeable events,

f̄n :=
1
n

n∑
k=1

IEk
,

and consider the sequence (f̄n)n≥1. The main result de Finetti achieves apropos
of the latter sequence is a mutual form of the strong law of large numbers for
(f̄n)n≥1 that, consistently with the admissibility of simply additive probability
distributions, he states correctly in the following ”finitary” style.

Proposition 5. Given strictly positive numbers ε and θ, there is a positive
integer N := N(ε, θ) such that the probability of the event

k⋂
j=1

{|f̄n − f̄n+j | ≤ ε}

turns out to be uniformly (with respect to k = 1, 2, . . . ) greater that 1− θ, when-
ever n ≥ N .
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Apparently de Finetti was aware of the fact that, in a framework of com-
pletely additive probability distributions on subsets of a sample space, the above
proposition holds with k = +∞, and that one can assert the existence of a ran-
dom number f∗, with probability distribution function Φ, that can be viewed
as the almost sure limit of (f̄n)n≥1. But he had at least three good reasons,
from his viewpoint, to be uninterested in the ”strong” formulation of his strong
law of large numbers. These reasons, briefly mentioned in many points of the
Memoria, are discussed in a more systematic way in a few contemporaneous de
Finetti’s papers such as [7], [8] and [9]. It is worth recalling them here, in a
three-point summary. (i) Logically speaking, it is unjustifiable to speak of an
infinite sequence of trials of a random phenomenon: The number of the trials
could be arbitrarily great but, in any case, finite. (ii) Without the assumption
of complete additivity and with no reference to a sample space, there is no pos-
sibility of deducing the existence of a limiting random quantity from the sole
mutual convergence of a given sequence. (iii) de Finetti deduces the whole the-
ory of probability from a very natural condition having an obvious meaning –
the so-called condition of coherence – and shows that complete additivity is not
necessary for a quantitative measure of probability to be coherent. See [10].

The strong law of large numbers for the frequency of success in a sequence
of exchangeable events represents the last issue dealt with in Chapter 1 of the
Memoria. Chapter 2 contains the definitions of some operators on the set of all
characteristic functions, with the intention of providing a rigorous, systematic
presentation, in Chapter 3, of asymptotic properties of the posterior distribution
and of the merging of the predictive distribution with the frequency of success
in past trials of a given random phenomenon. In view of the purely instrumental
function of Chapter 2, here we jump to the more important Chapter 3.

2.5 – Probability and experience: Posterior and predictive distributions

At the time of the draft of the Memoria, de Finetti was unfamiliar with
techniques of statistical inference, and it’s amazing how he was, nevertheless,
able at picking out the essence of the inductive reasoning and the tools to deal
with it, from a coherent mathematical standpoint. In his view of these sub-
jects, exchangeability is a means to study and understand the role played by
the knowledge of data, gathered from experience, with regards to the evalua-
tion of probability. In particular, he aims at clarifying how exchangeability can
be employed to provide with a basis the common belief that prevision of new
facts rests on the analogy with past observed facts. In the case of a random
phenomenon, this belief leads to assume, although with caution, past frequency
as an approximate value for probability. So, in Section 27, de Finetti provides
a new rigorous description of the asymptotic behavior of the posterior distribu-
tion(3), and makes use of this statement to show the merging of the predictive

(3)In point of fact, he was unaware of [26], where a strictly related problem is studied.
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distribution with frequency in past trials. Apropos of the former, he considers
infinite sequences of exchangeable trials of a random phenomenon, generating
convergent sequences of frequencies. More precisely,

Proposition 6. Let θ0 be any point in the intersection of (0, 1) with the
support of the distribution function, Φ, of the random phenomenon. Then the
posterior distribution, given {f̄n = σn

n }, converges weakly to the point mass δθ0 ,
whenever σn/n → θ0 as n → +∞, i.e.

lim
n→+∞

∫ θ0+ε

θ0−ε
θσn(1− θ)n−σndΦ(θ)∫

[0,1]
θσn(1− θ)n−σndΦ(θ)

= 1 (ε > 0).

Whence, as for the conditional probability of {En+k} given {f̄n = σn

n }, viz.∫
[0,1]

θ1+σn(1− θ)n−σndΦ(θ)∫
[0,1]

θσn(1− θ)n−σndΦ(θ)
,

one obtains that, for any ε > 0, there is N = N(ε,Φ), such that

∣∣∣∫[0,1]
θ1+σn(1− θ)n−σndΦ(θ)∫

[0,1]
θσn(1− θ)n−σndΦ(θ)

− σn

n

∣∣∣ ≤ ε

holds true for every n ≥ N .

In Section 28, de Finetti explains the ”relative” value of this proposition.
Indeed, in view of the dependence of N on Φ, it does not allow a quantitative
statement about the approximation of frequency to probability, independently
of a complete a priori knowledge of the characteristic function of the random
phenomenon.

Chapter 3 ends with a brief mention of the use of posterior distribution in
the problem of hypothesis–testing: the sole explicit hint to a statistical technique,
contained in the Memoria.

2.6 – Classes of exchangeable events and extension of exchangeability

The main issue dealt with in the last chapter (Chapter 4, including Sections
31–36) is extendibility of exchangeability, from a finite sequence to a ”longer”
sequence of events. The problem can be formulated in the following terms: Given
positive integers n and k, establish conditions on the characteristic function of a
random phenomenon of n exchangeable events in order that they may constitute
the initial n–segment of a random phenomenon of (n + k) exchangeable events.
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To solve this problem, de Finetti starts from (2), viewed as a first–order
linear differential equation in the dependent variable Ωn+1. Since the one–
parameter family of solutions of this equation is

(6) Ωn+1(z) = (1− z)n+1{(n + 1)
∫ z

0

Ωn(x)(1− x)−(n+2)dx + c},

then (6) can be combined with Proposition 1 to obtain

Proposition 7. t �→ Ωn(eit/n) is the characteristic function of the initial
n-segment of a sequence of (n+1) exchangeable events if and only if the constant
c in (6) can be determined in such a way that all the coefficients of the polynomial
(of degree (n + 1)), defined by the right–hand side of (6), are nonnegative.

Analogously, to solve the problem for some k > 1, one can start from (6)
with (n + 2) in the place of (n + 1), consider it as an equation in the dependent
variable Ωn+2 and, finally, substitute Ωn+1 with its expression in the right–hand
side of (6). So, by an obvious recursive argument, de Finetti states that Ωn+k

can be written as

(7) Ωn+k(z) = F (z) + C1(1− z)n+1 + · · ·+ Ck(1− z)n+k

F being a polynomial, whose coefficients are completely determined by Ωn.
Then:

Proposition 8. t �→ Ωn(eit/n) is the characteristic function of the ini-
tial n–segment of a sequence of (n + k) exchangeable events if and only if the
constants C1, . . . , Ck can be determined in such a way that all the coefficients
of the polynomial (of degree (n + k)), defined by the right–hand side of (7), are
nonnegative.

Forty years later, de Finetti came back to the problem from a new stand-
point, of a geometrical nature (see [15]), followed by some Authors such as [3],
[4], [17] and [27].

In Section 4 of the present paper, we will resume the original analytical de
Finetti’s argument, by providing an explicit form for F in (7). Our goal is to
reformulate the necessary and sufficient condition in Proposition 8 in the guise
of a system of linear inequalities.

De Finetti gives a complete solution of the extendibility problem when
k = +∞, i.e.: To establish conditions on t �→ Ωn(eit/n) in order that it can be
viewed as characteristic function of the first n trial of a random phenomenon of
infinite exchangeable events. Resting on the representation (see Subsection 2.2)
according to which ω

(h)
h is the h–moment of the probability distribution function
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Φ of the random phenomenon, via the Hamburger solution of the problem of
moments (see, e.g., [25]), de Finetti was able to state:

Proposition 9. In order that t �→ Ωn(eit/n) may be the characteristic
function of the initial n–segment of an infinite sequence of exchangeable events
it is necessary and sufficient that all the roots of a distinguished polynomial,
depending on n, belong to the closed interval [0, 1]. The polynomial (in ξ) is

Det

⎛⎜⎜⎜⎜⎝
1 ξ ξ2 . . . ξk

ω
(0)
0 ω

(1)
1 ω

(2)
2 . . . ω

(k)
k

. . . . . . . . . . . . . . .

ω
(k−1)
k−1 ω

(k)
k ω

(k+1)
k+1 . . . ω

(2k−1)
2k−1

⎞⎟⎟⎟⎟⎠
if n = 2k − 1, while it is

Det

⎛⎜⎜⎜⎜⎝
1 ξ ξ2 . . . ξk

ω
(1)
1 ω

(2)
2 ω

(3)
3 . . . ω

(k+1)
k+1

. . . . . . . . . . . . . . .

ω
(k)
k ω

(k+1)
k+1 ω

(k+2)
k+2 . . . ω

(2k)
2k

⎞⎟⎟⎟⎟⎠
if n = 2k.

3 – Haag’s contribution to exchangeability

To our knowledge, Haag was the first Author to study sequences of ex-
changeable events. He publicized his conclusions during the International Math-
ematical Congress held in Toronto, August, 1924. His communication appeared
in Vol. 1 of the Proceedings, published in 1928, the very same year of the already
mentioned Bologna Congress. See [18]. It is highly likely that de Finetti was
in the dark about the Haag contribution until the 1950s, when Edwin Hewitt
and Leonard J. Savage mentioned it in a famous paper about exchangeability.
See [19].

It is convenient to pause here and consider what Haag really did. In the
first six brief sections, he deals with finite sequences of exchangeable events and
furnishes a detailed account of the expressions of the ω

(n)
k both in terms of ω

(h)
h

and in terms of ω
(h)
0 , for h = 1, 2, . . . , n. In Section 7, Haag attains an early

version of the representation theorem, but via a rather incomplete argument.
He considers a sequence of exchangeable trials with a frequency of success σn/n
converging to x as n → +∞. By the way, Haag does not hint at any form of law
of large numbers, so that the reader is not able to judge whether the convergence
assumption expresses an extraordinary or, instead, a common fact. By resorting
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to the Stirling formula, and assuming that f(x)dx provides, for some continuous
function f defined on (0, 1), an asymptotic value for the probability that σn/n
belongs to (x, x + dx), as n → +∞, he shows that

√
2πx(1− x)

(xx(1− x)1−x)n

√
n

f(x)

represents an approximate value – for great values of n – of ω
(n)
σn /

(
n
σn

)
. At this

stage, by means of a heuristic argument based on formal elementary computa-
tions, he concludes that

(8)
(

p + q

p

)
xp(1− x)q 1

n
f(x)

gives an approximate value for the probability of the event ”The limiting fre-
quency belongs to (x, x + 1/n) and, simultaneously, one gets p successes in
n = p + q trials”. So, the probability of p successes in (p + q) trials can be
represented as limit (as n → +∞) of a sum of terms like (8), i.e.(

p + q

p

) ∫ 1

0

xp(1− x)qf(x)dx.

The assumption that the frequency converges to a random variable, weakens the
validity of the Haag argument, and emphasizes the difference between his stand-
point and de Finetti’s stance. Indeed, de Finetti reckons that convergence of
frequency must be proved, whilst it is evident that Haag is assuming the validity
of some type of empirical law which postulates convergence of frequency. So,
while de Finetti introduces exchangeability to explain the role of frequency in
evaluating probability – within the framework of a rigorously subjectivisitc or,
on depending on taste, axiomatic conception – Haag misses out on these funda-
mental aspects. Moreover, while de Finetti shows to have an extraordinarily ad-
vanced command of the right mathematical apparatus to deal with probabilistic
problems, Haag does not go beyond the use of the elementary combinatorial cal-
culus. In point of fact, the final part of his paper, intitled Applications, includes
a review of classical problems solvable by means of elementary combinatorics.

4 – Some new developments on extendibility

As anticipated in Subsection 2.6, in the last part of this paper we follow de
Finetti’s ideas, explained in that very same subsection, to obtain new necessary
and sufficient conditions for extendibility of a given finite–dimensional exchange-
able distribution. These conditions are of an algebraic nature, differently from
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the above–mentioned conditions derived in the frame of a geometrical approach.
Taking (7) as a starting point, one first determines an explicit form for F , i.e.

(9)
F (z) = F (z;n, k) = zk (n + k)!

n!

∫
(0,1)k

( k∏
j=1

tj−1
j

)
{1− z(1− t1 · · · tk)}n·

· Ωn

(
t1 · · · tkz

1− z(1− t1 · · · tk)

)
dt1 . . . dtk (k = 1, 2, . . . ).

To prove the validity of this representation, first note that (9) with k = 1 is
consistent with (6). Then, to complete the proof, use (6), with n replaced by
(n + k), and proceed by mathematical induction with respect to k.

Now, substitute expression (3) into (9) to obtain

F (z) =
(n + k)!

n!

n∑
l=0

ω
(n)
l zl+k

∫
(0,1)k

(t1 · · · tk)l·

(1− z(1− t1 · · · tk))n−lt2t
2
3 . . . tk−1

k dt1 . . . dtk

=
(n + k)!

n!

n∑
l=0

ω
(n)
l zl+k 1

Γ(k)

∫ 1

0

xl(1− x)k−1{1− z(1− x)}n−ldx

(see, for example, 3.3.5.11 in [23])

=
(n + k)!

n!(k − 1)!

n∑
l=0

ω
(n)
l

n−l∑
h=0

(
n− l

h

)
zh+l+k(−1)hB(l + 1, k + h)

with B(α, β) :=
∫ 1

0
xα−1(1− x)β−1dx. Whence, from (6),

Ωn+k(z) =
k−1∑
i=0

(−1)izi
∑

j=1∨(i−1)

(
n + j

i

)
Cj +

n+k∑
i=k

(−1)izi
{ ∑

j=1∨(i−n)

(
n + j

i

)
Cj

+
(n + k)!

n!(k − 1)!
(−1)k

i−k∑
l=0

ω
(n)
l (−1)l

(
n− l

n− i + k

)
B(l + 1, i− l)

}
.

Then, Proposition 8 can be restated as

Proposition 10. t �→ Ωn(eit/n) :=
∑n

h=0 ω
(n)
h eiht/n is the characteristic

function of the initial n–segment of a sequence of (n + k) exchangeable events if
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and only if the constants C1, . . . , Ck can be determined in such a way that

(10)

0 ≤ ρi := (−1)i
k∑

j=1∨(i−n)

(
n + j

i

)
Cj i = 0, . . . , k − 1

0 ≤ ρi := (−1)i
{ ∑

j=1∨(i−n)

(
n + j

i

)
Cj

+
(n + k)!

n!(k − 1)!
(−1)k

i−k∑
l=0

ω
(n)
l (−1)l

(
n− l

n− i + k

)
B(l + 1, i− l)

}
i = k, . . . , n + k.

Moreover, if this system of linear inequalities is consistent, then for each of the
solutions (C1, . . . , Ck), the vector (ρ0, . . . , ρn+k) represents an exchangeable as-
sessment for (ω(n+k)

0 , . . . , ω
(n+k)
n+k ), consistent with the initial segment (ω(n)

0 , . . . ,

ω
(n)
n ).

The research of conditions for consistency of systems like (10) originated a
wealth of literature on the subject. Here, we propose a solution derived from [2].
In matrix form, (10) becomes Ax ≤ b where

A = [aij ]1≤i≤n+k+1,1≤j≤k, b′ = (b1, . . . , bn+k+1), x′ = (C1, . . . , Ck),

with

aij := (−1)i

(
n + j

i− 1

)
, b1 = 0, . . . , bk = 0,

bi = (−1)i+k−1 (n + k)!
n!(k − 1)!

i−1−k∑
l=0

(−1)lω
(n)
l

(
n− l

n− i + k + 1

)
B(l + 1, i− 1− l)

i = k + 1, . . . , n + k + 1.

Since, as it is easy to show, the rank of A is k, Theorem 3 in [2] yields

Proposition 11. Ωn(eit/n) :=
∑n

h=0 ω
(n)
h eiht/n is the characteristic func-

tion of the initial n–segment of a sequence of (n+k) exchangeable events if, and
only if, there exist 1 ≤ i1 < i2 < · · · < ik ≤ n + k + 1 such that⎛⎝ ai11 . . . ai1k

. . . . . . . . .
aik1 . . . aikk

⎞⎠
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has a nonvanishing determinant Δ, and

1
Δ

det

⎛⎜⎝
ai11 . . . ai1k bi1

. . . . . . . . . . . .
aik1 . . . aikk bik

aj1 . . . ajk bj

⎞⎟⎠
turns out to be nonnegative for every j = 1, . . . , n + k + 1.

In the particular case of k = 1, this necessary and sufficient condition re-
duces to require that {ω(n)

h : h = 0, . . . , n} satisfies

max{βi : for any even integer ≤n + 1} ≤ min{βi : for any odd integer ≤n + 1}

where

βi =
i−1∑
l=0

(−1)lB(l + 1, n− l + 1)ω(n)
l (i = 1, . . . , n + 1).

In fact, this result could be obtained by direct inspection of (10) with k = 1.
To conclude, let us remark that Proposition 11 is susceptible of interest-

ing geometrical interpretations that one can deduce directly from the above–
mentioned Cernikov paper. It would be interesting to compare them with the
geometrical arguments in [15] and developed by other Authors already mentioned
in Subsection 2.6.
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Reale Istituto Lombardo di Scienze e Lettere, 63 (1930), 155-166.

[8] B. de Finetti: A proposito dell’estensione del teorema delle probabilità totali alle
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Some highlights from the theory

of multivariate symmetries

OLAV KALLENBERG

Abstract: We explain how invariance in distribution under separate or joint con-
tractions, permutations, or rotations can be defined in a natural way for d-dimensional
arrays of random variables. In each case, the distribution is characterized by a general
representation formula, often easy to state but surprisingly complicated to prove. Com-
paring the representations in the first two cases, one sees that an array on a tetrahedral
index set is contractable iff it admits an extension to a jointly exchangeable array on
the full rectangular index set.

Multivariate rotatability is defined most naturally for continuous linear random
functionals on tensor products of Hilbert spaces. Here the simplest examples are the
multiple Wiener–Itô integrals, which also form the basic building blocks of the general
representations. The rotatable theory can be used to derive similar representations for
separately or jointly exchangeable or contractable random sheets. The present paper
provides a non-technical survey of the mentioned results, the complete proofs being
available elsewhere. We conclude with a list of open problems.

1 – Basic symmetries and classical results

Many basic ideas in the area of probabilistic symmetries can be traced back
to the pioneering work of Bruno de Finetti. After establishing, in 1930–37, his
celebrated representation theorem for exchangeable sequences, he proposed in
de Finetti (1938) the study of partial exchangeability of a random sequence, in
the sense of invariance in distribution under a proper subgroup of permutations

Key Words and Phrases: Contractable – Exchangeable and rotatable random arrays
– Functionals and sheets – Multiple Wiener-Itô integrals.
A.M.S. Classification: 60G09
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of the elements. (A permutation on an infinite set is defined as a bijective map.)
For a basic example, we may arrange the elements in a doubly infinite array and
require invariance in distribution under permutations of all rows and all columns.
This leads to the notion of row-column or separate exchangeability, considered
below.

Many other probabilistic symmetries of interest can be described in terms
of higher-dimensional arrays, processes, measures, or functionals. Their study
leads to an extensive theory, whose current state is summarized in the last three
chapters of the monograph Kallenberg (2005)(1). Our present aim is to give
an informal introduction to some basic notions and results in the area. No
novelty is claimed, apart from some open problems listed at the end of the
paper. Before introducing the multivariate symmetries, we need to consider the
one-dimensional case. For infinite sequences X = (Xj) of random variables, we
have the following basic symmetries, listed in the order of increasing strength.
(Here X has the property on the left iff its distribution is invariant under the
transformations on the right.)

stationary shifts
contractable contractions
exchangeable permutations
rotatable rotations

Thus, X is contractable if all subsequences have the same distribution, exchange-
able if the joint distribution is invariant under arbitrary permutations, and rotat-
able if the distribution is invariant under any orthogonal transformation applied
to finitely many elements. The notion of stationarity is well-known and will not
be considered any further in this paper.

Sequences with the last three symmetry properties are characterized by the
following classical results. Letting X = (Xj) be an infinite sequence of random
variables, we have:

• (de Finetti (1930, 1937)): X is exchangeable iff it is mixed (or conditionally)
i.i.d.,

• (Ryll-Nardzewski (1957)): X is contractable iff it is exchangeable, hence
mixed i.i.d.,

• (Freedman (1962)): X is rotatable iff it is mixed i.i.d. centered Gaussian.

For processes X on IR+, the notions of contractability, exchangeability, and
rotatability are defined in terms of the increments over any set of disjoint intervals
of equal length. We may also assume that X is continuous in probability and
starts at 0. Then the first two properties are again equivalent, and the three
cases are characterized as follows:

(1)Henceforth abbreviated as K(2005).
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• (Bühlmann (1960)): X is exchangeable iff it is a mixture of Lévy processes,
• (Freedman (1963)): X is rotatable iff it is a mixture of centered Brownian

motions with different rates.

In particular, we see from the former result that a continuous process X
is exchangeable iff it is a mixture of Brownian motions with arbitrary rate and
drift coefficients. Thus, in the continuous case, the exchangeable and rotatable
processes differ only by a random centering. This observation plays an important
role for the analysis of exchangeable and contractable random sheets. Together
with Ryll-Nardzewski’s theorem, it also signifies a close relationship between the
various symmetry properties in our basic hierarchy.

Proceeding to two-dimensional random arrays X = (Xij ; i, j ≥ 1) indexed
by IN2, we may define the permuted arrays X ◦ (p, q) and X ◦ p by

(X ◦ (p, q))ij = Xpi,qj , (X ◦ p)ij = Xpi,pj ,

where p = (pi) and q = (qj) are permutations on IN. Then X is said to be

separately exchangeable if X ◦ (p, q) d= X for all permutations p and q on IN and
jointly exchangeable if X ◦ p

d= X for any such permutation p. Note that the
latter property is weaker, so that every separately exchangeable array is also
jointly exchangeable. The definitions in higher dimensions are similar.

The contractable case is similar. Thus, X is said to be separately con-
tractable if X ◦ (p, q) d= X for all subsequences p and q of IN and jointly con-
tractable if X◦p d= X for any such subsequence p. However, only the joint version
is of interest, since the separate notions of exchangeability and contractability
are equivalent by Ryll-Nardzewski’s theorem above (applied to random elements
in IR∞).

To define rotatability in higher dimensions, consider arrays U = (Uij) such
that, for some n ∈ IN, the restriction to the square {1, . . . , n}2 is orthogonal and
otherwise Uij = δij . For any such arrays U and V , we may define the array
X ◦ (U ⊗ V ) by

(X ◦ (U ⊗ V ))ij =
∑

h,k
Xhk Uhi Vkj , i, j ∈ IN ,

and put U⊗2 = U⊗U . Then X is said to be separately rotatable if X◦(U⊗V ) d= X

for all orthogonal arrays U and V as above and jointly rotatable if X ◦U⊗2 d= X
for any such array U . Even these properties extend immediately to arbitrary
dimensions.

The natural index set of a jointly exchangeable array X is not IN2 but rather
IN(2) = {(i, j) ∈ IN2; i 
= j}. In fact, an array X on IN2 is jointly exchangeable
iff the same property holds for the non-diagonal array

Yij = (Xij , Xii), i 
= j .
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(The latter property makes sense, since every permutation on IN induces a joint
permutation on IN(2).) Similarly, the natural index set for a d-dimensional,
jointly exchangeable array is the set IN(d), consisting of all d-tuples (i1, . . . , id)
with distinct entries i1, . . . , id.

In the contractable case, we can go even further. Thus, an array X on
IN2 is jointly contractable iff the same property holds for the sub-diagonal (or
super-diagonal, depending on the geometrical representation) array

Zij = (Xij , Xji, Xii), i < j .

Similarly, the natural index set for a d-dimensional, jointly contractable array is
the tetrahedral index set

Δd = {(i1, . . . , id) ∈ INd; i1 < · · · < id} .

It is often convenient to identify Δd with the class ĨNd, consisting of all subsets
of IN of cardinality d.

To summarize, we are led to consider exchangeable arrays on IN =
⋃

d IN(d)

and contractable arrays on ĨN =
⋃

d ĨNd, where the qualification “jointly” is
understood. The natural setting for the rotatable case will be discussed later.

2 – Exchangeable and contractable arrays

The aim of this section is to explain how separately or jointly exchangeable
or contractable arrays of arbitrary dimension can be characterized by some gen-
eral functional representations. In order to fully understand those formulas, it
is useful to begin with the one-dimensional case. Write U(0, 1) for the uniform
distribution on [0, 1].

• An infinite random sequence X = (Xj) is contractable (hence exchangeable)
iff there exist a measurable function f on [0, 1]2 and some i.i.d. U(0, 1)
random variables α and ξ1, ξ2, . . . such that a.s.

Xj = f(α, ξj), j ≥ 1 .

This is just another way of stating de Finetti’s theorem. In particular, we
see directly from this formula that the Xj are conditionally i.i.d. given α. This
formulation has the disadvantage that the function f is not unique, and further
that an independent randomization variable may be needed to construct the
associated coding variables α and ξj .

For exchangeable arrays of higher dimension, the characterization problem
is much harder. Here the first breakthrough came with Aldous’ intricate proof
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(later simplified by Kingman) of the following result. (See also the elementary
discussion in Aldous (1985).)

• (Aldous (1981)): An array X = (Xij) on IN2 is separately exchangeable iff
there exist a measurable function f on [0, 1]4 and some i.i.d. U(0, 1) random
variables α, ξi, ηj, and ζij such that a.s.

Xij = f(α, ξi, ηj , ζij), i, j ≥ 1 .

Representations of this type can also be deduced from certain results in
formal logic, going back to the 1960’s. (Here an elementary discussion ap-
pears in Hoover (1982).) Combining related methods with the techniques of
non-standard analysis, Hoover found some general representations characteriz-
ing separately or jointly exchangeable arrays of arbitrary dimension. In the
two-dimensional, jointly exchangeable case, his representation reduces to the
following:

• (Hoover (1979)(2)): An array X = (Xij) on IN(2) is jointly exchangeable iff
there exist a measurable function f on [0, 1]4 and some i.i.d. U(0, 1) random
variables α, ξi, and ζ{i,j} such that a.s.

Xij = f(α, ξi, ξj , ζ{i,j}), i 
= j .

Note that the representation in the separately exchangeable case follows
as an easy corollary. Still deeper is the corresponding representation in the
contractable case:

• (K (1992)): An array X = (Xij) on Δ2 is jointly contractable iff there exist
a measurable function f on [0, 1]4 and some i.i.d. U(0, 1) random variables
α, ξi, and ζij such that a.s.

Xij = f(α, ξi, ξj , ζij), i < j .

Comparing with the result in the jointly exchangeable case, we get the
following rather surprising extension theorem:

• (K (1992)): An array X = (Xij) on Δ2 is jointly contractable iff it can be
extended to a jointly exchangeable array on IN(2).

In fact, the last two results are clearly equivalent, given Hoover’s represen-
tation in the jointly exchangeable case. No direct proof is known. As already
mentioned, the representing function f in the quoted theorems is far from unique.

(2)The reason for the earlier date is that Hoover’s long and difficult paper, written at
the Institute of Advanced Study at Princeton, was never published.
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To illustrate the possibilities, we may quote an equivalence criterion in the con-
tractable case:

• (K (1992)): Two measurable functions f and f ′ on [0, 1]2 can be used to rep-
resent the same contractable array X on Δ2 iff there exist some measurable
functions g0, g

′
0 on [0, 1], g1, g

′
1 on [0, 1]2, and g2, g

′
2 on [0, 1]4, each measure

preserving in the last argument, such that a.s., for any i.i.d. U(0, 1) random
variables α, ξi, and ζij ,

f(g0(α), g1(α, ξi), g1(α, ξj), g2(α, ξi, ξj , ζij))
= f ′(g′0(α), g′1(α, ξi), g′1(α, ξj), g′2(α, ξi, ξj , ζij)), i < j .

To state the higher-dimensional results in a concise form, we may introduce
an array of i.i.d. U(0, 1) random variables (or U-array) ξ = (ξJ) indexed by ĨN,
and write

ξ̂J = (ξI ; I ⊂ J), J ∈ ĨN .

Similarly, for any k ∈ IN, we may form the associated set k̃ = {k1, k2, . . . } and
write

ξ̂k = (ξI ; I ⊂ k̃), k ∈ IN .

To be precise, we also need to specify an order among (not within) the sets I ⊂ k̃,
which is determined in an obvious way by the order within k of the elements kj .

Using the previous terminology and notation and writing 2n for the class of
subsets of {1, . . . , n}, we may state the general representations as follows:

• (Hoover (1979)): An array X on IN is exchangeable iff there exist a mea-
surable function f on

⋃
n[0, 1]2

n

and a U-array ξ on ĨN such that a.s.

Xk = f(ξ̂k), k ∈ IN .

• (K (1992)): An array X on ĨN is contractable iff there exist a measurable
function f on

⋃
n[0, 1]2

n

and a U-array ξ on ĨN such that a.s.

XJ = f(ξ̂J), J ∈ ĨN .

As before, the last result yields an associated extension theorem:

• (K (1992)): An array X on ĨN is contractable iff it can be extended to an
exchangeable array on IN.
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3 – Rotatable arrays and functionals

Even separately or jointly rotatable arrays may be characterized in terms
of a.s. representations. Here we may again begin with the one-dimensional case:

• (Freedman (1962)): An infinite random sequence X = (Xj) is rotatable iff
there exist some i.i.d. N(0, 1) random variables ζ1, ζ2, . . . and an indepen-
dent random variable σ ≥ 0 such that a.s.

Xj = σζj , j ≥ 1 .

This is clearly equivalent to the previous characterization of rotatable se-
quences as mixed i.i.d. centered Gaussian. The two-dimensional case is again a
lot harder. The following result, originally conjectured by Dawid (1978), was
proved (under a moment condition) by an intricate argument based on the rep-
resentation theorem for separately exchangeable arrays:

• (Aldous (1981)): An array X = (Xij) on IN2 is separately rotatable iff
there exist some i.i.d. N(0, 1) random variables ξki, ηkj, and ζij, along with
an independent set of random coefficients σ and αk satisfying

∑
k α2

k < ∞,
such that a.s.

Xij = σζij +
∑

k
αk ξki ηkj , i, j ≥ 1 .

For jointly rotatable arrays, we have instead:

• (K (1988)): An array X = (Xij) on IN2 is jointly rotatable iff there exist
some i.i.d. N(0, 1) random variables ξki and ζij, along with an independent
set of random coefficients ρ, σ, σ′, and αhk satisfying

∑
h,k α2

hk < ∞, such
that a.s.

Xij = ρδij + σζij + σ′ζji +
∑

h,k
αhk (ξhi ξkj − δijδhk), i, j ≥ 1 .

Here the centering terms δijδhk are needed, in general, to ensure convergence
of the double series on the right.

The higher-dimensional representations are stated most conveniently in a
Hilbert space setting. Here we consider any real, separable, infinite-dimensional
Hilbert space H. By a continuous linear random functional (CLRF ) on H we
mean a real-valued process X on H such that

• hn → 0 in H implies Xhn
P→ 0,

• X(ah + bk) = aXh + bXk a.s. for all h, k ∈ H and a, b ∈ IR.

For a simple example, we may consider an isonormal Gaussian process (G-
process) on H, defined as a centered Gaussian process X on H such that

Cov(Xh, Xk) = 〈h, k〉, h, k ∈ H .
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By a unitary operator on H we mean a linear isometry U of H onto itself. A
CLRF X on H is said to be rotatable if X ◦ U

d= X for all unitary operators U
on H, where (X ◦U)h = X(Uh). Taking H = l2, we get the following equivalent
version of Freedman’s theorem:

• (Freedman (1962–63)): A CLRF X on H is rotatable iff X = ση a.s. for
some G-process η on H and an independent random variable σ ≥ 0.

This formulation has the advantage of also containing the corresponding
continuous–time representation mentioned earlier–the fact that a continuous pro-
cess X on IR+ with X0 = 0 is rotatable iff X = σB a.s. for some Brownian mo-
tion B and an independent random variable σ ≥ 0. This amounts to choosing
H = L2(λ), where λ denotes Lebesgue measure on IR+.

The higher-dimensional representations are stated, most conveniently, in
terms of rotations on tensor products of Hilbert spaces Hk. The latter are
best understood when Hk = L2(μk) for some σ-finite measures μ1, . . . , μn on
measurable spaces S1, . . . , Sn. The tensor product

⊗
k Hk = H1 ⊗ · · · ⊗ Hn of

the spaces Hk can then be defined by

H1 ⊗ · · · ⊗Hn = L2(μ1 ⊗ · · · ⊗ μn) ,

where μ1⊗ · · · ⊗μn denotes the product measure of μ1, . . . , μn on S1× · · · ×Sn.
For any elements hk ∈ Hk, we define the tensor product

⊗
k hk = h1 ⊗ · · · ⊗ hn

in
⊗

k Hk by

(h1 ⊗ · · · ⊗ hn)(s1, . . . , sn) = h1(s1) · · ·hn(sn) ,

for any sk ∈ Sk, k = 1, . . . , n. Choosing an orthonormal basis (ONB) hk1, hk2, . . .
in Hk for every k, we note that the tensor products

⊗
k hk,jk

for arbitrary
j1, . . . , jn ∈ IN form an ONB in

⊗
k Hk.

Given any unitary operators Uk on Hk, k = 1, . . . , n, there exists a unique
unitary operator

⊗
k Uk = U1 ⊗ · · · ⊗ Un on

⊗
k Hk such that, for any elements

hk ∈ Hk,

(U1 ⊗ · · · ⊗ Un)(h1 ⊗ · · · ⊗ hn) = U1h1 ⊗ · · · ⊗ Unhn .

When Hk = H or Uk = U for all k, we may write H⊗n =
⊗

k Hk or U⊗n =⊗
k Uk, respectively. A CLRF X on H⊗n is said to be separately rotatable if

X ◦⊗
k Uk

d= X for all unitary operators U1, . . . , Un on H and jointly rotatable if

X ◦U⊗n d= X for any such operator U . Basic examples are the multiple Wiener–
Itô integrals (WI-integrals ), defined most easily, as in K (2002), through the
following characterizations (as opposed to the traditional lengthy constructions):

• For any independent G-processes ηk on Hk, k = 1, . . . , n, there exists an
a.s. unique CLRF

⊗
k ηk on

⊗
k Hk such that, a.s. for any elements hk ∈

Hk,
(η1 ⊗ · · · ⊗ ηn)(h1 ⊗ · · · ⊗ hn) = η1h1 · · · ηnhn .
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• For any G-process η on H and any n ∈ IN, there exists an a.s. unique CLRF
η⊗n on H⊗n such that, a.s. for any orthogonal elements hk ∈ Hk,

η⊗n(h1 ⊗ · · · ⊗ hn) = ηh1 · · · ηhn .

Similarly, we may define the multiple integral
⊗

k η⊗rk

k as a CLRF on⊗
k H⊗rk

k for any r1, . . . , rn ∈ IN. It is easily seen that
⊗

k ηk is separately
rotatable while η⊗n is jointly rotatable. Note that the product formula for η⊗n

fails when the elements h1, . . . , hn are not orthogonal. In particular, we have the
a.s. representation (due to Itô (1951))

η⊗nh⊗n = ‖h‖npn(ηh/‖h‖), h ∈ H, n ∈ IN ,

where pn denotes the n-th degree Hermite polynomial with leading coefficient 1.
To state the representation of separately rotatable random functionals, let

Pd denote the set of partitions π of {1, . . . , d}, and write H⊗J =
⊗

j∈J H and
H⊗π =

⊗
J∈π H.

• (K (1995)): A CLRF X on H⊗d is separately rotatable iff there exist some
independent G-processes ηJ on H ⊗H⊗J , J ∈ 2d \ {∅}, and an independent
set of random elements απ ∈ H⊗π, π ∈ Pd, such that a.s.

Xf =
∑

π∈Pd

( ⊗
J∈π

ηJ

)
(απ ⊗ f), f ∈ H⊗d .

The last formula exhibits X as a finite sum of randomized multiple WI-
integrals. Introducing an ONB h1, h2, . . . in H and writing

Xk1,...,kd
= X(hk1 ⊗ · · · ⊗ hkd

), k1, . . . , kd ∈ IN ,

we may write the previous representation in coordinate form as

Xk =
∑

π∈Pd

∑
l∈INπ

απ
l

∏
J∈π

ηJ
kJ ,lJ , k ∈ INd ,

for some i.i.d. N(0, 1) random variables ηJ
kl and an independent collection of

random elements απ
l satisfying

∑
l(α

π
l )2 < ∞ a.s. Any separately rotatable

array on INd can be represented in this form. Note that in the functional version,
the coefficients απ

l have been combined into random elements απ of H, which
explains the role of the extra dimension of the G-processes ηJ .

We turn to the more complicated jointly rotatable case. Here we writeOd for
the class of partitions of {1, . . . , d} into ordered subsets k = (k1, . . . , kr) ∈ IN(r),
1 ≤ r ≤ d. The dimension r of k is denoted by |k|.
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• (K (1995)): A CLRF X on H⊗d is jointly rotatable iff there exist some
independent G-processes ηr on H⊗(r+1), r = 1, . . . , d, and an independent
set of random elements απ ∈ H⊗π, π ∈ Od, such that a.s.

Xf =
∑

π∈Od

( ⊗
k∈π

η|k|

)
(απ ⊗ f), f ∈ H⊗d .

Here the multiple integral
⊗

k∈π η|k| is understood to depend, in an obvious
way, on the order of the elements within each sequence k.

The displayed formula may again be stated in basis form, using the men-
tioned expression of WI-integrals in terms of Hermite polynomials. However, the
representation of jointly rotatable arrays is more complicated, as it also includes
diagonal terms of different order. For example, the term ρδij in the quoted rep-
resentation on IN2 has no extension to a CLRF on H⊗2. This shows another
advantage of the Hilbert space setting, apart from the avoidance of infinite series
involving Hermite polynomials.

4 – Exchangeable random sheets

We have already noted the close relationship between exchangeability and
rotatability for continuous processes on IR+. Exploring this connection, we
may derive representations of certain separately or jointly exchangeable or con-
tractable processes on IRd

+ (and occasionally on [0, 1]d). By a random sheet on
IRd

+ we mean a continuous process X = (Xt) that vanishes on all coordinate
hyperplanes, so that Xt = 0 when

∧
j tj = 0. Note that exchangeability and

rotatability may now be defined in an obvious way in terms of the multivariate
increments.

To understand the higher-dimensional formulas, we may first consider the
case of separately or jointly rotatable random sheets on IR2

+. The following
representations follow easily from the previous results for rotatable arrays.

• A random sheet X on IR2
+ is separately rotatable iff there exist some inde-

pendent Brownian motions B1, B2, . . . and C1, C2, . . . and an independent
Brownian sheet Z, along with an independent set of random coefficients σ
and αk with

∑
k α2

k < ∞ a.s., such that a.s.

Xs,t = σZs,t +
∑

k
αk Bk

s Ck
t , s, t ≥ 0 .

• A random sheet X on IR2
+ is jointly rotatable iff there exist some indepen-

dent Brownian motions B1, B2, . . . and an independent Brownian sheet Z,
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along with an independent set of random coefficients ρ, σ, σ′, and αk with∑
k α2

k < ∞ a.s., such that a.s.

Xs,t = ρ(s ∧ t) + σZs,t + σ′Zt,s+

+
∑

h,k
αhk (Bh

s Bk
t − δhk(s ∧ t)), s, t ≥ 0 .

The representations in the exchangeable case are similar, apart from some
additional centering terms.

• (K (1988)): A random sheet X on IR2
+ is separately exchangeable iff there

exist some independent Brownian motions Bk and Ck and an independent
Brownian sheet Z, along with an independent set of random coefficients ϑ,
σ, and αk, βk, γk with

∑
k(α2

k + β2
k + γ2

k) < ∞ a.s., such that a.s.

Xs,t = ϑst + σZs,t +
∑

k
(αk Bk

s Ck
t + βk tBk

s + γk sCk
t ), s, t ≥ 0 .

• (K (1988)): A random sheet X on IR2
+ is jointly exchangeable iff there exist

some independent Brownian motions Bk and an independent Brownian sheet
Z, along with an independent set of random coefficients ρ, ϑ, σ, σ′, and
αk, βk, β′

k, γk with
∑

k(α2
k + β2

k + β′2
k + γ2

k) < ∞ a.s., such that a.s.

Xs,t = ρ(s ∧ t) + ϑst + σZs,t + σ′Zt,s+

+
∑

h,k
αhk (Bh

s Bk
t − δhk(s ∧ t))+

+
∑

k
(βk tBk

s + β′
k sBk

t + γk Bk
s∧t), s, t ≥ 0 .

Partial results of this type were also obtained, independently, in an unpub-
lished thesis of Hestir (1986).

The higher-dimensional representations may again be stated, most conve-
niently, in terms of multiple WI-integrals. Here we write P̂d =

⋃
I PI , where PI

denotes the class of partitions π of I ∈ 2d \ {∅}. For π ∈ PI , we write πc = Ic.
Let λI denote Lebesgue measure on IRI

+. For notational convenience, we may
identify a set A with its indicator function 1A.

• (K (1995)): A random sheet X on IRd
+ is separately exchangeable iff there

exist some independent G-processes ηI on H ⊗ L2(λI), I ∈ 2d \ {∅}, along
with an independent set of random coefficients απ ∈ H⊗π, π ∈ P̂d, such
that a.s.

Xt =
∑

π∈P̂d

(
λπc ⊗

⊗
I∈π

ηI

)
(απ ⊗ [0, t]), t ∈ IRd

+ .
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A similar representation holds for separately exchangeable random sheets
on [0, 1]d, except that the G-processes ηJ then need to be replaced by suitably
“tied-down” versions.

The jointly exchangeable case is even more complicated and requires some
further notation. Given a finite set J , we define ÔJ =

⋃
I⊂J OI , where OI

denotes the class of partitions of I into ordered subsets k of size |k| ≥ 1. In this
definition, we may take J to be an arbitrary partition π ∈ Pd, regarded as a
finite collection of sets {J1, . . . , Jr}. For any t ∈ IRd

+ and π ∈ Pd, we introduce
the vector t̂π ∈ IRπ

+ with components t̂π,J =
∧

j∈J tj , J ∈ π.

• (K (1995)): A random sheet X on IRd
+ is jointly exchangeable iff there exist

some independent G-processes ηr on H ⊗ L2(λr), 1 ≤ r ≤ d, along with an
independent set of random coefficients απ,κ ∈ H⊗κ, κ ∈ Ôπ, such that a.s.

Xt =
∑

π∈Pd

∑
κ∈Ôπ

(
λκc ⊗

⊗
k∈κ

η|k|

)
(απ,κ ⊗ [0, t̂π]), t ∈ IRd

+ .

One would expect the last representation to remain valid for jointly ex-
changeable sheets on [0, 1]d, with the G-processes ηr replaced by their tied-down
versions. However, the status of this conjecture is still open. We may also men-
tion some similar but still more complicated representations, available for jointly
contractable sheets on IRd

+ (cf. K (2005), p. 398). Finally, there exists an exten-
sive theory of exchangeable random measures in the plane, covered by K (1990,
2005) but not included in the present survey.

In summary, the previous representations illustrate the amazing unity of
the subject: using representations of contractable or exchangeable arrays, we
may derive representations of rotatable random functionals in terms of multiple
WI-integrals, which can then be used to obtain representations of exchangeable
or contractable random sheets.

5 – Some open problems

The theory of multivariate symmetries is still incomplete. We conclude with
a list of open problems in the area.

• Give a direct proof of the extension theorem for contractable arrays. This
would provide an alternative approach to the deep representation theorem
for such arrays, given Hoover’s representation in the jointly exchangeable
case. Some difficulties are likely to arise from the non-uniqueness, the fact
that different representations may lead to different extensions. Is there a
natural choice?

• Characterize the jointly exchangeable random sheets on [0, 1]d. One expects
the representation on IRd

+ to remains valid with the G-processes ηr replaced
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by their tied-down versions. Hence, the question is whether there exist
exchangeable sheets that are not given by this formula.

• Find representations of arrays and processes with different symmetries (con-
tractable, exchangeable, or rotatable) in different indices or variables.

• Characterize the classes of separately or jointly exchangeable random mea-
sures on IRd

+ for d ≥ 3. The complexity of such representations, already for
d = 2 (cf. K (1990, 2005)), suggests that one should first look for a com-
pact way of writing these formulas, starting perhaps with the special case
of simple point processes.

• Extend Bühlmann’s (1960) theorem to higher dimensions, by characteriz-
ing processes on IRd

+ with separately or jointly exchangeable increments. It
seems reasonable to begin with the case of signed random measures on IR2

+.
• Multiple Wiener-Itô integrals constitute the basic examples of rotatable ar-

rays and functionals in higher dimensions. Are there any natural symmetries
leading to multiple p-stable integrals for p < 2? For the one-dimensional
case, see e.g. Diaconis and Freedman (1987).

• Can the semigroup methods of Ressel (1985) be used to derive the rep-
resentations of separately or jointly rotatable arrays and functionals? In
view of the complexity of the current proofs, it seems worthwhile looking
for alternative approaches.
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Graph limits and exchangeable random graphs

PERSI DIACONIS – SVANTE JANSON

Abstract: We develop a clear connection between de Finetti’s theorem for ex-
changeable arrays (work of Aldous–Hoover–Kallenberg) and the emerging area of graph
limits (work of Lovász and many coauthors). Along the way, we translate the graph
theory into more classical probability.

1 – Introduction

De Finetti’s profound contributions are now woven into many parts of prob-
ability, statistics and philosophy. Here we show how developments from de
Finetti’s work on partial exchangeability have a direct link to the recent de-
velopment of a limiting theory for large graphs. This introduction first recalls
the theory of exchangeable arrays (Section 1.1). Then, the subject of graph lim-
its is outlined (Section 1.2). Finally, the link between these ideas, which forms
the bulk of this paper, is outlined (Section 1.3).

1.1 – Exchangeability, partial exchangeability and exchangeable arrays

Let {Xi}, 1 ≤ i < ∞, be a sequence of binary random variables. They are
exchangeable if

P(X1 = e1, . . . , Xn = en) = P(X1 = eσ(1), . . . , Xn = eσ(n))

for all n, permutations σ ∈ Sn and all ei ∈ {0, 1}. The celebrated representation
theorem [10, 11] says

Key Words and Phrases: Graph limit – Exchangeable array – de Finetti’s theorem.
A.M.S. Classification: 60G09, 05C80, 05C62
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Theorem 1.1. (de Finetti) If {Xi}, 1 ≤ i < ∞, is a binary exchangeable
sequence, then:

(i) With probability 1, X∞ = lim 1
n (X1 + · · ·+ Xn) exists.

(ii) If μ(A) = P{X∞ ∈ A}, then for all n and ei, 1 ≤ i ≤ n,

(1.1) P(X1 = e1, . . . , Xn = en) =
∫ 1

0

xs(1− x)n−sμ(dx)

for s = e1 + · · ·+ en.

It is natural to refine and extend de Finetti’s theorem to allow more general
observables (Xi with values in a Polish space) and other notions of symmetry
(partial exchangeability). A definitive treatment of these developments is given
in Kallenberg [17]. Of interest here is the extension of de Finetti’s theorem to
two-dimensional arrays.

Definition. Let {Xij}, 1 ≤ i, j < ∞, be binary random variables. They
are separately exchangeable if

(1.2) P(Xij = eij , 1 ≤ i, j ≤ n) = P(Xij = eσ(i)τ(j), 1 ≤ i, j ≤ n)

for all n, all permutations σ, τ ∈ Sn and all eij ∈ {0, 1}. They are (jointly)
exchangeable if (1.2) holds in the special case τ = σ.

Equivalently, the array {Xij} is jointly exchangeable if the array {Xσ(i)σ(j)}
has the same distribution as {Xij} for every permutation σ of N, and similarly
for separate exchangeability.

The question of two-dimensional versions of de Finetti’s theorem under (sep-
arate) exchangeability arose from the statistical problems of two-way analysis
of variance. Early workers expected a version of (1.1) with perhaps a two-
dimensional integral. The probabilist David Aldous [1] and the logician Douglas
Hoover [16] found that the answer is more complicated.

Define a random binary array {Xij} as follows: Let Ui, Vj , 1 ≤ i, j < ∞, be
independent and uniform in [0, 1]. Let W (x, y) be a function from [0, 1]2 to [0, 1].
Let Xij be 1 or 0 as a W (Ui, Vj)-coin comes up heads or tails. Let PW be the
probability distribution of {Xij}, 1 ≤ i, j < ∞. The family {Xij} is separately
exchangeable because of the symmetry of the construction. The Aldous–Hoover
theorem says that any separately exchangeable binary array is a mixture of such
PW :

Theorem 1.2. (Aldous–Hoover) Let X = {Xij}, 1 ≤ i, j < ∞, be a
separately exchangeable binary array. Then, there is a probability μ such that

P{X ∈ A} =
∫

PW (A)μ(dW ).
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There is a similar result for jointly exchangeable arrays.
The uniqueness of μ resisted understanding; if Ŵ is obtained from W by a

measure-preserving change of each variable, clearly the associated process {X̂ij}
has the same joint distribution as {Xij}. Using model theory, Hoover [16] was
able to show that this was the only source of non-uniqueness. A ‘probabilist’s
proof’ was finally found by Kallenberg, see [17, Sect. 7.6] for details and refer-
ences.

These results hold for higher dimensional arrays with Xij taking values in
a Polish space with minor change [17, Chap. 7]. The description above has
not mentioned several elegant results of the theory. In particular, Kallenberg’s
‘spreadable’ version of the theory replaces invariance under a group by invari-
ance under subsequences. A variety of tail fields may be introduced to allow
characterizing when W takes values in {0, 1} [12, Sect. 4]. Much more general
notions of partial exchangeability are studied in [13].

1.2 – Graph limits

Large graphs, both random and deterministic, abound in applications. They
arise from the internet, social networks, gene regulation, ecology and in mathe-
matics. It is natural to seek an approximation theory: What does it mean for a
sequence of graphs to converge? When can a large complex graph be approxi-
mated by a small graph?

In a sequence of papers [6, 7, 8, 9, 15, 18, 19, 20, 23, 22, 24, 21] Laszlo
Lovász with coauthors (listed here in order of frequency) V. T. Sós, B. Szegedy,
C. Borgs, J. Chayes, K. Vesztergombi, A. Schrijver, M. Freedman have developed
a beautiful, unifying limit theory. This sheds light on topics such as graph homo-
morphisms, Szemeredi’s regularity lemma, quasi-random graphs, graph testing
and extremal graph theory. Their theory has been developed for dense graphs
(number of edges comparable with the square of number of vertices) but parallel
theories for sparse graphs are beginning to emerge [4].

Roughly, a growing sequence of finite graphs Gn converges if, for any fixed
graph F , the proportion of copies of F in Gn converges. Section 2 below has
precise definitions.

Example 1.3 Define a probability distribution on graphs on n-vertices as
follows. Flip a θ-coin for each vertex (dividing vertices into ‘boys’ and ‘girls’).
Connect two boys with probability p. Connect two girls with probability p′.
Connect a boy and a girl with probability p′′. Thus, if p = p′ = 0, p′′ = 1, we
have a random bipartite graph. If p = p′ = 1, p′′ = 0, we have two disjoint
complete graphs. If p = p′ = p′′, we have the Erdös–Renyi model. As n grows,
these models generate a sequence of random graphs which converge almost surely
to a limiting object described below.

More substantial examples involving random threshold graphs are in [14].
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If a sequence of graphs converges, what does it converge to? For ex-
changeable random graphs (defined below), there is a limiting object which may
be thought of as a probability measure on infinite random graphs. Suppose
W (x, y) = W (y, x) is a function from [0, 1]2 → [0, 1]. Choose {Ui}, 1 ≤ i < ∞,
independent uniformly distributed random variables on [0, 1]. Form an infinite
random graph by putting an edge from i to j with probability W (Ui, Uj). This
measure on graphs (or alternatively W ) is the limiting object.

For the “boys and girls” example above, W may be pictured as

θ

θ0 1

p

p''

p''

p'

The theory developed shows that various properties of Gn can be well approxi-
mated by calculations with the limiting object. There is an elegant characteri-
zation of these ‘continuous graph properties’ with applications to algorithms for
graph testing (Does this graph contain an Eulerian cycle?) or parameter esti-
mation (What is an approximation to the size of the maximum cut?). There
is a practical way to find useful approximations to a large graph by graphs of
fixed size [6]. This paper also contains a useful review of the current state of the
theory with proofs and references.

We have sketched the theory for unweighted graphs. There are generaliza-
tions to graphs with weights on vertices and edges, to bipartite, directed and
hypergraphs. The sketch leaves out many nice developments. For example, the
useful cut metric between graphs [21] and connections to statistical physics [9].

1.3 – Overview of the present paper

There is an apparent similarity between the measure PW of the Aldous–
Hoover theorem and the limiting object W from graph limits. Roughly, working
with symmetric W gives the graph limit theory; working with general W gives
directed graphs. The main results of this paper make these connections precise.

Basic definitions are in Section 2 which introduces a probabilist’s version
of graph convergence equivalent to the definition using graph homomorphisms.
Section 3 uses the well-established theory of weak convergence of a sequence of
probability measures on a metric space to get properties of graph convergence.
Section 4 carries things over to infinite graphs.

The main results appear in Section 5. This introduces exchangeable random
graphs and gives a one-to-one correspondence between infinite exchangeable ran-
dom graphs and distributions on the space of proper graph limits (Theorem 5.3),
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which specializes to a one-to-one correspondence between proper graph limits
and extreme points in the set of distributions of exchangeable random graphs
(Corollary 5.4).

A useful characterization of the extreme points of the set of exchangeable
random graphs is in Theorem 5.5. These results are translated to the equivalence
between proper graph limits and the Aldous–Hoover theory in Section 6. The
non-uniqueness of the representing W , for exchangeable random graphs and for
graph limits, is discussed in Section 7.

The equivalence involves symmetric W (x, y) and a single permutation σ
taking W (Ui, Uj) to W (Uσ(i), Uσ(j)). The original Aldous–Hoover theorem, with
perhaps non-symmetric W (x, y) and W (Ui, Vj) to W (Uσ(i), Vτ(j)) translates to a
limit theorem for bipartite graphs. This is developed in Section 8. The third case
of the Aldous–Hoover theory for two-dimensional arrays, perhaps non-symmetric
W (x, y) and a single permutation σ, corresponds to directed graphs; this is
sketched in Section 9.

The extensions to weighted graphs are covered by allowing Xij to take gen-
eral values in the Aldous–Hoover theory. The extension to hypergraphs follows
from the Aldous–Hoover theory for higher-dimensional arrays. (The details of
these extensions are left to the reader.)

Despite these parallels, the theories have much to contribute to each other.
The algorithmic, graph testing, Szemeredi partitioning perspective is new to
exchangeability theory. Indeed, the “boys and girls” random graph was intro-
duced to study the psychology of vision in Diaconis–Freedman (1981). As far
as we know, its graph theoretic properties have not been studied. The various
developments around shell-fields in exchangeability, which characterize zero/one
W (x, y), have yet to be translated into graph-theoretic terms.

2 – Definitions and basic properties

All graphs will be simple, without multiple edges or loops. Infinite graphs
will be important in later sections, but will always be clearly stated to be infinite;
otherwise, graphs will be finite. We denote the vertex and edge sets of a graph
G by V (G) and E(G), and the numbers of vertices and edges by v(G) := |V (G)|
and e(G) := |E(G)|. We consider both labelled and unlabelled graphs; the labels
will be the integers 1, . . . , n, where n is the number of vertices in the graph. A
labelled graph is thus a graph with vertex set [n] := {1, . . . , n} for some n ≥ 1; we
let Ln denote the set of the 2(n

2) labelled graphs on [n] and let L :=
⋃∞

n=1 Ln. An
unlabelled graph can be regarded as a labelled graph where we ignore the labels;
formally, we define Un, the set of unlabelled graphs of order n, as the quotient set
Ln/ ∼= of labelled graphs modulo isomorphisms. We let U :=

⋃∞
n=1 Un = L/ ∼=,

the set of all unlabelled graphs.
Note that we can, and often will, regard a labelled graph as an unlabelled

graph.
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If G is an (unlabelled) graph and v1, . . . , vk is a sequence of vertices in G,
then G(v1, . . . , vk) denotes the labelled graph with vertex set [k] where we put
an edge between i and j if vi and vj are adjacent in G. We allow the possibility
that vi = vj for some i and j. (In this case, there is no edge ij because there are
no loops in G.)

We let G[k], for k ≥ 1, be the random graph G(v1, . . . , vk) obtained by sam-
pling v1, . . . , vk uniformly at random among the vertices of G, with replacement.
In other words, v1, . . . , vk are independent uniformly distributed random vertices
of G.

For k ≤ v(G), we further let G[k]′ be the random graph G(v′1, . . . , v
′
k) where

we sample v′1, . . . , v
′
k uniformly at random without replacement; the sequence

v′1, . . . , v
′
k is thus a uniformly distributed random sequence of k distinct vertices.

The graph limit theory in [21] and subsequent papers is based on the study
of the functional t(F, G) which is defined for two graphs F and G as the pro-
portion of all mappings V (F ) → V (G) that are graph homomorphisms F → G,
i.e., map adjacent vertices to adjacent vertices. In probabilistic terms, t(F, G) is
the probability that a uniform random mapping V (F ) → V (G) is a graph ho-
momorphism. Using the notation introduced above, we can, equivalently, write
this as, assuming that F is labelled and k = v(F ),

(2.1) t(F, G) := P
(
F ⊆ G[k]

)
.

Note that both F and G[k] are graphs on [k], so the relation F ⊆ G[k] is
well-defined as containment of labelled graphs on the same vertex set, i.e. as
E(F ) ⊆ E(G[k]). Although the relation F ⊆ G[k] may depend on the labelling
of F , the probability in (2.1) does not, by symmetry, so t(F, G) is really well
defined by (2.1) for unlabelled F and G.

With F , G and k as in (2.1), we further define, again following [21] (and
the notation of [8]) but stating the definitions in different but equivalent forms,

(2.2) tinj(F, G) := P
(
F ⊆ G[k]′

)
and

(2.3) tind(F, G) := P
(
F = G[k]′

)
,

provided F and G are (unlabelled) graphs with v(F ) ≤ v(G). If v(F ) > v(G)
we set tinj(F, G) := tind(F, G) := 0.

Since the probability that a random sample v1, . . . , vk of vertices in G con-
tains some repeated vertex is ≤ k2/(2v(G)), it follows that [21]

(2.4)
∣∣t(F, G)− tinj(F, G)

∣∣ ≤ v(F )2

2v(G)
.
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Hence, when considering asymptotics with v(G) → ∞, it does not matter
whether we use t or tinj. Moreover, if F ∈ Lk, then, as pointed out in [8]
and [21],

(2.5) tinj(F, G) =
∑

F ′∈Lk, F ′⊇F

tind(F ′, G)

and, by inclusion-exclusion,

(2.6) tind(F, G) =
∑

F ′∈Lk, F ′⊇F

(−1)e(F ′)−e(F )tinj(F ′, G).

Hence, the two families {tinj(F, ·)}F∈U and {tind(F, ·)}F∈U of graph functionals
contain the same information and can replace each other.

The basic definition of Lovász and Szegedy [21] and Borgs, Chayes, Lovász,
Sós and Vesztergombi [8] is that a sequence (Gn) of graphs converges if t(F, Gn)
converges for every graph F . We can express this by considering the map τ :
U → [0, 1]U defined by

(2.7) τ(G) := (t(F, G))F∈U ∈ [0, 1]U .

Then (Gn) converges if and only if τ(Gn) converges in [0, 1]U , equipped with the
usual product topology. Note that [0, 1]U is a compact metric space; as is well
known, a metric can be defined by, for example,

(2.8) d
(
(xF ), (yF )

)
:=

∞∑
i=0

2−i|xFi − yFi |,

where F1, F2, . . . is some enumeration of all unlabelled graphs.
We define U∗ := τ(U) ⊆ [0, 1]U to be the image of U under this mapping τ ,

and let U∗ be the closure of U∗ in [0, 1]U . Thus U∗ is a compact metric space.
(For explicit descriptions of the subset U∗ of [0, 1]U as a set of graph functionals,
see Lovász and Szegedy [21].)

As pointed out in [21] and [8] (in equivalent terminology), τ is not injective;
for example, τ(Kn,n) is the same for all complete bipartite graphs Kn,n. Nev-
ertheless, as in [21] and [8], we can consider a graph G as an element of U∗ by
identifying G and τ(G) (thus identifying graphs with the same τ(G)), and then
convergence of (Gn) as defined above is equivalent to convergence in U∗. The
limit is thus an element of U∗, but typically not a graph in U∗. The main result
of Lovász and Szegedy [21] is a representation of the elements in U∗ to which we
will return in Section 6.

Remark 2.1. As said above, U∗ is a compact metric space, and it can be
given several equivalent metrics. One metric is the metric (2.8) inherited from
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[0, 1]U , which for graphs becomes d(G, G′) =
∑

i 2−i|t(Fi, G) − t(Fi, G
′)|. An-

other metric, shown by Borgs, Chayes, Lovász, Sós and Vesztergombi [8] to be
equivalent, is the cut-distance δ�, see [8] for definitions. Further characteriza-
tions of convergence of sequences of graphs in U are given in [8, 9].

The identification of graphs with the same image in U∗ (i.e., with the same
t(F, ·) for all F ) is sometimes elegant but at other times inconvenient. It can be
avoided if we instead let U+ be the union of U and some one-point set {*} and
consider the mapping τ+ : U → [0, 1]U

+
= [0, 1]U × [0, 1] defined by

(2.9) τ+(G) =
(
τ(G), v(G)−1

)
.

Then τ+ is injective, because if τ(G1) = τ(G2) for two graphs G1 and G2

with the same number of vertices, then G1 and G2 are isomorphic and thus
G1 = G2 as unlabelled graphs. (This can easily be shown directly: it follows
from (2.1) that G1[k] d= G2[k] for every k, which implies G1[k]′ d= G2[k]′ for
every k ≤ v(G1) = v(G2); now take k = v(G1). It is also a consequence of [8,
Theorem 2.7 and Theorem 2.3 or Lemma 5.1].)

Consequently, we can identify U with its image τ+(U) ⊆ [0, 1]U
+

and define
U ⊆ [0, 1]U

+
as its closure. It is easily seen that a sequence (Gn) of graphs

converges in U if and only if either v(Gn) → ∞ and (Gn) converges in U∗, or
the sequence (Gn) is constant from some n0 on. Hence, convergence in U is
essentially the same as the convergence considered by by Lovász and Szegedy
[21], but without any identification of non-isomorphic graphs of different orders.

Alternatively, we can consider τinj or τind defined by

τinj(G) := (tinj(F, G))F∈U ∈ [0, 1]U ,

τind(G) := (tind(F, G))F∈U ∈ [0, 1]U .

It is easy to see that both τinj and τind are injective mappings U → [0, 1]U . (If
tinj(F, G1) = tinj(F, G2) for all F , we take F = G1 and F = G2 and conclude
G1 = G2, using our special definition of tinj when v(F ) > v(G).) Hence, we can
again identify U with its image and consider its closure U in [0, 1]U . Moreover,
using (2.4), (2.5), and (2.6), it is easily shown that if (Gn) is a sequence of
unlabelled graphs, then

(2.10) τ+(Gn) converges ⇐⇒ τind(Gn) converges ⇐⇒ τinj(Gn) converges.

Hence, the three compactifications τ+(U), τinj(U), τind(U) are homeomorphic
and we can use any of them for U . We let U∞ := U \U ; this is the set of all limit
objects of sequences (Gn) in U with v(Gn) →∞. (I.e., it is the set of all proper
graph limits.)
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We will in the sequel prefer to use U rather than U∗, thus not identifying
some graphs of different orders, nor identifying finite graphs with some limit
objects in U∞.

For every fixed graph F , the functions t(F, ·), tinj(F, ·) and tind(F, ·) have
unique continuous extensions to U , for which we use the same notation. We simi-
larly extend v(·)−1 continuously to U by defining v(G) = ∞ and thus v(G)−1 = 0
for G ∈ U∞ := U \U . Then (2.4), (2.5) and (2.6) hold for all G ∈ U , where (2.4)
means that

(2.10) tinj(F, G) = t(F, G), G ∈ U∞.

Note that U is a compact metric space. Different, equivalent, metrics are given by
the embeddings τ+, τinj, τind into [0, 1]U

+
and [0, 1]U . Another equivalent metric

is, by Remark 2.1 and the definition of τ+, δ�(G1, G2) + |v(G1)−1 − v(G2)−1|.
We summarize the results above on convergence.

Theorem 2.1. A sequence (Gn) of graphs converges in the sense of Lovász
and Szegedy [21] if and only if it converges in the compact metric space U∗.
Moreover, if v(Gn) →∞, the sequence (Gn) converges in this sense if and only
if it converges in U .

The projection π : [0, 1]U
+

= [0, 1]U × [0, 1] → [0, 1]U maps τ+(G) to τ(G)
for every graph G, so by continuity it maps U into U∗. For graph G ∈ U ,
π(G) = τ(G) is the object in U∗ corresponding to G considered above, and
we will in the sequel denote this object by π(G); recall that this projection
U → U∗ is not injective. (We thus distinguish between a graph G and its
“ghost” π(G) in U∗. Recall that when graphs are considered as elements of U∗

as in [21] and [8], certain graphs are identified with each other; we avoid this.)
On the other hand, an element G of U is by definition determined by τ(G) and
v(G)−1, cf. (2.9), so the restriction π : Un → U∗ is injective for each n ≤ ∞. In
particular, π : U∞ → U∗ is injective. Moreover, this map is surjective because
every element G ∈ U∗ is the limit of some sequence (Gn) of graphs in U with
v(Gn) →∞; by Theorem 2.1, this sequence converges in U to some element G′,
and then π(G′) = G. Since U∞ is compact, the restriction of π to U∞ is thus a
homeomorphism, and we have the following theorem, saying that we can identify
the set U∞ of proper graph limits with U∗.

Theorem 2.2. The projection π maps the set U∞ := U \ U of proper graph
limits homeomorphically onto U∗.
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3 – Convergence of random graphs

A random unlabelled graph is a random element of U (with any distribution;
we do not imply any particular model). We consider convergence of a sequence
(Gn) of random unlabelled graphs in the larger space U ; recall that this is a
compact metric space so we may use the general theory set forth in, for example,
Billingsley [2].

We use the standard notations d−→,
p−→, a.s.−→ for convergence in distribution,

probability, and almost surely, respectively. We will only consider the case when
v(Gn) →∞, at least in probability. (The reader may think of the case when Gn

has n vertices, although that is not necessary in general.)
We begin with convergence in distribution.

Theorem 3.1. Let Gn, n ≥ 1, be random unlabelled graphs and assume
that v(Gn)

p−→∞. The following are equivalent, as n →∞.

(i) Gn
d−→ Γ for some random Γ ∈ U .

(ii) For every finite family F1, . . . , Fm of (non-random) graphs, the random vari-
ables t(F1, Gn), . . . , t(Fm, Gn) converge jointly in distribution.

(iii) For every (non-random) F ∈ U , the random variables t(F, Gn) converge in
distribution.

(iv) For every (non-random) F ∈ U , the expectations E t(F, Gn) converge.

If these properties hold, then the limits in (ii), (iii) and (iv) are
(
t(Fi,Γ)

)m

i=1
,

t(F,Γ) and E t(F, Γ), respectively. Furthermore, Γ ∈ U∞ a.s.
The same results hold if t is replaced by tinj or tind.

Proof. (i) ⇐⇒ (ii). Since U is a closed subset of [0, 1]U
+
, convergence

in distribution in U is equivalent to convergence of τ+(Gn) =
(
(t(F, Gn))F∈U ,

v(Gn)−1
)

in [0, 1]U
+
, Since we assume v(Gn)−1 p−→ 0, this is equivalent to

convergence of (t(F, Gn))F∈U in [0, 1]U [2, Theorem 4.4], which is equivalent to
convergence in distribution of all finite families (t(Fi, Gn))m

i=1.

(ii) =⇒ (iii). Trivial.

(iii) =⇒ (iv). Immediate, since t is bounded (by 1).

(iv) =⇒ (ii). Let F1, . . . , Fm be fixed graphs and let �1, . . . , �m be positive
integers. Let F be the disjoint union of �i copies of Fi, i = 1, . . . , m. Then, for
every G ∈ U , from the definition of t,

t(F, G) =
m∏

i=1

t(Fi, G)�i ,
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and hence

(3.1) E

m∏
i=1

t(Fi, G)�i = E t(F, G).

Consequently, if (iv) holds, then every joint moment E
∏m

i=1 t(Fi, G)�i of
t(F1, Gn), . . . , t(Fm, Gn) converges. Since t(Fi, Gn) are bounded (by 1), this
implies joint convergence in distribution by the method of moments.

The identification of the limits is immediate. Since v(Gn)
p−→∞,(i) implies

that v(Γ) = ∞ a.s., and thus Γ ∈ U∞.
Finally, it follows from (2.4), (2.5) and (2.6) that we can replace t by tinj

or tind in (ii) and (iv), and the implications (ii) =⇒ (iii) and (iii) =⇒ (iv) are
immediate for tinj and tind too.

Specializing to the case of a non-random limit G ∈ U∞, we obtain the
corresponding result for convergence in probability.

Corollary 3.2. Let Gn, n ≥ 1, be random unlabelled graphs such that
v(Gn)

p−→∞, and let G ∈ U∞. The following are equivalent, as n →∞.

(i) Gn
p−→ G.

(ii) t(F, Gn)
p−→ t(F, G) for every (non-random) F ∈ U .

(iii) E t(F, Gn) → t(F, G) for every (non-random) F ∈ U .

The same result holds if t is replaced by tinj or tind.

Note further that under the same assumptions, it follows directly from The-
orem 2.1 that Gn

a.s.−→ G if and only if t(F, Gn) a.s.−→ t(F, G) for every F ∈ U .
We observe another corollary to Theorem 3.1 (and its proof).

Corollary 3.3. If Γ is a random element of U∞ = U \ U ∼= U∗, then, for
every sequence F1, . . . , Fm of graphs, possibly with repetitions,

(3.2) E

m∏
i=1

t(Fi,Γ) = E t (⊕m
i=1Fi,Γ) ,

where ⊕m
i=1Fi denotes the disjoint union of F1, . . . , Fm. As a consequence, the

distribution of Γ is uniquely determined by the numbers E t(F, Γ), F ∈ U . Alter-
natively, the distribution of Γ is uniquely determined by the numbers E tind(F, Γ),
F ∈ U .
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Proof. Since U is dense in U ⊇ U∞, there exists random unlabelled graphs
Gn such that Gn

a.s.−→ Γ. In particular, Gn
d−→ Γ and v(Gn)

p−→ ∞ (in fact, we
may assume v(Gn) = n), so Theorem 3.1 and its proof apply, and (3.2) follows
from (3.1) applied to Gn by letting n →∞.

For the second statement, note that (3.2) shows that the expectations
E t(F,Γ), F ∈ U , determine all moments E

∏m
i=1 t(Fi,Γ), and thus the joint

distribution of t(F,Γ), F ∈ U , which is the same as the distribution of τ(Γ) =(
t(F,Γ)

)
F∈U ∈ [0, 1]U , and we have defined U∞ such that we identify Γ and

τ(Γ). Finally, the numbers E tind(F,Γ), F ∈ U , determine all E t(F, Γ) by (2.5),
recalling that tinj(F,Γ) = t(F,Γ) by (2.10).

Remark 3.1. The numbers E t(F,Γ) for a random Γ ∈ U∞ thus play a role
similar to the one played by moments for a random variable. (And the relation
between E t(F,Γ) and E tind(F,Γ) has some resemblance to the relation between
moments and cumulants.)

4 – Convergence to infinite graphs

We will in this section consider also labelled infinite graphs with the vertex
set N = {1, 2, . . . }. Let L∞ denote the set of all such graphs. These graphs
are determined by their edge sets, so L∞ can be identified with the power set
P(E(K∞)) of all subsets of the edge set E(K∞) of the complete infinite graph
K∞, and thus with the infinite product set {0, 1}E(K∞). We give this space, and
thus L∞, the product topology. Hence, L∞ is a compact metric space.

It is sometimes convenient to regard Ln for a finite n as a subset of L∞:
we can identify graphs in Ln and L∞ with the same edge set. In other words,
if G ∈ Ln is a graph with vertex set [n], we add an infinite number of isolated
vertices n + 1, n + 2, . . . to obtain a graph in H.

Conversely, if H ∈ L∞ is an infinite graph, we let H|[n] ∈ Ln be the induced
subgraph of H with vertex set [n].

If G is a (finite) graph, let Ĝ be the random labelled graph obtained by
a random labelling of the vertices of G by the numbers 1, . . . , v(G). (If G is
labelled, we thus ignore the labels and randomly relabel.) Thus Ĝ is a random
finite graph with the same number of vertices as G, but as just said, we can (and
will) also regard Ĝ as a random graph in L∞.

We use the same notation Ĝ also for a random (finite) graph G given a
random labelling.

Theorem 4.1. Let (Gn) be a sequence of random graphs in U and assume
that v(Gn)

p−→∞. Then the following are equivalent.

(i) Gn
d−→ Γ in U for some random Γ ∈ U .

(ii) Ĝn
d−→ H in L∞ for some random H ∈ L∞.
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If these hold, then P(H|[k] = F ) = E tind(F, Γ) for every F ∈ Lk. Furthermore,
Γ ∈ U∞ a.s.

Proof. Let G be a labelled graph and consider the graph Ĝ|[k], assuming
k ≤ v(G). This random graph equals G[k]′ = G(v′1, . . . , v

′
k), where v′1, . . . , v

′
k are

k vertices sampled at random without replacement as in Section 2. Hence, by
(2.3), for every F ∈ Lk,

P(Ĝ|[k] = F ) = tind(F, G), if k ≤ v(G).

Applied to the random graph Gn, this yields

(4.1) E tind(F, Gn) ≤ P(Ĝn|[k] = F ) ≤ E tind(F, Gn) + P
(
v(Gn) < k

)
.

By assumption, P (v(Gn) < k) → 0 as n →∞, and it follows from (4.1) and
Theorem 3.1 that Gn

d−→ Γ in U if and only if

(4.2) P(Ĝn|[k] = F ) → E tind(F, Γ)

for every k ≥ 1 and every F ∈ Lk.
Since Lk is a finite set, (4.2) says that, for every k, Ĝn|[k]

d−→ Hk for some
random graph Hk ∈ Lk with P(Hk = F ) = E tind(F,Γ) for F ∈ Lk. Since
L∞ has the product topology, this implies Ĝn

d−→ H in L∞ for some random
H ∈ L∞ with H|[k]

d= Hk.

Conversely, if Ĝn
d−→ H in L∞, then Ĝn|[k]

d−→ H|[k] so the argument
above shows that

E tind(F, Gn) = P(Ĝn|[k] = F ) + o(1) → P(H|[k] = F )

as n →∞, for every F ∈ Lk, and Theorem 3.1 yields the existence of some
random Γ ∈ U∞ ⊂ U with Gn

d−→ Γ and E tind(F, Γ) = P(H|[k] = F ).

5 – Exchangeable random graphs

Definition. A random infinite graph H ∈ L∞ is exchangeable if its dis-
tribution is invariant under every permutation of the vertices. (It is well-known
that it is equivalent to consider only finite permutations, i.e., permutations σ
of N that satisfy σ(i) = i for all sufficiently large i, so σ may be regarded as a
permutation in Sn for some n.)

Equivalently, if Xij := 1[ij ∈ H] is the indicator of there being an edge ij
in H, then the array {Xij}, 1 ≤ i, j ≤ ∞, is (jointly) exchangeable as defined in
Section 1.
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Lemma 5.1. Let H be a random infinite graph in L∞. Then the following
are equivalent.

(i) H is exchangeable.
(ii) H|[k] has a distribution invariant under all permutations of [k], for every

k ≥ 1.
(iii) P

(
H|[k] = F

)
depends only on the isomorphism type of F , and can thus be

seen as a function of F as an unlabelled graph in Uk, for every k ≥ 1.

Proof. (i) =⇒ (ii). Immediate.

(ii) =⇒ (i). If σ is a finite permutation of N, then σ restricts to a permutation of
[k] for every large k, and it follows that if H ◦σ is H with the vertices permuted
by σ, then, for all large k H ◦σ|[k] = H|[k] ◦σ

d= H|[k], which implies H ◦σ
d= H.

(ii) ⇐⇒ (iii). Trivial.

Theorem 5.2. The limit H in Theorem 4.1 is exchangeable.

Proof. H satisfies Lemma 5.1(iii).

Moreover, Theorem 4.1 implies the following connection with random ele-
ments of U∞.

Theorem 5.2. There is a one-to-one correspondence between distributions
of random elements Γ ∈ U∞ (or U∗) and distributions of exchangeable random
infinite graphs H ∈ L∞ given by

(5.1) E tind(F, Γ) = P(H|[k] = F )

for every k ≥ 1 and every F ∈ Lk, or, equivalently,

(5.2) E t(F,Γ) = P(H ⊃ F )

for every F ∈ L. Furthermore, H|[n]
d−→ Γ in U as n →∞.

Proof. Note first that (5.1) and (5.2) are equivalent by (2.5) and (2.6),
since t(F,Γ) = tinj(F, Γ) by (2.10), and H ⊃ F if and only if H|[k] ⊇ F when
F ∈ Lk.

Suppose that Γ is a random element of U∞ ⊂ U . Since U is dense in U ,
there exist (as in the proof of Corollary 3.3) random unlabelled graphs Gn such
that Gn

a.s.−→ Γ in U and thus v(Gn) a.s.−→∞ and Gn
d−→ Γ. Hence, Theorems 4.1

and 5.2 show that Ĝn
d−→ H for some random exchangeable infinite graph H
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satisfying (5.1). Furthermore, (5.1) determines the distribution of H|[k] for every
k, and thus the distribution of H.

Conversely, if H is an exchangeable random infinite graph, let Gn = H|[n].
By Lemma 5.1(ii), the distribution of each Gn is invariant under permutations of
the vertices, so if Ĝn is Gn with a random (re)labelling, we have Ĝn

d= Gn. Since
Gn

d−→ H in L∞ (because L∞ has a product topology), we thus have Ĝn
d−→ H

in L∞, so Theorem 4.1 applies and shows the existence of a random Γ ∈ U∞
such that Gn

d−→ Γ and (5.1) holds. Finally (5.1) determines the distribution of
Γ by Corollary 3.3.

Remark 5.1. Moreover, H|[n] converges a.s. to some random variable Γ ∈
U∞, because tind(F, H|[n]), n ≥ v(F ), is a reverse martingale for every F ∈ Γ.
Alternatively, this follows by concentration estimates from the representation in
Section 6, see Lovász and Szegedy [21,Theorem 2.5].

Corollary 5.4. There is a one-to-one correspondence between elements
Γ of U∞ ∼= U∗ and extreme points of the set of distributions of exchangeable
random infinite graphs H ∈ L∞. This correspondence is given by

(5.3) t(F,Γ) = P(H ⊃ F )

for every F ∈ L. Furthermore, H|[n]
a.s.−→ Γ in U as n →∞.

Proof. The extreme points of the set of distributions on U∞ are the point
masses, which are in one-to-one correspondence with the elements of U∞.

We can characterize these extreme point distributions of exchangeable ran-
dom infinite graphs as follows.

Theorem 5.5. Let H be an exchangeable random infinite graph. Then the
following are equivalent.

(i) The distribution of H is an extreme point in the set of exchangeable distri-
butions in L∞.

(ii) If F1 and F2 are two (finite) graphs with disjoint vertex sets V (F1), V (F2) ⊂
N, then

P(H ⊃ F1 ∪ F2) = P(H ⊃ F1) P(H ⊃ F2).

(iii) The restrictions H|[k] and H|[k+1,∞) are independent for every k.
(iv) Let Fn be the σ-field generated by H|[n,∞). Then the tail σ-field

⋂∞
n=1 Fn is

trivial, i.e., contains only events with probability 0 or 1.
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Proof. (i) =⇒ (ii). By Corollary 5.4, H corresponds to some (non-random)
Γ ∈ U∞ such that

(5.4) P(H ⊃ F ) = t(F,Γ)

for every F ∈ L. We have defined L such that a graph F ∈ L is labelled
by 1, . . . , v(F ), but both sides of (5.4) are invariant under relabelling of F by
arbitrary positive integers; the left hand side because H is exchangeable and the
right hand side because t(F,Γ) only depends on F as an unlabelled graph. Hence
(5.4) holds for every finite graph F with V (F ) ⊂ N.

Furthermore, since Γ is non-random, Corollary 3.3 yields t(F1 ∪ F2,Γ) =
t(F1,Γ)t(F2,Γ). Hence,

P(H ⊃ F1 ∪ F2) = t(F1 ∪ F2,Γ) = t(F1,Γ)t(F2,Γ) = P(H ⊃ F1) P(H ⊃ F2).

(ii) =⇒ (iii). By inclusion–exclusion, as for (2.6), (ii) implies that if 1 ≤ k <
l < ∞, then for any graphs F1 and F2 with V (F1) = {1, . . . , k} and V (F2) =
{k + 1, . . . , k + l}, the events H|[k] = F1 and H|{k+1,...,l} = F2 are independent.
Hence H|[k] and H|{k,...,l} are independent for every l > k, and the result follows.

(iii) =⇒ (iv). Suppose A is an event in the tail σ-field
⋂∞

n=1 Fn. Let F∗
n be the

σ-field generated by H|[n]. By (iii), A is independent of F∗
n for every n, and thus

of the σ-field F generated by
⋃F∗

n, which equals the σ-field F1 generated by H.
However, A ∈ F1, so A is independent of itself and thus P(A) = 0 or 1.

(iv) =⇒ (i). Let F ∈ Lk for some k and let Fn be F with all vertices shifted by
n. Consider the two indicators I = 1[H ⊇ F ] and In = 1[H ⊇ Fn]. Since In is
Fn-measurable,

(5.5) P(H ⊃ F ∪ Fn) = E(IIn) = E
(
E(I | Fn)In

)
.

Moreover, E(I | Fn), n = 1, 2, . . . , is a reverse martingale, and thus a.s.

E(I | Fn) → E

(
I |

∞⋂
n=1

Fn

)
= E I,

using (iv). Hence,
(
E(I | Fn)− E I

)
In → 0 a.s., and by dominated convergence

E

((
E(I | Fn)− E I

)
In

)
→ 0.

Consequently, (5.5) yields

P(H ⊃ F ∪ Fn) = E I E In + o(1) = P(H ⊃ F ) P(H ⊃ Fn) + o(1).
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Moreover, since H is exchangeable, P(H ⊃ F∪Fn) (for n ≥ v(F )) and P(H ⊃ Fn)
do not depend on n, and we obtain as n →∞

(5.6) P(H ⊃ F ∪ Fk) = P(H ⊃ F )2.

Let Γ be a random element of U∞ corresponding to H as in Theorem 5.3. By
(5.2) and (3.2), (5.6) can be written

E t(F,Γ)2 =
(
E t(F,Γ)

)2
.

Hence the random variable t(F, Γ) has variance 0 so it is a.s. constant. Since
this holds for every F ∈ L, it follows that Γ is a.s. constant, i.e., we can take Γ
non-random, and (i) follows by Corollary 5.4.

6 – Representations of graph limits and exchangeable graphs

As said in the introduction, the exchangeable infinite random graphs were
characterized by Aldous [1] and Hoover [16], see also Kallenberg [17], and the
graph limits in U∞ ∼= U∗ were characterized in a very similar way by Lovász and
Szegedy [21]. We can now make the connection between these two characteriza-
tions explicit.

Let W be the set of all measurable functions W : [0, 1]2 → [0, 1] and let Ws

be the subset of symmetric functions. For every W ∈ Ws, we define an infinite
random graph G(∞, W ) ∈ L∞ as follows: we first choose a sequence X1, X2, . . .
of i.i.d. random variables uniformly distributed on [0, 1], and then, given this
sequence, for each pair (i, j) with i < j we draw an edge ij with probability
W (Xi, Xj), independently for all pairs (i, j) with i < j (conditionally given
{Xk}). Further, let G(n, W ) be the restriction G(∞, W )|[n], which is obtained
by the same construction with a finite sequence X1, . . . , Xn.

It is evident that G(∞, W ) is an exchangeable infinite random graph, and
the result by Aldous and Hoover is that every exchangeable infinite random
graph is obtained as a mixture of such G(∞, W ); in other words as G(∞, W )
with a random W .

Considering again a deterministic W ∈ Ws, it is evident that Theorem 5.5(ii)
holds, and thus Theorem 5.5 and Corollary 5.4 show that G(∞, W ) corresponds
to an element ΓW ∈ U∞. Moreover, by Theorem 5.3 and Remark 5.1, G(n, W ) →
ΓW a.s. as n →∞, and (5.3) shows that if F ∈ Lk, then

(6.1) t(F,ΓW ) = P
(
F ⊆ G(k, W )

)
=

∫
[0,1]k

∏
ij∈E(F )

W (xi, xj) dx1 . . . dxk.

The main result of Lovász and Szegedy [21] is that every element of U∞ ∼= U∗

can be obtained as ΓW satisfying (6.1) for some W ∈ Ws.
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It is now clear that the representation theorems of Aldous–Hoover [1, 16]
and Lovász and Szegedy [21] are connected by Theorem 5.3 and Corollary 5.4
above, and that one characterization easily follows from the other.

Remark 6.1. The representations by W are far from unique, see Section 7.
Borgs, Chayes, Lovász, Sós and Vesztergombi [8] call an element W ∈ Ws a
graphon. They further define a pseudometric (called the cut-distance) on Ws and
show that if we consider the quotient space Ŵs obtained by identifying elements
with cut-distance 0, we obtain a compact metric space, and the mapping W �→
ΓW yields a bijection Ŵs → U∗ ∼= U∞, which furthermore is a homeomorphism.

Remark 6.2. As remarked in Lovász and Szegedy [21], we can more gener-
ally consider a symmetric measurable function W : S2 → [0, 1] for any probability
space (S, μ), and define G(∞, W ) as above with Xi i.i.d. random variables in S
with distribution μ. This does not give any new limit objects G(∞, W ) or ΓW ,
since we just said that every limit object is obtained from some W ∈ Ws, but
they can sometimes give useful representations.

An interesting case is when W is the adjacency matrix of a (finite) graph G,
with S = V (G) and μ the uniform measure on S; we thus let Xi be i.i.d. random
vertices of G and G(n, W ) equals the random graph G[n] defined in Section 2. It
follows from (6.1) and (2.1) that t(F, ΓW ) = t(F, G) for every F ∈ U , and thus
ΓW = G as elements of U∗. In other words, ΓW ∈ U∞ equals π(G), the “ghost”
of G in U∞ ∼= U∗.

Remark 6.3. For the asymptotic behavior of G(n, W ) in another, sparse,
case, with W depending on n, see [3].

7 – Non-uniqueness

The functions W on [0, 1]2 used to represent graph limits or exchangeable
arrays are far from unique. (For a special case when there is a natural canonical
choice, which much simplifies and helps applications, see [14].) For example, it
is obvious that if ϕ : [0, 1] → [0, 1] is any measure preserving map, then W and
W ◦ ϕ, defined by W ◦ ϕ(x, y) := W

(
ϕ(x), ϕ(y)

)
, define the same graph limit

and the same (in distribution) exchangeable array.
Although in principle, this is the only source on non-uniqueness, the details

are more complicated, mainly because the measure preserving map ϕ does not
have to be a bijection, and thus the relation W ′ = W ◦ϕ is not symmetric: it can
hold without there being a measure preserving map ϕ′ such that W = W ′ ◦ ϕ′.
(For a 1-dimensional example, consider f(x) = x and f ′(x) = ϕ(x) = 2x mod 1;
for a 2-dimensional example, let W (x, y) = f(x)f(y) and W ′(x, y) = f ′(x)f ′(y).)

For exchangeable arrays, the equivalence problem was solved by Hoover [16],
who gave a criterion which in our case reduces to (vi) below; this criterion involves
an auxiliary variable, and can be interpreted as saying W = W ′◦ϕ′ for a random
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ϕ′. This work was continued by Kallenberg, see [17], who gave a probabilistic
proof and added criterion (v). For graph limits, Borgs, Chayes, Lovász, Sós
and Vesztergombi [8] gave the criterion (vii) in terms of the cut-distance, and
Bollobás and Riordan [4] found the criterion (v) in this context. Further, Borgs,
Chayes, Lovász, Sós and Vesztergombi [8] announced the related criterion that
there exists a measurable function U : [0, 1]2 → [0, 1] and two measure preserving
maps ϕ, ϕ′ : [0, 1] → [0, 1] such that W = U ◦ ϕ and W ′ = U ◦ ϕ′ a.e.; the proof
of this will appear in [5].

As in Section 6, these two lines of work are connected by the results in
Section 5, and we can combine the previous results as follows.

Theorem 7.1. Let W, W ′ ∈ Ws. Then the following are equivalent.

(i) ΓW = ΓW ′ for the graph limits ΓW ,ΓW ′ ∈ U∞.
(ii) t(F,ΓW ) = t(F,ΓW ′) for every graph F .
(iii) The exchangeable random infinite graphs G(∞, W ) and G(∞, W ′) have the

same distribution.
(iv) The random graphs G(n, W ) and G(n, W ′) have the same distribution for

every finite n.
(v) There exist measure preserving maps ϕ, ϕ′ : [0, 1] → [0, 1] such that W ◦ϕ =

W ′ ◦ ϕ′ a.e. on [0, 1]2, i.e., W
(
ϕ(x), ϕ(y)

)
= W ′(ϕ′(x), ϕ′(y)

)
a.e.

(vi) There exists a measure preserving map ψ : [0, 1]2 → [0, 1] such that
W (x1, x2) = W ′(ψ(x1, y1), ψ(x2, y2)

)
a.e. on [0, 1]4.

(vii) δ�(W, W ′) = 0, where δ� is the cut-distance defined in [8].

Proof. (i) ⇐⇒ (ii). By our definition of U∞ ⊂ U .

(i) ⇐⇒ (iii). By Corollary 5.4.

(iii) ⇐⇒ (ii). Obvious.

(v) =⇒ (iii). If X1, X2, . . . are i.i.d. random variables uniformly distributed
on [0, 1], then so are ϕ(X1), ϕ(X2), . . . , and thus G(∞, W ) d= G(∞, W ◦ ϕ) =
G(∞, W ′ ◦ ϕ′) d= G(∞, W ′).

(iii) =⇒ (v). The general form of the representation theorem as stated in
[17, Theorem 7.15, see also p. 304] is (in our two-dimensional case) Xij =
f(ξ∅, ξi, ξj , ξij) for a function f : [0, 1]4 → [0, 1], symmetric in the two middle
variables, and independent random variables ξ∅, ξi (1 ≤ i) and ξij (1 ≤ i < j),
all uniformly distributed on [0,1], and where we further let ξji = ξij for j > i.
We can write the construction of G(∞, W ) in this form with

(7.1) f(ξ∅, ξi, ξj , ξij) = 1[ξij ≤ W (ξi, ξj)].

Note that this f does not depend on ξ∅. (In general, ξ∅ is needed for the case of
a random W , which can be written as a deterministic function of ξ∅, but this is
not needed in the present theorem.)
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Suppose that G(∞, W ) d= G(∞, W ′), let f be given by W by (7.1), and
let similarly f ′ be given by W ′; for notational convenience we write W1 := W ,
W2 := W ′, f1 := f and f2 := f ′. The equivalence theorem [17, Theorem 7.28]
takes the form, using (7.1), that there exist measurable functions gk,0 : [0, 1] →
[0, 1], gk,1 : [0, 1]2 → [0, 1] and gk,2 : [0, 1]4 → [0, 1], for k = 1, 2, that are measure
preserving in the last coordinate for any fixed values of the other coordinates,
and such that the two functions (for k = 1 and k = 2)

fk

(
gk,0(ξ∅), gk,1(ξ∅, ξ1), gk,1(ξ∅, ξ2), gk,2(ξ∅, ξ1, ξ2, ξ12)

)
=

= 1
[
Wk

(
gk,1(ξ∅, ξ1), gk,1(ξ∅, ξ2)

)
≥ gk,2(ξ∅, ξ1, ξ2, ξ12)

]
are a.s. equal. Conditioned on ξ∅, ξ1 and ξ2, the random variable gk,2(ξ∅, ξ1, ξ2,
ξ12) is uniformly distributed on [0, 1], and it follows (e.g., by taking the condi-
tional expectation) that a.s.

W1

(
g1,1(ξ∅, ξ1), g1,1(ξ∅, ξ2)

)
= W2

(
g2,1(ξ∅, ξ1), g2,1(ξ∅, ξ2)

)
.

For a.e. value x0 of ξ∅, this thus holds for a.e. values of ξ1 and ξ2, and we may
choose ϕ(x) = g1,1(x0, x) and ϕ′(x) := g2,1(x0, x) for some such x0.

(iii) ⇐⇒ (vi). Similar, using [17, Theorem 7.28(iii)].

(ii) ⇐⇒ (vii). See [8].

8 – Bipartite graphs

The definitions and results above have analogues for bipartite graphs, which
we give in this section, leaving some details to the reader. The proofs are straight-
forward analogues of the ones given above and are omitted. Applications of the
results of this section to random difference graphs are in [14].

A bipartite graph will be a graph with an explicit bipartition; in other words,
a bipartite graph G consists of two vertex sets V1(G) and V2(G) and an edge
set E(G) ⊆ V1(G) × V2(G); we let v1(G) := |V1(G)| and v2(G) := |V2(G)| be
the numbers of vertices in the two sets. Again we consider both the labelled
and unlabelled cases; in the labelled case we assume the labels of the vertices in
Vj(G) are 1, . . . , vj(G) for j = 1, 2. Let BL

n1n2
be the set of the 2n1n2 labelled

bipartite graphs with vertex sets [n1] and [n2], and let Bn1n2 be the quotient set
BL

n1n2
/ ∼= of unlabelled bipartite graphs with n1 and n2 vertices in the two parts;

further, let BL :=
⋃

n1,n2≥1 BL
n1n2

and B :=
⋃

n1,n2≥1 Bn1n2 .
We let G[k1, k2] be the random graph in BL

k1k2
obtained by sampling kj

vertices from Vj(G) (j = 1, 2), uniformly with replacement, and let, provided
kj ≤ vj(G), G[k1, k2]′ be the corresponding random graph obtained by sampling
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without replacement. We then define t(F, G), tinj(F, G) and tind(F, G) for (unla-
belled) bipartite graphs F and G in analogy with (2.1)–(2.3). Then (2.4)–(2.6)
still hold, mutatis mutandis; for example,

(8.1)
∣∣t(F, G)− tinj(F, G)

∣∣ ≤ v1(F )2

2v1(G)
+

v2(F )2

2v2(G)
.

In analogy with (2.7), we now define τ : B → [0, 1]B by

(8.2) τ(G) := (t(F, G))F∈B ∈ [0, 1]B.

We define B∗ := τ(B) ⊆ [0, 1]B to be the image of B under this mapping τ , and
let B∗ be the closure of B∗ in [0, 1]B; this is a compact metric space.

Again, τ is not injective; we may consider a graph G as an element of B∗ by
identifying G and τ(G), but this implies identification of some graphs of different
orders and we prefer to avoid it. We let B+ be the union of B and some two-point
set {∗1, ∗2} and consider the mapping τ+ : B → [0, 1]B

+
= [0, 1]B × [0, 1]× [0, 1]

defined by

(8.3) τ+(G) =
(
τ(G), v1(G)−1, v2(G)−1

)
.

Then τ+ is injective and we can identify B with its image τ+(B) ⊆ [0, 1]B
+

and
define B ⊆ [0, 1]B

+
as its closure; this is a compact metric space.

The functions t(F, ·), tinj(F, ·), tind(F, ·) and vj(·)−1, for F ∈ B and j = 1, 2,
have unique continuous extensions to B.

We let B∞∞ := {G ∈ B : v1(G) = v2(G) = ∞}; this is the set of all limit
objects of sequences (Gn) in B with v1(Gn), v2(Gn) →∞. By (8.1), tinj(F, G) =
t(F, G) for every G ∈ B∞∞ and every F ∈ B. The projection π : B → B∗

restricts to a homeomorphism B∞∞ ∼= B∗.

Remark 8.1. Note that in the bipartite case there are other limit objects
too in B; in fact, B can be partitioned into B, B∞∞, and the sets Bn∞, B∞n,
for n = 1, 2, . . . , where, for example, Bn1∞ is the set of limits of sequences (Gn)
of bipartite graphs such that v2(Gn) → ∞ but v1(Gn) = n1 is constant. We
will not consider such degenerate limits further here, but we remark that in the
simplest case n1 = 1, a bipartite graph in BL

1n2
can be identified with a subset

of [n2], and an unlabelled graph in B1n2 thus with a number in m ∈ {0, . . . , n2},
the number of edges in the graph, and it is easily seen that a sequence of such
unlabelled graphs with n2 → ∞ converges in B if and only if the proportion
m/n2 converges; hence we can identify B1∞ with the interval [0,1].

We have the following basic result, cf. Theorem 2.1.



54 PERSI DIACONIS – SVANTE JANSON [22]

Theorem 8.1. Let (Gn) be a sequence of bipartite graphs with v1(Gn),
v2(Gn) →∞. Then the following are equivalent.

(i) t(F, Gn) converges for every F ∈ B.
(ii) tinj(F, Gn) converges for every F ∈ B.
(iii) tind(F, Gn) converges for every F ∈ B.
(iv) Gn converges in B.

In this case, the limit G of Gn belongs to B∞∞ and the limits in (i), (ii) and
(iii) are t(F, G), tinj(F, G) and tind(F, G).

For convergence of random unlabelled bipartite graphs, the results in Sec-
tion 3 hold with trivial changes.

Theorem 8.2. Let Gn, n ≥ 1, be random unlabelled bipartite graphs and
assume that v1(Gn), v2(Gn)

p−→∞. The following are equivalent, as n →∞.

(i) Gn
d−→ Γ for some random Γ ∈ B.

(ii) For every finite family F1, . . . , Fm of (non-random) bipartite graphs, the
random variables t(F1, Gn), . . . , t(Fm, Gn) converge jointly in distribution.

(iii) For every (non-random) F ∈ B, the random variables t(F, Gn) converge in
distribution.

(iv) For every (non-random) F ∈ B, the expectations E t(F, Gn) converge.

If these properties hold, then the limits in (ii), (iii) and (iv) are
(
t(Fi,Γ)

)m

i=1
,

t(F,Γ) and E t(F, Γ), respectively. Furthermore, Γ ∈ B∞∞ a.s.
The same results hold if t is replaced by tinj or tind.

Corollary 8.3. Let Gn, n ≥ 1, be random unlabelled bipartite graphs such
that v1(Gn), v2(Gn)

p−→ ∞, and let G ∈ B∞∞. The following are equivalent, as
n →∞.

(i) Gn
p−→ G.

(ii) t(F, Gn)
p−→ t(F, G) for every (non-random) F ∈ B.

(iii) E t(F, Gn) → t(F, G) for every (non-random) F ∈ B.

The same result holds if t is replaced by tinj or tind.

As above, the distribution of Γ is uniquely determined by the numbers
E t(F,Γ), F ∈ B.

Let BL
∞∞ denote the set of all labelled infinite bipartite graphs with the

vertex sets V1(G) = V2(G) = N. BL
∞∞ is a compact metric space with the

natural product topology.
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If G is a bipartite graph, let Ĝ be the random labelled bipartite graph ob-
tained by random labellings of the vertices in Vj(G) by the numbers 1, . . . , vj(G),
for j = 1, 2. This is a random finite bipartite graph, but we can also regard it
as a random element of BL

∞∞ by adding isolated vertices.

Definition. A random infinite bipartite graph H ∈ BL
∞∞ is exchangeable

if its distribution is invariant under every pair of finite permutations of V1(H)
and V2(H).

Theorem 8.4. Let (Gn) be a sequence of random graphs in B and assume
that v1(Gn), v2(Gn)

p−→∞. Then the following are equivalent.

(i) Gn
d−→ Γ in B for some random Γ ∈ B.

(ii) Ĝn
d−→ H in BL

∞∞ for some random H ∈ BL
∞∞.

If these hold, then P(H|[k1]×[k2] = F ) = E tind(F, Γ) for every F ∈ BL
k1k2

. Fur-
thermore, Γ ∈ B∞∞ a.s., and H is exchangeable.

Theorem 8.5. There is a one-to-one correspondence between distributions
of random elements Γ ∈ B∞∞ (or B∗) and distributions of exchangeable random
infinite graphs H ∈ BL

∞∞ given by

(8.4) E tind(F, Γ) = P(H|[k1]×[k2] = F )

for every k1, k2 ≥ 1 and every F ∈ BL
k1k2

, or, equivalently,

(8.5) E t(F,Γ) = P(H ⊃ F )

for every F ∈ BL. Furthermore, H|[n1]×[n2]
d−→ Γ in B as n1, n2 →∞.

Corollary 8.6. There is a one-to-one correspondence between elements
Γ of B∞∞ ∼= B∗ and extreme points of the set of distributions of exchangeable
random infinite graphs H ∈ BL

∞∞. This correspondence is given by

(8.6) t(F,Γ) = P(H ⊃ F )

for every F ∈ BL. Furthermore, H|[n1]×[n2]
p−→ Γ in B as n1, n2 →∞.

Remark 8.2. We have not checked whether H|[n1]×[n2]
a.s.−→ Γ in B as

n1, n2 → ∞. This holds at least for a subsequence (n1(m), n2(m)) with both
n1(m) and n2(m) non-decreasing because then tinj(F, H|[n1]×[n2]) is a reverse
martingale.
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Theorem 8.7. Let H be an exchangeable random infinite bipartite graph.
Then the following are equivalent.

(i) The distribution of H is an extreme point in the set of exchangeable distri-
butions in BL

∞∞.
(ii) If F1 and F2 are two (finite) bipartite graphs with the vertex sets Vj(F1) and

Vj(F2) disjoint subsets of N for j = 1, 2, then

P(H ⊃ F1 ∪ F2) = P(H ⊃ F1) P(H ⊃ F2).

The construction in Section 6 takes the following form; note that there is no
need to assume symmetry of W . For every W ∈ W, we define an infinite random
bipartite graph G(∞,∞, W ) ∈ BL

∞∞ as follows: we first choose two sequence
X1, X2, . . . and Y1, Y2, . . . of i.i.d. random variables uniformly distributed on
[0, 1], and then, given these sequences, for each pair (i, j) ∈ N × N we draw an
edge ij with probability W (Xi, Yj), independently for all pairs (i, j). Further,
let G(n1, n2, W ) be the restriction G(∞,∞, W )|[n1]×[n2], which is obtained by
the same construction with finite sequences X1, . . . , Xn1 and Y1, . . . , Yn2 .

It is evident that G(∞,∞, W ) is an exchangeable infinite random bipartite
graph. Furthermore, it satisfies Theorem 8.7(ii). Theorem 8.5 and Corollary 8.6
yield a corresponding element Γ′′

W ∈ B∞∞ ∼= B∗ such that G(n1, n2, W )
p−→ Γ′′

W

as n1, n2 →∞ and, for every F ∈ BL
k1k2

,

t(F, Γ′′
W ) =

∫
[0,1]k1+k2

∏
ij∈E(F )

W (xi, yj) dx1 . . . dxk1 dy1 . . . dyk2 .

The result by Aldous [1] in the non-symmetric case is that every exchangeable
infinite random bipartite graph is obtained as a mixture of such G(∞,∞, W );
in other words as G(∞,∞, W ) with a random W .

By Theorem 8.5 and Corollary 8.6 above, this implies (and is implied by)
the fact that every element of B equals Γ′′

W for some (non-unique) W ∈ W; the
bipartite version of the characterization by Lovász and Szegedy [21].

9 – Directed graphs

A directed graph G consists of a vertex set V (G) and an edge set E(G) ⊆
V (G)×V (G); the edge indicators thus form an arbitrary zero–one matrix {Xij},
i, j ∈ V (G). Note that we allow loops, corresponding to the diagonal indicators
Xii. The definitions and results above have analogues for directed graphs too,
with mainly notational differences. We sketch these in this section, leaving the
details to the reader.
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Let DL
n be the set of the 2n2

labelled directed graphs with vertex set [n] and
let Dn be the quotient set DL

n/ ∼= of unlabelled directed graphs with n vertices;
further, let DL :=

⋃
n≥1DL

n and D :=
⋃

n≥1Dn.
The definitions in Section 2 apply to directed graphs too, with at most

notational differences. G[k] and G[k]′ now are random directed graphs and
t(F, G), tinj(F, G) and tind(F, G) are defined for (unlabelled) directed graphs F
and G by (2.1)–(2.3). We now define τ : D → [0, 1]D by, cf. (2.7),

(9.1) τ(G) := (t(F, G))F∈D ∈ [0, 1]D.

We define D∗ := τ(D) ⊆ [0, 1]D to be the image of D under this mapping τ , and
let D∗ be the closure of D∗ in [0, 1]D; this is a compact metric space.

Again, τ is not injective. We let D+ be the union of D and some one-point
set {*} and consider the mapping τ+ : D → [0, 1]D

+
= [0, 1]D × [0, 1] defined

by (2.9) as before. Then τ+ is injective and we can identify D with its image
τ+(D) ⊆ [0, 1]D

+
and define D ⊆ [0, 1]D

+
as its closure; this is a compact metric

space. The functions t(F, ·), tinj(F, ·), tind(F, ·) and v(·)−1, for F ∈ D, have
unique continuous extensions to D.

We let D∞ := {G ∈ D : v(G) = ∞}; this is the set of all limit objects of
sequences (Gn) in D with v(Gn) → ∞. Analogously to (2.10), tinj(F, G) =
t(F, G) for every G ∈ D∞ and every F ∈ D. The projection π : D → D∗

restricts to a homeomorphism D∞ ∼= D∗.
All results in Sections 2–5 are valid for directed graphs too, with at most

notational differences.
The main difference for the directed case concerns the representations dis-

cussed in Section 6. Since two vertices may be connected by up to two directed
edges (in opposite directions), and the events that the two possible edges occur
typically are dependent, a single function W is no longer enough. Instead, we
have a representation using several functions as follows.

Let W5 be the set of quintuples W = (W00, W01, W10, W11, w) where Wαβ :
[0, 1]2 → [0, 1] and w : [0, 1] → {0, 1} are measurable functions such that∑1

α,β=0 Wαβ(x, y) = 1 and Wαβ(x, y) = Wβα(y, x) for α, β ∈ {0, 1} and x, y ∈
[0, 1]. For W ∈ W5, we define a random infinite directed graph G(∞,W) by
specifying its edge indicators Xij as follows: we first choose a sequence Y1, Y2, . . .
of i.i.d. random variables uniformly distributed on [0, 1], and then, given this se-
quence, let Xii = w(Yi) and for each pair (i, j) with i < j choose Xij and Xji

at random such that

(9.2) P(Xij = α and Xji = β) = Wαβ(Yi, Yj), α, β ∈ {0, 1};

this is done independently for all pairs (i, j) with i < j (conditionally given
{Yk}). In other words, for every i we draw a loop at i if w(Yi) = 1 and for each
pair (i, j) with i < j we draw edges ij and ji at random such that (9.2) holds.
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Further, let G(n,W) be the restriction G(∞,W)|[n], which is obtained by the
same construction with a finite sequence Y1, . . . , Yn.

In particular, note that the loops appear independently, each with proba-
bility p = P

(
w(Y1) = 1

)
. We may specify the loops more clearly by the following

alternative version of the construction. Let S := [0, 1]×{0, 1} and let W4 be the
set of quadruples W = (W00, W01, W10, W11) where Wαβ : S2 → [0, 1] are mea-
surable functions such that

∑1
α,β=0 Wαβ(x, y) = 1 and Wαβ(x, y) = Wβα(y, x)

for α, β ∈ {0, 1} and x, y ∈ S. For every W ∈ W4 and p ∈ [0, 1], we define a
random infinite directed graph G(∞,W, p) by specifying its edge indicators Xij

as follows: We first choose sequences ξ1, ξ2, . . . and ζ1, ζ2, . . . of random vari-
ables, all independent, with ξi ∼ U(0, 1) and ζi ∼ Be(p), i.e., ζi ∈ {0, 1} with
P(ζi = 1) = p; we let Yi := (ξi, ζi) ∈ S. Then, given these sequences, let Xii = ζi

and for each pair (i, j) with i < j choose Xij and Xji at random according to
(9.2), independently for all pairs (i, j) with i < j (conditionally given {Yk}). In
other words, ζi is the indicator of a loop at i. Further, let G(n,W, p) be the
restriction G(∞,W, p)|[n], which is obtained by the same construction with a
finite sequence Y1, . . . , Yn.

It is obvious from the symmetry of the construction that the random infinite
directed graphs G(∞,W) and G(∞,W, p) are exchangeable. Further, using
Theorem 5.5, their distributions are extreme points, so by Corollary 5.4 they
correspond to directed graph limits, i.e., elements of D∞, which we denote by
ΓW and ΓW,p, respectively; (5.3) shows that if F ∈ Dk, then

t(F, ΓW) = P
(
F ⊆ G(k,W)

)
, t(F, ΓW,p) = P

(
F ⊆ G(k,W, p)

)
.

By Theorem 5.3 and Remark 5.1, G(n,W) → ΓW and G(n,W, p) → ΓW,p a.s.
as n →∞.

We can show a version of the representation results in Section 6 for directed
graphs.

Theorem 9.1. An exchangeable random infinite directed graph is obtained
as a mixture of G(∞,W); in other words, as G(∞,W) with a random W.
Alternatively, it is obtained as a mixture of G(∞,W, p); in other words, as
G(∞,W, p) with a random (W, p).

Every directed graph limit, i.e., every element of D∞, is ΓW for some W ∈
W5, or equivalently ΓW,p for some W ∈ W4 and p ∈ [0, 1].

Proof. For jointly exchangeable random arrays {Xij} of zero–one variables,
the Aldous–Hoover representation theorem takes the form [17, Theorem 7.22]

Xii = f1(ξ∅, ξi),
Xij = f2(ξ∅, ξi, ξj , ξij), i 
= j,
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where f1 : [0, 1]2 → {0, 1} and f2 : [0, 1]4 → {0, 1} are two measurable functions,
ξji = ξij , and ξ∅, ξi (1 ≤ i) and ξij (1 ≤ i < j) are independent random variables
uniformly distributed on [0, 1] (as in the proof of Theorem 7.1). If further the
distribution of the array {Xij} is an extreme point in the set of exchangeable
distributions, then by Theorem 5.5 and [17, Lemma 7.35], there exists such
a representation where f1 and f2 do not depend on ξ∅, so Xii = f1(ξi) and
Xij = f2(ξi, ξj , ξij), i 
= j. In this case, define w = f1 and

Wαβ(x, y) := P
(
f2(x, y, ξ) = α and f2(y, x, ξ) = β

)
, α, β ∈ {0, 1},

where ξ ∼ U(0, 1). This defines a quintuple W ∈ W5, such that the edge
indicators Xij of G(∞,W) have the desired distribution.

In general, the variable ξ∅ can be interpreted as making W random.
To obtain the alternative representation, let ζi := w(ξi) = Xii and p :=

P(ζi = 1). There exists a measure preserving map φ : (S, μp) → ([0, 1], λ), where
λ is the Lebesgue measure and μp := λ×Be(p), such that [0, 1]×{j} is mapped
onto {x ∈ [0, 1] : w(x) = j} for j = 0, 1 (i.e., w ◦φ(x, ζ) = ζ), and we can use the
quadruple (Wαβ ◦ φ)α,β .

The representations for graph limits follow by Corollary 5.4 as discussed
above.

Example 9.2. A random tournament Tn is a random directed graph on
n vertices without loops where each pair of vertices is connected by exctly one
edge, with random direction (with equal probabilities for the two directions,
and independent of all other edges). This equals G(n,W) or G(n,W, p) with
W00 = W11 = 0, W01 = W10 = 1/2, and w = 0 or p = 0, and converges thus a.s.
to the limit ΓW,0 for W = (Wαβ)α,β .

Note that if {Xij} are the edge indicators of an exchangeable random infi-
nite directed graph, then the loop indicators {Xii} form a binary exchangeable
sequence, and the representation as G(∞,W, p) in Theorem 9.1 exhibits them
as a mixture of i.i.d. Be(p) variable, which has brought us back to de Finetti’s
theorem 1.1.
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Exchangeability and semigroups

PAUL RESSEL

Abstract: Exchangeability of a “random object” is a strong symmetry condition,
leading in general to a convex set of distributions not too far from a “simplex” - a set
easily described by its extreme points, in this case distributions with very special prop-
erties as for example iid coin tossing sequences in de Finetti’s original result. Although
in most cases of interest the symmetry is defined via a non–commutative group acting
on the underlying space, it very often can be described by a suitable factorization in-
volving an abelian semigroup. The factorizing function typically turns out to be positive
definite, and results from Harmonic Analysis on semigroups become applicable. In this
way many known theorems on exchangeability can be given an alternative proof, more
analytic/algebraic in a sense, but also new results become available.

1 – Introduction

A sequence X = (X1, X2, . . . ) of random variables is called exchangeable
if for any permutation π of IN the sequence (Xπ(1), Xπ(2), . . . ) has the same
distribution as X; of course it is enough to require this property for finite per-
mutations π (in the sense that {i ∈ IN | π(i) 
= i} is a finite set). This holds
obviously for an iid–sequence and so also for a mixture (in distribution) of iid’s,
since exchangeable distributions form a convex set. As is well known, in 1930
Bruno de Finetti published the pathbreaking result that for {0, 1}–valued ran-
dom variables the converse holds, too: exchangeable sequences are precisely the
mixtures of iid Bernoulli sequences. A few years later de Finetti generalized
this to real–valued random variables, and in 1955 Hewitt and Savage proved the

Key Words and Phrases: Exchangeability – Semigroups – Positive definite func-
tions – de Finetti’s theorem – Random partition.
A.M.S. Classification: 60E05, 43A35
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corresponding result for arbitrary compact Hausdorff spaces, from which it is
immediately seen to be true also for Borel subsets of compact spaces, for exam-
ple for locally compact spaces. In ([6], Theorem 4) a further generalization to
completely regular Hausdorff spaces was shown.

In contrast to this “global” point of view (i.e. considering all exchangeable
distributions) a different kind of question seems natural: is it possible to char-
acterize mixtures of iid–sequences of a particular type, say normal or Poisson
distributed, or with a special form of their Fourier or Laplace transform, or even
(for non–negative random variables) of their multivariate survival function?

An attempt for fairly general answers was given in [6] and subsequent pa-
pers. Here we present a certain overview, and as “Main Theorem” a new result
which in a way is a de Finetti theorem for positive definite functions on abelian
semigroups, which appear (perhaps surprising) as a natural tool in this connec-
tion.

After explaining some basic notions concerning positive definite and related
functions on semigroups in Section 3, the main result will be presented in Sec-
tion 4. The extended de Finetti–type theorem in Section 5 is given a new proof,
based on the main theorem, and followed by a few typical examples. The above
mentioned theorem of Hewitt and Savage is shown in Section 6 to be another
“almost straightforward” consequence of the main theorem. Finally, the closing
Section 7 presents a different point of view to the main theorem, followed by an
application to exchangeable random partitions.

2 – Why semigroups?

They enter the scene naturally, as can be seen already in de Finetti’s original
result.

Let P be an exchangeable probability measure on the space of all (infinite)
0− 1 sequences, abbreviated P ∈ M1,e

+ ({0, 1}∞), the “e” referring to exchange-
ability. Then P (x1, . . . , xn) depends only on x1 + . . . + xn, i.e.

P (x1, . . . , xn) = ϕn

(
n∑

i=1

xi

)
= ϕ

(
n∑

i=1

xi, n

)
=

= ϕ

(
n∑

i=1

(xi, 1)

)

with ϕ defined on the set

S :=
{
(k, n) ∈ IN2

0 | k ≤ n
}

which is a (sub-) semigroup inside IN2
0. The crucial point will be that ϕ turns

out to be a socalled positive definite function, therefore a (unique) mixture of
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socalled characters, taking here the form

σ : (k, n) �−→ σ(k, n) = pkqn−k, p, q ∈ IR

and it is easy to see that only characters with p, q ≥ 0 and p + q = 1 play a rôle.
Inserting this we get (slightly abusing the letter μ as a measure on the characters
resp. on [0, 1])

P (x1, . . . , xn) = ϕ

(
n∑

i=1

(xi, 1)

)
=

=
∫

σ

(
n∑

i=1

(xi, 1)

)
dμ(σ) =

=
∫ n∏

i=1

σ(xi, 1)dμ(σ) =

=
∫ 1

0

n∏
i=1

pxi(1− p)1−xidμ(p)

for some (unique) μ ∈ M1
+([0, 1]), which is de Finetti’s result, proved in 1930,

cf. [3].

3 – Basic definitions and notations

We will make use in a crucial way of some notions and results about positive
definite and related functions on semigroups, an introduction to which can be
found in [1], Chapter 4.

Let S denote an abelian semigroup, written additively, with neutral element
0, and possibly with an involution, i.e. a mapping s �−→ s−, with (s + t)− =
s− + t−, 0− = 0 and (s−)− = s which in many cases is just the identity.

σ : S −→ C is a character iff

σ(s + t) = σ(s) · σ(t), σ(s−) = σ(s), σ(0) = 1

ϕ : S −→ C is positive definite (abbrev. “p.d.”) iff

n∑
j,k=1

cjckϕ(sj + s−k ) ≥ 0 ∀ n ∈ IN, cj ∈ C, sj ∈ S

ϕ : S −→ C is completely positive definite (“c.p.d.” ) iff s �−→ ϕ(s + a) is
positive definite ∀a ∈ S;
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α : S −→ IR+ is an absolute value iff

α(s + t) ≤ α(s) · α(t), α(s−) = α(s), α(0) = 1

f : S −→ C is α–bounded (with α a fixed absolute value) iff

|f(s)| ≤ C · α(s) ∀ s ∈ S, for some C ≥ 0, briefly: |f | ≤ Cα

(if furthermore f(0) = 1 and f is p.d., then one can take C = 1);
f is exponentially bounded iff it is α–bounded with respect to some absolute
value α;
S∗ := set of all characters of S;
P(S) := set of all positive definite functions on S;
Sα := {σ ∈ S∗ | σ is α–bounded} then Sα = {σ ∈ S∗ | |σ| ≤ α};
Pα(S) := {ϕ ∈ P(S) | ϕ is α–bounded};
Ŝ := all bounded characters on S, then Ŝ = {σ ∈ S∗ | |σ| ≤ 1};
Pb(S) := all bounded positive definite functions on S.

For any set B of complex functions on S, the symbols B+ and B1 denote
respectively B ∩ {f | f(x) ≥ 0 ∀s ∈ S} and B ∩ {f | f(0) = 1}.

It is easily seen that

S∗ ⊆ P1(S) := {ϕ ∈ P(S) | ϕ(0) = 1};
Sα ⊆ Pα

1 (S), ϕ ∈ Pα
1 (S) =⇒ |ϕ| ≤ α;

Ŝ ⊆ Pb
1(S), ϕ ∈ Pb

1(S) =⇒ |ϕ| ≤ 1

and each σ ∈ S∗
+ is even c.p.d.

4 – The main result

If K is a non–empty compact convex subset of some locally convex vector
space, then K is by Krein-Milman’s theorem the closed convex hull of ex(K), the
extreme points of K. If ex(K) is closed, and if furthermore the representation
of points in K as barycenters of (Radon) measures on ex(K) is unique, K is
called a Bauer simplex. In all subsequent applications K will be a subset of
CS , the set of all complex–valued functions on S, equipped with the topology of
pointwise convergence. Note that in this case for any given γ : S −→ IR+ the
set K := {f ∈ CS | |f | ≤ γ} is compact (and convex).

Let us recall first the basic result concerning exponentially bounded positive
definite functions. We shall only consider abelian semigroups with a neutral
element.

Theorem (Berg/Maserick, cf. [2] or [1], 4.2.6 and 4.2.7). For a semigroup
S and an absolute value α on S the set Pα

1 (S) is a Bauer simplex with Sα as its
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set of extreme points. In other words, for any ϕ ∈ Pα
1 (S) there exists a unique

Radon probability measure μ on Sα such that

ϕ(s) =
∫

σ(s)dμ(σ) ∀ s ∈ S .

We’ll also make use of the following

Corollary (cf. [6], Proposition 1). If ϕ ∈ Pα(S) is completely positive
definite, then the unique measure representing ϕ is concentrated on Sα

+.

From now on we will typically deal with two semigroups R, S, and a mapping
t : R −→ S with the properties t(0) = 0, t(r−) = (t(r))− and such that t(R)
generates S as a semigroup. Furthermore, a function β : R −→ C\{0} is given
with β(0) = 1 and β(r−) = β(r) for all r; in most of the examples we’ll have
β ≡ 1. The direct product

R(∞) := {(r1, r2, . . . ) ∈ R∞ | ri = 0 finally}

of countably many copies of R will play a particular rôle.
The following result is new in this generality.

Main Theorem. Let R and S be semigroups, and t : R −→ S, β : R −→
C � {0} be functions as just described :

(i) if Φ(r1, r2, . . . ) :=
∏

β(ri) · ϕ(
∑

t(ri)) for some function ϕ : S −→ C, and
Φ is positive definite then so is ϕ;

(ii) if furthermore |Φ(r1, r2, . . . )| ≤ C · ∏ γ(ri) for some function γ : R −→
IR+, γ(0) = 1, and some C > 0, then

α(s) := inf
{∏ γ(ri)

|β(ri)|
|
∑

t(ri) = s

}
is an absolute value on S, ϕ is α–bounded, and the measure μ representing
ϕ is concentrated on

W := {σ ∈ Sα | β · (σ ◦ t) is positive definite on R}

(iii) conversely, for μ ∈ M+(W ) and ϕ(s) :=
∫

σ(s)dμ(σ) the function Φ as
defined in (i) is positive definite and fulfills (ii) for some C > 0 and some
function γ;

(iv) a corresponding result holds for completely positive definite functions, the
measure in (ii) being then concentrated on W+.
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For the proof the following lemma is crucial. Since the statement here differs
slightly from earlier presentations, we present it with the (short) proof. Recall
that for a non–empty set M a function ψ : M×M −→ C is a positive semidefinite
kernel iff for any finite subset {x1, . . . , xk} ⊆ M the matrix (ψ(xi, xj))i,j≤k is
positive semidefinite.

Approximation lemma. Let p ≥ 2 be an integer, M a non-empty set, ψ :
M ×M −→ C a positive semidefinite kernel, (aij) ∈ Cp×p a given p× p–matrix.
Suppose that for each n ∈ IN there exist {xn

jm | j = 1, . . . , p;m = 1, . . . , n} ⊆ M
such that

ψ
(
xn

ik, xn
jm

)
= aij ∀ (i, k) 
= (j, m)

and
sup

j,m,n
ψ

(
xn

jm, xn
jm

)
< ∞ .

Then (aij) is positive semidefinite.

Proof. Let c1, . . . , cp ∈ C be given; with {xn
jm} as indicated put djm :=

cj/n. Then

0 ≤
p∑

i,j=1

n∑
k,m=1

dikd̄jmψ
(
xn

ik, xn
jm

)
=

=
p∑

i,j=1
i�=j

cic̄jaij +
n2 − n

n2

p∑
j=1

|cj |2ajj +
1
n2

p∑
j=1

n∑
m=1

|cj |2ψ(xn
jm, xn

jm) =

=
n∑

i,j=1

cic̄jaij + Rn

where Rn := − 1
n

∑p
j=1 |cj |2ajj + 1

n2

∑p
j=1

∑n
m=1 |cj |2ψ(xn

jm, xn
jm) and so Rn −→

0 for n −→∞, showing positive semidefiniteness of (aij).

Proof of the Main Theorem.

(i) Let s1, . . . , sp ∈ S and n ∈ IN be given. By assumption

sj =
qj∑

�=1

t(rj�) for suitable rj� ∈ R .

Let {Njm | j = 1, . . . , p;m = 1, . . . , n} be disjoint subsets of IN with cardi-
nalities |Njm| = qj ∀ j, m, and define xjm ∈ R(∞) (for Njm = {ν1, . . . , νqj})
by

xjm(ν�) := rj�, xjm(i) := 0 for i /∈ Njm .
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Put ξj :=
∏qj

�=1 β(rj�), j = 1, . . . , p. Then for (i, k) 
= (j, m)

Φ(xik + x−
jm) = ξiξ̄jϕ(si + s−j ) ,

and Φ(xjm + x−
jm) =

∏qj

�=1 β(rj� + r−j�)ϕ(
∑qj

�=1 t(rj� + r−j�)), independent
of m and n. Hence by the Approximation lemma (ξiξ̄jϕ(si + s−j ))i,j≤p is
positive definite, and so is also (ϕ(si + s−j ))i,j≤p.
Suppose now Φ to be c.p.d., and let an additional element a ∈ S be given,
a = t(r1) + . . . + t(rv). Choose in the preceding argument the Njm ⊆
IN � {1, . . . , v}, and define y ∈ R(∞) by y(1) := r1, . . . , y(v) := rv, y(i) := 0
else. Then for (i, k) 
= (j, m)

Φ(y + xik + x−
jm) = ξiξ̄jϕ(a + si + s−j ) ·

v∏
�=1

β(r�)

and if the positive semidefinite matrix on the RHS is not identically zero,∏v
�=1 β(r�) > 0 and then (ϕ(a + si + s−j )) is positive semidefinite, i.e. ϕ is

completely positive definite.
(ii) If s =

∑
t(rj) we get from

Φ(r1, r2, . . . ) =
∏

β(rj)ϕ(
∑

t(rj))

that

|ϕ(s)| ≤ C ·
∏ γ(rj)

|β(rj)|
,

hence
1
C
|ϕ(s)| ≤ α(s) := inf

{∏ γ(rj)
|β(rj)|

|
∑

t(rj) = s

}
and α is immediately seen to be an absolute value. The function ϕ be-
ing positive definite and α–bounded, has a unique representing measure μ
supported by the compact set Sα in view of the Berg/Maserick theorem.
Define f : S∗ −→ C by

(∗) f(σ) :=
w∑

u,v=1

cuc̄vβ(au + a−
v )σ(t(au + a−

v ))

for given a1, . . . , aw ∈ R and c1, . . . , cw ∈ C. Then f is continuous, and
on the compact subset Sα the function f is bounded. We want to show
that f is μ–a.e. nonnegative, or equivalently that the measure ν := f · μ
is nonnegative. This will be shown if ν̂(s) :=

∫
σ(s)dν(σ) turns out to be

positive definite, by the Berg/Maserick theorem.
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Let again s1, . . . , sp ∈ S, d1, . . . , dp ∈ C and n ∈ IN be given, with

sj =
qj∑

�=1

t(rj�)

as in the proof of (i).
Let now {Nujm | u = 1, . . . , w, j = 1, . . . , p;m = 1, . . . , n} be disjoint
subsets of IN � {1} with |Nujm| = qj ∀u, j, m, say Nujm = {ν1, . . . , νqj},
and define xujm ∈ R(∞) by

xujm(1) := au

xujm(ν�) := rj�

xujm(i) := 0 else.

Put ξj :=
∏qj

�=1 β(rj�). Then for (u, i, k)) 
= (v, j, �)

Φ(xuik + x−
vj�) = ξiξjβ(au + a−

v )ϕ(t(au + a−
v ) + si + s−j )

and Φ(xuik + x−
uik) is again bounded uniformly in u, i, k, n. So again the

matrix (with index set A := {1, . . . , w} × {1, . . . , p})

(β(au + a−
v ) · ϕ(t(au + a−

v ) + si + s−j ))(u,i),(v,j)∈A

is positive semidefinite, leading to

p∑
i,j=1

did̄j ν̂(si + s−j ) =
p∑

i,j=1

w∑
u,v=1

cudic̄vd̄j×

×
∫

β(au + a−
v )σ(t(au + a−

v ) + si + s−j )dμ(σ) =

=
∑
i,j

∑
u,v

cudic̄vd̄jβ(au+a−
v ) · ϕ(t(au+a−

v )+si+s−j )≥0.

We have shown f · μ to be a positive measure , i.e.

μ(f−1(C � IR+)) = 0 .

Now f−1(C � IR+) is open, and μ is a Radon measure, hence

μ
(⋃

f−1(C � IR+)
)

= 0

the union being taken over all functions f of the form (∗). Hence μ–almost
surely r �−→ β(r) · σ(t(r)) is positive definite on R.
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(iii) W is obviously closed, hence compact, so that C := μ(W ) < ∞. For σ ∈ W
the function

Φσ(r1, r2, . . . ) :=
∏

β(ri) · σ(t(ri))

is positive definite as a (tensor) product of such functions. Also

|β(r)σ(t(r))| ≤ |β(r)| · α(t(r)) =: γ(r) .

Now Φ =
∫

Φσdμ(σ) is positive definite as a mixture of positive definite
functions, and

|Φ(r1, r2, . . . )| ≤ C ·
∏

γ(ri) ∀ r1, r2, . . . ∈ R .

(iv) See the end of the proof of (i) .

One of the most direct corollaries is the following result, characterizing
spherically exchangeable (or symmetric) sequences, i.e. sequences of real random
variables whose finite dimensional distributions are invariant under rotations.

Theorem (Schoenberg, 1938). Every infinite spherically exchangeable ran-
dom sequence is a unique variance mixture of centered iid normal sequences. Or
formally:

P ∈ M1
+(IR∞) is spherically symmetric

⇐⇒ P =
∫ ∞

0

N(0, c)∞dμ(c) ∃!μ ∈ M1
+(IR+) .

Proof. Only one direction needs a proof. Given a spherically exchangeable
P we let Φ be its characteristic function, i.e.

Φ(r1, r2, . . . ) := E
[
exp

(
i
∑

rjXj

)]
, (r1, r2, . . . ) ∈ IR(∞) =

= ϕ
(∑

r2
j

)
for some function ϕ : IR+ −→ C, by assumption. With t(r) = r2, β ≡ γ ≡ 1, we
get from the Main Theorem that ϕ is a bounded positive definite function with
ϕ(0) = 1. Then, for example applying the Berg/Maserick theorem, ϕ has the
unique integral representation

ϕ(s) =
∫

e−λsdμ(λ), μ ∈ M1
+([0,∞])

(with e−λ∞ = 1{0}(λ), λ ∈ IR+). Now ϕ is obviously continuous, leading to
μ({∞}) = 0, and then from

Φ(r1, r2, . . . ) =
∫ ∞

0

e−λ
∑

r2
j dμ(λ)

we read off the wanted result.
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Schoenberg (cf. [8]) proved this result in the totally different connection of
the imbedding problem for quasi-metric spaces into a Hilbert space.

With only slightly more effort we get the following characterization of

Mixtures of the full 2-parameter normal family. Let X =
(X1, X2, . . . ) be any real random sequence with characteristic function Φ. Then

Φ(r1, r2, . . . ) = ϕ
(∑

rj ,
∑

r2
j

)
for some ϕ

iff

PX =
∫

IR×IR+

N(a, c)∞dμ(a, c) for some μ ∈ M1
+(IR× IR+) .

For a proof, see [6], Example 6.
Different transforms may of course be used. An example with Laplace trans-

forms is this:

Let X = (X1, X2, . . . ) be non–negative random variables. Then

E
[
exp

(
−

∑
rjXj

)]
= ϕ

(∏
(1 + rj)

)
.

For some ϕ : [1,∞[−→ IR iff

PX =
∫ ∞

0

γ∞
λ dμ(λ)

where γλ denotes the Gamma (λ, 1) distribution, with γ1 = e1, the exponential
distribution with parameter 1; cf. Example 8 in [6].

The natural question if mixtures of exponential iid sequences can be char-
acterized similarly, can be answered immediately:

For a non–negative sequence X we have

PX =
∫ ∞

0

e∞λ dμ(λ)

iff

P (X1 ≥ a1, X2 ≥ a2, . . . ) = ϕ
(∑

aj

)
, a ∈ IR(∞)

+

for some ϕ : IR+ −→ IR; cf. Example 11 in [6].
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5 – De Finetti’s theorem in extended form

Theorem. Let X be a finite or countable set, S a semigroup, t : X −→ S
such that t(X ) generates S � {0}, β : X −→ ]0,∞[, ϕ : S −→ IR+. Then
P ∈ M1

+(X∞) fulfills

P (x1, . . . , xn) =
n∏

i=1

β(xi) · ϕ
(

n∑
i=1

t(xi)

)
∀n, xi

iff

P =
∫

κ∞
σ dμ(σ)

where μ ∈ M1
+(S∗

+) is concentrated on

W :=
{
σ ∈ S∗

+ | κσ := β · (σ ◦ t) ∈ M1
+(X )

}
(cf. Theorem 4 in [6]; we’ll derive it here as a consequence of the Main Theorem).

Proof. Let R := {1{x} | x ∈ X} ∪ {0, 1} with pointwise multiplication,
considered as a subsemigroup of IRX , add an absorbing element ζ to S, S′ :=
S ∪ {ζ}, and define t′ : R −→ S′ by t′(1{x}) := t(x), t′(1) := 0, t′(0) := ζ. Put
β′(1{x}) := β(x), β′(1) := 1, β′(0) := 2 (or any number > 1), ϕ(ζ) := 0, and let
X1, X2, . . . be the natural projections X∞ −→ X . Then

Φ(r1, r2, . . . ) : = E[r1(X1) · r2(X2) · . . . ] =

=
∏

β′(rj) · ϕ
(∑

t′(rj)
)

for all (r1, r2, . . . ) ∈ R(∞).
Denoting the semigroup operation in R(∞) by “⊕” we get for r(1), . . . , r(n) ∈

R(∞) and c1, . . . , cn ∈ IR

n∑
i,j=1

cicjΦ(r(i) ⊕ r(j)) = E

⎧⎨⎩
[

n∑
i=1

cir
(i)(X)

]2
⎫⎬⎭ ≥ 0

where r(X) := r1(X1) · r2(X2) · . . . for r ∈ R(∞), showing Φ to be positive
definite.

By the Main Theorem (i) ϕ is positive definite, and (ii) being fulfilled with
C = 1, γ ≡ 1, ϕ is α–bounded with

α(s) = inf
{(∏

β(xi)
)−1

|
∑

t(xi) = s

}
for s ∈ S
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and
α(ζ) = 0 (since β′(0) > 1) .

Also, the measure μ′ representing ϕ (on S′) concentrates on {σ′ ∈ (S′)α | β′ ·
(σ′ ◦ t′) is positive definite on R} =: V ′ and each σ′ ∈ V ′ is non-negative since
R is idempotent, so σ := σ′ |S≥ 0. Let μ be the image of μ′ under σ′ �−→ σ′ |S ,
and V := {σ′ |S | σ′ ∈ V ′}. Then

ϕ(s) =
∫

V ′
σ′(s)dμ′(σ′) =

∫
V

σ(s)dμ(σ)

for s ∈ S, and

P (x1, . . . , xn) = Φ
(
1{x1}, 1{x2}, . . . , 1{xn}, 1, 1, . . .

)
=

=
n∏

i=1

β(xi) · ϕ
(

n∑
i=1

t(xi)

)
=

=
∫

V

n∏
i=1

β(xi)σ(t(xi))dμ(σ) ,

leading to

1 =
∑

x1,... ,xn∈X
P (x1, . . . , xn) =

∫ [∑
x∈X

β(x)σ(t(x))

]n

dμ(σ)

for all n ∈ IN, which shows that μ is in fact concentrated on W .

The technicalities in the above proof were perhaps slightly more complicated
than expected, but then calculations with (Fourier, Laplace) transforms are often
easier than those with the distributions themselves . . . The following examples
will show, however, that the result is easy to apply.

Example 4.1. The original De Finetti theorem: here X = {0, 1}, S =
{(k, n) ∈ IN2

0 | k ≤ n} (cf. Section 1), t(x) = (x, 1), β ≡ 1. A general non–
negative character on S has the form σ(k, n) = pkqn−k with p, q ≥ 0. The
condition σ ◦ t ∈ M1

+(X ) translates into

σ(t(0)) + σ(t(1)) = σ(0, 1) + σ(1, 1) = q + p = 1

which gives the result.

Example 4.2. A slight extension of 4.1. We consider X = {0, 1, 2, . . . , k},
where k ∈ IN. Let again P ∈ M1

+(X∞) fulfill

P (x1, . . . , xn) = ϕn

(
n∑

i=1

xi

)
= ϕ

(
n∑

i=1

(xi, 1)

)
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as before. Then

P =
∫ 1

0

κ∞
p dμ(p)

with

κp({j}) = pjqk−j , q = q(p) from pk + pk−1q + . . . + pqk−1 + qk = 1 .

Example 4.3. A further “extension”: X = IN0, P as before. Then

P =
∫

]0,1]

γ∞
a dμ(a)

γa denoting the geometric distribution with parameter a, i.e. γa({k}) = a(1−a)k.

Example 4.4. X = IN0 as before, P ∈ M1
+(X∞). Then

P (x1, . . . , xn) =
1∏n

i=1 xi!
· ϕn

(
n∑

i=1

xi

)
iff

P =
∫ ∞

0

π∞
λ dμ(λ)

where πλ denotes the Poisson distribution with parameter λ. Here we have for
the first time the non–trivial function β(x) = 1/x!. The choice β(x) = 1/(x + 1)
leads instead to mixtures of

κu({x}) :=
1

− log(1− u)
· ux+1

x + 1
(0 < u < 1) and κ0 = ε0 ,

and β(x) =
(
x+r−1

r−1

)
would lead to negative binomials.

6 – Abstract results

De Finetti’s original result dealt with {0, 1}–valued random variables, and
was generalized by him a few years later to the real-valued case. In 1955 a con-
siderable further extension to arbitrary compact Hausdorff spaces was presented:

Theorem (Hewitt–Savage). Let X be a compact Hausdorff space. Then
P ∈ M1

+(X∞) is exchangeable iff

P =
∫

κ∞dμ(κ)

for some μ ∈ M1
+(M1

+(X )).
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[Here M1
+(X ) is by definition the set of all Radon probability measures on

X ; and M1
+(X ) is given the usual weak topology in which it is again compact.]

In the following proof we’ll use the notion of the free abelian semigroup
(without involution) over a set A, denoted IN(A)

0 , and consisting of all functions
s : A −→ IN0 such that {s > 0} is finite, with the usual addition.

A character σ on IN(A)
0 can be identified with a function τ : A −→ IR via

τ(a) = σ(δa), where δa := 1{a} ∈ IN(A)
0 .

Proof. Let A := {f : X −→ [0, 1] | f is continuous}. Then for any finite
collection of f1, f2, . . . ∈ A

E
[∏

fj(Xj)
]

= ϕ
(∑

δfj

)
with ϕ being defined on IN(A)

0 . By the Main Theorem, ϕ is c.p.d. (and bounded),
so

ϕ
(∑

δfj

)
=

∫ ∏
τ(fj)dμ(τ)

for some μ ∈ M1
+([0, 1]A).

An easy argument shows μ to be concentrated on

T := {τ : A −→ [0, 1] | τ(1) = 1, τ finitely additive}

(cf. [6], Theorem 2) , and each τ ∈ T extends uniquely to a positive linear
functional on C(X ), i.e. τ can be identified with a Radon probability measure
on X . Inserting this above gives the desired result.

Remark 1. If X was just a measurable space then with A := {f : X −→
[0, 1] | f measurable} one obtains

E
[∏

fj(Xj)
]

=
∫ ∏

τ(fj)dμ(τ), fj ∈ A ,

with μ ∈ M1
+(T ) and

T := {τ : A −→ [0, 1] | τ(1) = 1, τ additive}

which is a “weak” form of a general De Finetti type result.

Remark 2. As noted above, the Berg/Maserick theorem is an essential
ingredient in the proof of the Main Theorem. It can however also be deduced
from it: if ϕ : S −→ C is p.d. and α–bounded then Φ(s1, s2, . . . ) := ϕ(

∑
sj) is

p.d., and
| Φ(s1, s2, . . . ) |≤ C ·

∏
α(sj) .

With R = S, t = idS and β ≡ 1 the set W in the Main Theorem reduces to Sα.
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Remark 3. The Main Theorem can be looked at as a result on exchangeable
p.d. functions (here for simplicity we assume S without involution): let Φ :
R(∞) −→ IR be p.d. and exchangeable. This leads to a factorization of the form

Φ(r1, r2, . . . ) = ϕ
(∑

δrj

)
with ϕ : IN(R�{0})

0 −→ IR (and δ0 := 0). Then ϕ is p.d., and if |Φ(r1, r2, . . . ) |≤
C · ∏ γ(rj) for some function γ : R −→ IR+, γ(0) = 1, and some C > 0, the
function ϕ is α-bounded with α(

∑
δrj ) :=

∏
γ(rj) – so α is even a character.

We get

ϕ
(∑

δrj

)
=

∫
σ

(∑
δrj

)
dμ(σ)

where μ is a Radon measure on all characters σ of IN(R�{0})
0 with |σ| ≤ α. Since

such a σ can be identified with the function τ on R�{0} given by τ(r) := σ(δr),
completed by τ(0) := 1, we see that μ can be considered as a measure on

W := {τ ∈ P1(R) | |τ | ≤ γ} ,

leading to

Φ(r1, r2, . . . ) =
∫

W

∏
τ(rj)dμ(τ) ,

a mixture of tensor powers of p.d. functions on R.

Note that in the special case where Φ(r1, r2, . . . ) = ϕ(
∑

rj) depends on the
sum of the entries, the function ϕ : R −→ IR is automatically p.d., so that if
furthermore ϕ is a moment function (i.e. a mixture of characters) Φ would be
the corresponding mixture of infinite tensor powers of characters.

7 – A different point of view

Let’s take another look at the Main Theorem (with β ≡ 1) :

Φ(r1, r2, . . . ) = ϕ
(∑

t(rj)
)

and the conclusion Φ p.d. =⇒ ϕ p.d.
Put U := R(∞), ψ(r1, r2, . . . ) :=

∑
t(rj), then ψ : U −→ S is onto and the

theorem says: ϕ ◦ ψ p.d. =⇒ ϕ p.d.
What is the crucial property of ψ enabling this conclusion?
The answer looks complicated:∣∣∣∣∣∣

∀ finite subsets {s1, . . . , sn} ⊆ S and {u1, . . . , um} ⊆ U and
∀ N ∈ IN ∃ {ujpα | j ≤ n, p ≤ m, α ≤ N} ⊆ U such that
ψ(ujpα + u−

kqβ) = sj + s−k + ψ(up + u−
q ) for (j, p, α) 
= (k, q, β)
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If this is fulfilled, and ψ(0) = 0, we call ψ strongly almost additive.
This holds for example if ψ is a homomorphism and onto, but this case is

not too interesting.
In this more general framework we shall deal only with bounded functions,

being no restriction for the applications we have in mind.

Theorem. Let U, S be two semigroups, ψ : U −→ S be strongly almost
additive, and ϕ : S −→ C bounded. Then

ϕ ◦ ψ p.d. =⇒ ϕ p.d.

and ϕ is in fact a mixture of characters in

Ŝψ := {σ ∈ Ŝ | σ ◦ ψ p.d.}

(n.b.: a compact subsemigroup of Ŝ).
Furthermore:

{ϕ : S −→ C | ϕ bounded, ϕ(0) = 1, ϕ ◦ ψ p.d.}

is a Bauer simplex with Ŝψ as extreme points.

Cf. [7], Theorem 1, where a slightly more general result is shown.
We shall apply this theorem to socalled exchangeable random par-

titions of the positive integers.
V = {v1, v2, . . . } is a partition of IN :⇐⇒ vj 
= ∅, vj ∩ vk = ∅ for j 
= k, and⋃

j vj = IN.
Examples are {{i} | i ∈ IN} or {IN}, the two “extreme” partitions of IN.
Let P denote the set of all partitions of IN. Any V ∈ P can be identified with

the equivalence relation E(V ) :=
⋃

v∈V v × v ⊆ IN2 or with 1E(V ) ∈ {0, 1}IN2
,

this last identification defining the (natural) topology on P, turning it into a
compact metric space.

For A ⊆ IN and V ∈ P we write

A � V :⇐⇒ ∃ v ∈ V with A ⊆ v

(that is: A is not separated by the classes of V ).
For U, V ∈ P we define

U ≤ V :⇐⇒ u � V ∀u ∈ U [⇐⇒ E(U) ⊆ E(V )] .

Every subset of P has a unique minimal element w.r. to “≤ ”, and for a family A
of subsets of IN there is a smallest W ∈ P such that A � W for each A ∈ A. In
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the particular case of A = U ∪V for U, V ∈ P we write U ∨V for this minimum,
and call it (of course) their maximum.

The order intervals PU := {W ∈ P | U ≤ W} fulfill PU ∩ PV = PU∨V . For
U ∈ P the classes u ∈ U with |u| ≥ 2 are called non-trivial, their union 〈U〉 is
called the support of U . Obviously 〈U ∨ V 〉 ⊆ 〈U〉 ∪ 〈V 〉, so that

U := {U ∈ P | 〈U〉 is finite}

is a subsemigroup w.r. to “∨ ”, with neutral element U0 = {{j} | j ∈ IN}.
The order intervals PU for U ∈ U are clopen and generate the Borel sets of P.
Probability measures on P will be called random partitions.

Theorem. ϕ : U −→ IR is p.d. and normalized (i.e. ϕ(U0) = 1) ⇐⇒ ∃
(unique) random partition μ ∈ M1

+(P) with

ϕ(U) = μ(PU ) ∀U ∈ U

[cf. [4], Theorem 1].

Note that the easy direction “⇐=” follows immediately from

n∑
j,k=1

cjckϕ(Uj ∨ Uk) =
∫ ⎛⎝ n∑

j=1

cj1PUj

⎞⎠2

dμ ≥ 0 .

A permutation π of IN induces π : P −→ P, π(V ) := {π(v) | v ∈ V }, and π is
continuous. π is finite iff {i ∈ IN | π(i) 
= i} is finite.

Definition. μ ∈ M1
+(P) is exchangeable :⇐⇒ μπ = μ ∀ finite π.

Now μπ(PU ) = μ(P
π−1(U)

), so μ is exchangeable iff

μ(PU ) = μ(PV )

∀U, V ∈ U with |{u ∈ U | |u| = k}) = |{v ∈ V | |v| = k}| for k = 2, 3, . . . iff
μ(PU ) = ϕ ◦ g(U) for some ϕ defined on the semigroup

S := IN({2,3,... })
0 ,

with g(U) :=
∑

u∈U
|u|≥2

δ|u|.

This function g : U −→ S is in fact strongly almost additive, cf. [4],
Lemma 5.

Theorem (Kingman). M1,e
+ (P) := {μ ∈ M1

+(P)|μ exchangeable} is a
Bauer simplex whose extreme points are precisely those μ for which

μ(PU ) = σ(g(U)), U ∈ U with σ ∈ Ŝ+ .
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Such a character σ is given by a sequence (t2, t3, . . . ) in [0, 1], and we see
that

tn = μ(P{{1,... ,n},{n+1},{n+2},... }), n ≥ 2

is the μ–probability for {1, . . . , n} not getting separated. For general U ∈ U the
multiplicativity of σ is reflected in a certain pattern of independence:

μ(PU ) =
∏
u∈U
|u|≥2

t|u| .

Kingman ([5]) showed that there exists a sequence x = (x1, x2, . . . ) with xi ≥
0,

∑
xi ≤ 1, such that

tn =
∞∑

i=1

xn
i for n = 2, 3, . . .

is the associated sequence of power sums.
Using x, there is in fact a natural way to describe this distribution μ : put

x0 := 1−∑∞
i=1 xi and let X1, X2, . . . be iid with P (X1 = i) = xi, i ≥ 0. Then

G := {{j ∈ IN | Xj = c} | c ∈ IN} ∪ {{i} | Xi = 0}� {∅}

is P–valued and has μ as its distribution.
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Exchangeable Rasch matrices

STEFFEN L. LAURITZEN

Abstract: This article is concerned with binary random matrices that are ex-
changeable with the probability of any finite submatrix only depending on its row- and
column sums. We describe basic representations of such matrices both in the case of
full row- and column exchangeability and the case of weak exchangeability. Finally the
results are interpreted in terms of random graphs with exchangeable labels and with a
view towards their potential application to social network analysis.

1 – Introduction

Let us initially consider the sequential case and recall that a sequence of
random variables X1, . . . , Xn, . . . is said to be exchangeable if for all n and
π ∈ S(n) it holds that

X1, . . . , Xn
D= Xπ(1), . . . , Xπ(n)

where S(n) is the group of permutations of {1, . . . , n} and D= denotes equality in
distribution; i.e. the distribution of an exchangeable sequence of random variables
is unchanged whenever the order of any finite number of them is rearranged.

de Finetti’s theorem for binary sequences [1] then says that a binary sequence
X1, . . . , Xn, . . . is exchangeable if and only if there exists a distribution function

Key Words and Phrases: Partial exchangeability – Random graphs – Social network
analysis – Sufficiency.
A.M.S. Classification: 62B99, 60C05
This paper was presented at the Bruno de Finetti Centenary Conference in Rome,
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F on [0, 1] such that for all n

p(x1, . . . , xn) =
∫ 1

0

θtn(1− θ)n−tn dF (θ) ,

where tn =
∑n

i=1 xi. Further, the limiting frequency Y = limn→∞
∑n

i=1 Xi/n
exists and F is the distribution function of this limit. Conditionally on Y = θ,
the sequence X1, . . . , Xn, . . . are independent and identically distributed with
expectation θ.

An alternative formulation of exchangeability focuses on its relationship to
sufficiency [2], [3], [4]. A statistic t(x) is summarizing for p [5] if for some φ

p(x) = φ(t(x)) .

Note that if t is summarizing for all p in a family P of distributions, it is sufficient
for P.

For binary variables, X1, . . . , Xn, . . . is exchangeable if and only if for all n

P (X1 = x1, . . . , Xn = xn) = φn

(
n∑

i=1

xi

)

i.e., if and only if tn =
∑n

i=1 xi is summarizing for its distribution. This is due
to the fact that tn =

∑n
i=1 xi is the maximal invariant for the action of the

permutation group S(n) on the binary sequences of length n and S(n) acts tran-
sitively on the sequences with given value of tn, so that any two such sequences
are permutations of each other.

The present paper is investigating the interplay between these ideas in the
case of random binary matrices where the situation is somewhat more complex.

The next section is initially giving an overview of results in [6] and the reader
is referred to this paper for details not described here. Some of the considerations
of [6] are further extended to the case of weakly exchangeable arrays. The last
section touches upon the relation of these to random graphs and social network
analysis.

2 – Exchangeable binary matrices

2.1 – Random Rasch matrices

The Rasch model [7] was originally developed to analyse data from intelli-
gence tests where Xij indicates a binary outcome when problem i was attempted
by person j, Xij = 1 denoting success and Xij = 0 denoting failure. The model
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is described by ‘easinesses’ α = (αi)i=1,... and ‘abilities’ β = (βj)j=1,... so that
binary responses Xij are conditionally independent given (α, β) and

P (Xij = 1 |α, β) = 1− P (Xij = 0 |α, β) =
αiβj

1 + αiβj
.

The model is a potential model for a large variety of phenomena such as, for
example, a batter i getting a hit against a pitcher j in baseball matches [8] or
the occurrence of species i on island j [9]; see for example [10] for a survey.

A random Rasch matrix has (αi) i.i.d. with distribution A, (βj) i.i.d. with
distribution B, the entire sequences α and β also being independent of each
other. Such a model would be relevant if each of batters and pitchers were a
priori exchangeable. An example of a random Rasch matrix is displayed in fig. 1.

Fig. 1: Two random matrices, each of dimension 100 × 100. The matrix to the left is a
random Rasch matrix and thus RCES whereas the matrix to the right is RCE but not RCS.
The two matrices have the same overall mean equal to 0.5.

2.2 – Exchangeable and summarized matrices

Recall that a doubly infinite matrix X = {Xij}∞,∞
1,1 is row–column exchange-

able [11] (an RCE-matrix) if for all m, n, π ∈ S(m), ρ ∈ S(n)

{Xij}m,n
1,1

D= {Xπ(i)ρ(j)}m,n
1,1 ,

i.e. if the distribution is unchanged when rows or columns are permuted. A
random Rasch matrix is clearly RCE.
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A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is said to be row-column

summarized (RCS-matrix) if for all m, n

p({xij}m,n
1,1 ) = φm,n{r1, . . . , rm; c1, . . . , cn} ,

where ri =
∑

j xij and cj =
∑

j xij are the row- and column sums.
In contrast to the sequential case, there is no simple summarizing statistic

for an RCE matrix. RCE-matrices are generally not RCS-matrices and vice
versa because the group GRC of row- and column permutations does not act
transitively on matrices with fixed row- and column sums. To see the latter,
consider

M1 =

⎧⎨⎩ 0 0 1
1 0 0
0 1 1

⎫⎬⎭ , M2 =

⎧⎨⎩ 0 0 1
0 0 1
1 1 0

⎫⎬⎭ .

The matrices M1 and M2 have identical row- and column sums. However, their
determinants are different: |detM1| = 1 whereas |detM2| = 0. Since the abso-
lute value of the determinant is invariant under row- and column permutations,
it follows that no combination of such permutations will ever modify M1 to
become M2.

If a matrix is both RCE and RCS, we say that it is an RCES-matrix. Ran-
dom Rasch matrices are RCES matrices since, conditionally on (α, β), we have

(1) p({xij}m,n
1,1 |α, β) =

m∏
i=1

n∏
j=1

(αiβj)xij

1 + αiβj
=

∏m
i=1 αri

i

∏n
j=1 β

cj

j∏m
i=1

∏n
j=1(1 + αiβj)

,

which only depends on row- and column sums, implying that this also holds after
taking expectation w.r.t. (α, β).

The difference between an RCE and RCS matrix is not always immediately
visible. Figure 1 displays a random Rasch matrix next to an RCE matrix which
is not RCS, yet they are not easily distinguishable.

2.3 – de Finetti’s theorem for RCE matrices

The set of distributions PRCE of binary RCE matrices is a convex simplex.
In particular, every P ∈ PRCE has a unique representation as a mixture of
extreme points ERCE of PRCE, i.e.

P (A) =
∫
E

Q(A)μP (Q) .

The same holds if RCE is replaced by RCS or RCES. In addition, it can be
shown that

ERCES = ERCE ∩ PRCS .
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The extreme measures are particularly simple. Aldous [11] shows that for any
P ∈ PRCE the following are equivalent:

• P ∈ ERCE;
• the tail σ-field T is trivial;
• the corresponding RCE-matrix X is dissociated.

Here the tail T is

T =
∞⋂

n=1

σ{Xij ,min(i, j) ≥ n}

and a matrix is dissociated if for all A1, A2, B1, B2 with A1 ∩A2 = B1 ∩B2 = ∅

{Xij}i∈A1,j∈B1 ⊥⊥ {Xij}i∈A2,j∈B2 .

Following [12], a binary doubly infinite random matrix X is a φ-matrix if Xij

are independent given U = (Ui)i=1,... and V = (Vj)j=1,... where Ui and Vj are
independent and uniform on (0, 1) and

P (Xij = 1 |U = u, V = v) = φ(ui, vj) .

In [11], [12], [13] it is shown that distributions of φ-matrices are the extreme
points of PRCE, i.e. binary RCE matrices are mixtures of φ-matrices. Different
φ may in general have identical distributions of their φ-matrix. Clearly, if (g, h)
is a pair of measure-preserving transformations of the unit interval into itself,
φ̃(u, v) = φ(g(u), h(v)) yields the same distribution of X as φ. In fact, φ is exactly
determined up to such a pair of measure-preserving transformations [14].

2.4 – Rasch type φ-matrices

As shown in [6], if a φ-matrix is also RCS, then

P

({
1 0
0 1

} ∣∣ U = u, V = v

)
= P

({
0 1
1 0

} ∣∣ U = u, V = v

)
which holds if and only if φ is of Rasch type, i.e. if for all u, v, u∗, v∗:

(2) φ(u, v)φ̄(u, v∗)φ̄(u∗, v)φ(u∗, v∗) = φ̄(u, v)φ(u, v∗)φ(u∗, v)φ̄(u∗, v∗) ,

where we have let φ̄ = 1− φ. This is the Rasch functional equation [15].
Although RCE matrices have no simple summarizing statistics, RCES-

matrices do: they are summarized by the empirical distributions of row- and
column sums:

tmn =

⎛⎝ m∑
i=1

δri ,

n∑
j=1

δcj

⎞⎠ ,
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where δs is the measure with unit mass in s. This is a semigroup statistic,
and RCES matrices can also be represented via mixtures of characters on the
image semigroup (Ressel 2002, personal communication). General solutions of
the Rasch functional equation thus represent characters of the image semigroup
of the empirical row- and column sum measures.

Lauritzen (2003) [6] shows that any RCES matrix is a mixture of Rasch type
φ-matrices and also that any regular RCES matrix is a mixture of random Rasch
matrices. Here, a random binary matrix is said to be regular if

0 < P (Xij = 1 | S) < 1 for all i, j ,

where the shell σ-algebra S is

S =
∞⋂

n=1

σ{Xij ,max(i, j) ≥ n} .

Regular solutions (0 < φ < 1) to the Rasch functional equation are all of the
form

φ(u, v) =
a(u)b(v)

1 + a(u)b(v)
,

where a and b are positive real-valued functions on the unit interval, leading to
random Rasch models.

The matrix to the right in fig. 1 is a φ-matrix with φ(u, v) = (u + v)/2.
Since this does not satisfy Rasch’s functional equation it is not RCS. The matrix
to the left is similarly a Rasch matrix with φ = 6.49186uv/(1+6.49186uv). The
two matrices have the same overall mean equal to 0.5.

There are interesting non-regular solutions to the Rasch equation, for ex-
ample

φ(u, v) = χ{u≤v} =
{

1 if u ≤ v

0 otherwise.

A corresponding φ-matrix is displayed in fig. 2. But there are also solutions such
as, for example,

φ(u, v) =

⎧⎨⎩
a(u)b(v)

1 + a(u)b(v)
if 1/3 < u, v < 2/3

χ{u≤v} otherwise.

Both of these non-regular solutions imply the existence of incomparable groups,
so that some questions are always answered correctly for a subgroup of the
persons and some questions never answered by some. More complex variants of
the latter example lead to Cantor–Rasch matrices, see [6] for further details.
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Fig. 2: The left-hand matrix is a non-regular RCES φ-matrix with columns φ(u, v) =
χ{u≤v}. The matrix on the right-hand side is a φ-matrix with φ(u, v) = χ{|u−v|≤1−1/

√
2}. It

is RCE but not RCS. The two matrices have the same overall mean equal to 0.5.

The difference between RCE and RCES can be striking if the corresponding
matrix is manipulated by sorting the rows and columns by their row- and column
sums, as shown in fig. 3, where both diagrams have been obtained from fig. 2 in
this way.

Fig. 3: The matrices are obtained from those displayed in fig. 2 by sorting rows and
columns according to their sum. The left-hand matrix was a non-regular RCES matrix. The
right-hand matrix was RCE but not RCS.
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2.5 – WE matrices

A random matrix is said to be weakly exchangeable [16], [17] (a WE-matrix)
if for all n and π ∈ S(n)

{Xij}n,n
1,1

D= {Xπ(i)π(j)}n,n
1,1 ,

i.e. if the distribution of X is unchanged when rows and columns are permuted
using the same permutation for rows and columns. Similarly we say that a doubly
infinite (binary) matrix X = {Xij}∞,∞

1,1 is weakly summarized (WS-matrix) if for
all n

p({xij}n,n
1,1 ) = φn{r1 + c1, . . . , rn + cn} ,

where ri =
∑

j xij and cj =
∑

j xij are the row- and column sums as before.
Again WE-matrices are generally not WS-matrices and vice versa. No joint

permutation of rows and columns take M3 into M4, where

M3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, M4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
have identical row- and column sums, since detM3 = 4 whereas det M4 = −4
and simultaneous permutation of rows and columns also preserves the sign of
the determinant.

If a matrix is both WE and WS, it is a WES-matrix. If in addition, {Xij =
Xji}, i.e. the matrix is symmetric, we may consider SWE, SWS, SWES matrices,
etc. Note that one could also consider the weaker distributional symmetry by
assuming X

D= X�, i.e. that transposition of X does not alter the distribution
of X. In the following we shall mostly restrict attention to the fully symmetric
case and write X{ij} = Xij = Xji.

2.6 – de Finetti’s theorem for SWE matrices

A symmetric binary doubly infinite random matrix X is a ψ-matrix if X{ij}
are all independent given U = (Ui)i=1,... where Ui are mutually independent and
uniform on (0, 1) and

P (X{ij} = 1 |U = u) = ψ(ui, uj) .

Reformulating results in [11] yields that binary SWE matrices are mixtures of
ψ-matrices. Exactly as in the case of RCES matrices, it is easy to show that

ESWES = ESWE ∩ PSWS .
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implying that SWES matrices are mixtures of ψ-matrices where ψ satisfies the
Rasch functional equation. The latter follows from the fact that we then must
have for all y, z ∈ {0, 1} that

P

⎛⎜⎝
⎧⎪⎨⎪⎩

0 y 0 1
y 0 1 0
0 1 0 z
1 0 z 0

⎫⎪⎬⎪⎭ ∣∣ U = u

⎞⎟⎠ = P

⎛⎜⎝
⎧⎪⎨⎪⎩

0 y 1 0
y 0 0 1
1 0 0 z
0 1 z 0

⎫⎪⎬⎪⎭ ∣∣ U = u

⎞⎟⎠ .

Hence regular SWES ψ-matrices have the form

ψ(u, v) =
a(u)a(v)

1 + a(u)a(v)
.

There are also non-regular solutions of interest in the symmetric case. For ex-
ample

(3) ψ(u, v) =

⎧⎪⎪⎨⎪⎪⎩
0 if u < 1/3 or v < 1/3

a(u)a(v)
1 + a(u)a(v)

if 1/3 < u, v < 2/3

1 otherwise.

It seems complex to give a complete description of all symmetric solutions to the
Rasch functional equation.

3 – Random graphs

3.1 – Exchangeable matrices as random graphs

The results described in the previous sections become particularly relevant
when the binary matrix X is considered to represent a random graph. This
representation can be made in a number of ways. If we consider the rows and
colums as labels of two different sets of vertices, an undirected random bipartite
graph can be defined from X by ignoring the diagonal and placing an edge
between i and j if and only if Xij = 1.

In this interpretation, an RCE-matrix corresponds to a random bipartite
graph with exchangeable labels within each group of graph vertices. Similarly,
an RCS-matrix is one where any two bipartite graphs with the same vertex
degree for every vertex are equally likely. An RCES matrix represents one where
the two distributions of vertex degrees determine the probability of the graph.

If we consider the row-and column numbers to label the same vertex set,
the matrix X represents a random (directed) graph by placing a directed edge
from i to j if and only if Xij = 1. A WE-matrix then represents a random graph
with exchangeable labels.
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If the matrix X is symmetric it naturally represents a random undirected
graph, again by placing an edge between i and j if and only if Xij = 1. An SWE-
matrix then represents an undirected random graph with exchangeable labels,
an SWS-matrix represents a random graph with probability only depending on
its vertex degrees, and an SWES matrix one with probability only depending on
the distribution of vertex degrees.

Examples of WES and SWES graphs with non-regular ψ-matrices are dis-
played in fig. 4.

Fig. 4: The graph on the left-hand side is a non-regular SWES graph with ψ-matrix given
by (3). The graph on the right-hand side has a ψ-matrix with φ(u, v) = χ{|u−v|≤1−1/

√
2}. It

is SWE but not SWES. Both graphs have 25 vertices.

3.2 – Social network analysis

Random graphs with exchangeability properties form natural models for
social networks [18]. Frank and Strauss [19] consider Markov graphs which
are random graphs with

(4) X{i,j} ⊥⊥ X{k,l} |XE\{{i,j},{k,l}}

whenever all indices i, j, k, l are different. Here E denotes the edges in the com-
plete graph on {1, . . . , n}. They show that weakly exchangeable Markov graphs
on n vertices all have the form

p({xij}n,n
1,1 ) ∝ exp

{
τnt(x) +

n−1∑
k=1

ηnkνk(x)

}

where τn and ηnk are arbitrary real constants, x = {xij}n,n
1,1 , t(x) is the number

of triangles in x, and νk(x) is the number of vertices in x of degree k. Such
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Markov graphs are also SWE, but not extendable as such unless τn = 0 in which
case they are also SWES. If τn 
= 0 and n > 5, they are not SWES.

Typically, exchangeable graphs generated by ψ-matrices differ from Markov
graphs in that they are dissociated, hence marginally rather than conditionally
independent:

(5) X{i,j} ⊥⊥ X{k,l}

whenever all indices i, j, k, l are different. In fact infinite weakly exchangeable
Markov graphs are Bernoulli graphs because the conjunction of (4) and (5) im-
plies complete independence.

It seems unfortunate that random induced subgraph of Markov graphs are
not Markov themselves and it could be of interest to develop alternative models
for social networks that preserve their structure when sampling subgraphs based
on ψ-matrix models. This holds, for example, for the latent space models [20]
and latent position cluster models [21], both of which are instances of ψ-matrix
models.

For example, one could consider exchangeable random graphs which for
every n also are summarized by the number of triangles and the empirical dis-
tribution of vertex degrees

(6) p({xij}n,n
1,1 ) = fn

{
t(x),

n∑
k=1

δrk(x)

}
,

or similar graphs with summarizing statistics being counts of specific types of
subgraph.

Characterizing exchangeable solutions to (6) or functions involving similar
statistics in general use in social network analysis, could establish an interesting
class of alternatives to the generalizations of Markov graphs known as exponen-
tial random graph models [22], [23], [24].
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The dependence structure of log-fractional stable noise

with analogy to fractional Gaussian noise

MURAD S. TAQQU – JOSHUA B. LEVY

Abstract: We examine the process log-fractional stable motion (log-FSM), which
is an α-stable process with α ∈ (1, 2). Its tail probabilities decay like x−α as x → ∞,
and hence it has a finite mean, but its variance is infinite. As a result, its dependence
structure cannot be described by using correlations. Its increments, log-fractional noise
(log-FSN), are stationary and so the dependence between any two points in time can
be determined by a function of only the distance (lag) between them. Since log-FSN
is a moving average and hence “mixing,” the dependence between the two time points
decreases to zero as the lag tends to infinity. Using measures such as the codifference
and the covariation, which can replace the covariance when the variance is infinite,
we show that the decay is so slow that log-FSN (or, conventionally, log-FSM) displays
long-range dependence. This is compared to the asymptotic dependence structure of
fractional Gaussian noise (FGN), a befitting circumstance since log-FSN and FGN
share a number of features.

1 – Introduction

The classical Central Limit Theorem deals with the convergence of normal-
ized sums of independent and identically distributed random variables, and states
that if these random variables have finite variance then the limit is Gaussian.
The cases of infinite variance and triangular arrays are more involved. The limits
are then infinitely divisible. Bruno de Finetti was one of the first to consider
infinitely divisible distributions (see [3] as well as [2] and [10]). Since then the

Key Words and Phrases: α-stable distribution – Codifference – Covariation – Frac-
tional Brownian motion – Log-fractional stable noise – Self-similar process.
A.M.S. Classification: 60G15, 60G52, 60E07, 60G18
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subject has developed in many directions. One of them concerns dependence.
The dependence of infinitely divisible random variables is most conveniently de-
scribed when they have an α-stable distribution, because linear combinations
of α-stable random variables remain α-stable. Sequences and random processes
with α-stable distributions then can be readily defined and their dependence
structure investigated.

An α-stable process with index of stability 0 < α < 2 has tail probabilities
that decrease to zero hypergeometrically, that is, like the power function x−α,
as x → ∞. These are the proverbial “heavy” tails since the rate of decrease
can be very slow. Moments of the process that have order p < α are necessarily
finite, but they are infinite if p ≥ α. An important case is when α ∈ (1, 2),
so that the mean is finite but the variance is infinite. This contrasts markedly
with the more familiar Gaussian process (by convention, the case α = 2), which
has exponentially “light” tails of order c1x

−1e−c2x2
(ci > 0), and hence has all

moments finite. Unlike the Gaussian distribution, which is symmetric about its
mean, a non-Gaussian stable distribution can be also skewed either to the left
or to the right of its mean. We will concentrate, though, on symmetric α-stable
processes for which the distribution is symmetric around the origin. Processes
that are α-stable (0 < α < 2) can be used to model high variability, namely,
phenomena exhibiting “acute spikes” and “eruptions,” a behavior that is also
often described as burstiness.

A random process is self-similar if it has finite-dimensional distributions
that scale. Specifically, {Xt}, t ∈ R, is H-self similar (H-ss), H > 0, if

Xct
d= cHXt

for any c > 0 and t ∈ R. The notation d= signifies equality of the finite-
dimensional distributions, that is, for any finite set of times t1, . . . , tn

P(Xct1 ≤ x1, . . . , Xctn
≤ xn) = P(cHXt1 ≤ x1, . . . , cHXtn

≤ xn).

H is called the self-similarity index for {Xt}. Thus, the finite-dimensional dis-
tributions maintain an invariance through a simple scaling of time and space.
(Refer to the excellent monograph by Embrechts and Maejima [5] and to the
review paper [13] for details.) The process {Xt} has stationary increments (si) if
Xt+s−Xs

d= Xt−X0 for all t, s ∈ R. Processes that are both H-self-similar and
have stationary increments (indicated by H-sssi) are helpful for describing nat-
ural events that display long-range dependence. Long-range dependence occurs,
for example, in economic time series and internet communication. Processes that
are both α-stable with α < 2 and H-sssi are effective models with which to in-
vestigate both burstiness and long-range dependence in (but are not limited to)
network traffic, hydrology, and financial data. Besides articles in the literature
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about α-stable, H-sssi, or α-stable H-sssi processes and their applications, see
also the texts [4], [11], and [6].

In the case of Gaussian or any finite variance process, the dependence struc-
ture in a weaker form can be studied readily through the correlations. For exam-
ple, zero correlation between the components of a Gaussian process is equivalent
to their independence. If the components are stationary, then one can examine
their dependence over time durations, or lags. If as the lags get larger, the cor-
relations converge rapidly to zero, then the dependence is “weak.” On the other
hand, the dependence is “strong” if the convergence is so slow that the sum of
the correlations diverge. Such divergence intrinsically characterizes the random
cycles of abnormality and regularity exhibited by long-range dependence.

This paper focuses on the symmetric α-stable (SαS) H-sssi process log-
fractional stable motion (log-FSM), which is defined for 1 < α < 2 and has the
self-similarity index H = 1/α. Log-FSM has zero mean but infinite variance.
In particular, its dependence cannot be measured by correlations. There are,
however, “stable” alternatives that replace the covariance.

Two of them are the codifference and the covariation. Both can be applied
to the stationary increments of log-FSM, which is the process known as log-
fractional stable noise, log-FSN. (“Motion” refers to a process with stationary
increments and “noise” to a stationary process.) The behavior of these depen-
dence measures for log-FSN in turn gives an indication about the dependence
structure for log-FSM. The codifference, in fact, is defined for any stationary
process. The covariation is restricted to SαS processes, albeit not necessarily
stationary, for which 1 < α < 2.

The rest of the paper is carried out as follows. Section 2 briefly reviews
SαS processes and their representation as integrals with respect to SαS ran-
dom measures. Log-fractional stable motion and its increment process log-
fractional stable noise (log-FSN) are reviewed in Section 3. The measures of
dependence, the codifference and the covariation, are presented in Section 4.
Section 5 contains the main results, namely, the asymptotic behavior of the
measures when applied to log-FSN. Section 6 makes an analogy to fractional
Brownian motion and its increment process fractional Gaussian noise. Some
extensions of this work and potential research are mentioned in the concluding
Section 7.

2 – A brief approach to symmetric α-stable laws and processes

Aside from the applications described in the introduction, one may ask:
why consider stable distributions? The usual answer arises from the central
limit theorem, which obtains that they are the unique limits of properly rescaled
sums of independent and identically distributed (i.i.d.) random variables. The
Gaussian (normal) distribution is the limit if the sequence has a finite variance. If
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the variance is infinite but the tails of the sequence demonstrate hypergeometric
decay for α < 2, then the limit turns out to be stable and has the same index α.

More explicitly, let {Xj}∞j=1 be an i.i.d. sequence. In the case α = 2,
suppose Xj has mean μ and variance σ2

0 . Then

1
n1/2

n∑
j=1

(Xj − μ) L−→ Z ∼ N(0, σ2
0)

where L−→ stands for convergence in law, that is, in distribution. The limit is
a random variable having characteristic function EeiθZ = e−

1
2 σ2

0 |θ|2 and, conse-
quently, must be Gaussian. In particular, E|Z|p < ∞ for all p > 0. By contrast,
if 0 < α < 2, then the tail probabilities of Xj are “heavy”: P(|Xj | ≥ x) ∼ cx−α

as x → ∞ with σ2
0 = ∞. Assume, in addition, Xj is symmetric (Xj

L= −Xj) if
α = 1 and has mean μ if 1 < α < 2. Then

1
n1/α

n∑
j=1

Xj
L−→ Zα

if α ≤ 1 and
1

n1/α

n∑
j=1

(Xj − μ) L−→ Zα.

if 1 < α < 2. The limit is a symmetric non-Gaussian α-stable random variable
Zα. We indicate this by writing Zα ∼ SαS. The limit Zα recovers the tail
behavior of Xj since also P(|Zα| ≥ x) ∼ cx−α as x → ∞, perhaps with a
different c. Thus, E|Zα|p < ∞ if and only if p < α; E|Zα|2 = ∞, EZα = 0 for
1 < α < 2, and E|Zα| = ∞ iff α ≤ 1. Its characteristic function satisfies

(2.1) EeiθZα = e−σα|θ|α , θ ∈ R := (−∞,∞),

where the scale parameter σ depends on α and c. (When α = 2, σ =
√

σ2
0/2 .)

Relation (2.1) identifies the specific random variable arising in the stable
central limit theorem. Any random variable X is, by definition, symmetric α-
stable (SαS) if it satisfies (2.1). Its scale parameter σ is denoted by ‖X‖α. If
for instance X is measured in meters, then so is ‖X‖α.

Remark. Several easy facts about X ∼ SαS (0 < α ≤ 2) are worth noting
(see also [12, ch. 1.2]).

• a ∈ R, a 
= 0 implies aX is SαS with ‖aX‖α = |a|‖X‖α.
• If α = 2 then X ∼ N(0, 2σ2).
• E|X|p < ∞ only for p < α.
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• Any linear combination of independent SαS random variables is SαS: if
εj ∼ SαS are independent and aj ∈ R, 1 ≤ j ≤ n, then X =

∑n
j=1 ajεj ∼

SαS with

‖X‖α
α = ‖

n∑
j=1

ajεj‖α
α =

n∑
j=1

|aj |α‖εj‖α
α.

It is instructive to see why this last relation holds. The characteristic func-
tion of X is, for θ ∈ R,

φX(θ) = EeiθX = E exp

⎧⎨⎩iθ

n∑
j=1

ajεj

⎫⎬⎭
=

n∏
j=1

E exp {iθajεj} =
n∏

j=1

e−|θ|α |aj |α ‖εj‖α
α

= exp

⎧⎨⎩−|θ|α
n∑

j=1

|aj |α ‖εj‖α
α

⎫⎬⎭ = EeiθX ,

on using the independence of the εj and the fact that they are SαS.

The vector X = (X1, . . . , Xd) in Rd is Gaussian if and only if the random
variables {X1 . . . , Xd} are jointly Gaussian, that is, any linear combination of
them is Gaussian. Similarly, for 0 < α < 2, X = (X1, . . . , Xd) in Rd is a SαS
vector if and only if {X1 . . . , Xd} are jointly SαS, that is, if linear combinations∑n

j=1 ajXj are SαS random variables.
By “going to the limit” in the sum

∑n
j=1 ajεj one can define a SαS random

variable as an integral,

(2.2) X =
∫

R

f(x)Mα(dx),

where f is a deterministic function and Mα is a symmetric α-stable random
measure (see [12, ch. 3.3]). The scale parameter for X satisfies

‖X‖α
α =

∫
R

|f(x)|αdx < ∞

with dx denoting the Lebesgue measure on R. Formally, the function f(x) plays
the role of the aj ’s and Mα(dx) plays the role of the εj ’s with ‖Mα(dx)‖α

α = dx.
Mα is defined on (R,B, | · |), where B is the Borel σ-algebra on R and | · | is
Lebesgue measure. Here | · | is the control measure and (R,B, | · |) is called the
control space for Mα. This means that if B ∈ B with finite Lebesgue measure
|B|, then Mα(B) is a SαS random variable for which

EeiθMα(B) = e−|θ|α|B|.
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Furthermore, suppose {Bn}∞n=1 is a pairwise disjoint sequence of sets in B with
|Bn| < ∞. Then any finite subcollection {Mα(Bn)}∞n=1 are independent random
variables (Mα is said to be independently scattered), and if |⋃∞

n=1 Bn| < ∞,
Mα(

⋃∞
n=1 Bn) =

∑∞
n=1 Mα(Bn) almost surely (a.s.) (Mα is σ-additive).

Thus, Mα plays the dual role of being a measure and being random. As
suggested above, the Mα(dx), x ∈ R play the role of i.i.d. infinitesimal εj , with
the continuous x replacing the discrete label j, and the infinitesimal dx replacing
the common value ‖εj‖α

α, namely, the scale parameter raised to the power α.
In the Gaussian case α = 2, one usually takes (R,B, | · |/2) as the control

space, and in this case, M2(B) has characteristic function EeiθM2(B); hence,
M2(B) is a normal random variable with mean 0 and variance |B|. One can
view M2(dx) heuristically as a normal random variable having mean zero and
infinitesimal measure dx, with M2(dx) and M2(dx′) being independent if the
infinitesimal intervals dx and dx′ are disjoint. The same intuition prevails in
the SαS case with α < 2. The normal distribution is replaced by the stable
distribution and the variance is replaced by the scale parameter raised to the
power α.

Suppose B ∈ B and a > 0. Then

(2.3) Mα (aB) d= a1/αMα (B) ,

where aB is the set B scaled by a, and d= means equality of the finite-dimensional
distributions. Indeed,

EeiθMα(aB) = exp {− |aB| |θ|α|}

= exp
{
−|B|α

∣∣∣a1/αθ
∣∣∣α}

= Eeiθa1/αMα(B).

Relation (2.3) can be denoted informally by

Mα (adx) d= a1/αMα (dx) .

Thus, Mα can be regarded as being “self-similar” with “index” H = 1/α.
The definition (2.2) can be extended to a random process. Consider the set

T to be either R, R+ = {t : t ≥ 0}, or {t : t > 0}. Let ft : R → R be measurable
and satisfy for each t ∈ T

(2.4)
∫

R

|ft(x)|αdx < ∞

and also, if α = 1,
∫

R
| |ft(x) ln |ft(x)| | dx < ∞. (In fact, the condition (2.4)

alone suffices to ensure the existence of the subsequent random process in the
SαS case when α = 1.) Then {Xt, t ∈ T} defined by

(2.5) Xt =
∫

R

ft(x)Mα(dx)
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is a SαS process with

(2.6) ‖Xt‖α
α =

∫
R

|ft(x)|αdx.

The integral (2.5) is a “representation” of the process {Xt}. It says, intuiti-
vely, that {Xt} is obtained by starting with i.i.d. infinitesimal random variables
Mα(dx), weighting them by ft(x), and integrating. The weights change in gen-
eral with x and can also change as the time t evolves. Let −∞ < t1 ≤ · · · ≤
td < ∞. The joint characteristic function of a typical vector (Xt1 , . . . , Xtd

) of
the process is given by

E exp

⎧⎨⎩i

d∑
j=1

θjXtj

⎫⎬⎭ = exp

⎧⎨⎩−
∫

R

∣∣∣∣∣∣
d∑

j=1

θjftj
(x)

∣∣∣∣∣∣
α

dx

⎫⎬⎭
for arbitrary θ1, . . . , θd ∈ R. In fact, most SαS processes can be represented in
the form (2.5). (For details refer to [12, ch. 3 and ch. 13.2].)

One can also define an integrated process with respect to an asymmetric
α-stable random measure having arbitrary control measure that is asymmetric,
or skewed. If the integrand is as above, then the resulting process has also
asymmetric distributions. Our concern in this paper only involves processes that
are defined by (2.5) based on SαS random measures having Lebesgue control
space.

Now recall the definitions of self-similarity and stationarity of the increments
given in the introduction. A process {Xt, t ∈ T} is H-self-similar (H-ss) with
H > 0 if

(2.7) Xct
d= cHXt

for all c > 0 and t, that is, (Xct1 , . . . , Xctd
) and cH(Xt1 , . . . , Xtd

) are identi-
cally distributed. Note that cHX0

d= Xc0 = X0, hence, letting c → ∞ ne-
cessitates X0 = 0 a.s. A process is said to have stationary increments if the
finite-dimensional distributions of {Xt+s −Xs} do not depend on s:

(2.8) {Xs+t −Xs, t ∈ T} d= {Xt −X0, t ∈ T} for all s ∈ T.

Suppose now that the process {Xt, t ∈ R}

• is H self-similar,
• has stationary increments, and
• is symmetric α-stable;
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to wit, it is H-sssi and SαS. Let c > 0 and s, θ1, . . . , θd,−∞ < t1 ≤ · · · ≤
td < ∞ ∈ R. It follows that ‖∑d

j=1 θj(Xctj+s − Xs)‖α
α = cαH‖∑d

j=1 θjXtj‖α
α

does not depend on s, since by (2.5)-(2.8),

(2.9)
∫

R

∣∣∣∣∣∣
d∑

j=1

θj

(
fctj+s(x)− fs(x)

)∣∣∣∣∣∣
α

dx = cαH

∫
R

∣∣∣∣∣∣
d∑

j=1

θjftj (x)

∣∣∣∣∣∣
α

dx.

If α = 2, M2 is a Gaussian random measure. Remember that in this case the
control space usually is taken to be (R,B, | · |/2), so that the variance of M2 is
EM2(B) = |B|. The process defined by

Bt =
∫

R

1[0,t](x)M2(dx) =
∫ t

0

M2(dx), t ≥ 0.

is Brownian motion. (One can also define for t < 0, Bt =
∫ 0

−t
M2(dx).) It is the

only Gaussian H-sssi process with

H = 1/2.

Its scale parameter is EB2
t = ‖Bt‖22 = t by (2.6) (and EBt = 0). This is actually

standard Brownian motion since EB2
1 = 1. Its covariance Cov (Bt1 , Bt2) satisfies

(2.10) Cov (Bt1 , Bt2) = EBt1Bt2 =
∫

R

1[0,t1](x)1[0,t2](x)dx = min(t1, t2).

Moreover, the increments over disjoint intervals are (mutually) independent.
What happens if “Gaussian” in Brownian motion is replaced by “SαS, 0 <

α < 2”?
Replacing the Gaussian random measure M2 with the SαS random measure

Mα, we obtain the stable Lévy motion:

Lt =
∫ t

0

Mα(dx), t ≥ 0.

Also called α-stable motion, it is a SαS process with ‖Lt‖α
α = t. Its increments

over disjoint intervals are independent, a feature that distinguishes it from other
SαS processes. Moreover, it is H-sssi with

H = 1/α.

One can verify heuristically the self-similarity: for a > 0,

Lat =
∫ at

0

Mα(dx) d=
∫ t

0

Mα(adx) d= a1/α

∫ t

0

Mα(dx) = a1/αLt.

(This can be checked precisely using characteristic functions.) A striking fact
is that when 0 < α < 1, there is no other nondegenerate SαS 1/α-sssi process
besides {Lt, t ≥ 0}.

Proposition 2.1. For 0 < α < 1 α-stable motion is the only nondegenerate
SαS-stable 1/α-sssi process.
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Proof. We will follow the proof of [12, Theorem 7.5.4, p. 351], citing several
referenced results from that monograph. That theorem is stated more generally
for arbitrary α-stable 1/α-sssi processes, not necessarily symmetric.

Let {Xt, t ≥ 0} be a nondegenerate SαS 1/α-sssi process for fixed α, 0 <
α < 1. In particular, X1 is non-constant almost surely (a.s.). Denote by σt the
scale parameter of Xt, namely, σt = ‖Xt‖α. If s < t, then

(2.11) ‖Xt −Xs‖α
α = σα

t−s = (t− s)σα
1 ,

since Xt − Xs
d= Xt−s

d= (t − s)1/αX1 by stationarity and 1/α-self-similarity.
Observe first that σ1 = ‖X1‖α 
= 0. Indeed, if σ1 = 0 then {Xt}, t ≥ 0 would be
degenerate since by (2.11),

σt = ‖Xt −X0‖α = t1/α‖X1 −X0‖α = t1/ασ1 = 0.

We must prove Xt has independent increments, that is, for any d ≥ 3 and
0 < t1 ≤ · · · ≤ td the random variables {Xtj

−Xtj−1}, 2 ≤ j ≤ d are (mutually)
independent.

Consider arbitrary epochs t1 < t2 ≤ t3 < t4. Since the vector (Xt1 , Xt2 , Xt3 ,
Xt4) is jointly SαS, then there exist a SαS random measure Mα with Lebes-
gue control space ([0, 1],B, | · |) and functions {ftj

(x)}, x ∈ [0, 1], satisfying∫ 1

0
|ftj

(x)|αd(x) < ∞, j = 1, 2, 3, 4, such that

Xt =
∫ 1

0

ft(x)Mα(dx)

for each t = t1, t2, t3, t4 (Theorem 3.5.6, pp. 131–132). We are now going to
verify that the pair of increments Xt2 −Xt1 and Xt4 −Xt3 are independent, by
showing ft2 − ft1 and ft4 − ft3 have almost-[dx] disjoint supports, i.e.

(2.12)
(
ft2(x)− ft1(x)

)(
ft4(x)− ft3(x)

)
= 0 a.e. [dx].

Using the inequality |a + b|α ≤ |a|α + |b|α, valid for 0 < α ≤ 1,

(t4 − t1)σα
1 = σα

t4−t1 =
∫ 1

0

|ft4(x)− ft1(x)|αdx (by(2.11))

≤
∫ 1

0

|ft4(x)− ft3(x)|αdx +
∫ 1

0

|ft3(x)− ft2(x)|αdx+

+
∫ 1

0

|ft2(x)− ft1(x)|αdx

= σα
t4−t3 + σα

t3−t2 + σα
t2−t1 =

=
(
t4 − t3

)
σα

1 +
(
t3 − t2

)
σα

1 +
(
t3 − t2

)
σα

1 = (t4 − t1)σα
1 .
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The preceding inequality is therefore an equality. Applying Lemma 2.7.14 (1),
p. 92, we can conclude (2.12) holds. This proves that Xt2 −Xt1 and Xt4 −Xt3

are independent (Theorem 3.5.3, p. 128).
Since jointly α-stable random variables are independent if and only if they

are pairwise independent (Corollary 3.5.4, p. 129), then {Xtj
−Xtj−1}, 2 ≤ j ≤

d, d ≥ 3 are independent. Thus, the increments of {X(t)} are independent, which
establishes in turn that {X(t)} must be α-stable motion.

When 1 ≤ α < 2, there are other SαS processes besides α-stable motion
that are H-sssi with H = 1/α. In the sequel we will concentrate on the log-
fractional stable motion.

3 – Log-fractional stable motion

Definition 3.1. The process defined by

(3.1) Xt =
∫

R

(ln |t− x| − ln |x|) Mα(dx), t ∈ R,

where for 1 < α < 2, Mα is a SαS random measure having Lebesgue control
measure, is called log-fractional stable motion (log-FSM).

Log-FSM was introduced by Kasahara et al. [7]. It is well-defined only
for 1 < α ≤ 2. Indeed,

∫ ∞
−∞ |ln |t− x| − ln |x||α dx is finite since, when x ∼

0,
∫ δ

0
(ln |x|)α dx < ∞ but if |x| ∼ ∞, then ln |t − x| − ln |x| ∼ −t/x, and for

A > 0,
∫ ∞

A
x−αdx < ∞ if and only if α > 1. (See also [12, ch. 7.6] for additional

information.)

Proposition 3.1. Log-FSM is H-sssi with H = 1/α.

Proof. We will show that (2.9) holds. Let c > 0 and s, θ1, . . . , θd,−∞ <
t1 ≤ · · · ≤ td < ∞ ∈ R. The change of variables x �→ (s− x)/c gets∫ ∞

−∞

∣∣∣∣∣∣
d∑

j=1

θj (ln |ctj + s− x| − ln |s− x|)

∣∣∣∣∣∣
α

dx =

=
∫ ∞

−∞

∣∣∣∣∣∣
d∑

j=1

θj (ln |c(tj − x)| − ln |cx|)

∣∣∣∣∣∣
α

cdx

= c

∫ ∞

−∞

∣∣∣∣∣∣
d∑

j=1

θj (ln |tj − x)| − ln |x|)

∣∣∣∣∣∣
α

dx.

This verifies (2.9) with αH = 1.
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What happens when we consider log-FSM with α = 2? It becomes Gaussian.
Since it is also H-sssi with H = 1/2, is it different from Brownian motion? The
answer is “no.” To see that log-FSM and Brownian motion are the same Gaus-
sian process, it suffices to observe that they have identical variance-covariance
structures. Indeed, by self-similarity, H = 1/2 implies EX2

t = tEX2
1 , and this

leads to

EXt1Xt2 =
1
2

(
EX2

t1 + EX2
t1 − E |Xt1 −Xt2 |2

)
=

=
1
2

(t1 + t2 − |t1 − t2|) EX2
1 = min(t1, t2)EX2

1 ,

which is the covariance of Brownian motion (compare it to (2.10)). Thus, when
α = 2, (3.1) is merely a different representation of Brownian motion.

What about the case 1 < α < 2? Is log-FSM the same process as α-stable
motion? Observe that they are both H-sssi with H = 1/α. However,

Proposition 3.2. When 1 < α < 2, log-FSM and α-stable motion are
different processes.

We have verified in Proposition 2.1 that α-stable motion has independent
increments. We will show momentarily that log-FSM has dependent increments.
To do so, we consider the increment process of log-FSM called log-fractional
stable noise.

Definition 3.2. Let 1 < α ≤ 2. Log-fractional stable noise (Log-FSN) is
the SαS process,

(3.2) Yt : = Xt+1 −Xt =
∫

R

(ln |t + 1− x| − ln |t− x|) M(dx) t ∈ R.

It is the increment process of log-FSM, {Xt, t ∈ R}.
Do not confuse “log-FSM” with “log-FSN.” The first, with “M” standing

for motion, refers to the process with stationary increments. The second with
“N” standing for noise refers to the corresponding stationary process obtained
by taking the increments of log-FSM.

We proceed to prove Proposition 3.2.

Proof. Two α-stable variables, 0 < α < 2,
∫

R
f(x)Mα(dx) and

∫
R

g(x)
Mα(dx) are independent if and only if their kernels f and g have disjoint support,
a.e. [dx] [12, Theorem 3.5.3, p. 128]. For any t ∈ R, the support of Yt in (3.2)
is evidently R. Therefore, Yt1 and Yt2 can never be independent for any t1 
= t2.
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Having established Proposition 3.2, our goal is to analyze the dependence
of the increments using the codifference and the covariation.

4 – Two measures of dependence

Suppose X1 and X2 are jointly SαS. In particular, X1 −X2 is SαS. The
codifference between two jointly SαS random variables is defined by

(4.1) τX1,X2 = ‖X1‖α
α + ‖X2‖α

α − ‖X1 −X2‖α
α.

The codifference arises from comparing the joint characteristic function of (X1,
X2) to the product of their marginal characteristic functions:

UX1,X2 (θ1, θ2) = Eei(θ1X1+θ2X2) − Eeiθ1X1Eeiθ2X2 ,

whereupon setting θ1 = 1, θ2 = −1, one gets

UX1,X2 (1,−1) = Eei(X1−X2) − EeiX1Ee−iX2

= e−‖X1−X2‖α
α − e−‖X1‖α

α−‖X2‖α
α

= e−‖X1‖α
α−‖X2‖α

α (eτX1,X2 − 1) .

The last term behaves asymptotically like a constant times τX1,X2 as τX1,X2 → 0.
Note that independence of X1 and X2 certainly implies τX1,X2 = 0. If, on

the other hand, τX1,X2 = 0 then UX1,X2 (1,−1) = 0, but this does not imply
independence unless 0 < α < 1. We mention some of the properties of the
codifference (see also [12, ch. 2.10]).

Properties :

(i) τX1,X2 is well-defined for 0 < α ≤ 2.
(ii) For α = 2, τX1,X2 = Cov(X1, X2).
(iii) The codifference is symmetric: τX1,X2 = τX2,X1 .
(iv) τX1,X2 is non-negative definite.

In order to define the covariation, take α > 1 and suppose that X1 =∫
R

f1(x) Mα(dx) and X2 =
∫

R
f2(x)Mα(dx). The covariation of X1 and X2 is

given by

(4.2) [X1, X2]α =
∫

R

ft1(x)ft2(x)〈α−1〉dx

where a〈α−1〉 = |a|α−1sign(a). It is defined for 1 < α ≤ 2.
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Properties : We refer to [12, ch. 2.7].

(i) If α = 2, [X1, X2]α = (1/2)Cov(X1, X2).
(ii) It shows up naturally in linear regression ([12, ch. 4.1]). If 1 < α ≤ 2, then

the regression of X1 on X2 is not only linear (as a function of X2) but also
satisfies

E (X1|X2) =
[X1, X2]α
‖X2‖α

α

X2 a.s.

This relation generalizes the well-known relation for jointly Gaussian mean-
zero variables X1, X2:

E (X1|X2) =
Cov (X1, X2)

EX2
2

X2 a.s.

(iii) If X1 and X2 are independent, then [X1, X2]α = 0. The converse is false,
unless X2 is James orthogonal to X1. X2 is James orthogonal to X1, sym-
bolized by X2⊥J X1, means

‖λX1 + X2‖α ≥ ‖X2‖α

for all λ ∈ R. Thus, by [12, Proposition 2.9.2, p. 98]

[X1, X2]α = 0 ⇐⇒ X2⊥J X1.

There are, however, a few “drawbacks” with the covariation.

(i) (4.2) is defined just for α > 1. This can be appreciated by applying Hölder’s
inequality with the exponents p = α and q = α/(α− 1):

|[X1, X2]α| ≤
(∫

R

|ft1(x)|α dx

) 1
α

(∫
R

|ft2(x)|α dx

)α−1
α

= ‖X1‖α‖X2‖α−1
α .

(ii) It is not symmetric for α < 2: [X1, X2]α 
= [X2, X1]α.
(iii) It is linear in the first argument, but not in the second, if α ≤ 2

[X1, X2 + X3]α 
= [X1, X2]α + [X1, X3]α ,

unless X2 and X3 are independent.
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5 – Application to log-fractional stable noise

We want to study the asymptotic behavior as t → ∞ of log-fractional sta-
ble noise (log-FSN), namely the increment process Yt of log-FSM. Since it is
stationary, we need only consider (Yt, Y0). From (4.1) its codifference is

(5.1) τYt,Y0 = ‖Yt‖α
α + ‖Y0‖α

α − ‖Yt − Y0‖α
α.

Its covariation, using (3.2) and (4.2), is

(5.2) [Yt, Y0]α =
∫

R

(ln |t + 1− x| − ln |t− x|) (ln |1− x| − ln | − x|)〈α−1〉 dx.

We noted that the codifference is always symmetric, but this is not true for
the covariation. However, the covariation of log-FSN is symmetric. Indeed,
substituting y = t + 1− x in (5.2), we get

[Yt, Y0]α =
∫

R

(ln |y| − ln |y − 1|) (ln |y − t| − ln |y − t− 1|)〈α−1〉 dy

=
∫

R

(ln |1− y| − ln |y|) (ln |t + 1− y| − ln |t− y|)〈α−1〉 dy = [Y0, Yt]α

since (−1)(−1)〈α−1〉 = 1.
Yt is a moving average,

Yt =
∫

R

g(t− x)Mα (dx) .

As a consequence, as t → ∞, Yt and Y0 are asymptotically independent. Yt is
actually mixing because, denoting it by the map Y , then

lim
t→∞

PY −1 (St(A) ∩B) = PY −1(A)PY −1(B),

where St : Ω −→ Ω is the shift transformation on Ω = RR that is defined by
(Stω)(s) = ω(s + t). ({St} is a family of measure-preserving transformations on
Ω [12, ch. 14.4].) One therefore expects as t →∞

τYt,Y0 → 0 and [Yt, Y0]α → 0.

The precise rate of convergence of these measures is important, since this rate
will characterize the form of asymptotic dependence.

Theorem 5.1. Suppose SαS log-FSN, Yt, is given by (3.2).
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(i) Its codifference (5.1) satisfies

τYt,Y0 ∼ Pt1−α as t →∞

where

P =
∫ 1

−∞

[∣∣∣∣ 1
1− x

∣∣∣∣α +
∣∣∣∣ 1x

∣∣∣∣α − ∣∣∣∣ 1
1− x

+
1
x

∣∣∣∣α]
dx

+
∫ ∞

0

[(
1

1 + x

)α

+
(

1
x

)α

−
(

1
x
− 1

1 + x

)α]
dx

and P > 0.
(ii) Its covariation (5.2) satisfies

[Yt, Y0]α ∼ Qt1−α as t →∞

where

Q =
∫ 1

0

[
(1 + x)1−α (

x−1 + xα−2
)
− (1− x)1−α (

x−1 − xα−2
)]

dx

and Q > 0.

Theorem 5.1 was proved in [8] and the codifference of log-FSN was initially
examined in [1](1).

The results show that the codifference and covariation converge to zero
hypergeometrically, ctp, where c is a positive constant and the rate p = 1 − α
is the same for both. In particular, the non-vanishing of c renders this rate
exact for either measure. Since 1 < α < 2, the rate is slow enough so that the
series

∑∞
t=1 τYt,Y0 and

∑∞
t=1 [Yt, Y0]α diverge. One often asserts in this case that

log-FSN and, in turn, log-FSM exhibit long-range dependence.

6 – Comparison with fractional Gaussian noise

Consider the Gaussian H-sssi process

BH(t) =
∫

R

(
|t− x|H−1/2 − |x|H−1/2

)
M2(dx), t ∈ R

(1)There are some typographical errors in [12, Theorem 7.10.1, p. 368 and Theorem
7.10.2, p. 369]. The constant F (θ1, θ2) is correct but the constants B(θ1, θ2) and
G(θ1, θ2) are not. To correct B(θ1, θ2) in Theorem 7.10.1, the constant −bθ2 should

replace bθ2 in the first term of the integrand of
∫ 1

0
. In Theorem 7.10.2, replace 1 + x

by 1 − x in the integrand of
∫ 1

−∞. The correct versions are stated in [1, Theorem 2.1

and Theorem 2.4].
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where 0 < H ≤ 1, known as fractional Brownian motion (FBM). Its increment
process, fractional Gaussian noise (FGN) is

(6.1)
ΔBH(t) = BH(t + 1)−BH(t) =

=
∫

R

(
|t + 1− x|H−1/2 − |t− x|H−1/2

)
M2(dx).

The covariance of FGN satisfies

rt = Cov(ΔBH(t),ΔBH(0)) ∼ CHt2H−2 as t →∞

where CH = EB2
H(1)H(2H − 1) ([12, Proposition 7.2.10, p. 335]).

Now restrict H to the range

1/2 < H < 1.

Then CH > 0 and
∞∑

t=1

rt ∼
∞∑

t=1

CHt2H−2 = ∞,

so that FGN exhibits long-range dependence.
The dependence structures of FGN and log-FSN ((3.2)) share some common

attributes.

(i) The constants of asymptoticity are positive for both processes: CH > 0 for
FGN and P > 0 and Q > 0 in Theorem 5.1.

(ii) The exponents 2H − 2 (FGN) and 1− α (log-FSN) have the same extreme
values: the exponent is −1 for FGN with H → 1/2 and for log-FSN with
α → 2, while it is 0 for FGN with H → 1 and for log-FSN with α → 1.
Thus, the ranges of the exponents are the same interval (−1, 0) of values.

(iii) In that range (−1, 0) we have long-range dependence displayed by both
processes. For FGN, the sum of the covariances diverges (

∑∞
t=1 rt = ∞),

and for log-FSN, the sum of the codifferences diverges (
∑∞

t=1 τYt,Y0 = ∞)
and the sum of the covariations diverges (

∑∞
t=1 [Yt, Y0]α = ∞).

The dependence nevertheless is due to different sources. Both processes are
parametrized by a single parameter, H for FGN and α for log-FSN. The depen-
dence for FGN arises from the presence of H in the integrand in (6.1). By con-
trast, the integrand is fixed in log-FSN, Yt =

∫
R

(ln |t + 1− x|− ln |t−x|) Mα(dx),
but the dependence is due to the presence of α in the random measure.
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7 – Concluding remarks and extensions

We have observed that log-FSM becomes Brownian motion when α = 2.
What if one alters the kernel of log-FSM in (3.1), replacing the logarithm by a
power function? One gets

(7.1) Xt =
∫

R

(
|t− x|H−1/α − |x|H−1/α

)
Mα(dx), t ∈ R.

This process is called linear fractional stable motion (LFSM) ([12, ch. 7.4]).
It is defined for 0 < α < 2 and 0 < H < 1, provided H 
= 1/α. If H =
1/α, it is ordinarily identified as a generalization of α-stable motion, which has
independent increments.

When H = 1/α, one could also identify LFSM with log-FSM, since

1
H − 1/α

(
|t− x|H−1/α − |x|H−1/α

)
=
|t− x|H−1/α − 1

H − 1/α
− |x|H−1/α − 1

H − 1/α

=
e(H−1/α) ln|t−x| − 1

H − 1/α
− e(H−1/α) ln|x| − 1

H − 1/α

−→ ln |t− x| − ln |x|

as H → 1/α, for any x 
= 0, t.
LFSM also becomes FBM when α = 2.
There are also extensions of LFSM obtained by substituting for the absolute

value in (7.1) a linear combination of the positive and negative parts:

(7.2)
Xa,b;t =

∫
R

(
a

[
(t− x)H−1/α

+ − (−x)H−1/α
+

]
+

+ b
[
(t− x)H−1/α

− − (−x)H−1/α
−

])
Mα(dx),

where a and b are real-valued constants, not both equal to 0, and

x+ =
{

x if x ≥ 0
0 if x < 0,

x− =
{

0 if x ≥ 0
−x if x < 0.

The process Xa,b;t, t ∈ R in (7.2) is also called LFSM, although it has essentially
different finite-dimensional distributions as a and b take different values ([12,
Theorem 7.4.5, p. 347]). The instance (7.1) is recovered by setting a = b. The
case a 
= 0, b = 0 is non-anticipative (or causal) and the case a = 0, b 
= 0 is
anticipative. These processes have stationary increments; in fact, the difference
process

Ya,b;t = Xa,b;t+1 −Xa,b;t
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is known as linear fractional stable noise (LFSN). Since Ya,b;t is stationary and
SαS, one can inquire about the asymptotic behavior of its codifference if 0 <
α < 2 and its covariation when 1 < α < 2. There is burgeoning research on this
topic. Refer to [9] for related results when a and b are restricted to a 
= 0, b = 0
and a = 0, b 
= 0. In both cases this behavior is also hypergeometric, ctp with
p < 0 and, more importantly, c 
= 0, so again the rates are exact. On the other
hand, their precise asymptotic behavior for arbitrary a and b is more complicated
and currently is being examined by the authors.

In view of the preceding discussion comparing (7.2) and (7.1), one may
wonder what happens if also the absolute values in the representation (3.1) of
log-FSM are replaced by a linear combination of positive and negative parts;
that is, if one considers the process

Z(t) =
∫

R

(a [ln0(t− x)+ − ln0(−x)+] + b [ln0(t− x)− − ln0(−x)−])Mα(dx),

where ln0 x = lnx if x > 0 and = 0 otherwise. We also intend to study its
asymptotic dependence structure. Observe, however, such a process falls outside
our present framework because it is no longer H-ss ([12, p. 355]), unless a = b,
in which case it is log-FSM.
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