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Abstract: We consider Bellman systems to stochastic differential games with
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This leads to a diagonal elliptic system
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subject to boundary conditions where the Hamiltonian grows quadratically in grad u and
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1 – Introduction

In the present paper we consider diagonal elliptic systems

(1.1) −Δuν + αuν = Hν(x, u,∇u), ν = 1, 2 or 3

in a bounded domain Ω of Rn where

(1.2) Hν(x, u,∇u) = Hν0(x, u,∇u) − uνF (x, u,∇u) + fν(x) .

The functions Hν0, F may have quadratic growth in ∇u

(1.3) |Hν0(x, u, η)| + |F (x, u, η)| ≤ K|η|2 + K , K = K(‖u‖∞)

and have to satisfy the Caratheodory conditions

(1.4) Hν0(x, u, η), F (x, u, η) is measurable in x and continuous in (μ, η) .

We require

f ∈ L∞(Ω)(1.5)

F ≥ 0 ,(1.6)

and further structure conditions on Hν0, see below.
We confine ourselves to the case of Dirichlet-zero-boundary conditions. The

Laplace operator Δ in (1.1) may be replaced by an uniformly elliptic operator
n∑

i,k=1

Di(aik(x)Dk).

It is well known (see [1]) that Bellman equations to stochastic games with
infinite horizon, constant discount factor α and two players lead to diagonal
systems (1.1) with F = 0. In a recent paper ([6]) the authors studied the case
of discount control, i. e. the discount factor e−ct in the cost functional depends
on the controls v, c = c(v).

In our paper [6] we treated Hamiltonians

(1.7) Hν(x, u,∇u) = Hν0(x, u,∇uν) − uνFν(x, u,∇u) + fν(x)

with Fν ≥ 0 and Hν0, Fν having quadratic growth in ∇u. We obtained L∞

and H1-estimates for solutions u of (1.1), and corresponding approximations
in arbitrary dimension, furthermore compactness and Cα-regularity of solutions
(Cα at this moment), however only in the case of two space dimensions.

Note that in (1.7) Hν0 depends only on u and ∇uν , not on the full gradient
∇u. This decreases the applicability of the results since it does not cover cases
of cost functionals containing terms like θv1 · v2, i. e. a non compact coupling of
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the controls. Up to now the coupling of the controls which has been admitted in
the case of discount control is only via the state variables x which are controlled
by v via the stochastic differential equation, cf. the example in section 5 of this
paper. On this background it is important to generalize the structure of the
term Hν0 in (1.7), maintaining L∞, H1 and Cα estimates. This is the purpose
of the present paper. Rather than (1.7) we assume the structure condition

Hν((x, u,∇u) = Hν0(x, u,∇u) − uνF (x, u,∇u) + fν(x)(1.8)

|H10(x, u,∇u)| ≤ C|∇u1|2 + C|∇u1||∇u2| + C1(1.9)

|H20(x, u,∇u)| ≤ C|∇u|2 + C1(1.10)

with constantS C = C(‖u‖∞), C1.

Note that the function F may not depend on ν - this is the prize to be paid
for the more general structure of Hν0. Conditions (1.9), (1.10) are exactly those
used in our paper [1]. Condition (1.9) could be generalized by adding a term
δ|∇u2|2 to the right hand side of (1.9), with δ very small. This would allow the
presence of a sub-quadratic term in ∇u2 in the growth condition for H10. The
conditions (1.5), (1.6), (1.9), (1.10) imply H1-bounds if an L∞-estimate for u is
available and, for n = 2, Cα-regularity and Cα-estimates for the solution and its
approximations.

Once Cα-regularity is established it is well known how to obtain H2,p-
regularity, 1 ≤ p < ∞.

Concerning L∞-estimates – with reasonable application to stochastic games
– we assume two conditions based on maximum principle arguments.

There exist constants a1, a2, a2 �= 0

such that a1H10 + a2H20 ≥ −K1(1.11)

and

(sign a2)H20(x, u, η)|η2=0 ≤ K3 .(1.12)

(A standard case would be a1 = a2 = 1.)

With these conditions, i. e. (1.3), (1.4), (1.6), (1.9), (1.10), (1.11), (1.12) -
not using (1.7) - we obtain H2,p∩H1,2

0 -solutions of the system (1.1), cf. Theorem
1 of the next section. Concerning the bibliography of diagonal elliptic systems
with lower order term growing quadratically in ∇u, cf. [6].



4 ALAIN BENSOUSSAN – JENS FREHSE [4]

2 – The Theorem

By a weak solution to the Dirichlet problem of system (1.1) we mean a
function u ∈ L∞ ∩ H1,2

0 (Ω; Rn) such that

(2.1) (∇uν ,∇ϕν) + α(uν , ϕν) =
(
Hν(., u,∇u), ϕν

)
, ν = 1, 2

for all ϕν ∈ C∞
0 (Ω). Here (v, w) =

∫
vw dx.

Theorem 2.1. Let the Hν satisfy the Caratheodory conditions (1.4), the
growth conditions (1.3), the structure conditions (1.6), (1.8), (1.9), (1.10), and
the maximum principle type conditions (1.11), (1.12) and (1.5), and let n = 2.
Then there exists a weak solution u ∈ L∞ ∩ H1,2

0 which is contained in H2,p
loc for

all p < ∞.

Remark A cone condition or a uniform Wiener condition for the boundary
would imply u ∈ Cα up the boundary of ∂Ω.

H2,∞-boundary implies u ∈ H2,p up to the boundary.

Proof of the Theorem The proof proceeds similar as in [6] with adap-
tations to the new situation.
(i) We approximate (1.1) by replacing Hν0 and F by Hδ

ν0 = Hν0(1+δ|∇u|2)−1,
F = F (1+δ|∇u|2)−1. Then there is a solution uδ of the approximate systems
and regularity theory tells us that the solution uδ ∈ L∞ ∩ H2,p

loc for all p.
(ii) We want to establish a uniform L∞-bound for uδ. Using the maximum

principle type condition (1.11), (1.12) and f ∈ L∞, we conclude similarly
as in [6] a uniform bound (u = uδ)

α‖u1‖∞ ≤ C1 + ‖f‖∞ ,

thereafter we conclude from (1.11) via a maximum principle type argument
that

α(a1u1 + a2u2) ≥ −K1 − ‖f‖∞
hence u2 is uniformly bounded from below. A bound for u2 from above
finally follows from (1.12), again with the truncation techniques explained
in [6]. Note that the arguments are simple and classical if a setting is
arranged where u ∈ C2 and H, F, f ∈ C.

(iii) From the basic inequality of the following chapter we conclude a uniform H1-
bound for uδ in terms of ‖uδ‖L∞ which is bounded due to the consideration
in (ii).

(iv) We select a subsequence still denoted by uδ, δ → 0, such that

uδ → u weakly in H1,2 (δ → 0) .
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We need strong convergence in H1,2 in order to interchange the limit with
the nonlinear function H. (Strong H1,2

loc -convergence is sufficient.)

(v) For the strong H1,2
loc -convergence of a subsequence (uδ) we need a (locally)

uniform Cα-estimate for the uδ. Thereafter, one applies the usual mono-
tonicity argument. At the present state of the research we are restricted to
the case of two space dimensions. The steps (i)–(iv) work in n-dimensions.

(vi) Similarly as in our paper [6] we establish a weighted logarithmic estimate

(2.2)

∫

Ω

|∇u|2| ln |x − x0||θ dx ≤ Kθ

with some θ ∈ (0, 1), uniformly for x0 ∈ Ω and u = uδ. This is one of the
consequences of the basic inequality of the next chapter, see Lemma 3.2.
In fact, we can prove (2.2) with θ arbitrarily near to 1.

[ (vii)] From (2.2) we obtain a uniform smallness property

∫

BR∩Ω

|∇u|2 dx ≤ ε , 0 < R ≤ R(ε)

for all balls BR = BR(x0), x0 ∈ Ω.
From this smallness condition in the case of two dimensions one derives a

uniform Cα (or locally uniform Cα-estimate) via a global hole filling argument
as it was done in [8], [6]. We do not repeat this argument and refer to these
publications.

This proves the Theorem.

3 – Basic Inequalities

From the growth condition (1.8), (1.9), (1.10) we obtain the existence of
bounded measurable functions gi, σik : Ω → R, i = 1, 2 and σ0 : Ω → Rn, such
that

H10(x, u,∇u) = σ11|∇u1|2 + (|∇u1| + |∇u2|)σ0∇u1 + g1(3.1)

H20(x, u,∇u) = σ22|∇u2|2 + σ21|∇u1|2 + g2 .(3.2)

σik, σ0 will depend on ∇u in a terrible way.
Hint: First σ0, then σ11 are constructed, thereafter look at

H2(x, u,∇u) − (|∇u1| + |∇u2|)σ0∇u2

which is bounded by C|∇u1|2 + C|∇u2|2 + K. One can arrange that, say,

(3.3) |σ11|, |σ0|,≤ C ; |σ22|, |σ21| ≤ 2C , g ∈ L∞ .
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For the sake of simplicity we consider only the case g = 0. The techniques can
be extended easily to treat the case g �= 0.

Now, choose λ = 4C, C �= 0, and let β = β(C, ‖u‖∞) be a very large
number chosen later. (Our construction is possible only for L∞ solutions u of
approximate or limiting problems.)

In the first equation we choose the test function

ϕ1 = βτ
(
eλu1 − e−λu1

)
exp

with

exp = exp
[
γ(βeλu1 + βe−λu1 + eλu2 + e−λu2)

]

with a Lipschitz continuous non-negative function τ and a constant γ determined
later. In the second equation we choose ϕ2 = τ(eλu2 − e−λu2) exp.

At the left hand side of the equations, among others, we obtain the terms

λ

∫

Ω

βτ |∇u1|2(eλu1 + e−λu1) exp dx(3.4)

λ

∫

Ω

τ |∇u2|2(eλu2 + e−λu2) exp dx(3.5)

and on the right hand the terms

∫
βτσ11|∇u1|2(eλu1 − e−λu1) exp dx

∫
τσ22|∇u2|2(eλu2 − e−λu2) exp dx .

The latter terms are dominated by the terms (3.4), (3.5) since λ ≥ 4C. Since
ξ(eλξ−e−λξ) ≥ 0 we may drop the terms coming from u1F , u2F while estimating.

Thus, from the first equation, we remain with the inequality

3

4
λ

∫

Ω

βτ |∇u1|2(eλu1 + e−λu1) exp dx + B1 ≤

≤ E1 +

∫

Ω

βτ(f1 + g1)(e
λu1 − e−λu1) exp dx + pollution1

B1 = λ−1β
(
∇(eλu1 + e−λu1) , τ∇ exp

)

E1 = λ−1β
(
τ(|∇u1| + |∇u2|) , σ0∇(eλu1 + e−λu1) exp

)
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pollution1 = the term containing ∇τ and g1. Similarly, from the second equation,

3

4
λ

∫

Ω

τ |∇u2|2(eλu2 + e−λu2) exp dx + B2 ≤

≤ E2 + D2 +

∫

Ω

τ(f2 + g2)(e
λu2 − e−λu2) exp dx + pollution2

B2 = λ−1
(
∇(eλu2 + e−λu2) , τ∇ exp

)

E2 = λ−1
(
τ(|∇u1| + |∇u2|) , σ0∇(eλu2 + e−λu2) exp

)

D2 =

∫

Ω

τσ22|∇u1|2(eλu2 − e−λu2) exp dx ≤

≤ K0

∫

Ω

τ |∇u1|2 exp dx

K0 ≤ 2K(1 + eλ‖u2‖∞) .

We add the inequalities just obtained and obtain, rewriting Bi, Ei, i = 1, 2,

3

4
λ

∫

Ω

τ
[
β|∇u1|2(eλu1 + e−λu1) + |∇u2|2(eλu2 + e−λu2)

]
exp dx+

+ λ−1γ

∫

Ω

τ |∇(βeλu1 + βe−λu1 + eλu2 + e−λu2)|2 exp dx ≤

≤ λ−1
(
τ(|∇u1| + |∇u2|) , σ0∇(βeλu1 + βe−λu1 + eλu2 + e−λu2) exp

)
+

+ K0

∫

Ω

τ |∇u1|2 dx + K

∫

Ω

τ dx +

2∑

i=1

pollutioni .

K = K(β, ‖u‖∞). The term K
∫
Ω

τ dx arises on account of the terms containing

fi, gi, after using Youngs’s inequality.

The second integral in the left hand side of the last inequality can be used
to dominate the integral on the right hand side containing the factor

∇(βeλu1 + βe−λu1 + eλu2 + e−λu2)
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For this, we chose γ large enough. Using Young’s inequality this yields

∫

Ω

τ
[(3

4
λβ − λ−1γ−1K2

)
|∇u1|2(eλu1 + e−λu1)

]
exp dx+

+

∫

Ω

τ
[(3

4
λ − λ−1γ−1K2

)
|∇u2|2(eλu2 + e−λu2)

]
exp dx ≤

≤ K0

∫

Ω

τ |∇u1|2 dx + K

∫

Ω

τ dx +

2∑

i=1

pollutioni .(3.6)

We now chose β so large such that

1

4
λβ ≥ K0 .

The inequality (eλu1 + e−λu1) exp ≥ 1 implies that the first summand in (3.6)
can be used to dominate

K0

∫

Ω

τ |∇u1|2 dx .

With this we arrive at the estimate (let β ≥ 1)

(3.7)
1

2
λ

∫

Ω

τ(|∇u1|2 + |∇u2|2) dx ≤ K

∫

Ω

τ dx +

2∑

i=1

pollutioni .

The sum of the pollution terms reads

2∑

i=1

pollutioni = −λ−1
(
∇(βeλu1 + βe−λu1 + eλu2 + e−λu2) exp,∇τ

)
+

+ k

∫

Ω

τdx = −λ−1γ−1(∇ exp,∇τ) + k

∫

Ω

τdx .(3.8)

Furthermore, it is clear that

|
2∑

i=1

pollutioni| ≤ K1

∫

Ω

(|∇u1| + |∇u2|)|∇τ | dx + k

∫

Ω

τdx .(3.9)

K1 = K1(‖u‖∞).
We then can state



[9] Diagonal elliptic Bellman systems to stochastic differential games 9

Lemma 3.1. Let u ∈ H1,2
0 (Ω, R2)∩L∞(Ω) be a weak solution of the system

(1.1) and assume the Caratheodory and growth conditions (1.3), (1.5) and the
structure conditions (1.6), (1.8), (1.9), (1.10). Then u satisfies

(3.10)

∫

Ω

|∇u|2τ dx + 2λ−2γ−1(∇ exp,∇τ) ≤ K

∫

Ω

τ dx

with some constant K = K(‖u‖∞) where τ ≥ 0, τ Lipschitz and λ, β, γ are
chosen large enough, the choice depending on the growth constants and ‖u‖∞.

Lemma 3.1 obviously yields an H1,2-bound for u once an L∞-bound is
known.

A further important consequence is

Lemma 3.2. Under the assumption of Lemma 3.1 for each θ ∈ (0, 1) there
is a uniform constant K0 depending on ‖u‖∞ and the growth constants such that

∫

Ω

|∇u|2
∣∣ln|x − x0|

∣∣θ dx ≤ K0

uniformly for x0 ∈ Ω.

Proof. In Lemma 3.1 we chose τ =
∣∣ln(|x−x0|+δ1)

∣∣θ and pass to the limit
δ1 → +0. We apply inequality (3.10). Obviously, the term K

∫
τ dx is bounded.

We estimate

∣∣(∇ exp,∇τ)
∣∣ ≤ K

∫
|∇u

∣∣|ln|x − x0|
∣∣θ−1|x − x0|−1 dx ≤

≤ ε0

∫
|∇u|2

∣∣ln|x − x0|
∣∣θ dx + Kε0

∫
|x − x0|−2

∣∣ln|x − x0|
∣∣θ−2

dx .

The second summand is bounded by some constant K0 since 2 − θ > 1. The
term ε0

∫
|∇u|2|ln|θ dx is absorbed by the corresponding term on the left hand

side. This proves Lemma 3.2.

4 – The Case of Three Players

We present the structure conditions for the Hamiltonian H for a system
of three equations where the analogue of the basic inequality for two equations
can be derived. An analogous approach for the PDE-theory of stochastic games
without discount controls has been presented in [7] and (for the parabolic case)
in [5]. The conditions are now

(4.1) Hν(x, u,∇u) = Hν0(x, u,∇u) − uνF (x, u,∇u)
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where

(4.2) 0 ≤ F (x, u,∇u) ≤ C|∇u|2 + C ,

(4.3)
∣∣H10(x, u,∇u) − L(x, u,∇u)∇u1

∣∣ ≤ C|∇u1|2 + C|∇u1||∇u2| + K

(4.4)
∣∣H20(x, u,∇u) − L(x, u,∇u)∇u2

∣∣ ≤ C|∇u1|2 + C|∇u2|2 + K

(4.5)
∣∣H30(x, u,∇u)

∣∣ ≤ C|∇u|2 + K

with some Caratheodory function L such that

(4.6)
∣∣L(x, u,∇u)

∣∣ ≤ C|∇u| + C .

The conditions (4.3), (4.4), (4.5) have to be interpreted as follows:
(i) No condition on H30 (except quadratic growth on ∇u);
(ii) H20 may be a sum of terms which have quadratic growth in ∇u1, ∇u2, but

the term containing ∇u3 may be only of the form L(∇u)∇u2 where L has
linear growth in ∇u.

(iii) In the term H10 only quadratically growing terms in ∇u1 are admitted, the
other terms must be estimated by

|∇u1||∇u2| and |∇u3||∇u1|
(iv) the occurrence of terms of growth |∇u1||∇u3| in H10 and |∇u2||∇u3| in H20

is not arbitrary, but there is a coupling via the function L which is the same
for H10 and H20.
It seems to the authors that the more natural condition

|H10| ≤ C|∇u1|2 + C
(
|∇u2| + |∇u3|

)
|∇u1| + K

|H20| ≤ C|∇u1|2 + C|∇u2|2 + C|∇u3||∇u1| + K

|H20| ≤ C|∇u|2 + K

has not been shown yet to be sufficient for the analogue of the basic inequality
in section 3.

We proceed as in section 3 with more complicated test function ϕ1, ϕ2, ϕ3.

ϕ1 = β1τ(eλu1 − e−λu1)Exp0Exp1

ϕ2 = β2τ(eλu2 − e−λu2)Exp0Exp1

ϕ3 = τ(eλu3 − e−λu3)Exp1 ,

where

Exp0 = exp
[
γ(β1e

λu1 + β1e
−λu1 + β2e

λu2 + β2e
−λu2)

]

Exp1 = exp
[
η(γ−1Exp0 + eλu3 + e−λu3)

]
.

Here τ is a non-negative Lipschitz function. Using the above test function ϕν in
the ν-th equation we obtain at the left hand side of the equation, after summation
ν = 1, 2, 3, a sum of the type

(4.7) A12 + A3 + B12 + C12 + C3 + T
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with

A12 =

2∑

ν=1

λβν

∫

Ω

τ |∇uν |2(eλuν + e−λuν )Exp0Exp1 dx

A3 = λ

∫

Ω

τ |∇u3|2(eλu3 + e−λu3)Exp1 dx

B12 = λ−1

∫

Ω

τ∇
( 2∑

ν=1

(βνeλuν + βνe−λuν )
)
∇Exp0Exp1 dx

C12 = λ−1γ−1

∫

Ω

τ∇Exp0∇Exp1 dx

C3 = λ−1

∫

Ω

τ∇(eλu3 + e−λu3)∇Exp1 dx

T = λ−1

∫

Ω

∇τ
[
γ−1∇Exp0 + ∇(eλu3 + e−λu3)

]
Exp1 dx

= η−1λ−1

∫
∇τ∇Exp1 dx .

We have

(4.8) C12 + C3 = ηλ−1

∫

Ω

τ
∣∣∇[γ−1Exp0 + eλu3 + e−λu3 ]

∣∣2Exp1 dx .

On the right hand side we use that

uνFϕν ≤ 0

due to the sign situation; so these terms are not considered any more. For the
analysis of the remaining right hand side, the partial Hamiltonians are rewritten

H10(x, u,∇u) = σ1|∇u1|2 + (|∇u1| + |∇u2|)σ12∇u1

+ L(x, u,∇u)∇u1 + g1

H20(x, u,∇u) = σ2|∇u1|2 + σ2|∇u2|2 + (|∇u1| + |∇u2|)σ12∇u2

+ L(x, u,∇u)∇u2 + g2

H30(x, u,∇u) = σ3|∇u1|2 + σ3|∇u2|2 + σ3|∇u3|2
+ L(x, u,∇u)∇u3 + g3 .

Here σi, gi,∈ L∞(Ω), i = 1, 2, 3, σ12 ∈ L∞(Ω; Rn), the L∞-bounds depending
on the growth constants.
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To obtain this representation, we derive from (4.3)

H10 − L∇u1 = σ1|∇u1|2 + (|∇u1| + |∇u2|)σ12∇u1 + g1 .

Thereafter we rewrite

H20 − L∇u2 = σ2|∇u1|2 + σ2|∇u2|2 + (|∇u1| + |∇u2|)σ12∇u2 + g2

H30 − L∇u3 = σ3|∇u|2 + g3 .

We define L12 = (|∇u1| + |∇u2|)σ12 and have

H10 = σ1|∇u1|2 + L12∇u1 + L∇u1 + g1

H20 = σ2

(
|∇u1|2 + |∇u2|2

)
+ L12∇u2 + L∇u2 + g2

H30 = σ3|∇u|2 + L∇u3 + g3 .

We have ‖gi‖∞ ≤ K, ‖σi‖∞, ‖σik‖∞ ≤ C ′ = C ′(C), i, k = 1, 2.
We analyze the remaining right hand side

3∑

ν=1

(Hν0, ϕν)

and try to dominate the summands by terms on the left hand side (4.7). Firstly,
choosing λ ≥ 4C ′, the terms (σν |∇uν |2, ϕν) are dominated by a fraction (say 1

4 )
of A12 and A3. Then we choose β2 so large such that a fraction of β2|∇u2|2(eλu2+
e−λu2) dominates the term σ3|∇u2|2(eλu3 − e−λu3). This is possible since u ∈
L∞. Thereafter, we choose β1 so large such that a fraction of β1|∇u1|2(eλu1 +
e−λu1) dominates σ2|∇u1|2(eλu2 − e−λu2) and σ3|∇u1|2(eλu3 − e−λu2). Thus the
inequality is simplified to

1

4
A12 +

3

4
A3 + B12 + C12 + C3 + T ≤

2∑

ν=1

(L12∇uν , ϕν) +

3∑

μ=1

(L∇uμ, ϕμ)+

+ pollution coming from f and gi .

Now the term B12 is used to dominate the term

2∑

ν=1

(L12∇uν , ϕν) = λ−1
(
L12∇

2∑

ν=1

(
βνe∇uν + βνe−∇uν

)
, τExp0Exp1

)

similarly as in the case of two players by choosing γ large.
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We are left with the term

3∑

μ=1

(L∇uμ, ϕμ) = λ−1
(
L∇(eλu3+

+ e−λu3) + L∇[

2∑

ν=1

(βνeλuν + βνe−λuν )]Exp0, τExp1

)
=

= λ−1(L∇(eλu3 + e−λu3 + γ−1Exp0), Exp1τ)

The right hand side of the last equation can be estimated by

K ′λ−1η−1/2

∫

Ω

|∇u|2τ dx + η1/2

∫

Ω

|∇(eλu3 + e−λu3 + γ−1Exp0)|2τ dx .

(4.9)

Choosing η = η(‖u‖∞) large the term C12 +C3 in (4.8) and fractions of A12, A3

dominate (4.8).

Thus we have proved the basic inequality for three players.

Lemma 4.1. Let u ∈ H1,2
0 (Ω, R3) ∩ L∞(Ω) be weak solution of the system

(1.1) with ν = 1, 2, 3 and assume the Caratheodory growth condition (1.3), (1.5)
and the structure condition (1.6), (4.1) up to (4.6). Then u satisfies

∫

Ω

|∇u|2τ dx + λ−1η−1(∇Exp1,∇τ) ≤ K

∫

Ω

τ dx

with some constant K = K(‖u‖∞). Here τ ≥ 0, τ Lipschitz and λ, β1, β2, γ, η are
chosen large enough, the choice depending on the growth constants and ‖u‖∞.

The simplest condition for obtaining an L∞-bound for the solution u are
the structure conditions

|Hν0(x, u,∇u)| ≤ K|∇u||∇uν | + K

however for functionals with non-compact control coupling one has to find ana-
logues of our approach in [2], BF02a for two players.
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5 – Simple Hamiltonians with Non-Compact Control Coupling

There is a standard formalism to construct the Hamiltonians from the La-
grange functions of a stochastic game (cf. [6], also for references).

To each player, there is the associated Lagrange function L,

Li(x, λi, pi, v) = li(x, v) + pig(x, v) − λici(x, v) .

The function g comes from the stochastic differential equation

dy = g(y, v) + dw ,

y = state variables, v control variables and the li come from the cost functional
of the i-th player, say

li(x, v) = ϕi(v) + fi(x) .

The function ci is the discount factor. The deterministic analog of the value
function of the i-th player is

τ∫

0

li
(
y(t), v(t)

)
exp

(
−

t∫

o

ci(y(s), v(s)) ds
)
dt .

λi and pi are parameters. The term exp
(
−

t∫
o

ci(y(s), v(s))
)

is the discount factor.

For illustration we discuss the following simple examples for two players

li(x, v) =
1

2
v2

i + θiv1v2 + fi(x) , i = 1, 2

ci(y, v) =
1

2
v2
1 +

1

2
v2
2

g(y, v) = b(v1 + v2)

with a fixed vector b = Rn. The controls vi are scalar valued and θi are param-
eters (non-compact control coupling).

We want to calculate a Nash point of the Li. For this we have to set
∂

∂vi
Li = 0 and calculate the solution of this system:

vi + θivk + pib − λivi = 0 , i �= k .

This yields a solution v∗1 , v∗2

v∗1 =
[
(1 − λ1)(1 − λ2) − θ1θ2

]−1 {−p1 − b(1 − λ2) + θ1p2 · b}
v∗2 =

[
(1 − λ1)(1 − λ2) − θ1θ2

]−1 {−p2 − b(1 − λ1) + θ2p1 · b}
v∗i (u,∇u) = v∗i |λi=ui,pi=∇ui .
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For the Hamiltonian Hν we obtain

Hi(x, u,∇u) = Li(x, u,∇ui, v
∗) =

=
1

2

∣∣v∗i (u,∇u)
∣∣2 + θiv

∗
1(u,∇u) · v∗2(u,∇u)+

+ ∇ui · b
(
v∗1(u,∇u) + v∗2(u,∇u)

)
− ui

[1

2
|v∗(u,∇u)|2

]
+ fi(x) .

From the above formula, we see that Hi has the form

Hi(x, u,∇u) = Ĥi0(x, u,∇u) + L(x, u,∇u)∇ui−
− uiF (x, u,∇u) + fi(x)

with F = 1
2 |v∗(u,∇u)|2 ≥ 0, quadratic in ∇u, L(x, u,∇u) linear growth in ∇u

and a term

Ĥi0(x, u,∇u) =
1

2
|v∗i (x, u,∇u)|2 + θiv

∗
1(x, u,∇u)v∗2(x, u,∇u) .

For general θ1, θ2, it is not clear that the regularity theorem of this paper covers
all cases.

Our theory covers the case θ1 = 0, θ2 arbitrary since then

|v∗1 |2 ≤ K|∇u1|2

One has to arrange a setting so that

[
(1 − u1)(1 − u2) − θ1θ2

]−1

exists, as in our paper [6], and the structure condition (1.9), (1.10) is satisfied.
In [2], [3] we have treated the case θ1 = θ2, in absence of discount control. It
is an interesting task to generalize the corresponding theorem [2], [3] to cases
presented here.
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