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Primitive Semifields and Fractional Planes of order q5

MINERVA CORDERO – VIKRAM JHA

Dedicated to Professor Marialuisa de Resmini

Abstract: The dimension of an affine plane π of order n, relative to a subplane
π0 of order m, is specified by dimπ0 π = logm n. The exotic embeddings of a plane in
another plane of the “wrong” characteristic, pioneered by H. Neumann, and system-
atically considered by de Resmini and her associates, yield planes with transcendental
dimensions. On the other hand, infinitely many rational but non-integral dimensional,
or fractional, planes were discovered relatively recently and all known examples of such
planes are among semifield planes. Such semifield planes must have order ≥ p5, p
prime. We show:

Theorem A: Let π be a semifield plane of order p5, that contains no fractional subplanes.
Then for sufficiently large p, every semifield coordinatizing π is right primitive and left
primitive.

Here, a semifield (D, +, ◦) is considered right primitive if every non-zero element
in D is the right principal power of some ωR ∈ D; left primitivity is defined analo-
gously. G. P. Wene Conjectured that all fractional semifields are right primitive. If the
fractional hypothesis on π is dropped, counterexamples to the Conjecture are known to
arise in semifield planes of order 25 and 26, as shown by I. F. Rúa and I. R. Hentzel.
These are the only known orders for which the Wene Conjecture fails. We provide
further support for the Wene Conjecture.

Theorem B: All semifields coordinatizing semifield flock spreads are right primitive.

We also prove the 3-dimensional analogue of this result.

Theorem C: Let π be a semifield spread in PG(5, q) such that π ⊃ R, a regulus of
degree q + 1 such that the shears axis Y ∈ R. Then for all sufficiently large q, every
semifield coordinatizing π is right primitive.

This result extends a Theorem of Rúa who showed that semifields D of order q3 that
are three-dimensional over the center Z, hence, by Menichetti’s Theorem, are Albert
semifields with center GF (q), are right primitive and left primitive. The Theorem above
is not restricted to such Albert systems.

Key Words and Phrases: Semifields – Spreads – Flocks – Loops – Translation planes
A.M.S. Classification: 51A40, 17A35.
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1 – Introduction

In this paper, we consider two properties of a finite affine plane π that might
be considered as reflecting the extent to which π differs from, or is similar to,
a Desarguesian plane of the same order. One of these properties, related to the
“dimension” that π may have relative to its subplanes, identifies planes that
have subplanes of unexpected orders. The other property, which is algebraic in
nature, is concerned with the loop structure of the “best” planar ternary rings,
that coordinatize any considered π. The basic question here is whether planar
ternary rings that are “closest” to fields, viz., quasifields and semifields, have
multiplicative loops that are “cyclic”, hence share the “primitivity” property of
finite fields.

We begin with a brief survey of the notion of dimension, and how it derives
from Professor de Resmini’s pioneering investigations concerning exotic embed-
dings of one plane in another.

– Fractional-Dimensional Planes

Bearing in mind that the dimension of a finite field F = GF (qn), over a
subfield K = GF (q), is the integer log|K| |F |, one may more generally define
the dimension of an arbitrary finite plane with respect to any subplane. For our
convenience we state the Definition for affine rather than projective planes.

Definition 1.1. Let Π be an affine plane of order n, with an affine subplane
Ψ of order m. Then the dimension of Π relative to Ψ is specified by dimΨ Π =
logm n.

In particular, Π has transcendental dimension, fractional dimension, or in-
teger dimension, relative to Ψ, according to whether logm n is transcendental,
rational (but not an integer), or an integer.

Similarly if D is a planar ternary ring with a subplanar ternary ring E then
dimE D = log|E| |D|; D is transcendental, fractional or integer dimensional,
relative to E, according to whether dimE D is transcendental, rational but not
an integer, or an integer.

In the 1950’s, H. Neumann [19], showed that any projective Hall plane Π of
odd order contains Fano subplanes. It follows that infinitely many affine planes
are transcendental dimensional over suitable subaffine planes.

Proposition 1.2. To each square integer p2n, p an odd prime, corresponds
an affine Hall plane Π that contains an affine Fano subplane Φ. Hence dimΦ Π =
θ, a transcendental number.
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Proof. Let π be a projective Hall plane of order p2n and φ one of its Fano
subplanes, whose existence is guaranteed by Neumann, ibid. Choose an affine
Hall plane Π = π� such that the infinite line � is a secant to a Fano plane φ,
so Φ = φ� is a subaffine plane of Π. Hence dimΦ Π = θ where θ satisfies the
condition 2θ = p2n. But, by the Gelfond-Schneider Theorem, Schneider [22,23],
if 1 < M < N are integers, then the equation Mx = N is satisfied by x > 0 only
if x is rational or transcendental. The result follows since (2, p) = 1.

Following Neumann, Professor de Resmini pioneered what might be con-
sidered the study of planes admitting transcendental dimensions. She and her
coworkers discovered spectacular examples of such phenomena. For instance,
they showed that the Hughes plane of order 25, and also its derivative, the
Ostrom-Rosati plane, admit subplanes of order 2 and 3, de Resmini and Puc-
cio,[20], de Resmini and Leone, [17].

Further examples of transcendental affine planes have been obtained in this
century by generalizing Neumann’s contruction, Proposition 1.2. Thus, by care-
fully deriving Hall planes, so as not to lose at least one of its Fano subplanes,
one obtains a range of translation planes, corresponding to subregular spreads,
that contain Fano subplanes, as demonstrated by Fisher and Johnson, [7]. There
are also other translation planes that are transcendental dimensional relative to
suitable subplanes, Johnson [13].

Thus, transcendental dimensions signal an exotic embedding of one type
of plane in a quite different type plane, one with the “wrong” characteristic.
By way of contrast, if we consider any affine translation plane Π = π�∞ (with
�∞ the translation axis of π) of order pn, then its dimension relative to any
affine subplane Π0, is always a rational number n/m, where pm is the order
of Π0. Recent work, suggested by Theorems such as those indicated above,
has concentrated on the contrasting question: are there planes that are neither
transcendental-dimensional nor (as in the overwhelming majority of the known
cases) integral-dimensional, that is: Is it possible for a plane to be fractional
dimensional?
Until a very few years ago, only one fractional dimensional plane was known(1):
the Knuth semifield plane of order 32. In the last five years or so, Wene discov-
ered other sporadic examples of fractional dimensional semifield planes, again
of characteristic 2. Then Johnson and the second author found infinitely many
fractional-dimensional semifields, [11], again of even order. In recent work, the
authors of the present paper have shown that infinitely many semifield planes of
characteristic 3 are fractional dimensional, Cordero-Jha, [4].

In all these cases, the planes shown to be fractional-dimensional are among
various classes of known planes (due to Knuth, Kantor, Coulter-Matthews, Ding-

(1)And possibly only to one person — R. J. Walker, who had classified the semifields of
order 32, almost 50 years ago, in his independent verification of the Knuth classification
of the semifield planes of order 32, [24].
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Yuan, cf. the survey by Kantor, [15]). Thus, in the study of fractional dimensions,
as for transcendental dimensions, the aim is not so much to find new planes, but
to find subplanes Π0 of possibly “known” planes Π, that have fractional (or
transcendental) dimension, dimΠ0 Π.

Note that all known fractional-dimensional planes Π are semifield planes,
and they are only known to be fractional dimensional relative to some sub-
semifield plane Π0 of order p2. (Thus Π0 is Desarguesian and its projective
closure includes the shears point of Π.) In particular, by the Baer condition, Π
has order ≥ p5.

Actually, this minimality condition concerning the existence of fractional
sub-semifield planes Π0, of a semifield plane Π, may be formulated more gen-
erally for semifield planes Π of order qn that are n-dimensional over a central
subplane(2), coordinatized by GF (q). Thus, by the Baer condition:

Remark 1.3. Let Π be a semifield plane of order qn with center GF (q)
such that Π has fractional dimension relative to a subsemifield plane Π0 that
contains a central subplane of Π. Then the integer n ≥ 5, and, when n = 5, the
fractional subplane Π0 has order q2 (and hence must be Desarguesian).

Corollary 1.4. A semifield plane of order pn, p prime, is fractional
dimensional relative to a subsemifield plane Π0 only if n ≥ 5 and, when n = 5,
Π0 has order p2.

Note. In all cases known to us, any fractional dimensional translation plane
of order p5 satisfies all the hypotheses of Corollary 1.4 above.

One of our main goals is to show that, in a suitable asymptotic sense, semi-
field planes Π of order p5, or more generally in the ‘minimal’ semifield planes
of order q5 considered in Remark 1.3, the absence of fractional subplanes guar-
antees that all the semifields D that coordinatize Π are “primitive”, in a sense
analogous to finite fields, see Corollary A, p.6, (also cf. Theorem 5.6 and Corol-
lary 5.7). Before stating our result explicitly, we define primitivity and a related
Conjecture of Wene, to which our result may be seen as an explicit contribution.

– Primitive Semifields and the Wene Conjecture

An algebraic, measure of how “close” a plane is to being Desarguesian is
to examine the structure of the “best” planar ternary ring that coordinatizes
the plane. We consider this approach when applied to the multiplicative loops
of semifields (finite non-associative fields). Following Wene and others, [25, 26,

(2)The center of a semifield is a plane invariant, thus all semifields coordinatizing a
plane have centers isomorphic to the same GF (q).
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21, 9], we consider whether finite semifields have “cyclic” multiplicative loops,
in a sense analogous to fields but taking into account the non-associative nature
of their multiplicative loops.

Definition 1.5. Let D = (D,+, ◦) be a semifield. Then D is a right
primitive semifield if the multiplicative loop (D∗, ◦) contains an element ω ∈ D
such that every d ∈ D∗ is a right principal power d = ωk), for some k ≥ 1, where
ωi) is defined recursively by

ω1) = ω, ωi+1) = ωi) ◦ ω.

Similarly, D is left primitive if every element of (D∗, ◦) is a left principal power
μ(k, k ≥ 1, where the left principal power μ(i, i ≥ 1 are defined analogously:

μ(1 = μ, μ(i+1 = μ ◦ μ(i, i ≥ 1.

The semifield D is primitive if it is both left primitive and right primitive.

Note. One can define primitive and right/left primitivity in exactly the
same way for arbitrary finite planar ternary rings. The authors have shown,
[3], that there are infinitely many finite quasifields (coordinatizing translation
planes) that are primitive, and also infinitely many finite quasifields that are not
primitive.

On the basis of a specific class of semifields and some computer-based in-
vestigations of small cases, Wene [25, 26] suggested:

Conjecture 1.6. (Wene, [26]) Every finite semifield is right primitive.

Rúa, [21], has shown that Conjecture 1.6 is false for the Knuth commutative
semifield of order 32: this is neither left primitive nor right primitive. Moreover,
Rúa also showed (ibid.) that some of the semifields of order n = 25 are left prim-
itive but not right primitive and vice-versa (by duality). Hentzel and Rúa, [9],
have established that the Wene Conjecture 1.6 does not hold for some semifields
of order n = 26, and again there are semifields of order 64 that are left primitive
but not right primitive and vice versa. But there are no known violations of the
Wene conjecture for semifields of order n �= 25, 26.

Since semifields of order q2 with center ⊇ GF (q) are fields, the first case
of interest are semifields of order q3 with center GF (q). All such semifields
are known: they are either fields or the twisted fields of Albert, as established
by a celebrated Theorem of Menichetti [18]. Rúa, [21], has shown the Wene
conjecture holds for these semifields. The present author’s have given a differ-
ent proof of Rúa’s Theorem, Cordero-Jha, [3], without assuming Menichetti’s
classification, [18].

In this paper, one of our main concerns is whether 5-dimensional semifields,
with center GF (q), are primitive. Note that Menichetti’s Theorem does not ap-
ply here since the Coulter-Matthews and the Ding-Yuan commutative semifields,
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[15], have orders 3n, n ≥ 5 odd; also, the failure of the Wene conjecture for the
case 25 needs to be taken into account.

The Knuth commutative semifield D of order 25, which violates the Wene
Conjecture 1.6, coordinatizes a fractional dimensional semifield plane. On the
other hand, the Coulter-Matthews plane of order 35 is fractional dimensional but
does not violate the Wene conjecture.

Thus, part of the motivation for this paper was to examine how these facts
concerning semifields of order p5, which seem to be pulling in opposite directions,
may be reconciled. Thus, we established the following asymptotic result.

Corollary A. (cf. Corollary 5.7) For all sufficiently large primes p, the
semifields coordinatizing a semifield plane Π of order p5 are all primitive (right
and left) if Π does not contain any proper subplane Π0 of order > p.

Note.

(1) More generally, cf. Theorem 5.6, suppose q = pr, with r fixed. Then there
is an integer Nr such that for all p > Nr any semifield plane Π
of order q5 with center GF (q) is coordinatized only by semifields
that are (left and right) primitive, whenever Π has no fractional
subplanes.

(2) In the p5-case the non-existence of fractional subplanes is equivalent to the
assertion that Π has no proper subplanes.

(3) It is conceivable that the theorem holds for all primes p, rather than for
“sufficiently large” p. (Although the commutative semifield plane of order
25 admits coordinatization by a non-primitive semifield, the corresponding
Knuth plane admits fractional subplanes, so the hypothesis of the above
corollary does not apply.)

The key to the proofs of our results is the structure of the slope maps of regulus
quasifields of low-dimension.

– Primitivity of Low-Dimensional Regulus Semifields

So far we have considered semifields D that have dimension n over the center
K = GF (q). We now turn to the more general case when K is the subfield of the
left nucleus N�(D), or kern, that commutes multiplicatively with D. We refer
to such subfields as regulus subfields of D. Every semifield is a regulus semifield
over its central fields, but often has other regulus subfields as well.

Definition 1.7. Let D be a semifield with a subfield

K = {k ∈ N� : k ◦ d = d ◦ k∀k ∈ N�}.
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If dimK D = n, then D is a regulus semifield of dimension n relative to the
regulus subfield K.

Note.

(1) Every semifield D of order pn is a regulus semifield over every subfield in
the center Z(D), hence over GF (p).

(2) More generally, a quasifield Q is a regulus quasifield if its kern contains a
subfield K that commutes with K multiplicatively. We determine the slope
structure of Q for the cases dimK Q ≤ 5, k �= 4, cf. Theorem 3.8, and use
the information to establish the right primitivity of semifields of dimension
n ≤ 5, n �= 4.

(3) The n-dimensional regulus semifields D, of order qn over a regulus field
GF (q), are precisely the semifields that coordinatize a semifield spread S <
PG(2n − 1, q) such that there is a regulus R ⊂ S of degree q + 1 with the
shears axis Y ∈ R.

(4) The 2-dimensional regulus semifields are precisely the semifields that co-
ordinatize the flock semifields in PG(3, q), e.g., Gevaert and Johnson, [8].
Infinitely many 2-dimensional regulus semifields exist (including the Kantor-
Knuth semifield flocks). Only the semifield flocks of even order q have been
classified: the corresponding 2-dimensional regulus semifields are fields, i.e.,
the flocks are linear, Johnson [14]. Thus for odd q only, the 2-dimensional
regulus semifields form a strictly larger class than the 2-dimensional cen-
tral semifields (which are merely fields). Moreover, each non-linear flocks is
coordinatizable by several non-isomorphic regulus semifields.

(5) Although the semifields D of dimension 3 over the center GF (q) have been
classified by Menichetti, the 3-dimensional regulus semifield planes have not
been classified.

By considering 2-dimensional regulus semifields and using note (4), we will
show:

Theorem. (cf. Corollary 7.3) All the semifields coordinatizing conical
flocks are right primitive.

Note. The duals of non-linear flock semifields are not flock semifields,
unless the semifields are fields. Hence, we may only assert that the duals are left
primitive: we do not know if they are right primitive.

For dimension 3 we prove an extension of Rúa’s Theorem: thus we prove
Wene’s Conjecture, Conjecture 1.6, for regulus semifields that are 3-dimensional
over a regulus field GF (q), provided q is large enough.

Theorem. (cf. Theorem 6.2) Let π be a semifield spread in PG(5, q) such
that π ⊃ R, a regulus of degree q + 1 such that the shears axis Y ∈ R. Then for
all sufficiently large q, every semifield coordinatizing π is right primitive.
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The above are proved by determining the slope maps of regulus quasifields
for dimension ≤ 5 (but not dimension 4 — where different arguments seem
necessary), cf. paragraph 3. These results are implicit in Theorem 3.8, and the
argument used in proving it.

2 – Preliminaries

We assume the reader to be familiar with affine translation planes and their
coordinatization by quasifields, particularly semifields, [10], and their connec-
tions with spread sets and spreads, e.g., [12, pp. 36–48], or [1]. To fix our
notation, particularly in regard to the non-standard notion of a “regulus” quasi-
field/semifield, we recall some terminology. Quasifields obey the right distribu-
tive law: (a + b) ◦ c = a ◦ c + b ◦ c.

Definition 2.1 (Slope Maps and Regulus Quasifields) Let Q is a
finite quasifield. Then its kern is the field

{k ∈ Q : ∀a, b ∈ Q : k ◦ (a + b) = k ◦ a + k ◦ b, k ◦ (a ◦ b) = (k ◦ a) ◦ b},

and any (sub)field K ∼= GF (q) of Q is a kern (sub)field of Q; now |Q| = qn for
some integer n ≥ 1, since Q is a K vector space.

The slope [map] of any non-zero m ∈ Q is Tm ∈ GL(Q, K) specified by
Tm : x �→ x ◦ m, x ∈ Q. Thus, Tm may (when convenient) be identified with
a non-singular K-matrix of order n × n, which depends on the choice of the
K-basis for Q. Also the slope set for Q (regarding T0 as is the zero map) is
τQ = {Tm : m ∈ Q}.

If the slopes of the elements k ∈ K are the scalar elements k15, then Q is
a regulus quasifield, and K a regulus subfield. (Equivalently, a kern field K is a
regulus field if each k ∈ K commute multiplicatively with every d ∈ Q.)

Note. The regulus quasifields, as described above, are the quasifield that
coordinatize the spreads S in PG(2n − 1, q) that contain a regulus R of degree
q + 1: regulus quasifields arise when the coordinatizing triad of components
defining the quasifield are selected from among the components in any regulus
R ⊂ S.

The above attributes of quasifields and semifields are also assigned to the
spread sets that they define.

Definition 2.2. Let V be a vector space of dimension n over a field K ∼=
GF (q), q = pr. Then a set of linear maps

τ ⊂ GL(V, K) ∪ {0n} := GL(n, K),

is a spread set on the K-space V if |τ | = |V | = qn, τ ⊃ {0n,1n}, and

A, B ∈ τ =⇒ A − B ∈ GL(n, K).
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(1) τ is a regulus spread-set if τ ⊃ K, where K = k1n : k ∈ K.
(2) τ is additive if it is closed under addition (equivalently, τ is an additive

group of order |V |, with all non-zero elements non-singular and including
1V ).

(3) An additive spread set τ is linear if τ is a K-subspace of the ring
Hom(V, +, K).

The following properties relating quasifields/semifields to their spread sets are
obvious.

Remark 2.3.

(1) If Q is a quasifield then its slope set τQ is a spread set.
(2) If Q is a regulus quasifield, relative to a field K, then τQ is a regulus spread

set, i.e., τQ contains the scalar subfield K ∼= K.
(3) If (D,+, ◦) is a semifield containing a field K ⊂ N�(D) then

(a) τD ⊂ GL(D, K) ∪ {0} is an additive spread set;
(b) If D is a regulus semifield over K then the additive spread set τD is a

K-regulus spread set;
(c) If D has K in its center (so K is a subfield of the nucleus N(D) =

N�(D) ∩ Nm(D) ∩ Nr(D) such that D centralizes K multiplicatively)
then τD is a K-linear vector space.

Note that an obvious “converse” of each part of Remark 2.3 is also valid, but
we shall only use the fact that every additive spread set is the slope set of a
semifield, cf. Remark 4.1.

3 – Slope Map Structure for 5-Dimensional Regulus Quasifields

The slope maps of the non-zero elements of an n-dimensional quasifield Q,
over a kern field K = GF (pr), are elements of GL(n, q). Constraints on the
permitted structure of the non-zero slope maps A ∈ τQ obviously influences the
structure of Q, hence also on the geometry of the associated translation plane.
We consider the case when Q is a regulus quasifield over K, so

τQ ⊂ GL(n, K), τQ ⊃ K = {k1n : k ∈ K}.

When n = 3, we showed, in, [3], that each non-scalar maps A ∈ τQ is irreducible,
thus yielding an alternative proof to Rúa Theorem, establishing the primitivity
of all semifields of order q3 with center GF (q). The key step was to show
(|A|, p) = 1.

Here we consider the analogous problem for regulus quasifields Q of order
q5. It turns out, that now there are more possibilities than in the q3-case: A still
has order relatively prime to p, but A might not be irreducible. Our goal here is
to describe the slope structure for 5-dimensional regulus quasifields, Definition
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2.1; in a later section we will specialize to the case when Q is a semifield to
obtain a criterion for Q to be a fractional semifield.

We begin with some Lemmas without imposing the dimensional restriction.
Thus, we consider a quasifield Q of order qn, characteristic p, that contains a
regulus subfield K = GF (q).

Lemma 3.1. Let A be a slope map of a regulus quasifield Q over GF (q),
Definition 2.1. Then A cannot leave invariant any one-space over GF (q), unless
A is one of the scalar slopes of Q.

Proof. Otherwise, A has a GF (q)-eigenvector, and hence a corresponding
eigenvalue λ in GF (q). So there is a matrix X such that XAX−1 is a matrix
with first column λe1, and now X(A−λIn)X−1 is singular, hence so is A−λIn,
which means A and λIn cannot both be slope maps in the same spread set unless
A = λIn.

We use 〈A〉 to denote the multiplicative group generated by any non-singular
matrix A.

Corollary 3.2. Let Q be a regulus quasifield over a subfield K. Let A
be the slope map of any element of Q \ K. Then, regarding Q as a vector space
over K:
(1) A does not fix any one-space or hyperplane of Q.
(2) No subgroup S of 〈A〉 fixes a unique one-space or a unique hyperplane of Q.

Proof. Consider the first part. Lemma 3.1 states A cannot fix a one-
dimensional K-space. Hence A cannot fix a hyperplane, since the number of fixed
one-spaces is the number of fixed hyperplanes, e.g., [5, 12, p. 81]Dembowski. The
second part follows since 〈A〉 is abelian.

Unless the contrary is indicated, A denotes the slope of some element of the
quasifield Q that does not lie in the scalar field InK = GF (q). So the cyclic
group 〈A〉 = P ⊕ R, where P denotes the (possibly trivial) p-Sylow subgroup
of 〈A〉 and R is its Hall p′-subgroup. Much of our effort will be devoted to
showing that P is often the trivial group. As a default assume P is non-trivial,
so Fix(P ) := FP is a non-trivial K-subspace of Q. So R, which centralizes P ,
leaves FP invariant. We count the set of Maschke R-complements of FP .

Lemma 3.3. [# P -complements] Suppose P is non-trivial, with fixed space
FP . Then for some integer k ≥ 1, R has kp distinct Maschke-complements C of
P , on the K-space Q. Also, R is completely reducible on FP



[11] Primitive Semifields and Fractional Planes of order q5 11

Proof. Note that P can’t leave invariant any R-complement C of FP , since
P would then fix non-zero points on C. Hence each of the Maschke complements
of FP , for the p′-group R, must lie in a non-trivial P -orbit. The final sentence
holds because R is a p′-group that leaves FP invariant.

Corollary 3.4. 1) R cannot fix a 1-space in FP ; 2) FP cannot be a
1-space.

Proof. 1) Suppose R fixes a 1-space of FP . Then so does A since R and
P must both fix this space and hence so must the group they generate, viz.,
A ∈ R ⊕ P = 〈A〉. But now the eigenvalue argument, Lemma 3.1, yields a
contradiction so 1) follows. Part 2) is a special case since A, hence also R, leaves
FP invariant.

Up to now we have not imposed any restrictions on the dimension on the
dimension of regulus quasifield Q. For the remainder of the section we restrict
ourselves to the 5-dimensional case: Thus, Q is a quasifield of order q5 with a
regulus subfield K such that dimKQ = 5, so |Q| = q5. So by Corollary 3.2
above, we may assume FP has rank three or two: we consider each case in turn.

– Case: FP has rank 3.

We require a Corollary to:

Lemma 3.5. Suppose (m, n) = 1 and that q is any prime power. Then an
irreducible abelian group G < GL(n, q) cannot be isomorphic to an irreducible
subgroup of GL(m, q).

Proof. Since G is abelian, by Schur’s Lemma G is in a field GF (qn), but
not in any subfield of it. Hence |G| divides qn − 1 but not q − 1. However,

(qm − 1, qn − 1) = q(m,n) − 1 = q − 1,

shows that |G| does not divide qm − 1, the order of the multiplicative subgroup
of GF (qm). However, if G were an abelian irreducible subgroup of GL(m, q)
then, by Schur again, G would also be an irreducible subgroup of GF (qm),
contradicting the fact that |G| does not divide qm − 1.

Corollary 3.6. For any prime power q, an irreducible abelian subgroup
G of GL(3, q) cannot be isomorphic to any subgroup of GL(2, q).
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Proof. By the Lemma above, we need merely exclude the possibility that
G acts reducibly on the vector space V2(q). By Maschke, G diagonalizes hence
|G| divides (q − 1)2, contradicting the irreducibility of G on V3(q).

If R fixes a one-space on Fix(P ) then so does A, contradicting Corollary
3.2. If R fixes a 2-space T in Fix(P ) then it still fixes a one-space, the Maschke
complement of T in Fix(P ), so we have the same contradiction. Hence R acts
irreducibly on Fix(P ). Now any R-complement S of FP , has rank two, and
since, by Corollary 3.6, R cannot be faithful on a two-space, being irreducible
on a 3-space, a non-trivial subgroup R1 of R fixes S elementwise. Hence S1 =
Fix(R1) ≥ S = Fix(R) is P -invariant. There are the following cases to consider:
i) S1 = S implies P leaves S invariant and hence fixes non-zero vectors in S
contradicting the fact that S is a complement to FP ; ii) S1 > S so S1 ∩ FP is a
non-trivial proper subspace of FP since S ⊕FP = Q, and now we contradict the
fact that S acts irreducibly on FP . So the case FP has rank 3 can never occur.

– Case: FP has rank 2.

By Corollary 3.2 again, R has at least p distinct Maschke complements of
the subspace FP . Since these have rank 3 any two of them, say X and Y , must
intersect. Now if H := X ∩ Y has rank 2 then X + Y has rank 4, and either
X + Y intersects FP in a one-space, contrary to the eigenvalue argument, or
FP is a rank 2 subspace of the 4-space X + Y and now FP is too large to be
in a complement of X in X + Y : recall this is required because FP has X as a
complement.

Thus, H must have rank one, and FP < X + Y , since X + Y has rank
5 because H = X ∩ Y has rank one. Since R fixes H, a rank one-space, and
R acts irreducibly on FP , by the eigenvalue argument, we conclude H ∩ FP

is trivial. But since now R is irreducible on the rank 2 vector space FP , of
order q2, and moreover the rank one vector space H of order q is R invariant, it
follows that a non-trivial subgroup R1 of R acts trivially on H, since no scalar
group, hence of order dividing q − 1, can be irreducibly on FP since this is 2-
dimensional over K = GF (q). Note that since the p-group P , centralizes R1 < R,
P must leave F1 = FixR1 invariant, and hence fix non-zero points on it. Hence
F1 ∩ FP �= 0. If F1 ∩ FP is a one-space then R fixes this one-space, a possibility
already excluded (because A, generated by R and P , would be forced to fix this
one-space, contrary to Corollary 3.2). Hence F1 ≥ FP but then F1 > FP , since
F1 > H and H ∩ FP = 0.

Hence F1 must have rank 3: otherwise R1 fixes a hyperplane elementwise
which is A-invariant, since R1 is centralized by A, contrary to Corollary 3.2(1).
Now if R leaves invariant at least two rank-one subspaces of F1 that complement
FP , say Ci, i = 1, 2, then C1 ⊕ C2 meets FP in a rank-one subspace fixed by R,
contradicting the fact that R is irreducible on the 2-space FP . Thus R leaves
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invariant the unique complement C of FP in F1. Since A centralizes R1, it leaves
F1 invariant, and hence the unique complement C of F1, contrary to Corollary
3.2. So FP is not a rank 2 space.

Hence, since we have ruled out all putative dimensions for FP , we have
shown the order of A is not divisible by p:

Proposition 3.7. A is a p′-element in all cases, i.e. 〈A〉 = R.

So either (1) A is irreducible, or (2) A has a 3 + 2-split, Corollary 3.2. So
we have

Theorem 3.8. Let D be a quasifield of order q5, with regulus field K =
GF (q). Then the order of any slope map A := Td, for d ∈ D \K, is not divisible
by p. Hence any A is either scalar, irreducible or has a decomposition into
irreducible subspaces V3 ⊕ V2, where Vd denotes a K-subspace of D with rank d.

Corollary 3.9. The slope-map A = Td not reducible if and only if
|A|q5−1 = 1.

Proof. If A is irreducible or scalar then A lies in GF (q2), hence in both
cases |A|q5−1 = 1. If A is reducible but non-scalar then by Theorem 3.8 A|V3 is
irreducible hence by Schur’s Lemma |A| is divisible by a p-primitive divisor v of
q3 − 1. But since (q3 − 1, q5 − 1) = q − 1, it follows that |A|q5−1 �= 1.

4 – Primitive Spread Sets

Any spread set is the slope set of some quasifield. The case when the spread
set is additive is of special relevance:

Remark 4.1. Let S ⊂ GL(V, K) ∪ {0} be an additive spread set, on the
finite vector space (V, +) over a field K. Then for each non-zero choice of e ∈ V ,
there is a semifield De = (V, +, ◦) with slope set S, and multiplicative identity e.

Proof. Define x◦y = xTy, where Ty ∈ D is chosen such that y = eTy.

Note.

The semifields De, as e varies over V ∗, are all isomorphic only if S, equiva-
lently De, are all fields.

Suppose De is a semifield, coordinatizing a semifield plane Π, when the unit
point e is chosen on (fixed) unit line Z. The following Lemma implies that if D
is right primitive then all the semifields Df , based on choosing unit point f ∈ Z,
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are right primitive, cf. Corollary 4.4. The Lemma will be used in the proof of
our main result, Theorem 5.6.

Lemma 4.2. Let S be an additive spread set of order qn, over any finite
field K = GF (q). Then the following are equivalent
(1) Some Ω ∈ S has order qn − 1.
(2) Every semifield D with slope set τD = S is right cyclic.
(3) Some semifield D with slope set τD = S is right cyclic.

Proof. (1) =⇒ (2). Some Ω ∈ S has order qn − 1. Let D be any semifield
with slope set τD = S, and multiplicative identity e. Let eΩ = ω. Thus, by
Remark 4.1,

e ◦ ω, (e ◦ ω) ◦ ω, ((e ◦ ω) ◦ ω) ◦ ω, . . . = eΩ, (eΩ)Ω, ((eΩ)Ω)Ω, . . .

= eΩ, eΩ2, eΩ3, . . . , eΩpn−1, . . .

However, since the cyclic group 〈Ω〉 ⊂ GL(n, K) is the multiplicative group of
a matrix field ∼= GF (qn), the group 〈Ω〉 is sharply 1-transitive on the non-zero
elements of the K-space Kn. So the above sequence imcludes all the pn − 1
non-zero elements of Kn, which means the right powers of ω:

ω, (ω ◦ ω), ((ω ◦ ω)) ◦ ω, (((ω ◦ ω)) ◦ ω) ◦ ω, . . . ,

run over all of D∗: so D is right primitive. Thus, (1) =⇒ (2) holds. (2) =⇒ (3)
is immediate. (3) =⇒ (1). Suppose D is right primitive, and τD = S its slope
set. Let ω be a right primitive element of D, and Ω = Tω be its (right) slope
map. Then, as above, it is easy to see that Ω has order pn − 1.

Since right primitive semifields are those that admit a primitive matrix as
a slope map, Lemma 4.2(1), and the fact that duals of right primitive semifields
are left primitive Lemma 4.2 yields:

Corollary 4.3. Let Π be a semifield plane. Then the following conditions
are equivalent.
(1) All semifields D coordinatizing Π are right primitive.
(2) All semifields D coordinatizing the dual plane of Π are left primitive.
(3) All semifields D coordinatizing Πt the transpose plane of Π are right prim-
itive.
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As indicated earlier, p.5, the work of Rúa, and Hentzel-Rúa, [21, 9], shows
that left primitivity and right primitivity for a semifield are not mutually equiv-
alent concepts, for semifields, of order 16 and 64. Lemma 4.2, suggests a possible
approach for finding further examples. Thus, applying Lemma 4.2 to a commu-
tative semifield D which is right primitive, hence also left primitive, we obtain
a chain of semifields of type:

left & right primitive → right primitive [transpose]→ left primitive [dualize],

and the middle semifield might only be right primitive in which case the final
semifield would be left primitive but not right primitive.

Lemma 4.2 also yields the following geometric characterization of planes all
whose coordinatizing semifields are right primitive semifields.

Corollary 4.4. Let Π be an affine semifield plane with shears axis Y .
Suppose Π is coordinatized by a semifield based on choosing any axis X �= Y as
the x-axis and unit point e ∈ Z, where Z /∈ {X, Y } is any fixed line through
O = X ∩ Y . Then the semifield De coordinatizing Π with the above choices
is primitive iff every semifield Df , based on unit point f ∈ Z \ {O}, is right
primitive.

Proof. Interpret the claim in terms of spreads. Thus π is a spread specified
by a spread set S such that line Z is identified with y = x1, 1 ∈ S. Now the
semifields Df and De have the same slope set.

5 – Proof of Main Theorem

In this section we prove Theorem 5.6 . The proof of the following Lemma
implicitly describes a technique for detecting fractional subplanes of a given
semifield plane. Given a 5-dimensional semifield D, not necessarily fractional,
with slope set τD, the Lemma shows how to replace D by a fractional semifield
D′, such that D′ is fractional and τD′ = τD, whenever such a D′ exists. An
elaboration of this method is used to construct fractional dimensional planes of
odd order in Cordero and Jha, [3]. Note that the argument makes crucial use of
the fact that D is 5-dimensional over a subfield field K = GF (q) in the center
of D, rather than merely requiring that D be a regulus subfield over K.

Lemma 5.1. Let D := (D,+, ◦) be a 5-dimensional semifield over its center
K = GF (q), with slope-set S ⊂ GL(D, K). Then either there is a fractional
semifield D∗ := (D,+, ∗) relative to a field (F, +, ∗) ∼= GF (q2), with center
Z(D∗) ⊂ (F,+, ∗), such that S is also the slope-set of D∗, or every non-scalar
element m ∈ D \ K has irreducible slope map Tm ∈ S.
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Proof. Suppose the irreducible condition fails. So there is an m ∈ D \ K
such that its slope-map A := Tm is not irreducible. Then by Theorem 3.8, A
admits a decomposition V2 ⊕ V3, where V2 and V3 are irreducible A-invariant
subspaces of D that, as K-subspaces, are of dimensions 2 and 3 respectively.
By Remark 2.3((c) ), S is closed under both addition, and multiplication by
the scalar field K ⊂ S, K ∼= GF (q). So S ⊃ K + KA, and this additively
closed partial spread set, of size q2, leaves V2 invariant and hence, by counting,
K + KA clearly induces an additive spread on V2. Fix any non-zero e ∈ V2.
Then, cf. Remark 4.1, define a new semifield (D,+, ∗) by the rule x ∗ y = xθy

where θy ∈ S such that eθy = y. It is straightforward to verify that (D,+, ∗)
is a semifield with center (K, +, ∗), and obviously τD∗ = τD = S. Moreover,
since V2 is invariant under K + KA ⊂ S, (V2, ∗) is multiplicatively closed, hence
by finiteness, the multiplicative loop of (D∗, ∗) induces a loop on (V2, ∗). Thus
(D,+, ∗) is a semifield with a sub-semifield (V2,+, ∗). Put K2 = (e)K and
observe that V2 ⊃ K2 and that K2 is in the center of (D,+, ∗): K2 is actually
the full center of (D,+, ∗), by the Baer condition. Thus, since dimK2 V2 = 2,
V2 must be a field, since semifields that are 2-dimensional extensions over a field
are field. So choosing F := V2, completes the proof.

We require a fundamental Theorem of Davenport, which we describe using
the following:

Notation 5.2. Let F be finite field. So for any subfield G < F , and x ∈ F ∗

the ring G[x], of x-polynomials over G, is the subfield of F generated by G∪{x}.
We consider G[x] to be the field generated by x over G.

Result 5.3.(Davenport, [6, Theorem 1].) There exists a positive integer
function, δ : P → P, such that in any field F = GF (pk) > GF (p) = Zp, for k ≤ r
the following holds: if θ ∈ F generates F over Zp then there exists α ∈ Zp such
that θ − α is a primitive element of F .

We require a consequence of this result for which the subfield chosen is not
necessarily Zp. The proof makes extensive use of notation 5.2.

Lemma 5.4. Let F = GF (qd) > GF (q) = K, where d is prime and
q = pr, and assume that the prime p > δ(rd). Then to each t ∈ F \K correspond
α, β ∈ K such that βt + α is a primitive element of F .

Proof. Let Zp ≤ K be the prime subfield of F . Since the dimension [F :
K] = d is prime, for any T ∈ F \K we have F = K[T ]. Let FT = Zp[T ] = GF (pt)
for some t > 1. By Davenport, result 5.3, T + z is a primitive element of FT ,
hence the result holds unless neither of the fields K and FT contains the other
field. So T + z /∈ K, hence without loss of generality we may assume T itself is
a primitive element of FT . Let ω be a primitive element of the maximal subfield
K, so Tω is not in K ∪ FT , and (pr − 1)(pt − 1) is an exponent of Tω. We
concentrate on the main case:
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Case: Neither K nor FT has order p2 when p + 1 = 2x.
Let ρ and τ be respectively p-primitive divisor of pr − 1 and pt − 1. Now

ωpt−1, a power of ωT , has order divisible by ρ; for if not then ρ divides pt − 1
so an element of FT is a generator of K, over Zp, so FT > K a contradiction.
Hence Zp[ωpt−1] = K, so Zp[ωT ] ⊇ K.

By a similar argument, T ps−1, also a power of ωT , has order divisible by τ
(otherwise τ divides ps − 1 and K contains an element of order τ so K ⊇ FT , a
contradiction), and hence Zp[ωT ] ⊇ FT .

Hence we have shown the field Zp[ωT ] includes K ∪ T , hence, since K is
maximal in F, F = Zp[ωT ]. But now by Davenport again, result 5.3, for some
α ∈ Zp, ωT + α is a primitive of F . This is the required result.

We turn to the exceptional case when one of the fields K or FT has no
p-primitive divisors. Note that since p is large we may assume p > 64. Thus we
need only consider:

Case: p + 1 = 2x, and exactly one of K, FT
∼= GF (p2).

Consider the case K = GF (p2), p + 1 = 2x, and FT = GF (pt), t > 1
odd. So ωT has exponent (p2 − 1)(pt − 1), and (ωT )(p

t−1) = ω(pt−1). But since
gcd(p2 − 1, pt − 1) = p − 1, implies pt − 1 = (p − 1)ν, ν an odd integer > 1, it
follows that ω(pt−1) = ω(p−1)ν /∈ Zp, since ω(p−1)ν is a 2-element, of order p + 1.
Hence K = Zp[ω(pt−1)] ⊆ Zp[ωT ].

It remains to rule out the case K = GF (pw), and FT = GF (p2), p + 1 = 2x,
t > 1 odd. Arguing as before, pt−1 = (p−1)ν, ν odd, and now ωT has exponent
(p2−1)(pw−1), so (ωT )(p

w−1) = T (pw−1), where T (pw−1) = T (p−1)ν /∈ Zp. Hence
FT = Zp[T (pw−1)] ⊆ Zp[ωT ].

We will use the special case of the Lemma, when F = GF (q5).

Corollary 5.5. Let F = GF (q5) > GF (q) = K, where q = pr. Then
there is a function Δ(r), r ∈ P, such that for all p > Δ(r), to every t ∈ F \ K
correspond α, β ∈ K such that βt + α is a primitive element of F .

Theorem 5.6. Let Π be any semifield plane of order q5 with center
GF (q), q = pr, with r fixed. Suppose the prime p > Δ(r), where the function Δ
is a Davenport function, as in Corollary 5.5. Then all the semifields coordinatiz-
ing Π are right primitive and left primitive, whenever Π contains no fractional
subplanes Ψ [that contain a central subplane of Π] .

Proof. We suppose Ψ does not exist. Let D be any semifield coordinatizing
Π, with center K ∼= GF (q), and let τD denote the slope set of D. Thus τD is an
additive spread set that includes the scalar field {K = k1 : k ∈ K}, and in fact
τD is a linear spread set over the field K ∼= GF (q). Let π be the corresponding
spread on D ⊕ D; thus X = D ⊕ 0 ∈ π and Y = 0 ⊕ D ∈ π, where Y is
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the shears axis. Suppose Td ∈ τD \ K is reducible. Then by Lemma 5.1, Π
may be recoordinatized by a fractional semifield E, that contains GF (q) in its
center, so the plane ΠE coordinatized by E has a fractional central subplane, but
since Π = ΠE we contradict our assumption that contains no fractional central
subplane.

Hence, every non-scalar in τD is irreducible. Choose any non-scalar T ∈ τ .
Then since T is irreducible, Schur’s Lemma implies that there is a field Θ of
K-linear maps containing {K, T}, and since D must be a vector space over Θ,
it follows that GF (q5) ∼= Θ ⊃ K. Hence T , viewed as a K-linear map, is an
irreducible element of the field Θ, over the subfield K. So by Corollary 5.5,
there are elements α, β ∈ K such that W = αT + β ∈ GL(D, K) is a primitive
element of the field Θ, hence W , as an element GL(D, K), has multiplicative
order |W | = q5 − 1. Moreover, since τD is a K-linear set, we also have W ∈ τD.
But then, by Lemma 4.2(1), D is right-primitive. We still need to check that all
such D are left primitive.

Consider the dual plane Π′ of Π. Suppose, if possible, that Π′ has a fractional
subplane, containing a central subplane. So there is a semifield D′ := (D,+, ∗),
with center K = GF (q), coordinatizing Π′ such that D′ := (D,+, ∗) contains a
subfield F := (F,+, ∗) > (K, +, ∗), with F ∼= GF (q2). Now the dual semifield,
of D′ := (D,+, ∗), is a semifield D := (D,+, ◦) (thus x◦y = y∗x, x, y ∈ D), with
center (K, +, ∗), and this contains the subfield (F, +, ◦) = (F,+, ∗) ∼= GF (q2),
hence the corresponding plane Π(D) is fractional relative to the central plane
Π(F ). However, Π(D) ∼= Π, which has no fractional subplane. This contradiction
shows that Π′ cannot be coordinatized by a fractional subplane. Hence, by
what has been proved above, the semifields coordinatizing Π′ are right primitive,
so the semifields coordinatizing Π are left primitive. Thus all the semifields
coordinatizing Π are both right primitive and left primitive.

Corollary 5.7. Let Π be any semifield plane of order p5. If Π does not
admit fractional planes, and p is sufficiently large, then every semifield coordi-
natizing Π is right primitive and left primitive.

6 – Generalization of Rúa’s Theorem to Regulus Semifields in PG(7, q)

Recall that Rúa has shown that semifields of order q3 with center GF (q)
are both right primitive and left primitive. However, in view of the Menichetti
classification of such semifields, [18], this result is essentially a result concerning
the Albert semifields of order q3, with center GF (q).

On the other hand, 3-dimensional regulus semifields have yet to be classified.
These semifields are precisely the semifields that coordinatize semifield spreads
S in PG(7, q) that contain a regulus R of degree q + 1. We show that such
semifields are right primitive if q is sufficiently large, Theorem 6.2. For this we
require a stronger form of Lemma 5.4, for qd = q3, due to Mills and McNay.
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Result 6.1. (Mills and McNay, [16, Paragraph 5]) Suppose GF (q3) ∼=
F > K ∼= GF (q). Then for sufficiently large values of q, to each θ ∈ F \ K,
corresponds an element k ∈ K such that θ + k is a primitive element of F .

We may now generalize Rúa’s Theorem, [21, Theorem 4], by establishing
the right primitivity of semifields 3-dimensional over a regulus subfield GF (q),
as opposed to a central subfield GF (q).

Theorem 6.2. Let D be a semifield of order q3 with kern K = GF (q)
such that K centralizes D multiplicatively. Then for sufficiently large q, D is
right primitive.

Proof. Let τD be the (additive) spread set of D, and K be the scalar
field in GLK(D,+) ∪ {0}, associated with the slope set of K. Then any T ∈
τD \K is irreducible. This follows by noting that by the “eigenvalue-argument”,
Lemma 3.1, T fixes no one-space of the projective plane PG(D, K), hence also no
“hyperplane”. Thus, by Schur’s Lemma, the centralizer of T in GLK(D,+)∪{0}
is a field FT ⊃ {T} ∪ K, whenever T /∈ K. Since FT

∼= GF (q3) and K ∼= GF (q),
Mills and McNay, result 6.1, shows that T +κ, for some κ ∈ K, has multiplicative
order q3 − 1. Since, by the additivity of τD, T + κ ∈ τD, we have τD contains a
primitive matrix, so (D,+, ◦) is right primitive by Lemma 4.2.

7 – Right Primitivity of Flock Semifields

The following result is part of a slightly more general Theorem due to S. D.
Cohen:

Result 7.1. (Cohen, [2].) Let F = GF (q2) ⊃ GF (q) = K, q any prime
power. Then to each θ ∈ F \ K there correspond α ∈ K such that θ + α is a
primitive element of F , hence of multiplicative order q2 − 1.

Lemma 7.2. Let D := (D,+, ◦) be a semifield with kern K such that K
commutes multiplicatively with D and dimK Q = 2. Then D is right primitive.

Proof. The slope set τD may be regarded as an additive group in GL(2, q)∪
{02}, acting on the K-space (D,+), such that τD ⊃ K, where K is the scalar
field {k12 : k ∈ K}. Let T ∈ τD \ K. Now T is K-linear and acts irreducibly
on (D,+), by the “eigenvalue-argument”, Lemma 3.1, so by Schur’s Lemma the
centralizer of T in Hom(D,+) is a field FT ⊃ T ∪K. Evidently, we have shown
the field FT

∼= GF (q2), contains K ∼= GF (q), with T ∈ F \K. Hence, by Cohen’s
Theorem, result 7.1, we have T +A, for some A ∈ K, is a primitive element of FT .
However, as τD is an additive group T + A ∈ τD is an element in GL(2, q) with
multiplicative order q2 − 1. Hence (D,+, ◦) is right primitive by Lemma 4.2.
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The semifields D that are 2-dimensional over their central kern are precisely
the semifields that coordinatize the flock semifield planes. Thus, Lemma 7.2 is
equivalent to:

Corollary 7.3. The semifields coordinatizing a flock semifield plane are
are all right primitive.

Note that any non-Desarguesian flock semifield plane admits coordinatiza-
tion by several non-isomorphic semifields, and all these are flock semifields hence
right primitive. However, it is not clear to us whether they are left primitive.

Note. The duals of flock semifields are always left primitive, by Corollary
7.3. But the duals of flock semifields are not flock semifields unless the semifield
is a field.
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Abstract: We survey some results on ovoids and spreads of finite polar spaces,
focusing on the ovoids of H(3, q2) arising from spreads of PG(3, q) via indicator sets
and Shult embedding, and on some related constructions. We conclude with a remark
on symplectic spreads of PG(2n − 1, q).

1 – Introduction

Let q be any prime power and let PG(2n − 1, q) be the projective space of
dimension 2n − 1 over the Galois field GF (q). A (n − 1)-spread S of PG(2n −
1, q) is a set of qn + 1 mutually skew (n − 1)-dimensional subspaces; hence the
elements of S partition the pointset of PG(2n − 1, q). Spreads of PG(2n − 1, q)
define translation planes of order qn , with kernel containing GF (q), embedding
PG(2n − 1, q) as a hyperplane in a PG(2n, q) and using the well known André-
Bruck/Bose construction, and conversely. This relationship is probably the main
motivation for the study of spreads, and the most studied case is n = 2.

Bruck in [8] introduced indicator sets in finite desarguesian projective planes
of square order, and their links with line spreads of projective 3-spaces have
been studied in the next years by Bruck himself in [9] and by Bruen in [10]; a
few years later, Lunardon in [15] further studied that relationship, mainly from

Key Words and Phrases: Spread – Indicator set – Linear representation – Hermitian
variety
A.M.S. Classification: Primary 51A50, Secondary 51E20, 51A40.
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the synthetic geometric point of view: with any spread of PG(3, q) a family of
indicator sets is associated. Indicator sets have been somehow aside for many
years, until Shult in [19] proved that a suitable set of lines, presently called
a Shult set, defines a locally Hermitian ovoid of the Hermitian variety via the
so-called Shult embedding, and conversely.

As a Shult set is the point-line dual of an indicator set, there immediately
followed a link between spreads of PG(3, q) and families of locally Hermitian
ovoids of H(3, q2), which was first studied by Cossidente, Ebert, Marino and
Siciliano in [11] focusing on those associated with the regular spread, the so called
classical and semiclassial ovoids of the Hermitian variety. In the subsequent
paper [12] Cossidente, Lunardon, Marino and Polverino classified the ovoids
arising from the regular spread and from a (proper) semifield spread via the
above construction, while in [2] Bader, Marino, Polverino and Trombetti further
studied the collineation group of the translation ovoids constructed via a Shult
embedding and pointed out that two constructions which could be performed (a
family of ovoids of the Klein quadric from the given family of locally Hermitian
ovoids of the Hermitian variety via a construction of Lunardon [17] and a family
of line spreads from the given family of Shult sets via a construction of Thas
[21]) do not produce any new example.

Here we deal with these results and we conclude the paper with a remark
linking symplectic spreads of PG(2n−1, q) and Thas maximal arcs in projective
planes of order qn and kernel containing GF (q).

2 – Spreads of PG(3, q), ovoids of H(3, q2) and some related construc-
tions

2.1 – Spreads, indicator sets, Shult sets

View Σ = PG(3, q) as a canonical subgeometry of a Σ∗ = PG(3, q2); let σ
be the collineation of Σ∗ fixing Σ pointwise (hence σ2 = id) and let S be any
spread of Σ. Fix a line l in S. A plane π ∼= PG(2, q2) of Σ∗ is an indicator
plane of S if π ∩ Σ = l; the indicator set of S in π is Iπ(S) = {m∗ ∩ π|m ∈ S},
where m∗ denotes the unique line of Σ∗ containing m. The set Iπ(S) has size
q2 and none of its secants contains points of l; conversely, any set I ′ of points
of π satisfying the previous two properties canonically defines a spread, namely
S ′ = {< Q, Qσ > ∩Σ | Q ∈ I ′} ∪ {l} and Iπ(S ′) = I ′. Hence, with any spread
S a family is associated of indicator sets Iπ(S). Furthermore, the spread S is
regular if and only if any Iπ(S) is either an affine line (classical indicator set) or
an affine Baer subplane (semiclassical indicator set). For more details, see e.g.
[8], [9], [10] and [15].

Let Σ = PG(3, q),Σ∗ = PG(3, q2), the plane π and the line l be as above,
and denote by l∗ the line of Σ∗ containing l. Let π̂ be the dual plane of π and
let P denote the point of π̂ corresponding to the line l∗. The points of l are
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mapped to the lines of a cone l̂ of π̂ having vertex P . Let F be the set of lines of
π̂ corresponding to the points of the indicator set I. Then: (i) π̂ is a projective
plane with a distinguished degenerate Hermitian variety (the Baer subpencil l̂
with vertex P ); (ii) F is a set of q2 lines of π̂, none of which contains P ; (iii)
any two distinct lines of F intersect in a point not on the Baer subpencil. Any
set of lines satisfying the above three properties is called a Shult set. Conversely,
a Shult set defines, by any polarity of its plane, an indicator set. In conclusion,
with any line spread a family of indicator sets or, equivalently, a family of Shult
sets is associated.

2.2 – Shult embedding

A Hermitian surface H = H(3, q2) of PG(3, q2) is the set of all isotropic
points of a non-degenerate unitary polarity. A line of PG(3, q2) meets H in 1
(tangent) or q + 1 (hyperbolic line) or q2 + 1 (generator) points. The hyperbolic
lines intersect H in Baer sublines which are called chords.

An ovoid O of H is a set of q3 + 1 points such that any generator of H
contains exactly one point of O. The Hermitian curve H(2, q2), intersection of
H with any of its secant planes, is the classical ovoid. An ovoid is called locally
Hermitian with respect to a point P if it is the union of q2 chords of H through
P and is called translation with respect to a point P if there is a collineation
group of H fixing P , all the generators through P, and acting regularly on the
points of O \ {P}. Note that any translation ovoid is locally Hermitian ([7]) but
not conversely, and a classical ovoid of H is a translation ovoid with respect to
each of its points.

Start off with a spread S of PG(3, q), fix a line l in S, an indicator plane
π through l as above, construct the indicator set and polarize to a Shult set F
with respect to the subpencil l̂ in the plane π̂ = PG(2, q2); embed the plane π̂ in
a PG(3, q2) containing a Hermitian surface H such that π̂ is the tangent plane
to H at P and l̂ = H ∩ π̂ ; denote by ρ be the polarity defined by H. Then
Shult has proved in [19] that Oπ(S) =

⋃{Lρ|L ∈ F} is an ovoid of H, which
is, by construction, locally Hermitian with respect to its point P . The above
construction is presently called a Shult embedding following [11].

We explicitly note that on the other hand, via the so-called Hermitian em-
bedding defined by Cossidente, Ebert, Marino and Siciliano in [11], symplectic
spreads of PG(3, q) are characterised as those corresponding to indicator sets
embedded in a Hermitian variety H, and conversely. Namely, let δ be a symplec-
tic polarity commuting with the unitary polarity ρ associated with H = H(3, q2).
The map σ = δ ◦ ρ = ρ ◦ δ is a (non-linear) collineation, fixing q3 + q2 + q + 1
points on H but no point off H, and leaving invariant q3 +q2 +q+1 generators of
H. Also, noting that any fixed point (invariant generator resp.) is incident with
q + 1 invariant generators (fixed points resp.), yields a symmetric configuration
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which extends in a suitable way to a symplectic polar space W = W (3, q) em-
bedded in a subgeometry Σ = PG(3, q) of the starting Σ∗ containing H. In this
context, the totally isotropic lines of Σ with respect to δ are exactly the lines of
W. Let S be a spread of Σ whose lines are isotropic with respect to δ. Let l be
a line of S and denote by l∗ the line of Σ∗ containing l, which is a generator of
H. Fix a point P ∈ l∗ \ l, hence P ρ ∩W = l. The indicator set is contained in H
and consists of the points in which all the extended lines of S meet P ρ. The con-
struction above can be reversed. Unfortunately, the Hermitian embedding does
not produce any locally Hermitian ovoid (whereas the Shult embedding does)
because the dual lines of the starting Hermitian indicator set not necessarily are
hyperbolic lines of H.

2.3 – Semiclassical ovoids of H(3, q2)

In [11] the Shult embedding is used to construct the classical ovoid and two
semiclassical ovoids of H(3, q2) arising from classical and semiclassical indicator
sets, respectively. Also, the groups of those ovoids are computed, proving that if
q > 3 there exist at least two (non isomorphic) semiclassical ovoids of H(3, q2),
depending on the elliptic quadric Q = Q−(3, q), image of the points of the
indicator set being permutable or not, i.e. the polarity defined by the Q+(5, q)
containing Q commutes with the unitary polarity associated with the Hermitian
variety. The first one, called the p-semiclassical ovoid (permutable semiclassical
ovoid), has an elementary abelian p-group (q = pr).

The notion of commuting polarities was introduced by Tits in 1955, and
Segre in 1965 studied Hermitian geometry over finite fields, also investigating the
polarities commuting with a unitary one. Starting with Segre’s results, recently
Cossidente, de Resmini and Marino in [13] have studied various geometrical
and combinatorial properties of permutable polarities, with special regard to
unitary polarities commuting with orthogonal ones, focusing on the relationship
between (regular) symplectic spreads of PG(3, q) and some remarkable subsets of
the Hermitian curve H(2, q2), the so-called CF−sets after Donati and Durante.
Furthermore, in [13] they discuss symplectic polarities commuting with unitary
polarities.

In order to compute the number of non isomorphic ovoids of H(3, q2) aris-
ing via the Shult embedding, the following definition has been introduced by
Cossidente, Lunardon, Marino and Polverino in [12]: two indicator sets I1 and
I2 in the same Σ∗ lying on the indicator planes π1 and π2, respectively, passing
through the line l∗, are said isomorphic if the associated spreads of Σ are, and
they are said equivalent if there is a collineation of Σ∗ mapping I1 to I2 and fixing
the Baer subline l. Note that equivalent indicator sets are isomorphic, whereas
it is worth noting that isomorphic indicator sets may be non equivalent. With
this approach, they can prove that two locally Hermitian ovoids of H(3, q2) are
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isomorphic if and only if the corresponding indicator sets are equivalent, and
consequently show that the number θ of non isomorphic semiclassical ovoids of
H(3, q2) is q−3

2 + 1 if q is a prime with q ≥ 3, whereas the following bounds hold
for any q : 2 ≤ θ ≤ q−2

2 if q is even and q > 2, and 2 ≤ θ ≤ q−3
2 + 1 if q is odd

and q > 3. For further details, see [12].

2.4 – Translation ovoids and their group

To obtain futher information on the collineation group of the ovoids arising
from the Shult embedding, we specialize to a distinguished class of spreads,
namely semifield spreads. A spread S is a semifield spread with respect to its
line �∞ if there exists a group fixing the line �∞ pointwise and acting regularly
on the set of the q2 lines of S different from �∞. Moreover, if S is a semifield
spread with respect to the line �∞ then, for any choice of the indicator plane π
such that �∞ ⊂ π, the ovoid Oπ(S) is a translation ovoid with respect to the
point P , and conversely.

Choose homogeneous projective coordinates (x0, x1, x2, x3) in such a way
that S = {�∞, �u,v|u, v ∈ GF (q)} with �∞ : x0 = x1 = 0, and �u,v = {(a, b, c, d) :

(c, d) = (a, b)Xu,v, a, b ∈ GF (q)} where Xu,v =
(

v h(u, v)
u k(u, v)

)
with h, k :

GF (q) × GF (q) → GF (q), h(0, 0) = k(0, 0) = 0. Since S is a semifield spread,
then {Xu,v|u, v ∈ GF (q)} is closed under addition hence h and k are additive
functions.

If πλ : x1 = λx0 is any indicator plane through �∞, where λ ∈ GF (q2) \
GF (q), then Iπλ

(S) = Iλ(S) = {(1, λ, v + λu, h(u, v) + λk(u, v)) : u, v ∈ GF (q)}
and

Oλ(S) = {(1,−v − λqu, h(u, v) + λqk(u, v), α + λ(vk(u, v) − uh(u, v))) :
u, v, α ∈ GF (q)} ∪ {P = (0, 0, 0, 1)}

is the locally Hermitian ovoid (with respect to P ) of H(3, q2) : y0y
q
3 − y3y

q
0 +

y2y
q
1 − y1y

q
2 = 0 arising via the Shult embedding (for more details, see [12]).

Let PGU(4, q2) be the group of the linear collineations of PG(3, q2) leaving
H invariant. The subgroup E of PGU(4, q2) fixing P and leaving invariant all
the generators through P has size q5 ([18]) and direct computations show that
E consists of the matrices

⎛⎜⎝
1 α β c − αβq

0 1 0 −βq

0 0 1 αq

0 0 0 1

⎞⎟⎠ , α, β ∈ GF (q2), c ∈ GF (q).



28 LAURA BADER [6]

The subgroup of E acting as translation group on the ovoid Oλ(S) is explicitly
computed in [2] as

G =

⎧⎪⎨⎪⎩
⎛⎜⎝

1 −v−λqu h(u, v)+λqk(u, v) c+(v + λqu)(h(u, v) + λk(u, v))
0 1 0 −h(u, v) − λk(u, v)
0 0 1 −v − λu
0 0 0 1

⎞⎟⎠ ;

u, v, c∈Fq

}
.

As H(3, q2) can also be viewed as an elation generalised quadrangle, which can be
represented as a coset geometry with elation group (Ẽ, ◦) where Ẽ = GF (q2) ×
GF (q) × GF (q2) and (α, c, β) ◦ (α′, c′, β′) = (α + α′, c + c′ + Tr(α′βq), β + β′)
with α, β ∈ GF (q2) and c ∈ GF (q) (see e.g. [3]), the map

ψ : (α, c, β) ∈ Ẽ →

⎛⎜⎝
1 α β c − αβq

0 1 0 −βq

0 0 1 αq

0 0 0 1

⎞⎟⎠ ∈ E

is an isomorphism and the translation group of any translation ovoid Oλ(S)
arising from a semifield spread S via the Shult embedding is isomorphic to the
preimage of G

G̃ = ψ−1(G) = {(−v − λqu, α, h(u, v) + λqk(u, v)) : u, v, α ∈ GF (q)}

which turns out to be abelian if and only if Oλ(S) is p-semiclassical (see [2]).
Recall that the permutable semiclassical ovoid was the only translation ovoid

constructed in [11] admitting an elementary abelian p-group , q = pr, and in
[12] it is proved that the q + 1 p-semiclassical translation ovoids arising from a
given regular spread are all isomorphic. Hence there exists (up to isomorphism)
a unique translation ovoid of H(3, q2) with an abelian translation group, namely
the p-semiclassical. For more details, see [2].

2.5 – Ovoids of Q+(5, q) from indicator sets

Let S be any spread of Σ = PG(3, q) containing the lines �∞ and �0 and
defined by the functions h and k as in Section 2.4. Here, as S may not be a
semifield spread, hence h and k may not be additive.

Then Oλ(S) are the locally Hermitian ovoids of the Hermitian surface H :
x0x

q
3 − xq

0x3 + x2x
q
1 − xq

2x1 = 0 of Γ = PG(3, q2) arising from S, as λ varies in
GF (q2) \ GF (q).
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The projective plane π = PG(V, q2) is the lattice of the GF (q2)− sub-
spaces of the 3-dimensional vector space V (over GF (q2)); as V can also be
viewed as a 6-dimensional vector space over GF (q), a 5-dimensional projec-
tive space = PG(V, q) = PG(5, q) arises. A point (line resp.) of π is defined
by a GF (q2)−subspace of dimension 1 (2 resp.), which can be considered as a
GF (q)−subspace of dimension 2 (4 resp.); hence the pointset of π is mapped to
a lineset of Ω, which is a normal spread Rλ, and any line of π is mapped to a
3-space with a regular spread consisting of the images of the points of the line
itself . The pair (Ω,Rλ) is the Fq-linear representation of π with respect to the
basis {1, λ} (for more details see [2]).

Embed the above (Ω,Rλ) in Ω′ = PG(6, q) as a hyperplane and define the
point-line geometry π(Ω′,Ω,Rλ) as follows. The points are either the points of
Ω′\Ω or the elements of Rλ. The lines are either the planes of Ω′ which intersect
Ω in a line of Rλ or the regular spreads of the 3-dimensional projective spaces
〈A, B〉, where A and B are distinct lines of Rλ; the incidence is the natural one.
As Rλ is normal, π(Ω′,Ω,Rλ) is isomorphic to a PG(3, q2) containing π, and
the isomorphism extends the linear representation. This is the Barlotti-Cofman
representation of PG(3, q2) (for more details see [5]).

Lunardon in [17] has shown that the image of a Hermitian variety having π
as a tangent plane, in the Barlotti-Cofman representation, is a cone having vertex
in Ω and basis a suitable Q+(5, q) of Ω′, and that any locally Hermitian ovoid
Oπ(S) with respect to P of H is mapped to an ovoid, say Oλ, of the hyperbolic
quadric Q+(5, q), and conversely; if Oπ(S) is a translation ovoid, then Oλ is too.

On the other hand, to the line spread S there corresponds, via the Klein
map, an ovoid O(S) of the Klein quadric. Answering a question posed in [17],
in [2] it is shown that the ovoid O(S) is isomorphic to any Oλ, for any choice of
the indicator plane π, therefore no new ovoids of Q+(5, q) can be constructed in
this way.

2.6 – Spreads from indicator sets via locally Hermitian spreads of Q−(5, q)

Let S be any spread of Σ = PG(3, q). Embed Σ in Σ∗ = PG(3, q2) in such
a way that Σ = Fix(σ), where σ is an involutory collineation of Σ∗. Let π be an
indicator plane of S in PG(3, q2). Denote by l the line of S such that l is in π
and by Iπ(S) the indicator set of S in the plane π. Consider the point-line dual
plane of π: this is a plane π̃, in which l∗ (the extension of l in Σ∗) is represented
by a point P, the Baer subline l by a Baer subpencil l̃ through P and Iπ(S) by
a set F of q2 lines not containing P, any two of which intersect at a point of
π̃ \ l̃. (The set of lines F is the associated Shult set.) Fix a Hermitian surface
H = H(3, q2) in such a way that P ∈ H and π̃ ∩ H = l̃. Let ρ be the polarity
defined by H. The elements of Fρ are hyperbolic lines of H through P, hence the
set Oπ =

⋃
m∈F (mρ∩H) is a locally Hermitian ovoid of H. (Note that the ovoid
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depends on the choice of the indicator plane π.) The ovoid O corresponds, via the
Klein map κ, to a locally Hermitian spread Sπ of Q−(5, q) with respect to the line
L = Pκ. Let Λ = L⊥, where ⊥ is the orthogonal polarity induced by Q−(5, q).
If M is a line of Sπ different from L then mL,M = 〈L, M〉⊥ is a line of Λ disjoint
from 〈L, M〉. Moreover the set of lines S ′

π = {mL,M :M ∈ S, M �= L} ∪ {L}
turns out to be a spread of Λ as proved by Thas in [21]. If the spread S is a
semifield spread then the spread S ′

π also is. In [2] it is proved that S and S ′
π are

isomorphic for any choice of the indicator plane π, the proof being obtained by
reviewing the above construction embedding the involved spreads in the same
3-dimensional projective space over GF (q2). In the case S is a semifield spread,
the question on the relation between S and S ′

π was posed in [17, Par. 4.3].

3 – Symplectic spreads and Thas arcs

Let PG(2n− 1, q) be the projective (2n− 1)−dimensional space over Fq. A
spread of PG(2n − 1, q) is a set of qn + 1 pairwise disjoint (n − 1)−dimensional
subspaces which partition the pointset of PG(2n−1, q). A spread is symplectic if
all of its elements are totally isotropic with respect to some polarity of the space,
defined by a nonsingular alternating bilinear form of the underlying vector space.
For more details, the reader is referred e.g. to [14].

In [20] Thas gave the following construction of a maximal arc, which is
called Thas arc: let Q− = Q−(2n− 1, q) be an elliptic quadric of PG(2n− 1, q),
n ≥ 2, and let S− be a spread of Q−(2n − 1, q). Fix an (n − 1)−spread S of
H = PG(2n − 1, q) intersecting Q−(2n − 1, q) in S−. Embed PG(2n − 1, q) as
a hyperplane in PG(2n, q) and fix a point x ∈ PG(2n, q) \ PG(2n − 1, q). The
set {< x, y > |y ∈ Q−} \ Q− is a maximal (q2n−1 − qn + qn−1; qn−1)−arc of
the projective plane of order qn defined by S via the usual André-Bruck/Bose
construction. We recall that, following Barlotti in [4], a {k;m}−arc in a finite
projective plane of order s is a set of k points such that m is the greatest number
of collinear points in the set, and an arc is maximal if k attains its maximal value,
i.e. k = sm − s + m. In [6] Blockhuis, Hamilton and Wilbrink proved that no
Thas arcs exist for q odd, as conjectured in [20].

Recently, using some intersection properties of symplectic spreads and non-
singular quadrics, it has been proved in [1] that a translation plane of order qn,
q even, with kernel containing GF (q), is defined by a symplectic spread if and
only if it contains a Thas arc.

In the following Bibliography a huge number of actually relevant papers and
books are missing, for obvious reasons of space. We have just listed some items
we explicitly refer to, and we apologize to the Authors of the many missing ones.
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Some remarks on Calabi-Yau manifolds

GILBERTO BINI

Dedicated to Professor Marialuisa de Resmini

Abstract: Here we focus on the geometry of the “mirror quintic” Y and its
generalizations. In particular, we illustrate how to obtain new birational models of Y .

1 – Introduction

Let X be a complex, compact, connected Kähler manifold. X is said to
be a Calabi-Yau variety if i) the canonical bundle is trivial and ii) there are no
p-holomorphic forms for p �= 0, n, where n is the complex dimension of X. i)
implies that there is a unique (up to scalars) global top degree holomorphic form
and ii) can be rephrased in terms of Hodge numbers, that is to say, hp,0 �= 0
for p in the range above. We remark that h0,0 = 1 because X is connected and
hn,0 = 1 because the canonical bundle KX = Ωn

X is trivial.
For applications in Mathematics and Physics it is important to give a defini-

tion of singular Calabi-Yau varieties. These are normal compact manifolds with
Gorenstein canonical singularities such that the dualizing sheaf is trivial and the
Hodge numbers hp,0 �= 0 for p �= 0, n. In most of the applications we shall deal
with, X will be a global quotient, i.e., a smooth variety with an action of a finite
group G ⊂ SL(n, C).

It is easy to give examples of smooth Calabi-Yau manifold in low dimension.
Elliptic curves and K3 surfaces are the only examples of Calabi-Yau manifolds

Key Words and Phrases: Calabi-Yau Manifolds – Orbifold Cohomology
A.M.S. Classification: 14H10.
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in dimension one and two, respectively. Noticeably, in these cases the condition
of being Calabi-Yau uniquely determines the structure of the Hodge diamond.
This is no longer true for higher dimensional examples.

We start our talk by going over an intriguing example: a family of quintic
threefolds in P4. This family was introduced by Dwork in the sixties, and has
been extensively studied in connection with Number Theory [10] and Physics
(see, for instance, [5]). Clearly, a smooth quintic in P4 is Calabi-Yau by ad-
junction and the Lefschetz Theorem. Hence, the generic member of the Dwork
pencil is a Calabi-Yau manifold. Further, the five singular members are singular
Calabi-Yau manifolds according to the definition recalled above.

A group G ∼= (Z/125Z)3 acts on the Dwork pencil Xt. Generically, the
quotient has a smooth resolution Yt, which is a Calabi-Yau manifold. There is
a strange duality - first pointed out in [7] - among the Hodge numbers of Xt

and those of Yt for generic t. More specifically, Xt and Yt are said to be mirror
symmetric.

Given a family of Calabi-Yau manifolds Ft, it is natural to ask whether Ft

is birational to Yt or not. In [2] we answer this question for six families. Some
of them are birational to Yt modulo a finite group. One of them is exactly the
family investigated in [8].

We finally remark that the Dwork pencil Xn+1
t can be generalized to any

degree. We investigate its properties in [3]. Here we show how the geometry
of Xn+1

t can be intricate by describing a special subvariety that exists in even
dimensional projective space.

2 – The mirror quintic

Let Xt → P1 be the Dwork pencil, where

(1) Xt :=
{
x5

1 + . . . + x5
5 − 5tx1 . . . x5 = 0

}
.

It is easy to check that for t5 �= 1, the fiber of the Dwork pencil is a smooth
Calabi-Yau manifold. For t = ∞ the fiber is a union of hyperplanes.

Proposition 2.1. For t5 = 1 Xt is a singular Calabi-Yau.

Proof. First, notice that the singularities are normal because the singular
set has codimension more than one: see [15], p. 76. Moreover, they are Goren-
stein by [13], p. 314. Furthermore, an ordinary double point is canonical: see,
for instance, [11]. Finally, it is an exercise to show that hi,0(Xt) = 0.
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Let us now compute the Hodge numbers of the general fiber of the Dwork
pencil. By definition of Calabi-Yau manifold, it suffices to compute h1,1 and h2,1.
The former equals the dimension of H2(Xt, C) by Lefschetz’s Theorem, which
is 1. The Euler characteristic of Xt is given by c3(Xt), which can be computed
by the Euler exact sequence and the exact sequence, which defines the tangent
space to X. More precisely, we have

c(Xt) =
(1 + u)5

(1 + 5u)
,

where c(Xt) is the total Chern polynomial. Hence we get c3(Xt) = −200. This
yields h2,1 = 101.

There is an abelian group that acts on Xt for all t. Set

G :=

{
(a1, . . . , a5) ∈ (Z/5Z)5 :

∑
i

ai ≡ 0 mod 5

}
/ < (a, a, a, a, a) > .

The group G acts on the projective space P4 in the following way:

(a1, . . . , a5) · (x1 : . . . : x5) = (ζa1x1 : . . . : ζa5x5), ζ5 = 1, ζ �= 1,

where ζ is a primitive fifth root of unity. If the ai’s are equal to each other, the
action becomes trivial; hence we mod out by the subgroup of diagonal elements.
The condition

∑
i ai ≡ 0 mod 5 preserves the term x1 . . . x5; so the group G

acts on Xt for any t. Modding out by the subgroup of diagonal elements allows
one to set one of the coordinates equal to zero. Since the sum of the remaining
coordinates has to be congruent to zero mod 5, the group G depends on three
coordinates. Hence it is isomorphic to (Z/5Z)3, whose order is 125. As proved in
[17], the set of 125 nodes is transitive with respect to the action of G for t5 = 1.

The group G acts on Xt with nontrivial stabilizers. Suppose xj = xk = 0
for j, k ∈ {1, . . . , 5}. Then {xj = xk = 0} ∩ Xt is a plane quintic curve with
generic stabilizer isomorphic to Z/5Z. If three coordinates are equal to zero,
then the stabilizer is isomorphic to (Z/5Z)2.

A monomial xk1
1 . . . xk4

4 is invariant under G if and only if k1 ≡ k2 ≡ k3 ≡ k4

mod 5. Thus the quotient map p : Xt → Xt/G is given by

(x1 : . . . : x5) → (x1 . . . x5 : x5
1 : . . . : x5

5).

The quotient is thus a threefold in P5 which satisfies the following equations:

(2) z1 + z2 + . . . + z5 − 5tz0 = 0, z5
0 = z1z2z3z4z5,

where zi are a system of homogeneous coordinates in P5.
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The image of the curves {xj = xk = 0} ∩ Xt is given by z0 = zj = zk = 0
and z1 + . . . + z5 = 0, which is isomorphic to P1. The points with stabilizer
(Z/5Z)2 satisfy the condition xi = xj = xk = 0 for distinct i, j, k ∈ {1, 2, 3, 4, 5}.
For each triple i, j, k they give a point in Xt/G.

The Calabi-Yau manifold Xt has a unique (up to scalars) top degree differ-
ential form. It can be written down explicitely as follows:

ω := ResXt

(∑n
i=1(−1)ixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dx5

Ft

)
,

where Ft := x5
1 + . . . + x5

5 − 5tx1 . . . x5.
This form is clearly invariant under the action of G. This means that

G ⊂ SL(3, C); hence the quotient has Gorenstein singularities. For these orb-
ifolds there exists a desingularization, which is a smooth Calabi-Yau threefold
Yt. Moreover, by [19] the Hodge structure of the cohomology of Yt is the same
as the Hodge structure of the orbifold cohomology of Xt/G. Let us briefly recall
the definition of these groups.

2.1 – The orbifold cohomology groups

We briefly summarize some facts on orbifold cohomology: for more details
the reader is referred to [4]. Let X be an n-dimensional complex orbifold. Define
X̃ to be the set of pairs (p, ((g))Gp

) for p ∈ X and (g) is the conjugacy class of
g in the local isotropy group Gp. It is known that X̃ is an orbifold called the
inertia orbifold. This orbifold admits a decomposition in connected components,
the nontwisted sector X and the twisted sectors X(g) for g �= 1.

Any g ∈ Gp acts on the tangent space TpX via a diagonal matrix

D = diag(e2πir1 , . . . , e2πirn),

where ri ∈ [0, 1). The degree shifting number i(g) is defined to be
∑

i ri. If
g ∈ SL(n, C), then i(g) is an integer. Moreover, we have

(3) i(g) + i(g−1) = n − dimCX(g).

The d-th orbifold group is defined to be

Hd
orb(X) :=

⊕
(g)

Hd−2i(g)(X).

In particular, if X = Y/G is a global quotient of a smooth variety Y by a finite
group G, then

Hd
orb(X) :=

⊕
(g)∈G∗

Hd−2i(g)(Y g/C(g)),
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where Y g is the fixed locus of g, C(g) is the centralizer in G, and G∗ is a set of
representatives of conjugacy classes in G.

Now, let us compute the Hodge numbers of Yt. As before, it suffices to
compute h1,1 and h2,1. The whole cohomology ring of the mirror quintic has
been computed in [12]. Here we obtain the numbers mentioned above via direct
methods.

Since Xt/G is Gorenstein, the degree shifting number is always an integer.
The twisted sectors coincide with Y g/C(g) for g �= 1. They are points or iso-
morphic to P1. By (3), the degree shifting number of g is 1 or 2, respectively.
Clearly, the degree shifting number of the identity is zero.

A direct computation of the elements of G shows that there are 24 elements
that do not fix anything, namely the S4-orbit of (1, 2, 3, 4, 0) ∈ G. If three of the
components of g := (a1, a2, a3, a4, 0) ∈ G are equal, then g fixes a quintic curve
whose image in Xt/G is a P1. If there are two pairs of the components of g that
are equal, then g fixes ten points, which become two points under the quotient
map p : Xt → Xt/G.

Lemma 2.2.

i) There are 40 elements g in G such that i(g) = 1 and i(g−1) = 1.
ii) There are 30 elements g in G such that i(g) = 1 and i(g−1) = 2.

Proof.

i) We need to count all elements g such that Y g/C(g) is isomorphic to P1. As
mentioned before, three components in g = (a1, a2, a3, a4, 0) must be equal.
This proves the claim.

ii) Since 24 elements do not move anything, we are left with 125−1−24−40 =
60 elements. These come in pairs (g, g−1). Therefore, ii) is completely
proved.

Proposition 2.3. The Hodge numbers h1,1(Yt) and h2,1(Yt) are equal to
101 and 1, respectively.

Proof. It suffices to compute h2
orb(Xt/G) and h3

orb(Xt/G). By definition,
we have

h2
orb(Xt/G) = h2(Xt)G

⊕
g �=1

h0(Xg
t /G).

We have h2(Xt)G = 1 since h2(Xt) is one-dimensional. By Lemma 2.2, we have
h0(Xg

t /G) = 100, since the elements in ii) yield two connected components in
Xg

t /G. Note that C(g) = G since the group is abelian.
As for h3

orb(Xt/G), we have

h3
orb(Xt/G) = h3(Xt)G

⊕
g �=1

h1(Xg
t /G).
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For g �= 1 we have no contribution because Xg
t /G is either a point or a projective

line. This leaves us with the computation of h3(Xt)G. The dimension of the space
of invariants can be expressed in terms of the Euler characteristics of the fixed
loci (Holomorphic Lefschetz Formula). In particular, we have

h3(Xt)G =
1
|G|

∑
g

tr
(
g∗|H3(Xt)

)
,

where g∗ is the transformation induced by g on H3(Xt). Further, we have

χ(Xg
t ) =

∑
i

(−1)itr
(
g∗|Hi(Xt)

)
= 4 − tr

(
g∗|H3(Xt)

)
.

Hence we have
h3(Xt)G = 4 − 1

|G|
∑

g

χ(Xg
t ).

On the other hand, Xg
t can be a plane quintic or 10 points. Therefore, we have

h3(Xt)G = 4 − 1
|G| {−200 + 40(−10) + 60(10)} = 4.

Since h3,0(Yt) = 1, we have

h2,1(Yt) = h2,1
orb(Xt/G) =

1
2
(4 − 2) = 1.

2.2 – Generalizations

The Dwork pencil can be generalized to any degree n. More precisely, we
can consider the pencil Xn+1

t → P1, where Xn+1
t = Z(Fn+1

t ) ⊂ Pn and

Fn+1
t :=

n+1∑
i

xn+1
i − nt

n+1∏
i

xi.

In [3] we investigate the geometry of this generalized pencil and its quotients
by various automorphism groups. As n varies, the geometry might be rather
intricate as the following proposition shows.

Let us consider the following subvariety Z of Pn for n ≡ 0 mod 2, namely:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + . . . + xn+1 = 0
x2

1 + . . . + x2
n+1 = 0

. . . . . . . . .

x
n/2
1 + . . . + x

n/2
n+1 = 0
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Lemma 2.4. Let Q(λ) be an extension of the rational field. Choose n −
1 distinct non-zero rational numbers c1, . . . , cn−1. The determinant V of the
Vandermonde matrix V (λ, c1, . . . , cn−1) is not rational.

Proof. Suppose, on the contrary, that V is a rational number. If we expand
with respect to the column of the powers of λ, it is easy to see that λ satisfies
a polynomial with rational coefficients. Hence, the extension Q(λ) is algebraic
and the Galois group is finite. If V is rational, it is fixed by any element σ of
the Galois group. We thus have

det

⎛⎜⎝
0 1 . . . 1

λ − σ(λ) c1 . . . cn−1

. . . . . . . . . . . .
λn−1 − σ(λn−1) c1 . . . cn−1

n−1

⎞⎟⎠ = 0.

The determinant of the matrix⎛⎝ c1 . . . cn−1

. . . . . . . . .
cn−1
1 . . . cn−1

n−1

⎞⎠ .

is given by
c1c2 . . . cn−1

∏
r<s

(cr − cs),

which is different from zero. This means that the first column of the matrix in
(4) is a linear combination with rational coefficients of the other columns, which
are rational numbers. Thus, we have (σ − I)(λ) = d ∈ Q. Suppose σm = I.
If we apply σm−1 + . . . + I to both members, we get 0 = md; hence λ = σ(λ)
for any σ in the Galois group. This would mean that λ is rational against the
assumptions.

Theorem 2.5. The subvariety Z is smooth and is contained in Xn+1
1 .

Proof. First of all, we notice that Z is defined by the equations p1 =
p2 = . . . = pn/2 = 0, where the pj ’s are the Newton symmetric functions. The
elementary symmetric functions ej can be written in terms of the pj . It is easy
to check that the subvariety Z can be defined via the equations e1 = e2 = . . . =
en/2 = 0. This said, we recall that Xn+1

1 is given by pn+1 − (n + 1)en+1 = 0.
Since n is even, this equation is equivalent to

(5)
n∑

j=1

(−1)n+1−jpjen+1−j = 0.
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If e1 = . . . = en/2 = 0, then equation (5) is satisfied.
Second, the jacobian J of the system of equations defining Z is given by⎛⎜⎝

1 . . . 1
2x1 . . . 2xn+1

. . . . . . . . .
n
2 x

n
2 −1
1 . . . n

2 x
n
2 −1
n+1

⎞⎟⎠
If we choose any n/2 columns, we get a Vandermonde matrix. If a point of Z
has at least n/2 different coordinates, there exists a minor of J different from
zero. We need to show that a point with at most n/2 different coordinates does
not belong to Z. This implies that Z is smooth. Suppose, on the contrary, that
a point P := [λ0 : . . . : λ0 : . . . : λn

2 −2 : . . . : λn
2 −2] belongs to Z. We can

assume λi �= λj . Let ki be the number of times λi appears as a coordinate of P .
Notice that

∑
i ki = n + 1. The λi’s and the ki’s satisfy the following system of

equations:

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 + . . . + kn
2 −2 = n + 1

k0λ0 + . . . + kn
2 −2λn

2 −2 = 0

k0λ
2
0 + . . . + kn

2 −2λ
2
n
2 −2 = 0

. . . . . . . . . . . . . . .

k0λ
n/2
0 + . . . + kn

2 −2λ
n/2
n
2 −2 = 0

Let us consider the linear system ΛX = N , where Λ is the (n/2 + 1)× (n/2− 1)
matrix ⎛⎜⎜⎝

1 . . . 1
λ0 . . . λn

2 −2

. . . . . . . . .
λ

n/2
0 . . . λ

n/2
n
2 −2

⎞⎟⎟⎠ ,

X is the column of unknowns and N is the column vector (n+1, 0, . . . , 0)t. Since
λi �= λj , the matrix Λ contains a minor V of size (n/2− 1)× (n/2− 1) different
from zero, so the system has a unique solution, which is given by the integers ki

for any given P . By standard linear algebra, we have

(7) kl = (n + 1)(−1)l+1 Vl

det(V )
,

where Vl is the determinant of the matrix obtained from V by removing the l-th
column.
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Notice that if some of the λi’s coincide, the ki would be zero, so we would
get a smaller system and we could proceed as in the case where λi �= λj .

Third, we can assume that λi is in Z for any i. To do this, it suffices to
show that under our assumptions all λi’s are in the rational field. Suppose there
exist λi1 , . . . , λif

not in Q. If f ≥ 2, there exist λir
and λis

not in Q. Then,
there exists an element of the Galois group of the extension Q(λi1 , . . . , λif

) over
Q which exchanges λir and λis . It is easy to check that under this element kir

is mapped onto −kis
. Since kir

is an integer, we must have kir
+ kis

= 0. This
means that kir

= kis
= 0. In other words, we can disregard λir

and λis
. If

f is even, we can disregard all the λi’s not in Q. If f is odd, we are left with
the extension Q(λl) over Q. In other words, there is only one λl not rational
and the other ones are rational numbers. If we take into account kl, then Vl is
rational. Recall that the λj are all distinct. If none of them is zero, we reach
a contradiction by Lemma 2.4. If one of them is zero (this is the only possible
case because the λ’s are all distinct), we can cancel a column from the matrix Λ
and apply the result of Lemma 2.4.

Let us recap what we have proved so far. If P is a point in Z with at most
(n/2)−1 different entries, the coordinates of P are integer numbers given by the
formula (7). More explicitly, the solutions are given by

kl = (n + 1)(−1)l+1 λ0 . . . λ̂l . . . λt∏
r<l(λr − λl)

∏
s>l(λl − λs)

,

where t = (n/2) − 2 and l ∈ {0, . . . , (n/2) − 2}. Since the subvariety Z is
defined by symmetric equations, we can assume that the λi’s are ordered so that∏

r<l(λr − λl)
∏

s>l(λl − λs) is positive.
Since 0 ≤ kl ≤ n + 1, we should have

(−1)l+1λ0 . . . λ̂l . . . λt ≥ 0

for any l. If all the λi’s were positive, k0 would be negative against the assump-
tions. If the number of negative λi’s is odd, k0 would be negative. If the number
of positive λi’s is even, k1 would be negative. If all the λi’s are negative and t is
odd, k0 would be negative. If all the λi’s are negative and t is even, k1 would be
negative. In any case, there exists a ki which is negattive, whereas all the ki’s
are positive by assumption.

3 – Birational Models of the Mirror Quintic

It is important to understand whether a given Calabi-Yau is indeed new or
birational to an existing one. Let us consider the following families:
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Ft

1 x5
1 + x5

2 + . . . + x5
5 − 5tx1x2 · · ·x5

2 x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x4
5x1 − 5tx1x2 · · ·x5

3 x4
1x2 + x4

2x3 + x4
3x4 + x4

4x1 + x5
5 − 5tx1x2 · · ·x5

4 x4
1x2 + x4

2x3 + x4
3x1 + x5

4 + x5
5 − 5tx1x2 · · ·x5

5 x4
1x2 + x4

2x3 + x4
3x1 + x4

4x5 + x4
5x4 − 5tx1x2 · · ·x5

6 x4
1x2 + x4

2x1 + x5
3 + x5

4 + x5
5 − 5tx1x2 · · ·x5

Each of them can be rewritten in the form

FA,t :=
5∑

i=1

5∏
j=1

x
aij

j − 5tx1x2 · · ·x5,

where
ai1 + ai2 + . . . + ai5 = 5, a1j + a2j + . . . + a5j = 5.

If we set

zi :=
5∏

j=1

x
aij

j , z1z2 · · · z5 = (x1x2 · · ·x5)5,

we get the equations (2). This means that there exists a non-constant rational
map

qA,t : XA,t −→ Xt/G, (x1 : . . . : x5) �−→ (z0 : z1 . . . : z5),

where z0 := x1x2 · · ·x5.
If we show that qA,t is birationally equivalent to a quotient map XA,t →

XA,t/HA for some group HA, then Yt is birational equivalent to XA,t/HA,
thereby yielding a birational model of Yt. In some cases, HA is the identity
group. We have shown that qA,t is birationally equivalent to a quotient map in
[2]. To state the theorem, we need to define the group HA.

Let d be the smallest positive integer such that B := dA−1 has integer
entries. Set

XdI,t := Z(FdI,t) ⊂ Pn−1, FdI,t =
n∑

j=1

yd
j − nt

⎛⎝ n∏
j=1

yj

⎞⎠m

,

d = mn.

We introduce a map

φA : XdI,t −→ XA,t, (y1 : . . . : yn) �−→ (x1 : . . . : xn),



[11] Some remarks on Calabi-Yau Manifolds 43

xj =
n∏

k=1

y
bjk

k .

For a = (a1, . . . , an) ∈ (Z/dZ)n define the automorphism ga on Pn−1 in the
following way:

ga(y1 : . . . : yn) := (ζa1y1 : . . . : ζanyn).

Set

Γd := {ga : a = (a1, . . . , an), a1 + . . . + an ≡ 0 mod n }/〈g(1,1,... ,1)〉.

It is an easy exercise to show that

Γd
∼= Z/mZ × (Z/dZ)n−2

.

Γd induces an action on XA,t. Indeed, we have:

φA(ga(y)) = (ζa′
1x1 : . . . : ζa′

nxn), a′
j =

n∑
k=1

akbjk;

so

(8) Γd −→ Aut(XA,t), ga �−→ gBa = ga′ .

Let ΓA and HA be the kernel and the image of the homomorphism (8). Then
the following holds ([2])

Theorem 3.1. Let A be an n×n matrix with non-negative integer entries
such that the sum of the entries in any row and column is equal to n and such
that XA,t is irreducible. Then:

φA,t : XdI,t −→ XA,t, is birational to the quotient map

XdI,t −→ XdI,t/ΓA,

qA,t : XA,t −→ M t, is birational to the quotient map

XA,t −→ XA,t/HA,

and thus qA,t ◦ φA,t : XdI,t −→ M t, is birational to the quotient map

XdI,t −→ XdI,t/Γd.
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Remark 3.2. If we consider the second family

St :=
{
x4

1x2 + x4
2x3 + . . . + x4

5x1 − 5tx1x2 . . . x5 = 0
}

,

the Theorem above and direct computation (with MAGMA) yield that St/Ht

is birational to Yt, where Ht is isomorphic to Z/41Z. This answers positively a
conjecture posed by Greene, Plesser and Roan [8].
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Some models of geometries after Hilbert’s Grundlagen

CINZIA CERRONI

Dedicated to Professor Marialuisa de Resmini

Abstract: We investigate the contribution of Max Dehn to the development of
non-Archimedean geometries and the contribution of his student Ruth Moufang to the
development of non-Desarguesian geometries.

1 – Introduction

In 1899, David Hilbert published the Grundlagen der Geometrie, a book that
opened up research in the foundations of geometry. In fact, the Grundlagen took
the axiomatic method both as a culmination of geometry and as the beginning of
a new phase of research. In that new phase, the links between the postulates were
not seen as the cold expression of their logical relations or interdependence, but
as the creation of new geometries having equal importance at the research level.
In particular, the starting point of research on non-Archimedean geometries was
the investigation of the independence of Archimedes’axiom(1) from other axioms
and the starting point of research on non-desarguesian geometries was the inves-
tigation of the independence of Desargues’theorem(2) from the axioms of plane
geometry.

Key Words and Phrases: David Hilbert – Max Dehn – Roberto Bonola – Ruth
Moufang – Non-Desarguesian geometry – Non-Archimedean geometry – Octonions
A.M.S. Classification: 01A70, 01A60, 51A35, 05B35, 17D05.
(1)As is well known, Archimedes’axiom states that if A and B are two segments, with
A smaller than B (A < B), then there exists a positive integer n such that n times A

is greater than B (nA > B).
(2)As is well known, Desargues’s theorem states that if two triangles a1b1c1, a2b2c2 are
in perspective from a point V , then the lines containing the opposite edges intersect in
three collinear points, d1, d2, d3.
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The present paper aims to describe some models of non-Archimedean and
non-desarguesian geometries that was born after the Grundlagen(3).

2 – Max Dehn and non-archimedean geometries

As is well known, Hilbert devoted Chapter II of his Grundlagen der Ge-
ometrie to proving the independence and non-contradictoriness of axioms. In
particular, he proved the independence of Archimedes’ axiom from the other
ones. More precisely, he showed that Archimedes’ axiom is not a consequence of
axioms I (of incidence (connection)), II (of order), III (of parallelism), and IV
(of congruence)(4) by exhibiting a geometry where Archimedes’axiom fails to be
valid [Hilbert 1899].

On Hilbert’s suggestion, Dehn studied the relationship between Legendre’s
theorems(5) and Archimedes’axiom. This last analysis is agreed with the point
of view of Hilbert’s Grundlagen. In fact, in the proofs of Legendre’s theorems,
that we can find in the literature (i.e. those of Euclid, those of Saccheri and
those of Legendre himself) Archimedes’axiom is used, in a more or less explicit
way. In the optic of Hilbert, and consequently of Dehn, it is remarkable to study
whether these theorems really depend on this axiom.

Max Dehn was one of Hilbert’s most prominent students. He was Born in
Hamburg in 1878 and he received his doctorate in Göttingen at age twenty-one,
under Hilbert’s supervision, with the dissertation Die Legendre’schen Satze über
die Winkelsumme im Dreieck on the foundations of geometry [Dehn 1900a]. He
got his Habilitation in Munich in 1901, with a thesis in which he solved the
third of the twenty-three problems Hilbert posed at the International Congress
of Mathematicians in Paris in 1900 [Dehn 1900b],[Dehn 1901]; he was the first
to solve one of Hilbert’s problems. His solution showed that Archimede’s axiom
was needed to prove that two tetrahedra have the same volume, if they have the
same altitudes as well as bases of the same area.

M. Dehn was Privatdozent in Munich from 1901 until 1911 and became
Ordinarius in Breslau in 1913. He moved to the University of Frankfurt in 1921
where he lectured until 1935. Moreover, he published several valuable essays
on the relationship between Greek philosophy and mathematics. In 1922 the
seminar of history of Mathematics was founded, in Frankfurt, and Dehn was the

(3) This work is an elaboration of the two papers [Cerroni 2004], [Cerroni 2007], with

some integrations.
(4)Usually, axioms III are on congruence and axioms IV are on parallelism,like in the
more recent edition of the Grundlagen.
(5)These theorems are already in [Saccheri 1733], and in Italy they are called Saccheri’s
theorems. We recall that Legendre’s theorems state that:

1. The sum of the angles of a triangle is equal to or less than two right angles.
2. If in a triangle the sum of the angles is equal to two right angles, it is so in every

triangle.
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driving force of this institution. The seminar on the history of Mathematics was
held each semester until 1935. The rule of the seminar was to study the most
important mathematical discoveries from all epochs in the original version.

In 1939, since he was a Jew, he emigrated from Germany to Copenhagen
and later to Trondheim in Norway, where he took over the post of a vacationing
colleague at the Technical University until 1940. Since German soldiers occupied
Trondheim, Dehn and his wife, in October of 1941, emigrated to the United
States via the trans-Siberian railway (from Moscov the tracks extended some
9,200 km to Vladivostok).

Dehn related their journey in a talk he gave at Idaho Southern not long
after his arrival there [Dehn 1941]. According to that narrative, at the fron-
tier between Norway and Sweden their luggage was “ransacked” and they were
treated “extremely unkindly and roughly” by the border guards. They were de-
layed three weeks in Stockholm, apparently because of an outbreak of plague in
Manchukuo and Vladivostok, but actually Dehn thought, for “obscure political”
reasons. In the end they took the Amur River route and so did not pass through
Manchukuo. At last the necessary tickets and travel document were issued, the
Dehns were vaccinated and they flew on to Moscow.

During the several days they spent crossing the “endless Russian plain”, the
temperature at times fell low and Dehn developed a life-threatening combination
of influenza and pneumonia, for which he was treated in Irkutsk. When the
Dehns finally reached Vladivostok, they were forced to remain six more days
while waiting for a ship to Kobe. The crossing to Japan proved to be very rough
and cramped. He said nothing about the subsequent voyage to san Francisco,
where he and his wife arrived on New Year’s Day.

In United States, Dehn led a rather itinerant life until he found a position
where he felt more or less comfortable. At the beginning Dehn spent one and a
half year as a Professor of Mathematics and Philosophy at the State University
of Idaho at Pocatello. The next year Dehn worked at the Illinois Institute of
Technology in Chicago and after at St John’s College in Annapolis, Maryland,
where he was specially unhappy. Finally, in 1945 Dehn arrived at the final station
in his life. This was Black Mountain College in North Carolina. He stayed there
for the last 7 years of his life, leaving only for short periods as a guest lecturer
in Madison, Wisconsin. He died in 1952 in Black Mountain, North Carolina
[Dawson Jr. 2002], [Gillispie 1970-1990], [Siegel 1965].

M. Dehn, in his dissertation Die Legendre’schen Sätze über die Winkel-
summe im Dreieck, analysed the relationship between Legendre’s theorems and
Archimedes’ axiom. In particular, he asked:

“Can one prove Legendre’s theorems without an axiom of continuity, i.e.
without making use of the Archimedian axiom?”(6) [Dehn 1900a, p. 405].

(6)The original texts in the following are faithfully translated by the author.
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To answer this question, Dehn first showed that Legendre’s second theorem
is only a consequence of the incidence, order and congruence axioms by proving,
in a geometry (named pseudogeometry) [Dehn 1900a, pp. 406-411], where such
axioms hold and Archimedes’ axiom does not hold, the following more general
theorem:

“If the angle sum of one triangle is less than two right angles then this is
true for every triangle.
If the angle sum of one triangle is equal to two right angles then it is so for
every triangle.
If the angle sum of one triangle is greater than two right angles then the
same holds for every triangle.” [Dehn 1900a, pp. 430-431].

Note that, the second statement is Legendre’s second theorem.
Subsequently, Dehn showed that it is impossible to prove Legendre’s first

theorem with the incidence, the order, the congruence axioms and without
Archimedes’ axiom, by constructing a Non-Legendrian Geometry in which there
are infinitely many lines parallel to a fixed line through a point, Archimede’s
axiom does not hold and the sum of the inner angles of a triangle is greater than
two right-angles and constructing a Semi-Euclidean Geometry in which there are
infinitely many lines parallel to a fixed line through a point, Archimede’s axiom
does not hold but the sum of the inner angles of every triangle is still equal to
two right angles [Dehn 1900a, pp. 431-438].

2.1 – Hilbert analytic model of non-Archimedean geometry

Hilbert, in Chapter II of his Grundlagen der Geometrie, constructed a non-
archimedean number system on which he based an analytic geometry. In partic-
ular, he considered the set Ω(t) consisting of the algebraic functions of t obtained
from the set of polynomials with rational coefficients in t by the five operations of
addition, subtraction, multiplication, division and the operation

√
1 + ω2, where

ω is a function derived from the previous five operations.
The set Ω(t) is countable and it can be regarded as the set of real- valued

functions of a real variable defined at all but a finite number of points. Moreover,
if c is a function in Ω(t), i.e. c is an algebraic function of t, it will vanish only on
a finitely many values of t. Therefore, c, for positive large values of t, is either
always positive or always negative. The usual operations are valid in Ω(t), and
if a and b are two functions in Ω(t), a will be greater than b (a > b) or a less
than b (a < b) if a − b is always positive or always negative, respectively.

Let n be a positive integer, then n is less than t (n < t) since n− t is always
negative for large positive values of t. Consider the numbers 1 and t in Ω(t).
Then, every multiple of 1 is always less than t, so Ω(t) is a non-archimedean
number system.
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Hilbert constructed an analytic geometry on this number system as follows:
(x, y, z), where x, y, z ∈ Ω(t), is a point; ux + vy + wz + r = 0, where u, v, w, r
∈ Ω(t), is a plane; a line is the intersection of two planes [Hilbert 1899, pp. 24-26].

It easy to see that such a geometry is non-archimedean; indeed, on the basis
of the above, a line segment the length of which is n times that of the unit
segment will never exceed a segment of length t on the same line.

2.2 – The non-Legendrian Geometry

As it is well known, Legendre’s first theorem affirms that the sum of the inner
angles of a triangle is less or equal than two right-angles. Dehn showed that the
Archimede axiom is needed to prove the previous theorem and analyzed the rela-
tionships between Archimede’s axiom, the number of lines through a point paral-
lel to a fixed line and the sum of inner angles of a triangle [Dehn 1900a, pp. 431-
436].

It is known that if the Archimede axiom holds, there exists the following
relationships between the hypothesis on the existence and the number of parallel
lines through a point and the sum of the inner angles of a triangle: if the sum of
the inner angles of a triangle is greater, equal or less than two right-angles then,
no line passes through a point parallel to a fixed line, there exists exactly one
line through a point parallel to a fixed line, there exist infinite lines through a
point parallel to a fixed line, respectively.

Dehn constructed a non-archimedean geometry where through a point there
exist infinite parallel lines and where the sum of inner angles of a triangle is
greater than two right-angles, therefore as he wrote:

“For all that is shown the non-validity of Legendre’s first theorem and the
hypothesis on the sum of the inner angles of a triangle, as Saccheri said, is not
related with the hyphotesis on the existence and number of parallel lines through
a point” [Dehn 1900a, p. 432].

Dehn considered the non-archimedean number system introduced by Hil-
bert, that is the set Ω(t) of the algebraic functions of t obtained from t with the
five operations of addition, subtraction, multiplication, division and the opera-
tion

√
1 + ω2, where ω is a function obtained by the previous five operations and

constructed an analytic geometry over the set Ω(t) as follows: the points are the
pairs (x, y), with x, y in Ω(t), and the lines have the equations ux + vy + w = 0,
with u, v, w in Ω(t) [Dehn 1900a, p. 432]. In the previous geometry all the
axioms hold with the exclusion of Archimede’s axiom.

Dehn constructed, over this non-archimedean plane, an elliptic or Riemani-
ann geometry as follows. He took the conic

x2 + y2 + 1 = 0,
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and considered as points and lines of the elliptic geometry, all the points and
the lines of the non-archimedean plane together with the line at infinity with its
points and, as congruences of the elliptic geometry, the real transformations that
fix the conic(7). Then, he considered, as points of the new geometry, the points
of the elliptic geometry (x, y) satisfyting the following conditions:

−n

t
< x <

n

t
−n

t
< y <

n

t

where n is an integer, and as a lines, the lines whose points satisfied the previous
condition [Dehn 1900a, pp. 433]. Dehn showed that all the axioms are valid
except Euclid’s axioms and Archimede’s axiom and that the sum of the inner
angles of a triangle is greater that two right-angles [Dehn 1900a, pp.433-436].
Thus, as he wrote:

“We have constructed a geometry where axioms I, II and IV hold, where
through one point there exist infinite lines parallel to a fixed line and where
the sum of the inner angles of a triangle is greater than two right-angles. The
Archimede axiom does not hold. Then it is shown that Legendre’s first theorem
does not hold without the help of the Archimede axiom. We call the constructed
geometry ”Non-Legendrian “geometry [. . . ]” [Dehn 1900a, p. 436].

2.3 – The Semi-Euclidean Geometry

Dehn continued his analysis on the relationship between the sum of inner
angles of a triangle and the hypothesis on the existence and the number of paral-
lel lines through a point by constructing another kind of geometry. He considered
the above non-archimedean plane and constructed over it a new geometry as fol-
lows: the points of the new geometry are the points (x, y) of the non-archimedean
plane satisfying the following condition,

−n < x < n

−n < y < n,

where n is a positive integer and the lines are the lines of the non-archimedean
plane whose points satisfying the condition above [Dehn 1900a, p. 436]. Dehn
showed that in this geometry axioms I, II and IV hold and moreover, since the
segments and the angles are defined as in the euclidean geometry, Legendre’s
first theorem is valid:

(7)This construction was done by Klein [Klein 1871].
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“[. . . ] Moreover, the theorems of the classic euclidean geometry are valid in
the limited zone. The sum of inner angles is equal to two right-angles in every
triangles.” [Dehn 1900a, p. 437].

However, it is easy to see that through a point there exist infinite lines
parallel to a fixed line. To show this Dehn considered the line through the points
(t, 0) and (0, 1); this is a line of the new geometry, since it passes through the
points (0, 1) and (1, t−1

t ) which are points of the new geometry, but intersects the
x axis in a point that is not a point of the new geometry. Then, he considered the
line through the points (−t, 0) and (0, 1); this line is a line of the new geometry
which intersects the x axis in a point that is not a point of the new geometry.
The two previous lines pass through the point (1, 0) and are parallel to the x
axis. So, Dehn showed that:

“This is a non-archimedean geometry in which the parallel axiom is not
valid but where the sum of the inner angles of a triangle is equal to two right-
angles.” [Dehn 1900a, p. 438].

Thus, Dehn constructed a geometry where the theorems of the Euclidean
geometry hold, but where the parallel axiom does not; Dehn called this geometry
Semi-Euclidean geometry.

Hilbert was struck by this kind of geometry which he called a remarkable
geometry so that he constructed, in his lectures on foundations of geometry
of 1902, another model of semi-Euclidean geometry, inspired by Dehn’s result
[Hallet and Ulrich 2004].

Dehn summed up the previous results in the following diagram:

The sum Lines through a fixed point and parallel to a given line:
of the inner
angles of a
triangle is:

No parallel lines One parallel line Infinite parallel lines

> 2R Elliptic Geometry (impossible) Non-Legendre
geometry

= 2R (impossible) Euclidean Semi-Euclidean
geometry geometry

< 2R (impossible) (impossible) Hyperbolic
geometry

Hilbert also summarized the results in detail in his conclusion to the French
and English translations of the Festschrift [Hilbert 1899], and from the second
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edition of the Grundlagen, there are short remarks on Dehn’s work at the end
of Chapter III.

3 – Italian school and Bonola research on Saccheri’s theorem

A pioneer in the study of non-archimedean geometry was Giuseppe Veronese
(1854-1917). In the work Fondamenti di Geometria [Veronese 1891] he con-
structed, in abstract manner, a geometry in which he postulated the existence of
a segment which is infinitesimal with respect to another, and where the straight
line of geometry is not equated with the continuous straight line of Dedekind.

This work brought about many critics and it caused a national and interna-
tional discussion(8) which involved, from the others, Rodolfo Bettazzi (1861-
1941), George Cantor (1845-1918), Wilhelm Killing (1847-1923), Tullio Levi
Civita (1873-1941), Giuseppe Peano (1858-1932), Arthur Moritz Schönflies
(1853, 1928), Otto Stolz (1842-1905), and Giulio Vivanti (1859-1949).

In 1893 there is a turning-point in the discussion; Tullio Levi Civita pub-
lished the work Sugli infiniti ed infinitesimi attuali quali elementi analitici [Levi
Civita 1893] in which he constructed from the reals number, in an analitically
way, a number system whose numbers (the monosemii) are the marks of the
infinite and infinitesimal segments of Veronese.

The discussion about the possibility of the existence of infinite and infinites-
imal segments ended with the publication of Hilbert’s Grundlagen, as we have
seen in the previous sections and it is possible that the international discussion
influenced Hilbert, who knew the work of Veronese and referred to it as deep
work [Hilbert 1899, p. 48].

Strangely enough, the approach of Veronese, who anticipated from many
points of view Hilbert’s work, did not eventually produce an Italian school in
this kinds of studies(9). So mach so that, R. Bonola was more influenced by the
works of M. Dehn than the ones of G. Veronese.

Roberto Bonola was born in 1874 in Bologna and there died prematurely in
1911. He graduated in Mathematics in 1898 under the supervision of F. Enriques,
who choose him as his assistant. In 1900 he became a teacher of mathematics
in schools for girls, first in Petralia Sottana, then in Pavia, where he spent the
best years of his short life. In 1902 he became assistant to the course of Calculus
at the University of Pavia and in 1904 he gave lectures on the Foundations of

(8)See for examples the works [Bettazzi 1891], [Bettazzi 1892], [Cantor 1895], [Cantor
1897], [Killing 1895-1897], [Killing 1897], [Levi Civita 1893], [Levi Civita 1898],[Peano
1892], [Peano 1892a], [Schönflies 1897], [Schönflies 1897a], [Stolz 1883], [Stolz 1891],
[Veronese 1892], [Veronese 1896], [Veronese 1897], [Veronese 1898], [Vivanti 1891], [Vi-

vanti 1891a].
(9)For a study in depht of the Italian question see [Avellone et al. 2002] and [Bottazzini

2001].
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Geometry. Moreover, from 1904 to 1907, he taught a mathematics course for
Chemistry and Natural Science students. In 1909 he obtained the Libera Docenza
of Projective Geometry and in 1910 he became Ordinary Professor on the Regio
Istituto Superiore di Magistero femminile in Rome. He was seriously sick since
1900 and he died while he established in Rome. [Amaldi 1911].

Bonola was among the very few Italians who were deeply interested in
Dehn’s work. At the time, he was working under the supervision of Enriques on
non-Euclidean geometry from an historical point of view [Bonola 1906], which
can be considered his main work.

He was thus deeply interested in understanding the role of Archimedes’
axiom in the proof of Saccheri’s theorem(10). In his work [Bonola 1905], he
demonstrated, in a direct way without the use of Archimedes’ axiom, Saccheri’s
theorem on the sum of the inner angles of a triangle:

“This note aims at giving a direct and elementary proof of the result by
Dehn, that is of the proof of Saccheri’s theorem, without the use of Archimedes’
axiom.” [Bonola 1905, p. 652].

In fact, Bonola shared his master’s (F. Enriques) vision of geometry, i.e. as
a deeply intuitive discipline. Thus, only a direct proof could really satisfy our
intuitive vision:

“The way followed by Dehn to prove, without Archimedes’ axiom, Saccheri’s
theorem is very elegant and logically complete. Geometrical intuition, however,
needed a direct proof, that is a proof without formal systems, constructed over
abstract concepts, that only formally satisfies the geometrical properties.” [Bonola
1905, p. 652].

He started from the research of Father Saccheri [Saccheri 1733] on Euclid’s
V axiom. He considered the birectangular isosceles quadrilateral ABCD (= 1
right angle and AB=CD), that is now called the Saccheri Quadrilateral and
distinguished the three Hypothesis: the one of the right angle, the one of the
acute angle and the one of the obtuse angle.

He then demonstrated Saccheri’s theorem: “If one of the three previous
Hypotheses is valid in a Saccheri Quadrilateral, this hypothesis is valid in every
Saccheri Quadrilateral” without using Archimedes’ axiom and since Saccheri’s
theorem on the sum of the inner angles of a triangle is a consequence of this
theorem, the aim is achieved [Bonola 1905]. To prove Saccheri’s theorem, he
considered a plane in which the axioms of connection, order, and congruence are
satisfied, distinguishing two cases: the closed line and the open line.

(10)Bonola called Saccheri’s theorem the second theorem of Legendre.
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4 – M. Dehn research program, Moufang planes and their coordina-
tizating algebra

As we have seen in the previous sections, the foundations of geometry rep-
resent a type of mathematical inquiry that highly suited some characteristic
features of Dehn’s mind. However, he was not primarily interested in find-
ing minimal sets of axioms or in separating the postulates of a given discipline
into sets of weaker ones and then proving their independence and completeness.
That kind of axiomatic approach is well represented by Moritz Pasch (1843-
1930), whose book Vorlesungen über neuere Geometrie first appeared in 1882.
The second edition of this book appeared in 1926 with a supplementary part
by Dehn, entitled Die Grundlegung der geometrie in historischer Entwicklung
[Dehn 1926]. Whereas Pasch emphasized precision and detail, Dehn focused on
insight and ideas. He was interested in finding solid and simple foundations for
a theory, in particular for projective geometry:

“[t]he aim of the foundations of projective geometry, as well as of metric
geometry, is to transform the projective relations (collineations) into algebraic
relations.” [Dehn 1926, pp. 213-214].

As this makes clear, Dehn was interested in the relationships between alge-
bra and geometry. In particular, he was deeply impressed by the part of Hilbert’s
Grudlagen in which it is showed that the incidence axioms of (projective) geom-
etry together with a single incidence theorem, namely, Pappus’s theorem, are
equivalent to the definition of a field, and that the same axioms together with
Desargues’s theorem define a skew field [Magnus and Maufang 1954], [Magnus
1978-1979].

This kind of approach was to become a real Research Program for Dehn and
he inspired many students. One of Dehn’s students was Ruth Moufang. In a
series of difficult papers, she proved that there exists a third theorem of the type
of Desargues and Pappus, the theorem of the complete quadrilateral.

Ruth Moufang was born in Darmstadt, Germany on 10 January, 1905. Her
interest in mathematics was first stimulated at the Realgymnasium in Bad Kreuz-
nach, which she attended from 1921 to 1924. She then studied mathematics at
the University of Frankfurt from 1925 until 1930 and she passed the teacher’s
examination in 1929.

She took her Ph.D. in 1931 under Dehn’s supervision with a dissertation on
projective geometry. After, she spent a year in Rome with a research fellowship.
She lectured from 1932 to 1933 at the University of Königsberg, where she took
a course with Emmy Noether, was encouraged in the study of mathematics by
Kurt Reidemeister (1893-1971), and met Richard Brauer (1901-1977).

She returned to Frankfurt in 1934 and held a Lehrauftrag there while writing
her Habilitationsschrift. On 9 February, 1937, Ruth Moufang became the third
woman in Germany to receive the Habilitation in mathematics.
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The logical course of events would have been for her to become a Privat-
dozent, but in March 1937, she received a letter from the Ministry of Education
informing her that the policies of the Third Reich required a professor to be
a leader of students in more than just the academic sphere. Since the student
population was mostly male, they did not think it feasible to appoint women
professors.

Although they had no objection if she devoted herself solely to research,
since there was no permanent position at the university to do only research,
she left to work for the Krupps Research Institute in the autumn of 1937 and
stayed there until 1946. She was the first German woman with a doctorate to be
employed as an industrial mathematician. In this period, she published several
papers in theoretical physics, in particular elasticity theory [Moufang 1941-1942],
[Moufang 1946-1947], [Moufang 1948].

After the war, the University of Frankfurt was looking for first-rate mathe-
maticians who had not joined any Nazi organization under Hitler. In 1946, Mo-
ufang moved there and was given the venia legendi. She served as Privatdozent
until her appointment as associate professor in December 1947. In February
1957, she became the first woman in Germany to be appointed full professor
and remained at the University of Frankfurt until her retirement in 1970. In
the postwar years, she published almost nothing, although she was a successful
teacher and had many Ph.D. students. She died in Frankfurt on 26 November,
1977.

4.1 – Moufang planes

Moufang’s works from 1931 and 1937(11), marked the starting point of a new
mathematical specialty in the algebraic analysis of projective planes that drew
upon a mixture of geometry and algebra. She studied what are known today as
Moufang planes and Moufang loops. Her studies became part of the foundations
of geometry and were inspired by Max Dehn’s work.

Her dissertation of 1931 inaugurated the systematic study of non-Desargue-
sian planes. In her first works, written between 1931 and 1932 and suggested by
M. Dehn, she studied problems about incidence theorems in a projective plane. In
particular, she investigated, in general, when one incidence configuration follows
from another and examined what the consequences of this are on the introduction
of coordinates:

“[t]he following study which has arisen from a suggestion of Herr Dehn,
is at the foundations of a very general problem in projective planes: let there
be two incidence configurations, the problem is to decide whether or not, under

(11)See [Moufang 1931], [Moufang 1931a], [Moufang 1932], [Moufang 1932a], [Moufang

1933], [Moufang 1933a], [Moufang 1934], [Moufang 1937].
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the axioms of order and incidence, one follows from the other.” [Moufang 1931,
p. 536].

In her main work, Alternative Körper und der Satz von Vollstadingen Vier-
seit (D9) [Moufang 1933a], she constructed the non-Desarguesian planes coordi-
natizited by an alternative division ring(12) (of characteristic �= 2), that now are
named Moufang planes, exhibiting a delicate interplay between geometry and
algebra.

Of particular interest here, however, is how Moufang hit upon the idea
of relating alternative division rings to the geometric construction of Moufang
planes. As noted, Moufang’s early work concerned the problem of considering
the relationship between various theorems on configurations in a projective plane.
In the paper Die Schnittpunktsätze des projektiven speziellen Fünfecknetzes in
ihrer Abhängigkeit voneinander [Moufang 1932], proposed by Max Dehn, she
investigated some special cases of Desargues’s theorem, analyzing whether from
one of these configurations the other ones follow and whether they are equivalent
to the complete quadrilateral theorem.

In particular, she considered a special case of Desargues’s theorem, which
she called D9. Here, the triangles 1′2′3′ and 123 are in perspective with respect
to the point a, one side of each triangle goes through one vertex of the other,
two vertices of one of the perspective triangles lie on two sides of the other one.

At this point in her argument, Moufang followed Hilbert’s method. As she
explained,

“[w]e now investigate, as in Hilbert’s Grundlagen der Geometrie (Chapter
V, 7th Edition), to what extent the calculus of a skew field (which obtains in the
presence of Desargues’s theorem) obtains under the configuration D9”. [Moufang
1932, p. 766].

Therefore, she introduced the operations of addition and multiplication, as
in the Grundlagen, by using D9 and obtained the following rules:

(*)

α + β = β + α

(α + β) + γ = α + (β + γ)
α(β + γ) = αβ + αγ

(β + γ)α = βα + γα

if α �= 0, then there exists α−1, such that α−1α = 1 = αα−1, and α−1(αβ) =
β = (βα)α−1. [Moufang 1932, pp. 767-771].

(12)Recall that an alternative division ring is a triple (A, +, ·), where (A, +) is an Abelian
group and where (A, ·) is a quasigroup with identity (loop), in which the distributive
laws and the alternative laws are satisfied: ∀a, b ∈, A a(ab) = (aa)b, a(ba) = (ab)a,

(ba)a = b(aa). The multiplication is thus, in general, non-associative.
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Thus, she showed that, in general, the multiplication is non associative.
In [Moufang 1932], she did not recognize the equivalence between a structure

with properties (*) and an alternative division ring. She also neither constructed
planes coordinatized by such a structure nor showed that D9 is weaker than De-
sargues’s theorem. In fact, her paper was completely geometric and ended with
the following question: can Desargues’s theorem follow from the configuration
D9? She conjectured an answer in the negative.

After completing this work, Moufang went, to Königsberg in 1932, where
she was influenced by both Reidemeister and Brauer. Her stay there was decisive
for her growth as an algebraist and for her subsequent research.

In fact, her main work, Alternative Korper und der Satz von Vollstadingen
Vierseit (D9) [Moufang 1933a] was written while she was in Königsberg. There,
she thanked Brauer explicitly “for the hint that, according to the introduction of
the paper of Herr Zorn”, the number system she had constructed was a “general-
ization of Cayley’s number system, as presented in 133, Dickson’s Algebren und
ihre Zahlentheorie (p. 264)”, namely, a Cayley-Dickson system [Moufang 1933a,
p. 222].

This paper is more algebraic than the others, she exhibited a delicate inter-
play between geometry and algebra. Her approach was systematic and followed
Hilbert’s method:

“Hilbert had shown that a subset of his axioms for plane geometry (essen-
tially the incidence axioms) together with the incidence theorem of Desargues
allows for the introduction of coordinates on a straight line that are elements of
a skew field.

He proceeded as follows: he had defined the operations of addition and mul-
tiplication and their inverses, using the incidence theorems. So, Desargues’s
theorem and the incidence axioms are sufficient to prove the calculus rules ex-
cept for the commutative rule of multiplication. Conversely, he had constructed
a geometry in which Desargues’s theorem is valid, by using the elements of a
skew field.

We investigate in the same way, by using a particular case of Desargues’s
theorem, which is equivalent to the theorem of the complete quadrilateral (we call
this theorem D9).” [Moufang 1933a, p. 207].

Therefore, she first considered a plane coordinatized by a structure that
satisfies (*) and proved, following Hilbert’s method, that it is a projective plane
and that the configuration D9 is valid [Moufang 1933a, p. 211-215]. She also
established the equivalence of D9 and an alternative division ring in a purely
algebraic way [Moufang 1933a, pp. 216-219], by showing that a structure that
satisfies (*) satisfies the alternative rules, and conversely. She closed, as Hilbert
did, by exhibiting a non-Desarguesian number system and by constructing what
are now called Moufang planes.

Thus, whereas Hilbert had shown that Desargues’s theorem together with
the incidence axioms of planes allows one to introduce coordinates in a projective
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plane which are elements of a skew field, and conversely, Moufang proved that the
configuration D9 (or, equivalently, the complete quadrilateral theorem) holds in
a projective plane if and only if it can be coordinatized by an alternative division
ring (of characteristic �= 2). The non-Desarguesian Moufang planes are of this
type.

While Moufang planes are not the first examples of non-Desarguian planes,
they are very important since they gave rise to the systematic study of such
planes. Ruth Moufang recognized the connections between the geometric prop-
erties of planes and the algebraic properties of the coordinatizing structure. In
1943, Marshall Hall introduced a general way to coordinatize every projective
plane by planary ternary rings and provided a classification that exploited the
relationship between the algebraic and geometric properties [Hall 1943]. Mo-
ufang’s results and techniques thus led in a crucial way to a modern method of
classification of algebraic and geometric structures.

4.2 – The Alternative division ring

The general structure of alternative division ring was risen with the discovery
of the Octonions, who are an example of such structure. Here, we sketch their
history. The Octonions were discovered in 1843 by John Thomas Graves (1806-
1870), who called them octaves. He was an Irish jurist, a mathematician and he
was a friend of W.R. Hamilton. He is credited both with inspiring Hamilton to
discover the Quaternions [Baez 2001].

The Octonions were discovered independently by Arthur Cayley (1821-1895)
who published the first paper on them in 1845 [Cayley 1845]. Subsequently, in
1847 Cayley showed that they are not associative [Cayley 1847] and in 1881 he
found their moltiplicative table [Cayley 1881]. Therefore, they are sometimes
referred to as Cayley numbers or the Cayley algebra.

In 1912, after 31 years, Leonard Eugene Dickson (1874-1954) showed that
the Octonions are a division ring [Dickson 1912] and in 1914 he found a new
description of the Octonions as an ordered pairs of quaternions, with multiplica-
tion and conjugation defined exactly as for the quaternions [Dickson 1914]. This
description is called Cayley-Dickson construction.

Max Zorn first introduced abstract alternative division rings in his paper,
Theorie der alternativen Ringe [Zorn 1930], after he has noted that Cayley num-
bers satisfies the “Alternative laws”; he credited with Emil Artin (1898-1962)
some results. Zorn also showed that a finite alternative division ring is a skew
field. It followed that a finite Moufang plane is Desarguesian.

R. Moufang also opened up new avenues in the field of abstract algebra. In
the work [Moufang 1934], she studied the multiplicative structure of alternative
division rings, constructing the objects now called Moufang loops. The main
theorem in this area was then showed by L.A. Skornjakov [Stornjakov 1950,
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pp. 74-84] and Richard Bruck and Erwin Kleinfeld [Bruk and Kleinfeld 1951,
p. 887], namely, that any alternative division ring of characteristic �= 2 is either
associative or a Cayley-Dickson algebra over its center.

The intrinsic link between the Moufang planes and the Octonions was fur-
ther confirmed by studies of Ernst Pasqual Jordan (1902-1980). In 1949, he
showed that the idempotent elements of the exceptional algebra h3(O)(13) are a
Moufang plane [Jordan 1949].

In the first half of ’900 was found a link between the Octonions and the
theory of Lie algebras. Between 1887 and 1890 Wilhelm Killing classified the
simple Lie algebras and he recognized the five exceptional algebras, and then
the corresponding five exceptional Lie groups: G2, F4, E6, E7, E8. The Octo-
nions intervened in this context, because, it is possible to describe four of these
exceptional groups through to them.

In 1914, Elie Cartan (1869-1951) showed that the group of automorphisms of
the Octonions is G2 [Cartan 1914]. In 1950, Armand Borel (1923-2003) observed
that F4 is the group of isometries of the Moufang plane [Borel 1950]. In the
same year Claude Chevalley (1909-1984) and Richard Schafer (1918 -) showed
that F4 is the automorphism group of the exceptional Jordan algebra h3(O)
and they described E6 as the group of linear transformations of h3(O) that
preserves the determinant [Chevalley and Schafer 1950]. Finally, in 1954 Hans
Freudenthal (1905-1990) described the group E7 as the automorphisms group of
a 56-dimensional structure of Octonions [Freudenthal 1954].

5 – Conclusions

It follows from the previous considerations that the approach of Hilbert was
at least partially realized by his students, in particular by Max Dehn. Dehn’s ap-
proach was “modern”, and he was interested, moreover, precisely in the mutual
interrelation between algebraic structure and geometric relations. This point of
view marked the starting point of a “new mathematics”, one whose principal
author was Ruth Moufang. In her works, she embraced Dehn’s “modern” ap-
proach as well as ideas on “structural” algebra that were increasingly defining a
school of algebraic research around Emmy Noether.

We may, also, note that Veronese’s pioneering work did not give rise to a real
mathematical school, but to a lasting debate on the subject of non-Archimedean
geometry also within Italian geometers. Infact, what it is happened in German
and in America did not happen in Italy. Before Hilbert, the contributions of the
Italian geometrical school, with Riccardo De Paolis (1854-1892), Federico En-
riques (1871-1946), Gino Fano (1871-1952), Giuseppe Peano (1858-1932), Mario

(13)Which is the algebra of Hermitian matrices over Octonions with product ab =
1
2
(ab + ba).
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Pieri (1860-1913), Corrado Segre (1863-1924) and Giuseppe Veronese (1854-
1917) to the Foundantions of Projective Geometry were considerable.

After Hilbert, the foundations of geometry in Italy were totally replaced by
the works of the German and the American schools. One of the reasons was that
the Italian school considered the foundations as the end of a process of building a
geometric theory [Avellone et al. 2002] contrary to the Grundlagen that inspired
a new phase of geometry researches, as we have seen.

Furthermore, we find interesting to analyze the “case” of the Octonions. In
fact their history shows how an abstract theory can find unexpected applications
long after its introduction. It seemed that the role of the Octonions in Mathe-
matics was simply to be an example of non-associative structure and even within
the same Cayley after their introduction, forgot to them for about 30 years. As
we have seen, it was due to arrive in the first half of the twentieth century to find
their first important applications both the projective geometry and the theory
of Lie.

Surprisingly, in the eighties it was assumed a link between the Octonions
and the String theory. The physicists have found that in the spaces of dimensions
3, 4, 6 and 10 each spinor can be represented as a pair of elements of the same
algebra. This is satisfied only if the space has dimension 2 plus the dimensions of
a normed division algebra. So that, from the dimensions 1, 2, 4, 8 are obtained
just 3, 4, 6 and 10. Therefore, the String theories candidate to be defined are,
respectively, the Real, the Complex, the Quaternionic and the Octonionic and it
seems that the most authoritative to be a model of physical reality is just that
Octonionic.

This assumption made them return the focus of scientific research today
and made them the protagonists of many books both informative and technical
as [Stewart 2008], [Conway and Smith 2003].
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Abstract: The Gale transform is an involution on sets of points in a projective
space. It plays a crucial role in several different subjects, such as algebraic geometry,
optimization, coding theory, and so on. We give a brief survey—from a finite geometry
point of view—on the algebraic and geometrical implications of the Gale transform with
emphasis on its applications to coding theory, and describe some recent results.

1 – Introduction

The Gale transform of a set T consisting of γ labelled points of a projective
space PG(r, q) is an involution which maps T into a set T ′ consisting of γ labelled
points of PG(s, q), defined up to automprphisms of PG(s, q), with γ = r + s+2.

The simplest way to define the Gale transform of a set of points is in terms
of projective coordinates. Choose homogeneous coordinates in such a way that
the coordinates of the points of T are the rows of the matrix(

Ir+1

A

)
,

where In denotes the n× n identity matrix and A is an (s + 1)× (r + 1) matrix.
Then, the Gale transform of T is the set T ′ consisting of the points of PG(s, q)
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whose homogeneous coordinates are the rows of the matrix( τA

Is+1

)
,

where τA is the transpose matrix of A.
Although from the definition itself one may doubt whether the Gale trans-

form has any geometry at all in the classical projective sense, the research work
carried out over more than two centuries by some of the most important math-
ematicians is there to show that it is not true.

The first historical occurrency of a result related to the Gale transform is
the following theorem which appeared in Pascal’s “Essay Pour Les Coniques”,
see [24].

Theorem 1.1. (Pascal, 1640) The vertices of two triangles which are
circumscribed around the same conic lie on another conic.

Basically, the six points involved in Theorem 1.1 consitute a set of points which
is the Gale transform of itself. At an early stage, finding sets of points which are
the Gale transform of themselves represented the main goal of mathematicians
dealing with the Gale transform. After Pascal, sets that are the Gale transform
of themselves appeared in the work of Hesse [17, 18], von Staudt [26], Weddle
[27], Zeuthen [29], Dobriner [11], Sturm [25], Rosanes [22, 23], Castelnuovo (who
called two sets of points that are the Gale transform of one another “gruppi
associati di punti”) [3], and many others.

However, it was Coble—whose work had remarkable applications to theta
functions and Jacobians of curves, see [4, 5, 6, 7]—the first who studied the Gale
transform in a more general setting, starting off with the following alternative
definition formulated in terms of matrices over a field.

Let K be a field and r, s two integers not less than 1. Set γ = r + s + 2.
Consider a subset Γ of a projective spaces of dimension r and a subset Γ′ of
a projective space of dimension s. Further, let Γ and Γ′ be represented by a
γ × (r + 1) matrix G and a γ × (s + 1) matrix G′ respectively. Then Γ′ is said
to be the Gale transform of Γ if there is a nonsingular diagonal γ × γ matrix D
such that T GDG = 0.

Whitney [28] and Gale [14] developed similar ideas in the affine case. Later
on, Goppa—see [15] and [16] for instance—studied the Gale transform from a
coding theory point of view. It is well known that in coding theory the Gale
transform is the passage from a code to its dual; Goppa proved that a code
defined by the set of GF(q)-rational points on a certain algebraic curve is dual
to another code of similar nature.

What we have seen so far is just a quick outline of the rich history of
the Gale transform, which has implications in many other branches of modern
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mathematics such as optimization, group theory, linear spaces, scheme theory,
and so on. A full historical treatise on the development of the Gale transform
over more than 150 years is well beyond the scope of these notes. For a more
detailed historical account on the Gale transform the interested reader is referred
to [12] and the references therein.

2 – Preliminary results

The first crucial result concerning the Gale transform of sets of points in
finite projective spaces is stated in the following theorem.

Theorem 2.1. The Gale transform of the projective line PG(1, q), with
q ≥ 4, is a normal rational curve of PG(q − 2, q).

The result of Theorem 2.1 was already known to Goppa, as it is related with the
so-called Goppa duality among the error correcting codes bearing his name [15,
16]. In [8] there is an alternative proof of this result which is based only on the
properties of finite fields.

A natural generalisation of Theorem 2.1 in the finite case, if q is large enough,
is the following result.

Corollary 2.2. If � is a line in some projective space PG(r, q) and T ⊆ �,
with |T | = r + s + 2, then the Gale transform T ′ of T is contained in the unique
normal rational curve of PG(s, q) containing the fundamental frame.

The proof of Corollary 2.2 is based on the fact that the Gale transform of any
subset of points on a line in a projective space PG(r, q) of higher dimension is
independent of the embedding of the line in the space. This can be clarified by
means of a simple example obtained with the aid of MAGMA [2].

In the projective plane PG(2, 4), where (X1, X2, X3) are projective homo-
geneous coordinates, consider without loss of generality the line � : X3 = 0
whose point set is {(1, 0, 0), (0, 1, 0), (1, ω, 0), (1, ω2, 0), (1, 1, 0)}, with ω a prim-
itive element of GF(4). With respect to the Gale transform, the essential part
of � is the subset {1, ω, 0), (1, ω2, 0), (1, 1, 0)} which—after truncation at the sec-
ond coordinate—gives rise to the points (1, 1, 1) and (1, ω, ω2). By adding the
fundamental points of PG(2, 4) we get a conic of PG(2, 4).

Similarly, for q = 5 it can be observed that a line of PG(2, 5) is mapped by
the Gale transform onto a twisted cubic of PG(3, 5).

The following result is an important consequence of [19, Theorem 27.5.4].

Proposition 2.3. The Gale transform of a k-cap in a projective space
PG(r, q), k ≥ r + 4, is a k-cap in PG(k − r − 2, q).
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What we have seen so far can be summarized in the following fundamental result,
see [8].

Theorem 2.4. Let T be any set consisting of k of points in PG(r, q), r ≥ 2
and k ≥ r + 4. Then the Gale transform T ′ of T is a k-cap in PG(k − r − 2, q).

Sometimes it is convenient to have some control over the automorphism groups
associated to the geometrical objects obtained in some peculiar way. With this
respect, the Gale transform has an interesting behaviour, as it is shown by the
following result [8].

Proposition 2.5. Let K be a k-cap in PG(r, q) and K′ its Gale transform.
Then K and K′ have isomorphic collineation groups.

3 – Self-associated sets

A set of points which is the Gale transform of itself is called a self-associated
set. Actually, at an early stage the study of the Gale transform was mainly de-
voted to finding self-associated sets of points with some prescribed properties,
see [12] for details and historical information. Some more recent results concern-
ing self-associated sets from an algebraic geometry point of view can be found
in [13].

Unlike the classical case, in finite geometry self-associated sets are somehow
rare, due to the great number of constrains that the condition of being self-
associate imposes over sets of points in a finite projective space. What follows
provides a typical example of such results.

• A conic C in PG(2, q) is self-associated if and only if q = 5. In fact, γ =
|C| = q + 1 and from γ = r + s + 2, r = s = 2 it follows q = 5.

• In PG(r, q) no self-associated set is the complement of a hyperplane if q is
odd. Indeed, if π is a hyperplane of PG(r, q), then γ = qr = 2(r + 1), and
this equality cannot hold unless q is even.

• The complement of a plane in PG(3, q) is self-associated if and only if q = 2.
Indeed, if π is a plane in PG(3, q), then γ = |PG(3, q)\π| = q3 implies q3 = 8,
and hence q = 2.

• The complement of a hyperplane in PG(r, 2) is a self-associated set if and
only if r = 3. Indeed, let π be a hyperplane of PG(r, 2). Then, γ =
|PG(r, 2) \ π| = 2r. If r = s then 2r−1 = r + 1, which implies r = 3.

What we have just seen can be summarised as follows, see [8].

Lemma 3.1. The only finite projective space containing a self-associated
set which is the complement of a hyperplane is PG(3, 2).
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4 – The Gale transform of an elliptic quadric in PG(3, 3) and the Math-
ieu groups

In this section we show an interesting connection among the group of an
elliptic quadric of PG(3, 3) and the Mathieu groups M11, M12 obtained by means
of the Gale transform.

Let E be the elliptic quadric of PG(3, 3) whose points are

P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0), P3 = (0, 0, 1, 0),
P4 = (0, 0, 0, 1), P5 = (1, 1, 1, 0), P6 = (1, 0, 2, 1),
P7 = (1, 2, 1, 2), P8 = (1, 1, 2, 2), P9 = (1, 2, 0, 1),

P10 = (0, 1, 1, 1).

Their coordinate vectors are the rows of the matrix

(
I4

A

)
.

The matrix associated to the Gale transform E ′ of E is

( τA

I6

)
,

where

τA =

⎛⎜⎝
1 1 1 1 1 0
1 0 2 1 2 1
1 2 1 2 0 1
0 1 2 2 1 1

⎞⎟⎠ .

The rows of τA generate a vector space V1 = V (4, 3).
Let V = V (10, 3) be a 10-dimensional vector space over F3 equipped with

the standard scalar product. Then, the orthogonal complement of V1 in V is
V ⊥

1 = V (6, 3) = V2.
The 10-caps in PG(5, 3) whose points can be arranged to produce the rows

of a 10×6 matrix whose columns span a vector space like the above V2 are called
dual 10-caps of E .

Consider the (unique up to isomorphisms) Steiner System S = S(3, 4, 10)
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whose points are the points of E ′ and blocks are as follows:

{P4, P5, P7, P9}, {P1, P2, P3, P9}, {P6, P8, P9, P10},
{P3, P6, P7, P9}, {P3, P5, P9, P10}, {P2, P5, P6, P7},
{P2, P7, P9, P10}, {P4, P5, P6, P10}, {P2, P4, P6, P9},
{P1, P2, P4, P7}, {P1, P2, P5, P10}, {P3, P4, P8, P9},
{P2, P3, P6, P10}, {P1, P5, P6, P9}, {P3, P5, P6, P8},
{P4, P6, P7, P8}, {P5, P7, P8, P10}, {P1, P6, P7, P10},
{P3, P4, P7, P10}, {P1, P4, P5, P8}, {P2, P4, P8, P10},
{P1, P2, P6, P8}, {P1, P4, P9, P10}, {P1, P7, P8, P9},
{P2, P3, P7, P8}, {P2, P5, P8, P9}, {P1, P3, P8, P10},
{P2, P3, P4, P5}, {P1, P3, P5, P7}, {P1, P3, P4, P6}.

• E ′ and E admit the same automorphism group G = PGO−(4, q) which acts
transitively on the plane sections of E .

• S is the so-called Witt design W10;
• The isomorphism group of S is denoted by M10 and is isomorphic to a

proper subgroup of PGL(2, 9) containing PSL(2, 9).
• G in its 6-dimensional representation is reducible; it fixes a line � which is

splitted into two orbits:

�1 = {(1, 1, 0, 2, 2, 2), (1, 2, 2, 0, 1, 2)};
�2 = {(1, 0, 1, 1, 0, 2), (0, 1, 2, 1, 2, 0)}.

Fix the orbit �1 and let E1 = E ′∪{(1, 1, 0, 2, 2, 2)}. Then, E1 turns out to be
the set of points of the unique Steiner system S(4, 5, 11) admitting M11 as
its automorphism group. The cap code associated to E1 is the well known
ternary Golay code, which is a perfect [11, 6, 5]3 code, see [8, 20 ,21].
Further, let E2 = E1 ∪ {(1, 2, 2, 0, 1, 2)}. Then, E2 turns out to be the set

of points of the unique Steiner system S(5, 6, 12) admitting M12 as its automor-
phism group, see [8, 21]. We obtained the following result.

Lemma 4.1. The Gale transform of an elliptic quadric of PG(3, 3) can be
extended in PG(5, 3) to obtain the extended ternary Golay code.

Note that the above procedure can also be applied starting off with the
points of the affine plane AG(2, 3) obtained by removing from PG(2, 3) the line
of equation X1 + X2 + X3 = 0—in place of the points of E—to obtain a cap
admitting M12 as its automorphism group.
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Remark 4.2. A similar construction can be performed starting off with
an hyperbolic quadric in PG(3, 3) instead. In this case we end up with a 16-
cap in PG(11, 3) which is the join of four normal rational curves. Furthermore,
this 16-cap admits an automorphism group which is isomorphic to the group
PGL(2, 3) × PGL(2, 3) of the initial hyperbolic quadric.

5 – Extending scalars

In connection with what we have seen in the previous section, it is also
interesting to note the following constructions based on the action of the groups
M11 and M12.

5.1 – A [110, 5, 90]9-linear code [9]

Start off with a Singer cyclic subgroup S of PSL(5, 3). The group S admits
a subgroup of order 11 partitioning PG(4, 3) into 11-caps. Let K be one of these
caps. Then, K is the smallest complete cap in PG(4, 3), and it is preserved
setwise by the Mathieu group M11, see [20]. As we mentioned before, the cap
code associated to K is the well known ternary Golay code.

Embed Σ = PG(4, 3) in PG(4, 9) as a canonical Baer subgeometry, and look
at the orbits of M11 on PG(4, 9) \ Σ; it turns out that M11 has five orbits in
PG(4, 9) of lengths 110, 220, 990, 1980 and 3960.

Recall that K has 55 secants; let r be an arbitrary GF(9)-extended secant
to K. The stabilizer H of r in M11 is the group

M9 � C2 � (E9 × Q8) � C2

of order 144.
Now let O be the orbit of size 110 in PG(4, 9) \ Σ. The group H has four

orbits on r: three of them have length 2, while the fourth one has length 4. Two
of the orbits of length 2 yield the line r ∩ Σ. Varying r among the secants to
K, the other orbit of length 2 gives rise to the orbit O we mentioned before.
Actually, O is a complete 110-cap of PG(4, 9).

The 110-cap O yields a [110, 5, 90]9-linear code C with weight distribution

255, 81980, 111320, 142970, 17990, 2066.

A code with the same parameters can be found in [1]. However, in the cited
paper the authors do not mention its automorphism group. The main advantage
of our approach relies on the fact that it is possible to keep track of the auto-
morphism group throughout the construction procedure, and codes with large
automorphism groups are of some interest in their own right.
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5.2 – A [132, 6, 96]9-linear code

The extended ternary Golay code is a [12, 6, 6]3 linear code obtained by
adding a zero-sum check digit to the [11, 6, 5]3 code. The automorphism group
of the extended ternary Golay code is C2 × M12. Such a code can be realized
geometrically in terms of a 12-cap C in PG(5, 3), see [10].

Embed Π = PG(5, 3) in PG(5, 9) as a canonical Baer subgeometry and look
at the orbits of G = M12 on PG(5, 9) \ Π. With the aid of MAGMA [2] we
checked that G has one orbit O of size 132 which is a cap.

The number of secants to C is 66. Let r be an arbitrary F9-extended secant
to C. The stabiliser H of r in G is the group

M10 � C2 � A6 × E4

of order 1440. The group H has 4 orbits on r of lenghts 2, 2, 2 and 4.
Two orbits of length 2 form the the line r∩Π. Varying r among the secants

to C, the remaining orbit of size 2 gives rise to the cap O. Therefore, Coxeter’s
12-cap gives rise to our cap O. We checked with MAGMA [2] that the cap-code
arising from O is a [132, 6, 96]9 linear code.
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Abstract: Any curve of genus 3 can be represented as a plane quartic curve.
The question of the maximum number of points on such a curve over a finite field is
discussed.

1 – Questions about curves

(i) What is meant by the ‘number of points’ on a curve?
(ii) What is the number of points on a curve that can occur, given some pa-

rameters such as
q, the size of the field,
g, the genus of the curve,
n, the degree of a plane curve?

(iii) What is the maximum number of points?
(iv) Find curves with certain parameters.
(v) Classify the curves with a set of these parameters.

One such problem is to find the number of rational points over Fq on a non-
singular plane quartic curve, that is, a curve of genus 3.

This article surveys this problem and its background. For contrast, curves
of genus 1 and 2 are also considered.

Key Words and Phrases: Cubic surface – Quartic curve
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2 – Cubic surfaces

Let V = v(F1, . . . , Fr) be the variety given by the zeros of the homogeneous
polynomials F1, . . . , Fr.

Theorem 2.1. A non-singular surface F3 of degree three over a field K
has at most 27 lines and over the algebraic closure K exactly 27 lines.

Theorem 2.2. Over Fq, there exists an F3 with 27 lines if q �= 2, 3, 5.
Equivalently, in PG(2, q), there exists a 6-arc not on a conic if q �= 2, 3, 5.

Theorem 2.3.

(i) The group G27 of automorphisms of the 27 lines is isomorphic to

PΓU(4, 4) ∼= PGO−(6, 2) ∼= PGSp(4, 3) ∼= PGO(5, 3),

and has order 51, 840 = 72 × 6!.
(ii) The simple group G′

27 of index two in G27 is isomorphic to PGU(4, 4), and
has order 25, 920 = 36 × 6!.

2.1 – From 27 to 28

Theorem 2.4. For a point P not on a line of F3, the intersection C6 of
F3 and the polar quadric Q2 of F3 at P has a double point at P ; it projects from
P to a non-singular plane quartic when K has characteristic other than two.

Figure 1

F3 ∩Q2 = C6 P→C4
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Proof. Let P = (1, 0, 0, 0) and π = v(X0). Then

F3 = v(X2
0f1(X1, X2, X3) + X0f2(X1, X2, X3) + f3(X1, X2, X3)),

Q2 = v(2X0f1(X1, X2, X3) + f1(X1, X2, X3)),
C6 = v(X2

0f1 + X0f2 + f3, 2X0f1 + f2)
C4 = v(f2

2 − 4f1f3, X0)

For q even, C4 = C2 ∪ C2, a repeated conic. For q odd, F3 is non-singular if and
only if C4 is non-singular.

Theorem 2.5. For q odd, q ≥ 9, there exists a non-singular C4 with 28
bitangents if and only if there exists F3 with 27 lines and P not on the lines.

Example 2.6. For q = 9, let

F = X4
0 + X4

1 + X4
2

= X0X̄0 + X1X̄1 + X2X̄2,

where t �→ t3 = t̄ is the involutory automorphism of F9. So F = v(F ) is a
Hermitian curve with q

√
q +1 = 28 rational points, all of which are undulations;

that is, the tangents have 4-point contact and so are bitangents.

2.2 – Number of points

Theorem 2.7.

(i) The number of rational points on a non-singular cubic surface F3 over Fq

is |F3(Fq)| = q2 + 7q + 1.
(ii)

(a) The 27 lines of F3 lie on 45 tritangent planes of which e meet F3 in
three concurrent lines.

(b) The number of rational points on the lines is N0 = 27(q − 4) + e.

Proof.

(i) In the correspondence between F3 and the plane, each line in one half of a
double-six corresponds to a point.

(ii) (b) A triangle contains 3q points, whereas a triad of concurrent lines contains
3q + 1 points. As each line meets 10 others, a count of points on just one of
the 27 lines plus those on more than one line gives the following:

N0 = 27(q + 1 − 10) + 27 × 10/2 + e.
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2.3 – Full F3

Definition 2.8. A cubic surface defined over K is full if its lines contain
all its rational points.

Theorem 2.8.

(i) There exists a full F3 for

q = 4, 7, 8, 9, 11, 13, 16 .

(ii) Canonical forms for the full surfaces are as follows:

E = v(X3
0 + X3

1 + X3
2 + X3

3 ), q = 4, 7, 13, 16;

D = v
(
X3

0 + X3
1 + X3

2 + X3
3 + X3

4 ,
∑

Xi

)
, q = 4, 11, 16;

D = v
(∑

XiXjXk,
∑

Xi

)
, q = 9;

C = v(X0X1(X0 + X1) + X2X3(X0 + X2 + X3)), q = 8.

(iii) For q = 4, 7, 8, every F3 is full.
(iv) For q > 16, no F3 is full.

2.4 – Number of lines and bitangents

Theorem 2.10. For a cubic surface F3 and the corresponding C4 over
Fq, let n be the number of possible lines on F3 and b the number of possible
bitangents on C4.

(i) For q odd,
n = 27, 15, 9, 7, 5, 3, 2, 1, 0;
b = 28, 16, 10, 8, 6, 4, 3, 2, 1, 0.

(ii) For q = 2,
n = 15, 9, 5, 3, 2, 1, 0.
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Question 2.11. What are the possible numbers of lines on a non-singular
cubic over F2h?

Theorem 2.12. For q even, the possible numbers of bitangents of a non-
singular plane quartic are 7, 3, 1, 0. In the case of 7 bitangents they form a
PG(2, 2).

Example 2.13. (The Klein curve for q = 8)

F = v(X3Y + Y 3Z + Z3X).

The 24 rational points are all inflexions. There are 7 bitangents

v(c3X + cY + Z), c ∈ F8\{0},

forming a PG(2, 2).

Theorem 2.14. For an algebraically closed field of characteristic two, the
possible configurations of bitangents are the following :

(1) 7 lines forming a PG(2, 2);
(2) 4 lines with 3 concurrent;
(3) 1 line;
(4) a pencil plus a line;
(5) a pencil with one special line.

3 – The number of points on a non-singular curve

For a curve F defined over Fq with Ni the number of points of F rational
over Fqi , the zeta function is

ζq(T ) = exp(1 + N1T + N2T
2/2 + N3T

3/3 + · · · ).

Theorem 3.1. (Hasse–Weil)

ζq(T ) = exp
(∑

NiT
i/i

)
=

f(T )
(1 − T )(1 − qT )

,

with f ∈ Z[T ], degf = 2g.
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Corollary 3.2.

(i) N1 ≤ q + 1 + 2g
√

q.
(ii) When g = 1,

ζq(T ) =
1 + c1T + qT 2

(1 − T )(1 − qT )
.

Theorem 3.3. (Serre) N1 ≤ q + 1 + g�2√q�.

Notation 3.4. Nq(g) = max N1, taken over all non-singular curves C of
genus g over Fq.

Example 3.5. For the Klein curve with q = 2,

F = X3Y + Y 3Z + Z3X,

N1 = 3, N2 − N1 = 2, N3 − N1 = 21,

f(T ) = 1 + 5T 3 + 8T 6.

A special case of an important theorem gives other bounds.

Theorem 3.6. (Stöhr–Voloch) For a plane curve of degree n with not all
points inflexions and p �= 2,

N1 ≤ 1
2
n(n + q − 1).

The case that q = 7, n = 4, g = 3 gives

N7(3) ≤ 20 < 23 = 7 + 1 + 3�2 ×
√

7�

In fact, N7(3) = 20.

4 – Curves of genus 1

A curve of genus 1, or elliptic curve, can be regarded as a plane non-singular
cubic. Plane cubics may be classified up to isomorphism or projective equiva-
lence.

Theorem 4.1. Up to isomorphism, a curve F = v(F ) of genus 1 over
Fq, with q = ph, has at least one point of inflexion and the following canonical
forms.



[7] Curves of genus 3 83

(i) When p �= 2, 3,

F = Y 2Z + X3 + cXZ2 + dZ3,

where 4c3 + 27d2 �= 0.

(ii) When p = 3,

(a)
F = Y 2Z + X3 + bX2Z + dZ3,

where bd �= 0;
(b)

F ′ = Y 2Z + X3 + cXZ2 + dZ3,

where c �= 0.

(iii) When p = 2,

(a)
F = Y 2Z + XY Z + X3 + bX2Z + dZ3,

where b = 0 or a fixed element of trace 1, and c �= 0;
(b)

F ′ = Y 2Z + Y Z2 + eX3 + cXZ2 + dZ3,

where e = 1 when (q − 1, 3) = 1 and e = 1, α, α2 when (q − 1, 3) = 1, with α a
primitive element of Fq; also, d = 0 or a particular element of trace 1.

Canonical forms up to a projectivity exist for cubics with no inflexions; see [7,
Chapter 11]. For example, over F7, let

F = X3 + 2Y 3 + 3Z3.

The corresponding curve F has no inflexion.

Theorem 4.2. Let N1 be the number of rational points of an elliptic curve
over Fq.

(i)
q + 1 − 2

√
q ≤ N1 ≤ q + 1 + 2

√
q.

(ii) The precise number N1 = q +1− t, with | t | ≤ 2
√

q, of points that can occur
is given in Table 1.
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Table 1: Values of t

t p h

(1) t �≡ 0 ( mod p)

(2) t = 0 odd

(3) t = 0 p �≡ 1 (mod 4) even

(4) t = ±√
q p �≡ 1 (mod 3) even

(5) t = ±2
√

q even

(6) t = ±√
2q p = 2 odd

(7) t = ±√
3q p = 3 odd

Theorem 4.3. If Aq and Pq are the numbers of distinct elliptic curves up
to isomorphism and projective equivalence, then

Aq = 2q + 3 +
(−4

q

)
+ 2

(−3
q

)
;

Pq = 3q + 2 +
(−4

q

)
+

(−3
q

)2

+ 3
(−3

q

)
.

Here the bracketed numbers are Legendre and Legendre–Jacobi symbols taking
the values −1, 0, 1.

The prime power q = ph is exceptional if h is odd, h ≥ 3, and p divides �2√q�.

Theorem 4.4. The actual upper bounds for elliptic curves over Fq are as
follows:

Nq(1) =
{

q + �2√q�, if q is exceptional
q + 1 + �2√q�, if q is non-exceptional;

Corollary 4.5. The number N1 takes every value between q + 1−�2√q�
and q + 1 + �2√q� if and only if

(a) q = p;
(b) q = p2 with p = 2 or p = 3 or p ≡ 11 (mod 12).
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4.1 – Unsolved problem

Let m3(2, q) be the maximum size of a point set K in PG(2, q) such that at
most three points of K lie on a line. Show that

m3(2, q) > Nq(1) for q �= 4.

This is true for q ≤ 13 as in Table 2.

Table 2: Values of m3(2, q)

q 2 3 4 5 7 8 9 11 13
m3(2, q) 7 9 9 11 15 15 17 21 23
Nq(1) 5 7 9 10 13 14 16 18 21

5 – Curves of genus 2

Theorem 5.1. For a curve of genus 2 over Fq with q square,

Nq(2) = q + 1 + 4
√

q, if q �= 4, 9;
N4(2) = 10;
N9(2) = 20.

The prime power q = ph is special if (a) or (b) holds:

(a) p divides �2√q�;
(b) there exists m such that q = m2 + 1 or q = m2 + m + 1 or q = m2 + m + 2.

Theorem 5.2. If q is a non-square, with {2√q} = 2
√

q − �2√q�,

Nq(2) = q + 1 + 2�2√q�, if q is not special;

Nq(2) = q + 2�2√q�, if q is special and {2√q} >
1
2
(
√

5 − 1);

Nq(2) = q − 1 + 2�2√q�, if q is special and {2√q} <
1
2
(
√

5 − 1).
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6 – Curves of genus 3

From Section 3, there is the following result.

Theorem 6.1.

(i) Nq(3) ≤ q + 1 + 3�2√q� = S3.

(ii) Nq(3) ≤

⎧⎪⎨⎪⎩
28, q = 9
2(q + 3), q odd, q �= 9
2(q + 4), q even

= V3.

Theorem 6.2. (Lauter) For a curve of genus 3,

N1 ≤ q − 1 + 3�2√q� if q = m2 + 1;
N1 ≤ q − 1 + 3�2√q� if q = m2 + 2 with m ≥ 2;
N1 ≤ q − 2 + 3�2√q� if q = m2 + m + 1;
N1 ≤ q − 2 + 3�2√q� if q = m2 + m + 3 with m ≥ 3.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = L3

Theorem 6.3. For a curve of genus 3, if N1 > 2q + 6 then one of the
following holds:

(i) N1 = 28, q = 9 and C is the Hermitian curve;
(ii) N1 = 24, q = 8 and C is the Klein curve.

Table 3 summarises the results for small q.

Table 3: Number of points on curves of genus 3

q 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27

Nq(3) 7 10 14 16 20 24 28 28 32 38 40 44 48 56 56
S3 9 13 17 18 23 24 28 30 35 41 42 44 51 56 58
V3 10 12 16 16 20 24 28 28 32 40 40 44 52 56 60
L3 7 10 16 20 28 32 40 48 56

Theorem 6.4. (Ibukiyama) For q = p4m+2,

Nq(3) = q + 1 + 6
√

q.
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Theorem 6.5.

(i) When q < 100, there is equality Nq(3) = S3 if and only if

q ∈ {8, 9, 19, 25, 29, 41, 47, 49, 53, 61, 64, 67, 71, 79, 81, 89, 97}.

(ii) When q ≤ 27, there is equality Nq(3) = V3 if and only if

q ∈ {5, 7, 11, 13, 17, 19, 25}.
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Deformations of algebraic subvarieties
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Dedicated to Professor Marialuisa de Resmini

Abstract: In this paper, we use (bi)semicosimplicial language to study the clas-
sical problem of infinitesimal deformations of a closed subscheme in a fixed smooth
variety, defined over an algebraically closed field of characteristic 0. In particular, we
give an explicit description of the differential graded Lie algebra controlling this problem.

– Introduction

In the last fifty years, deformation theory has played an important role in
algebraic and complex geometry. The main goal is the classification of families of
geometric objects in such a way that the classifying space (the so called moduli
space) is a reasonable geometric space. In particular, each point of our moduli
space corresponds to one geometric object (class of isomorphism). The study
of small deformations of the complex structures of complex manifolds started
with the works of K. Kodaira and D.C. Spencer [KoSp58] and M. Kuranishi
[Ku71]. Then, A. Grothendieck [Gr59], M. Schlessinger [Schl68] and M. Artin
[Ar76] formalized this theory translating it into a functorial language. The idea
is that, with a infinitesimal deformations of a geometric object, we can asso-
ciate a deformation functor of Artin rings F : Art → Set. For example, we
can study the functor DefX of infinitesimal deformations of a variety X or the
functor HilbZ

X of infinitesimal deformations of a subvariety Z in a fixed variety
X. The fundamental fact is that, using these functors, we are able to study the
formal neighborhood of the points in the moduli space. In particular, we can

Key Words and Phrases: Differential graded Lie algebras – Functors of Artin rings
A.M.S. Classification: 13D10, 14D15.
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determine the tangent space or analyze the obstructions (smoothness) problem
[Ma07, Ia07, IM09].

A modern approach to the study of deformation functors, associated with
geometric objects, is via differential graded Lie algebras or, in general, via L∞-
algebras. At this stage, we can think about these structures as a generalization
of differential graded vector spaces in which we also have a bracket, plus some
compatibility conditions between the differential and the bracket. Once we have
a differential graded Lie algebra L, we can define the associated deformation
functor DefL : Art → Set, using the solutions of the Maurer-Cartan equation
up to gauge equivalence.

The guiding principle is the idea due, at least, to P. Deligne, V. Drinfeld,
D. Quillen and M. Kontsevich [Kon03] that “in characteristic zero every defor-
mation problem is controlled by a differential graded Lie algebra”. In other
words, if F is the deformation functor associated with a geometric problem,
then there exists a differential graded Lie algebra L (up to quasi-isomorphism)
such that DefL

∼= F . We point out that it is easier to study a deformation
functor associated with a differential graded Lie algebra but, in general, it is
not an easy task to find the right differential graded Lie algebra (up to quasi-
isomorphism) associated with the problem [Kon94]. A first example, in which
the associated differential graded Lie algebra is well understood, is the case of
deformations of complex manifolds. If X is a complex compact manifold, then
the infinitesimal deformations of X are controlled by its Kodaira-Spencer alge-
bra KSX , see [GM90, Ma04b, Ma09] and [Ia06, Theorem II.7.3]. We recall that
KSX = ⊕iΓ(X,A0,i

X (ΘX)), where A0,i
X (ΘX) is the sheaf of the (0, i)-forms on X,

with values in the holomorphic tangent bundle ΘX .
In general, if we work over an algebraically closed field of characteristic zero,

different from the complex numbers, then we can not use the Kodaira-Spencer
algebra.

A strategy to solve this problem and “produce”differential graded Lie al-
gebras, is via semicosimplicial objects [Hin97, Pr03, FMM08, FIM09]. Actu-
ally, the fundamental idea goes back to K. Kodaira and D.C. Spencer:“a de-
formation of X is regarded as the gluing of the same polydisks via different
identifications”[Kod86, pag. 182]. In other words, a deformation of a geo-
metric object consists in deforming the object locally and then glue back to-
gether these local deformations. Then, from the algebraic point of view, we
have to find the algebraic objects that control locally the deformations and
then glue them together. Thus, we can think at a semicosimplcial object as
a sequence of objects, that controls locally the deformations, and a sequence
of maps, that controls the gluing. For example, let X be a smooth projective
variety, over an algebraically closed field K of characteristic 0, with tangent
sheaf ΘX . Given an affine open cover U = {Ui} of X, we can define the Čech
semicosimplicial Lie algebra ΘX(U), i.e., we have a sequence of Lie algebras
{gk =

∏
i0<···<ik

ΘX(Ui0···ik
)} and a “lot”of maps among them, that are the
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restrictions to open subsets. In particular, g0 =
∏

i ΘX(Ui) and each ΘX(Ui)
controls the infinitesimal deformations of Ui; moreover, the maps controls the
gluing of deformations, see [FMM08] and [IM09, Section 5].

In general, we will have a semicosimplicial differential graded Lie algebra,
gΔ = {gk}k, with g0 that controls the deformations of each open of the cover, as
in the case of deformations of varieties or of coherent sheaves [FIM09, FIM].

Next, once we have a semicosimplicial differential graded Lie algebra gΔ,
we need to find out just one differential graded Lie algebra. Following [NaA87,
FMM08], there is a canonical way to define a differential graded Lie algebra
TotTW (gΔ), using the Thom-Whitney construction. In conclusion, given a geo-
metric deformation problem, if we are able to associate with it a semicosimplicial
differential graded Lie algebra, then we can find out just one differential graded
Lie algebra controlling our problem.

Inspired by these ideas, in this paper we use semicosimplicial language to
study infinitesimal deformations of closed subschemes. More precisely, let X be
a smooth variety, defined over an algebraically closed field K of characteristic 0,
and Z ⊂ X a closed subscheme. Denote by HilbZ

X the functor of infinitesimal
deformations of Z in X and by Hilb′Z

X the subfunctor of locally trivial infinites-
imal deformations. We recall that HilbZ

X = Hilb′Z
X , whenever Z is smooth.

For K = C and Z smooth, the analysis of this problem via differential graded
Lie algebra is due to M. Manetti [Ma07]. Here, we extend his work to all al-
gebraically closed fields K of characteristic 0, using semicosimplicial language;
more precisely, it is convenient to use bisemicosimplial Lie algebras. Indeed, let
ΘX be the tangent sheaf of X and ΘX(− log Z) the sheaf of tangent vectors to
X which are tangent to Z. Denote by χ : ΘX(− log Z) ↪→ ΘX the inclusion of
sheaves of Lie algebras. We can associate with ΘX(− log Z) and ΘX the Čech
semicosimplicial Lie algebra ΘX(− log Z)(U) and ΘX(U), respectively; and so we
can consider the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) → ΘX(U).
Once again, using the Thom-Whitney construction, we can define a differential
graded Lie algebra Tot�

TW (χ�). This algebra controls the deformations of the
closed subscheme Z; more precisely, we prove the following theorem.

Theorem (A). Let X be a smooth variety, defined over an algebraically
closed field K of characteristic 0, and Z ⊂ X a closed subscheme. Then, there
exists an isomorphism of functors DefTot�

T W
(χ�)

∼= Hilb′Z
X . In particular, if

Z ⊂ X is smooth, then DefTot�
T W

(χ�)
∼= HilbZ

X .

In a forthcoming paper, we will use this theorem to study the obstruction to
deformations of Z in X, via the semiregularity map.

The paper goes as follows: the first section is intended for the nonexpert reader
and is devoted to recall the basic notions of differential graded Lie algebras and
their role in deformation theory.



92 DONATELLA IACONO [4]

In Section 2, we introduce semicosimplicial objects and total constructions. In
particular, we review semicosimplicial differential graded Lie algebras, the cor-
responding Thom-Whitney DGLA and the associated deformation functors.
Sections 3 is devoted to bisemicosimplicial objects and, again, to the total con-
structions and the associated deformation functors. In particular, we describe
the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) → ΘX(U), associated
with the inclusion χ : ΘX(− log Z) ↪→ ΘX .
In Section 4, we go back to geometric applications and we prove Theorem A.

Notation. Throughout the paper, we work over an algebraically closed
field K of characteristic zero. All vector spaces, linear maps, tensor products
etc. are intended over K. We denote by Set the category of sets (in a fixed
universe) and by Art the category of local Artinian K-algebras (with residue
field K). If A is an object in Art, then mA denotes its maximal ideal.

1 – Review of differential graded Lie algebras

A differential graded vector space is a pair (V, d), where V = ⊕i∈ZV i is a
Z-graded vector space and d is a differential of degree +1, i.e., d : V i → V i+1

and d ◦ d = 0. For every integer n, we define a new differential graded vector
space V [n], by setting

V [n]i = V n+i and dV [n] = (−1)ndV .

Definition 1.1. A differential graded Lie algebra (DGLA for short) is a
triple (L, [ , ], d), where (L = ⊕i∈ZLi, d) is a differential graded vector space and
[ , ] : L × L → L is a bilinear map of degree zero, called bracket, satisfying the
following conditions:

(1) (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a];
(2) (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]];
(3) (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

Example 1.2. If L = ⊕Li is a DGLA, then L0 is a Lie algebra in the
usual sense; vice-versa, every Lie algebra is a differential graded Lie algebra
concentrated in degree 0 (and differential zero).

Example 1.3. If L is a DGLA and B is a commutative K-algebra, then
L ⊗ B has a natural structure of DGLA, given by

[l ⊗ a, m ⊗ b] = [l, m] ⊗ ab;

d(l ⊗ a) = dl ⊗ a.
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A morphism of differential graded Lie algebras φ:L → M is a linear map
that preserves degrees and commutes with brackets and differentials. A quasi-
isomorphism of DGLAs is a morphism that induces an isomorphism in coho-
mology. Two DGLAs L and M are said to be quasi-isomorphic if they are
equivalent under the equivalence relation generated by: L ∼ M if there exists a
quasi-isomorphism φ : L → M .

1.1 – Deformation functor associated with a DGLA

Definition 1.4. Let L be a DGLA; then, the Maurer-Cartan functor
associated with L is the functor

MCL : Art → Set,

MCL(A) =
{

x ∈ L1 ⊗ mA | dx +
1
2
[x, x] = 0

}
.

Note that in the previous equation we use the DGLA structure on L ⊗ mA

induced by the one on L (see Example 1.3).

Definition 1.5. Two elements x and y ∈ L1 ⊗ mA are gauge equivalent
if there exists a ∈ L0 ⊗ mA such that

y = ea ∗ x := x +
∑
n≥0

[a,−]n

(n + 1)!
([a, x] − da).

The operator ∗ is called the gauge action of the group exp(L0 ⊗mA) on L⊗mA;
indeed, ea ∗ eb ∗ x = ea•b ∗ x, where • is the Baker-Campbell-Hausdorff product

in the nilpotent DGLA L ⊗ mA, i.e., a • b = a + b +
1
2
[a, b] +

1
12

[a, [a, b]] −
1
12

[b, [b, a]] + · · · .

Definition 1.6. The deformation functor associated with a differential
graded Lie algebra L is:

DefL : Art → Set,

DefL(A) =
MCL(A)
gauge

=
{x ∈ L1 ⊗ mA | dx +

1
2
[x, x] = 0}

exp(L0 ⊗ mA)
.
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Remark 1.7. Every morphism of DGLAs induces a natural transformation
of the associated deformation functors. If L and M are quasi-isomorphic DGLAs,
then the associated functor DefL and DefM are isomorphic [SS79, GM88, GM90],
[Ma99, Corollary 3.2], or [Ma04b, Corollary 5.52].

2 – Semicosimplicial objects

Let Δmon be the category whose objects are the finite ordinal sets [n] =
{0, 1, . . . , n}, n = 0, 1, . . . , and whose morphisms are order-preserving injective
maps among them. Every morphism in Δmon, different from the identity, is a
finite composition of coface morphisms:

∂k: [i − 1] → [i], ∂k(p) =
{

p if p < k

p + 1 if k ≤ p
, k = 0, . . . , i.

The relations about compositions of them are generated by

∂l∂k = ∂k+1∂l , for every l ≤ k.

Definition 2.1. According to [EZ50, We94], a semicosimplicial object in
a category C is a covariant functor AΔ: Δmon → C. Equivalently, a semicosim-
plicial object AΔ is a diagram in C:

A0 −→−→A1
−→−→−→A2

−→−→−→−→ · · · ,

where each Ai is in C, and, for each i > 0, there are i + 1 morphisms

∂k:Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

Example 2.2. Let χ : L → M be a morphism in a category C. Then, we
can consider it as a semicosimplicial object in C, by extension with zero, i.e.,

χΔ : L−→−→M −→−→−→ 0 · · · , ∂0 = χ, ∂1 = 0,

Example 2.3. Let X be a smooth variety, defined over an algebraically
closed field of characteristic 0. Let U = {Ui} be an affine open cover and F a
sheaf of Lie algebras on X. Then, we can define the Čech semicosimplicial Lie
algebra F(U) as the semicosimplicial Lie algebra

F(U) :
∏

i

F(Ui)−→−→
∏
i<j

F(Uij)−→−→−→
∏

i<j<k

F(Uijk)−→−→−→−→ · · · ,
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where the coface maps ∂h:
∏

i0<···<ik−1

F(Ui0···ik−1) →
∏

i0<···<ik

F(Ui0···ik
) are given

by
∂h(x)i0...ik

= x
i0...îh...ik |Ui0···ik

, for h = 0, . . . , k.

2.1 – The total construction

Given a semicosimplicial differential graded vector space

V Δ : V0
−→−→V1

−→−→−→V2
−→−→−→−→ · · · ,

the graded vector space
⊕

n≥0 Vn[−n] has two differentials, i.e.,

d =
∑

n

(−1)ndn, where dn is the differential of Vn,

and
∂ =

∑
i

(−1)i∂i, where ∂i are the coface maps.

More explicitly, if v ∈ V i
n, then the degree of v is i + n and

d(v) = (−1)ndn(v) ∈ V i+1
n , ∂(v) = ∂0(v)−∂1(v)+ · · ·+(−1)n+1∂n+1(v) ∈ V i

n+1.

Since d∂ + ∂d = 0, we define Tot(V Δ) as the graded vector space
⊕

n≥0 Vn[−n],
endowed with the differential D = d + ∂.

Remark 2.4. In Example 2.3, the total complex Tot(F(U)), associated
with the Čech semicosimplicial Lie algebra F(U), is nothing else that the Čech
complex Č(U ,F) of the sheaf F .

There is also another way to associate with a semicosimplicial differential graded
vector space V Δ a differential graded vector space. Namely, let (APL)n be the
differential graded commutative algebra of polynomial differential forms on the
standard n-simplex {(t0, . . . , tn) ∈ Kn+1 | ∑

ti = 1} [FHT01]:

(APL)n =
K[t0, . . . , tn, dt0, . . . , dtn]

(1 − ∑
ti,

∑
dti)

.

For every n, m the tensor product Vn ⊗ (APL)m is a differential graded vector
space and then also

∏
n Vn⊗(APL)n is a differential graded vector space. Denote

by

δk: (APL)n → (APL)n−1, δk(ti) =

⎧⎪⎨⎪⎩
ti if 0 ≤ i < k

0 if i = k

ti−1 if k < i

, k = 0, . . . , n,
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the face maps, for every 0 ≤ k ≤ n; then, there are well-defined morphisms of
differential graded vector spaces

Id ⊗ δk:Vn ⊗ (APL)n → Vn ⊗ (APL)n−1,

∂k ⊗ Id:Vn−1 ⊗ (APL)n−1 → Vn ⊗ (APL)n−1.

The Thom-Whitney differential graded vector space TotTW (V Δ) of V Δ is the
differential graded subvector space of

∏
n Vn ⊗ (APL)n, whose elements are the

sequences (xn)n∈N satisfying the equations

(Id ⊗ δk)xn = (∂k ⊗ Id)xn−1, for every 0 ≤ k ≤ n.

Lemma 2.5. The differential graded vector spaces Tot(V Δ) and
TotTW (V Δ) are quasi-isomorphic.

Proof. See [Whi57, Dup76, Dup 78, NaA87, Get04, FMM08, CG08] for
explicit description of the quasi-isomorphism.

Let
g
Δ : g0 −→−→ g1

−→−→−→ g2
−→−→−→−→ · · · ,

be a semicosimplicial differential graded Lie algebra. Since, every DGLA is, in
particular, a differential graded vector space, we can consider the associated total
complex Tot(gΔ). Even if all gi are DGLAs, there is no natural DGLA structure
on Tot(gΔ) [FiMa07, IM09]

Example 2.6. Let χ : L → M be a morphism of DGLAs, then, following
Example 2.2, we can associate with it a semicosimplicial DGLA. Its total com-
plex Tot(χΔ) is nothing else than the (suspension of the) mapping cone complex
associated with χ. Even in this simple case, it is not possible to define a canon-
ical DGLA structure on Tot(χΔ), such that the projection Tot(χΔ) → L is a
morphism of DGLAs [IM09, Example 3.1].

However, in the case of semicosimplicial DGLAs, we can apply the Thom-
Whitney construction to gΔ: it turns out that TotTW (gΔ) has a structure of
DGLA [NaA87, FMM08] .

Remark 2.7. Using the homotopy transfer, the DGLA structure of
TotTW (gΔ) induces an L∞-algebra structure T̃ot(gΔ) on the differential graded
vector space Tot(gΔ), such that T̃ot(gΔ) and TotTW (gΔ) are quasi-isomorphic;
see [FiMa07, FMM08] or [IM09, Corollary 3.3].
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2.2 – Deformation functor associated with semicosimplicial DGLAs

Let gΔ be a semicosimplicial DGLA. Applying the Thom-Whitney construc-
tion of the previous section, we can consider the DGLA TotTW (gΔ) and so the
associated deformation functor DefTotT W (gΔ). Beyond this way, there is another
natural, and more geometric, way to define a deformation functor associated
with gΔ, see [Pr03, Definitions 1.4 and 1.6], [FMM08, Section 3] or [FIM09,
Definition 2.1 and 2.2].

More precisely, if gΔ is a semicosimplicial DGLA, we can define the functor

Z1
sc(exp g

Δ):Art → Set,

such that, for all A ∈ Art, Z1
sc(exp gΔ)(A) is the set of the pairs (l, m) ∈

(g1
0 ⊗ mA) ⊕ (g0

1 ⊗ mA), satisfying the following conditions:

(1) dl + 1
2 [l, l] = 0;

(2) ∂1l = em ∗ ∂0l;
(3) ∂0m • −∂1m • ∂2m = dn + [∂2∂0l, n], for some n ∈ g

−1
2 ⊗ mA.

Moreover, we define the functor

H1
sc(exp g

Δ):Art → Set,

such that

H1
sc(exp g

Δ)(A) =
Z1

sc(exp gΔ)(A)
∼ ,

where (l0, m0) and (l1, m1) ∈ Z1
sc(exp gΔ)(A) are equivalent under the relation

∼ if and only if there exist elements a ∈ g0
0 ⊗ mA and b ∈ g

−1
1 ⊗ mA, such that

(1) ea ∗ l0 = l1;
(2) −m0 • −∂1a • m1 • ∂0a = db + [∂0l0, b].

Example 2.8. Let L be a differential graded Lie algebra, then it can be
considered as a semicosimplicial DGLA LΔ by zero extension, i.e., LΔ

0 = L
and LΔ

i = 0, for all i > 0. In this case, the above functors Z1
sc(expLΔ) and

H1
sc(expLΔ) reduce to MCL and DefL, respectively.

Example 2.9. If χ : L → M is a morphism of DGLAs, then we can
consider it as a simple case of semicosimplicial DGLA χΔ, extending χ by zero
(see Example 2.2).

In this case, the functors Z1
sc(expχΔ) and H1

sc(expχΔ) coincide with the
functors MCχ and Defχ defined in [Ma07, Section 2]. More precisely, we have

Defχ(A) =
MCχ(A)

exp(L0 ⊗ mA) × exp(dM−1 ⊗ mA)
,
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where

MCχ(A)=
{
(x, ea) ∈ (L1 ⊗ mA)×exp(M0 ⊗ mA) |dx +

1
2
[x, x]=0, ea ∗ χ(x)=0

}
,

and the gauge action of exp(L0 ⊗ mA) × exp(dM−1 ⊗ mA) is given by the for-
mula

(el, edm) ∗ (x, ea) = (el ∗ x, edmeae−χ(l)) = (el ∗ x, edm•a•−χ(l)).

In particular, if χ : L → M is an injective morphism of DGLAs, then for every
A ∈ Art, we have

MCχ(A) =
{
ea ∈ exp(M0 ⊗ mA) | e−a ∗ 0 ∈ L1 ⊗ mA

}
.

Under this identification, the gauge action becomes

exp(L0 ⊗ mA) × MCχ(A) → MCχ(A), (em, ea) �→ eae−m,

and then

Defχ(A) =
MCχ(A)

exp(L0 ⊗ mA).

Example 2.10. If all gi = 0, for all i > 1, then the functors Z1
sc(exp gΔ)

and H1
sc(exp gΔ) reduce to the functors MC(∂0,∂1) and Def(∂0,∂1), respectively,

associated with the pair of morphisms of DGLAs ∂0, ∂1 : g0 → g1, introduced in
[Ia08].

Example 2.11. If each gi is concentrated in degree zero, i.e., gΔ is a semi-
cosimplicial Lie algebra, then the functors Z1

sc(exp gΔ) and H1
sc(exp gΔ) reduce

to the one defined in [FMM08, Section 3]. More explicitly, in this case, we have

Z1
sc(exp g

Δ)(A) = {x ∈ g1 ⊗ mA | e∂0xe−∂1xe∂2x = 1},

and x ∼ y if and only if there exists a ∈ g0 ⊗ mA, such that e−∂1aexe∂0a = ey.

Therefore, given a semicosimplicial DGLA gΔ, we can define two defor-
mations functor, DefTotT W (gΔ) and H1

sc(exp gΔ). The relation between these
functors is given by the following theorem.

Theorem 2.12. Let gΔ be a semicosimplicial DGLA such that Hk(gi) =
0, for all i and for all k < 0. Then, there exists a natural isomorphism of
deformation functors

DefTotT W (gΔ) � H1
sc(exp g

Δ).
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Proof. In the case of semicosimplicial Lie algebra, this theorem was proved
in [FMM08, Theorem 6.8]. For the general case, see [FIMM09, Theorem 7.6].

3 – Bisemicosimplicial objects

In this section, we generalize the notion of semicosimplicial objects, defining
bisemicosimplicial objects.

Definition 3.1. According to [GJ99, Chapter IV], a bisemicosimplicial
object A� in a category C is a covariant functor A�: Δmon×Δmon → C; equiva-
lently, a bisemicosimplicial object in C is a semicosimplicial object in the category
of semicosimplicial object in C. More explicitly, it consists of objects Ai,j, for
all i, j ≥ 0, and morphisms ∂Vi

k and ∂
Hj
s in C, for each i, j > 0, such that

∂Vi

k :Ai,j−1 → Ai,j , k = 0, . . . , j,

∂Hj
s :Ai−1,j → Ai,j , s = 0, . . . , i,

and the following compatibility conditions are satisfied

∂Vi

l ◦ ∂Vi

k = ∂Vi

k+1 ◦ ∂Vi

l , ∀l ≤ k,

∂Hj
s ◦ ∂

Hj

t = ∂
Hj

t+1 ◦ ∂Hj
s , ∀s ≤ t,

∂Hj+1
s ◦ ∂Vi

k = ∂
Vi+1
k ◦ ∂Hj

s , ∀s ≤ i + 1, k ≤ j + 1.

We shall say that the object Ai,j has bidegree (i, j) or precisely horizontal degree
i and vertical degree j, and that ∂

Hj
• and ∂Vi• are horizontal (height j) and vertical

(column i) morphisms, respectively. In particular, for all fixed j, (A•,j , ∂
Hj
• ) is a

(horizontal) semicosimplicial object in C; analogously, for all fixed i, (Ai,•, ∂Vi• )
is a (vertical) semicosimplicial object in C. To sum up, a bisemicosimplicial
object A� looks like a diagram

...

...

...

...,

,

,

,

,

,

,

,

,

,
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where each line and each column is a semicosimplicial object and each square
commutes in a simplicial sense, i.e., for all s, k, i and j, the following diagram
commutes

Ai,j+1 −−−−→
∂Hj+1

s

Ai+1,j+1

∂Vi

k

)⏐⏐⏐ )⏐⏐⏐ ∂
Vi+1
k

Ai,j −−−−→
∂Hj

s

Ai+1,j

Example 3.2. Every semicosimplicial object in a category C can be con-
sidered as a bisemicosimplcial object concentrated in zero (vertical or horizontal)
degree.

Bisemicosimplicial objects naturally arise in simple situation. Indeed, let
F and G be sheaves on a variety X, with value in a category C. Fix an affine
open cover U = {Ui}. Then, as in Example 2.3, we denote by F(U) and G(U)
the associated Čech semicosimplicial objects in C. Next, let ϕ : F → G be a
morphism of sheaves. Since ϕ commutes with restrictions of every open subsets,
it induces a morphism ϕΔ : F(U) → G(U) of semicosimplcial objects. Finally, as
in Example 2.2, we can consider the semicosimplicial extension of ϕΔ (by zero)
to get a bisemicosimplcial object ϕ� : F(U) → G(U) in C. This construction
is commutative, i.e., we can firstly extend ϕ (by zero) to get a semcosimplicial
sheaf of object in C, and then apply the Čech semicosimplicial construction to
all sheaves.

Example 3.3. Let X be a smooth variety, defined over an algebraically
closed field of characteristic 0, and U = {Ui} be an affine open cover. Let
Z ⊂ X be a closed subscheme of X. We denote by ΘX(− log Z) the sheaf of
germs of tangent vectors to X which are tangent to Z [Se06, Section 3.4.4].
We recall that, if I ⊂ OX is the ideal sheaf of Z in X, then Θ(− log Z) =
{f ∈ Der(OX ,OX) | f(I) ⊂ I}. Let χ : ΘX(− log Z) ↪→ ΘX be the inclusion
of sheaves of Lie algebras. Then, we can associate with ΘX(− log Z) and ΘX

the Čech semicosimplicial Lie algebra ΘX(− log Z)(U) and ΘX(U), respectively.
Finally, extending the morphism χ by zero, we get a a bisemicosimplicial Lie
algebra χ� : ΘX(− log Z)(U) → ΘX(U).

More explicitly, we have the following diagram
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−

−

−

Θ

Θ

Θ Θ

Θ

Θ

.

3.1 – The total construction

Let V � = (V ∗
n,m, dn,m)n,m be a bisemicosimplicial differential graded vector

space; in particular, we recall that each line and each column is a semicosimplicial
differential graded vector space. Then, as in Section 2.1, with each horizontal
semicosimplicial differential graded vector space (V Δ

•,m, ∂Hm• ), we can associate

the total complex Tot(V Δ
•,m). We recall that Tot(V Δ

•,m) =
⊕
n≥0

V ∗
n,m[−n] and its

differential is Dm =
∑

n

(−1)ndn,m +
∑

j

(−1)j∂Hm
j . In this way, we construct a

semicosimplicial differential graded vector space TotH,Δ(V �)

•,

•,

•,

�

�

�
.

In particular, we can still apply the total construction to TotH,Δ(V �) to ob-
tain the differential graded vector space Tot(TotH,Δ(V �)). More explicitly,
Tot(TotH,Δ(V �)) =

⊕
m

Tot(V Δ
•,m)[−m] =

⊕
n,m

V ∗
n,m[−n−m] and the differential

is D =
∑

m(−1)mDm+
∑

k(−1)k∂V•
k =

∑
m,n(−1)m+ndn,m+

∑
j,m(−1)j+m∂Hm

j

+
∑

k(−1)k∂V•
k .
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Analogously, given V � = (V ∗
n,m, dn,m)n,m, we can firstly focus our attention on

each vertical semicosimplicial differential graded vector space (V Δ
n,•, ∂

Vn• ). As
before, we can associate with each column its total complex, to get a semicosim-
plicial differential graded vector space TotV,Δ(V �)

Tot(V Δ
0,•)−→−→ Tot(V Δ

1,•)
−→−→−→ Tot(V Δ

2,•)
−→−→−→−→ · · · ,

In this case, Tot(V Δ
n,•) =

⊕
m

V ∗
n,m[−m] and its differential is given by D′

n =∑
m(−1)mdn,m +

∑
j(−1)j∂Vn

j . Then, applying again the total construction to
TotV,Δ(V �), we get the differential graded vector space Tot(TotV,Δ(V �)). In this
case, we have Tot(TotV,Δ(V �)) =

⊕
n

Tot(V Δ
n,•)[−n] =

⊕
n,m

V ∗
n,m[−n − m] and

the differential is D′ =
∑

n(−1)nD′
n +

∑
k(−1)k∂H•

k =
∑

m,n(−1)n+mdn,m +∑
j,n(−1)j+n∂Vn

j +
∑

k(−1)k∂H•
k .

Moreover, we can also consider the total complex (Tot�(V �), D) associ-
ated with the triple complex (V ∗

n,m, dn,m, ∂V , ∂H). More explicitly, Tot�(V �)i =⊕
n,m Vn,m[−n−m]i−n−m and the differential is given by D = d+∂1 +∂2, where

d =
∑

m,n(−1)m+ndn,m, ∂1 =
∑

j,m(−1)j+m∂Hm
j and ∂2 =

∑
k(−1)k∂V•

k .

Lemma 3.4. Let V � = (V ∗
n,m, dn,m)n,m be a bisemicosimplicial differen-

tial graded vector space. Then, the associated differential graded vector spaces
(Tot�(V �), D), Tot(TotH,Δ(V �)) and Tot(TotV,Δ(V �)) are quasi isomorphic.

Proof. It follows from a standard computation, using spectral sequence.

As in the previous section, we can also apply the Thom-Whitney construc-
tion instead of the total complex construction. Also in this case, we get two
differential graded vector spaces TotTW (TotH,Δ

TW ) and TotTW (TotV,Δ
TW ) depend-

ing, a priori, on the order of the construction. There is also a more direct way,
based on the Thom-Whitney construction, to associate a differential graded vec-
tor space with a bisemicosimplicial differential graded vector space.

Definition 3.5. Let V � = (Vn,m) be a bisemicosimplicial DGLA. The
Thom-Whitney DGLA Tot�

TW (V �) is defined as the sub-differential graded vector
space of

∏
n,m Vn,m⊗(APL)n⊗(APL)m, whose elements are sequences (xn,m)n,m

satisfying the relations:

(∂Hm

k ⊗ Id ⊗ Id)xn,m = (Id ⊗ δk ⊗ Id)xn+1,m, for every 0 ≤ k ≤ n,

and

(∂Vn

k ⊗ Id ⊗ Id)xn,m = (Id ⊗ Id ⊗ δk)xn,m+1, for every 0 ≤ k ≤ m.
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More explicitly, we are considering sequence of elements (xn,m)n,m = xn,m ⊗
αn ⊗ βm ∈ Vn,m ⊗ (APL)n ⊗ (APL)m such that

∂Hm

k xn,m ⊗ αn ⊗ βm = xn+1,m ⊗ δkαn+1 ⊗ βm

and
∂Vn

k xn,m ⊗ αn ⊗ βm = xn,m+1 ⊗ αn ⊗ δkβm+1.

Lemma 3.6. Let V � = (Vn,m) be a bisemicosimplicial differential graded
vector space; then, the Thom-Withney construction does not depend on the order,
i.e., TotTW (TotH,Δ

TW ) ∼= TotTW (TotV,Δ
TW ) ∼= Tot�

TW (V �)

Proof. It follows from the explicit description of the Thom-Withney con-
struction.

If g� is a bisemicosimplicial DGLAs, then, as in the semicosimplicial case,
the differential graded vector space Tot�

TW (g�) inherits a structure of DGLA.

Remark 3.7. As for the semicosimplicial case, the differential graded vector
spaces Tot�

TW (g�) and Tot�(g�) are quasi-isomorphic. In a forthcoming paper,
we will use the DGLA structure of Tot�

TW (g�) and the homotopy transfer to de-
fine a canonical L∞-algebra structure T̃ot

�
(g�) on Tot�(g�), such that T̃ot

�
(g�)

and Tot�
TW (g�) are quasi-isomorphic L∞-algebra.

3.2 – Deformation functors associated with a bisemicosimplicial DGLA

In this section, we will describe how we can associate a deformation functor
with a bisemicosimplicial DGLA. In Section 2.2, we introduced the deformation
functor H1

sc(exp gΔ) associated with a semicosimplicial DGLA gΔ. Moreover,
Theorem 2.12 states that H1

sc(exp gΔ) � DefTotT W (gΔ), whenever Hk(gi) = 0,
for all i and for all k < 0.

Next, let g� be a bisemicosimplicial DGLA. In the previous section, we
associate with g�, the semicosimplicial DGLA TotH,Δ

TW and TotV,Δ
TW . Therefore, we

can naturally associate with g� the two deformations functors H1
sc(exp TotH,Δ

TW )
and H1

sc(exp TotV,Δ
TW ). Moreover, we associate with g� the Thom-Whitney DGLA

Tot�
TW (g�) and its deformation functor DefTot�

T W
(g�). The following theorem

explains the relation between all these functors.

Thorem 3.8. Let g� be a bisemicosimplicial DGLA such that Hk(gi,j) = 0
for all i, j and k < 0. Then, there exist natural isomorphisms of deformation
functors

H1
sc(exp TotH,Δ

TW ) ∼= DefTotT W (TotH,Δ
T W

(V �))
∼=

∼= DefTot�
T W

(g�)
∼= DefTotT W (TotV,Δ

T W
(g�))

∼= H1
sc(exp TotV,Δ

TW ).
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Proof. The cohomological constraint of the hypothesis implies that Hk

(TotH,Δ
TW (g�)m) = Hk(TotV,Δ

TW (g�)n) = 0, for all n, m and for all k < 0. There-
fore, the first and last isomorphisms follow from Theorem 2.12. The remaining
isomorphisms follow from Lemma 3.6.

Example 3.9. (Example 3.3 revisited) Let X be a smooth variety, Z ⊂
X a closed subscheme and U = {Ui}i an affine open cover of X. Denote by
χ : ΘX(− log Z) ↪→ ΘX the inclusion of sheaves of Lie algebras. Following
Example 3.3, we have the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) →
ΘX(U) and so we can consider the associated DGLA Tot�

TW (χ�). Moreover, as
in the the previous construction, we can associate with χ two semicosimplicial
DGLAs. he easiest way is to consider the induced morphism of DGLA χTW :
TotTW (ΘX(− log Z)(U)) → TotTW (ΘX(U)), and view it as a semicosimplcial
DGLA by zero extension (see Example 2.2), i.e.,

χΔ
TW : TotTW (ΘX(− log Z)(U))

0−−−−→−−−−→
χTW

TotTW (ΘX(U))−→−→−→ 0 · · · .

Analogously, if we apply the Thom-Whitney construction firstly on the rows,
then we get the semicosimplcial DGLA TΔ

Θ

Θ

Θ Θ

Θ

Θ−

−

−

− .

In this second case, the vertical maps are the restrictions to open subsets (see
Example 2.3). The previous Theorem 3.8 implies that there exist isomorphisms
of deformation functors

DefχT W
∼= DefTot�

T W
(χ�)

∼= H1
sc(expTΔ).

We recall that the functor DefχT W
is isomorphic to H1

sc(expχΔ
TW ) (see Exam-

ple 2.9). More explicitly, since χ is injective, for all A ∈ Art, the set DefχT W
(A)

is given by

DefχT W
(A) =

MCχT W
(A)

∼ ,
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where
MCχT W

(A) = {a ∈ TotTW (ΘX(U))0 ⊗ mA)|
e−a ∗ 0 ∈ TotTW (ΘX(− log Z)(U))1 ⊗ mA},

and ea ∼ ea′
if and only if there exist b ∈ TotTW (ΘX(− log Z)(U))0 ⊗ mA, such

that ea′
= eae−b.

4 – Application: Deformations of subvarieties in a fixed smooth vari-
ety

Let X be a smooth variety, defined over an algebraically closed field K of
characteristic 0, and Z ⊂ X a closed subscheme of X. We recall the definition
of infinitesimal deformations of Z in X fixed, full details can be found in [Se06].

Definition 4.1. Let A ∈ Art. An infinitesimal deformation of Z in X
over Spec(A) is a cartisian diagram

⊂ ×

,

π

where π is a flat map induced by the projection from X × Spec(A) to Spec(A).
The associated infinitesimal deformation functor is

HilbZ
X : Art → Set,

such that

HilbZ
X(A) = {infinitesimal deformations of Z in X over Spec(A)}.

Moreover, we can define the sub-functor

Hilb′Z
X : Art → Set,

where

Hilb′Z
X(A) ={locally trivial infinitesimal deformations of Z in X over Spec(A)}.

We recall that, an infinitesimal deformation ZA of Z in X over Spec(A) is called
locally trivial if, for every point z ∈ Z, there exists an open neighbourhood
Uz ⊂ Z such that
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|

,

is a trivial deformation of Uz. Whenever Z ⊂ X is smooth, then every deforma-
tion of Z in X is locally trivial and so HilbZ

X = Hilb′Z
X .

Next, following Examples 3.3 and 3.9, denote by χ : ΘX(− log Z) ↪→ ΘX ,
the inclusion of sheaves of Lie algebras, and by χ� : ΘX(− log Z)(U) → ΘX(U),
the associated bisemicosimplicial Lie algebra.

Theorem 4.2. Let X be a smooth variety, defined over an algebraically
closed field K of characteristic 0, and Z ⊂ X a closed subscheme. Then, there
exists an isomorphism of functors DefTot�

T W
(χ�)

∼= Hilb′Z
X . In particular, if

Z ⊂ X is smooth, then DefTot�
T W

(χ�)
∼= HilbZ

X .

Proof. For K = C and Z smooth, this theorem was already proved in
[Ma07, Theorem 5.2]ManettiSemireg, without the use of semicosimplicial lan-
guage.

Let U = {Ui}i∈I be an affine open cover of X and V = {Vi = Ui ∩ Z}i∈I

the induced one on Z. Let ZA be a locally trivial deformation of Z in X over
Spec(A). Then, ZA is obtained by gluing the trivial deformations Vi⊗A in Ui⊗A
along the double intersections Vij ⊗ A, such that the induced deformation of X
is trivial. Therefore, it is determined by a sequence {θij}i<j of automorphisms
of the sheaves of A-algebras

θ

,

⊗ ⊗

satisfying the cocycle condition

(1) θjkθ−1
ik θij = IdOZ(Vijk)⊗A, ∀ i < j < k ∈ I,

and such that there exist automorphisms αi of OX(Ui) ⊗ A satisfying

(2) θij = αi
−1αj , ∀i < j.
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Note that Equation (2) implies (1). Since we are in characteristic zero, we can
take the logarithms and write θij = edij , for some dij ∈ ΘX(− log Z)(Uij)⊗mA,
and αi = eai , with ai ∈ ΘX(Ui) ⊗ mA.

Therefore, a locally trivial deformation of Z in X over Spec(A) is equivalent
to the datum of a sequence {ai}i ∈

∏
i ΘX(Ui) ⊗ mA, such that

e−aieaj ∈ exp(ΘX(− log Z)(Uij) ⊗ mA), ∀ i < j ∈ I.

As regards the equivalence relation, let ZA and Z ′
A be two deformations of Z in

X over Spec(A). Denote by θij = edij = e−aieaj and θ′ij = ed′
ij = e−a′

iea′
j the

data associated with ZA and Z ′
A, respectively. The deformations ZA and Z ′

A are
isomorphic if, for every i, there exists an automorphism βi of OZ(Vi) ⊗ A, such
that θij = βi

−1θ′ijβj , for every i < j, and satisfying the compatibility relation
α′

iβi = αi. Taking again logarithms, an isomorphism between ZA and Z ′
A is

equivalent to the existence of a sequence {bi}i ∈
∏

i ΘX(− log Z)(Ui)⊗mA, such
that eai = ea′

iebi .
Next, from the DGLA point of view, we showed in Example 3.9, that

DefTot�
T W

(χ�)
∼= H1

sc(expχ�) ∼= DefχT W
. Therefore, it is enough to prove that

Hilb′Z
X

∼= DefχT W
, with χTW : TotTW (ΘX(− log Z)(U)) ↪→ TotTW (ΘX(U)); and

it follows from the explicit description of DefχT W
. Indeed, MCχT W

(A) is the set
of all a ∈ TotTW (ΘX(U))0⊗mA, such that e−a ∗0 ∈ TotTW (ΘX(− log Z)(U))1⊗
mA, i.e., a = {ai}i ∈

∏
i ΘX(Ui)⊗mA, such that e−aieaj ∈ exp(ΘX(− log Z)(Uij)

⊗mA). Moreover, a ∼ a′ if and only is there exist b ∈ TotTW (ΘX(− log Z)(U))0⊗
mA, such that ea′

= eae−b, i.e., b = {bi}i ∈
∏

i ΘX(− log Z)(Ui)⊗mA such that
eai = ea′

iebi .

Remark 4.3. In a forthcoming paper, we will use this theorem to study
the obstructions to the deformations of Z in X, via the semiregularity map.
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Abstract: We conjecture that the classical geometric 2-designs PGd(n, q), where
2 ≤ d ≤ n − 1, are characterized among all designs with the same parameters as those
having line size q + 1. The conjecture is known to hold for the case d = n − 1 (the
Dembowski-Wagner theorem) and also for d = 2 (a recent result established by Tonchev
and the present author). Here we extend this result to the cases d = 3 and d = 4. The
general case remains open and seems to be difficult.

1 – Introduction

In this note, we are concerned with the problem of characterizing the clas-
sical geometric designs PGd(n, q), where d is in the range 2 ≤ d ≤ n− 2, among
all designs with the same parameters. For the convenience of the reader, we first
recall basic facts about these designs. Let Π denote PG(n, q), the n-dimensional
projective space over the field GF (q) with q elements. Then the points and
d-spaces of Π form a 2-(v, k, λ) design D = PGd(n, q) with parameters

v =
[
n + 1

1

]
q

= (qn+1 − 1)/(q − 1),

k =
[
d + 1

1

]
q

= (qd+1 − 1)/(q − 1),

r =
[n

d

]
q

, λ =
[
n − 1
d − 1

]
q

and b =
[
n + 1
d + 1

]
q

,

Key Words and Phrases: Projective spce – Block Designs
A.M.S. Classification: 51E20, 05B05.



112 DIETER JUNGNICKEL [2]

where
[

n
i

]
q

denotes the number of i-dimensional subspaces of an n-dimensional
vector space over GF (q). These so-called Gaussian coefficients are given explic-
itly as [n

i

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−i+1 − 1)

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

Furthermore, the lines of the design D are just the lines of Π; in particular, all
lines of D have cardinality q + 1.(1) All these facts are well-known.

The classical designs are far from being characterized by their parameters.
This is well-known for the case d = n − 1: the number of symmetric 2-designs
with the parameters of a classical point-hyperplane design PGn−1(n, q) grows
exponentially, and a similar result also holds for affine 2-designs with the pa-
rameters of a classical point-hyperplane design AGn−1(n, q). These results were
originally established by the author [5] in 1984, whose bounds were subsequently
improved in several papers [7, 8, 9]. In a recent paper, the author and Tonchev
established the corresponding result for the number of 2-designs with the pa-
rameters of PGd(n, q), where d is in the range 2 ≤ d ≤ n − 2.

This naturally poses the problem of characterizing the classical geometric
designs PGd(n, q) among all designs with the same parameters. Again, the case
d = n − 1 has been settled for a long time: Dembowski and Wagner obtained
several elegant characterizations in a celebrated paper [2] which appeared in 1960;
see also [1] for a proof. One of their results characterizes the designs PGn−1(n, q)
by their line size, namely q +1, and an analogous result was recently established
by Tonchev and the present author [6] for the case d = 2.

In contrast, not that much is known for the cases 3 ≤ d ≤ n − 2. The only
result I am aware of is due to Lefèvre-Percsy [10], who proved that a smooth(2)

design with the parameters of PGd(n, q), where d ≥ 2 and q ≥ 4, but q not
necessarily a prime power, is classical if and only if all lines have size at least
q + 1.

Unfortunately, Lefèvre-Percsy’s hypothesis that the design should be smooth
is a very severe restriction; moreover, the assumption q ≥ 4 seems somewhat
unnatural. Therefore the problem of finding a nicer characterization remains
open. In this direction, I offer the following

(1)Recall that the line determined by two points of a design is defined as the intersection
of all blocks containing these two points. See [1] for background on designs, and [3, 4]

for background on finite projective spaces.
(2)Recall that the plane determined by three non-collinear points of a design is defined
as the intersection of all blocks containing the three given points. In general, planes
may be properly contained in other planes. This undesirable phenomenon is excluded
if one requires the design to be smooth, that is, if one assumes that any three non-
collinear points are contained in a constant number of blocks, which is then usually
denoted by �. See [1] for details.
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Conjecture 1.1. A design with the parameters of PGd(n, q), where 2 ≤
d ≤ n− 1 and where q ≥ 2 is not necessarily a prime power, is classical (so that
q is actually a prime power) if and only if all lines have size q + 1.

As mentioned before, this conjecture is already known to hold for the case
d = n − 1 (the Dembowski-Wagner theorem) and also for d = 2 (by the recent
result of [6]). In the present note, I will establish the validity of Conjecture 1.1
for the cases d = 3 and d = 4. For the convenience of the reader, I shall also
repeat the simple proof for the case d = 2 as a warm-up. It will become apparent
that the problem gets more and more involved as d grows, so that a general proof
will most likely require some major new idea. Even the next open case d = 5
seems to be rather challenging.

My proofs will repeatedly appeal to a simple, but extremely useful result
concerning subspaces of linear spaces. Recall that a linear space Σ is just a
pairwise balanced design with joining number λ = 1; therefore one speaks of
lines instead of blocks in this context. A subspace of Σ is a subset S of the
point set with the property that each line intersecting S in at least two points
is entirely contained in S; thus the lines of Σ induce a linear space on S. The
result alluded to gives bounds on the cardinality of a proper subspace, see [1,
I.8.4]. As we shall only require the case where Σ has constant line size k (so that
Σ is actually a 2-design), we merely state this special case:

Lemma 1.2. Let S be a proper subspace of a 2 − (v, k, 1)-design Σ. Then
the cardinality of S satisfies the bound |S| ≤ (v − 1)/(k − 1).

Finally, the subspace spanned by a subset U of the point set of a linear space Σ
is, of course, just the smallest subspace S of Σ containing U .

2 – The cases d = 2 and d = 3

We begin by recalling the case d = 2 from [6]:

Theorem 2.1. Let D′ be a 2-design with the same parameters as the
classical design D = PG2(n, q), where n ≥ 3 and where q ≥ 2 is not necessarily
a prime power. Then D′ is isomorphic to the classical design if and only if all
lines of D′ have size q + 1.

Proof. The condition that all lines have size q + 1 is trivially necessary.
Thus assume that this condition is satisfied. Note that all blocks of D′ have
cardinality k = q2 + q + 1 in this case. Consider an arbitrary block B. Any two
points of B define a unique line of D′ which, by our hypothesis, has size q + 1.
Thus the lines of B induce a (q2 + q + 1, q + 1, 1)-design on B, and hence every
block of D′ carries the structure of a projective plane of order q.
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We next claim that an arbitrary line � of D′ and an arbitrary point p /∈ �
determine a unique block of D′; in other words, the blocks of D′ containing �
partition the points not in �. Note first that no two such blocks can intersect
outside �, since each block is a projective plane and since a line of a plane together
with a point outside spans the entire plane. Now it suffices to count: there are
qn + ... + q2 points outside � and there are qn−2 + . . . + q + 1 blocks containing
�, each of which has q2 points not in �.

It is now easily seen that the points and lines of D′ satisfy the Veblen-
Young axioms and therefore define a projective space Π; see, for instance, [1,
Section XII.1]. In view of the parameters of D′, we have Π ∼= PG(n, q), and thus
D′ ∼= D.

As we shall see, the case d = 3 is already more involved:

Theorem 2.2. Let D′ be a 2-design with the same parameters as the
classical design D = PG3(n, q), where n ≥ 4 and where q ≥ 2 is not necessarily
a prime power. Then D′ is isomorphic to the classical design if and only if all
lines of D′ have size q + 1.

Proof. The condition that all lines have size q + 1 is trivially necessary.
Thus assume that this condition is satisfied. Note that all blocks of D′ have
cardinality k = q3 + q2 + q + 1 in this case. Consider an arbitrary block B. Any
two points of B define a unique line of D′ which, by our hypothesis, has size
q + 1. Thus the lines of B induce a linear space ΣB with constant line size q + 1
on B. We want to show that an arbitrary line � of D′ and an arbitrary point
p /∈ � again span a projective plane of order q, as in the case d = 2; this will
require more work than before.

Step 1. Let � be a line, B a block through �, and p /∈ � a point of B. Then
the subspace S of ΣB spanned by p and � is either a projective plane of order q
or equal to B. In the latter case, B is the only block containing � and p.

As each of the q + 1 points p′ of � determines together with p a line pp′ of
size q + 1, it is clear that S has at least q(q + 1) + 1 points; in case of equality, S
is obviously a projective plane of order q. But by Lemma 1.2, a proper subspace
of ΣB contains at most

v − 1
k − 1

=
q3 + q2 + q

q
= q2 + q + 1

points, and therefore either S is a proper subspace of cardinality q2 + q + 1 of
ΣB , or S = B. As any two blocks intersect in a proper subspace (of either of
these blocks), the assertion follows.

Step 2. Let � be a line and p /∈ � a point of D′. Then there are exactly

� = qn−3 + . . . + q + 1
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blocks of D′ containing both p and �.(3)

We first fix the line � and determine the average number of blocks containing
� and a point p /∈ �. Now � is on

λ =
(qn−1 − 1)(qn−2 − 1)

(q2 − 1)(q − 1)

blocks, each of which contains q3 + q2 further points. As there are altogether
qn + qn−1 + . . . + q2 points not in �, a short computation shows that the desired
average number is precisely the quantity � defined in the assertion. Hence it
suffices to check that � is also an upper bound for the number �p of blocks
containing � and some given point p /∈ �. Obviously, we may assume �p ≥ 2
for this purpose. Then the �p blocks through p and � intersect in a common
subspace S of cardinality q2 + q +1, by Step 1. Moreover, no two of these blocks
can share a point not in S, by Lemma 1.2. As there are exactly qn + . . .+q4 +q3

points p′ /∈ S, we obtain indeed

�p ≤ qn + . . . + q4 + q3

q3
= �.

Step 3. Let Σ denote the linear space induced by the lines of D′. Then the
subspace spanned by any three non-collinear points of D′ is a projective plane of
order q.

This follows immediately by combining Steps 1 and 2.

Step 4. The linear space Σ is isomorphic to PG1(n, q).

Using Step 3, one easily checks that the points and lines of D′ satisfy the Veblen-
Young axioms and therefore define a projective space Π; see, for instance, [1,
section XII.1]. In view of the parameters of D′, we have Σ ∼= PG1(n, q).

Step 5. D′ is isomorphic to PG3(n, q).

After Step 4, it still remains to show that the blocks of D′ are actually the 3-
subspaces of Π. Let us first note that the subspaces of cardinality q2 + q + 1 of
Σ are just the planes of Π. This is clear, as any given line � and any point p /∈ �
determine the same projective plane of order q in both structures, namely the
union of the q + 1 lines pp′ where p′ runs over the points of �; see Step 3. By
Step 2 and by the counting argument used there, any given plane S is in exactly
� blocks, which give rise to a partition of the points not in S. Hence S and
any such point p determine a unique block, namely the union of the q2 + q + 1
lines pp′ where p′ runs over the points of S. But this is also the point set of the
3-subspace of Π determined by S and p.

(3) This will establish that D′ is smooth, and hence we could then, for q ≥ 4, appeal to
the result of [10]. Of course, this would leave the cases q = 2 and q = 3 unresolved.
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3 – The case d = 4

We now settle the case d = 4 of Conjecture 1.1 , using similar arguments as
for the case d = 3; as already mentioned, this turns out to be quite involved.

Theorem 3.1. Let D′ be a 2-design with the same parameters as the
classical design D = PG4(n, q), where n ≥ 5 and where q ≥ 2 is not necessarily
a prime power. Then D′ is isomorphic to the classical design if and only if all
lines of D′ have size q + 1.

Proof. The condition that all lines have size q + 1 is trivially necessary.
Thus assume that this condition is satisfied. Note that all blocks of D′ have
cardinality k = q4 + q3 + q2 + q + 1 in this case. Consider an arbitrary block B.
Any two points of B define a unique line of D′ which, by our hypothesis, has size
q + 1. Thus the lines of B induce a linear space ΣB with constant line size q + 1
on B. Again, we need to show that an arbitrary line � of D′ and an arbitrary
point p /∈ � span a projective plane of order q, as in the cases d = 2 and d = 3;
this will require considerably more work than before.

As before, let Σ denote the linear space induced by the lines of D′ on the
point set V of D′. For any subset X of V , we shall denote the subspace of Σ
spanned by X as S(X). For any line � and any point p /∈ �, we put S(p, �) :=
S({p} ∪ �) and write �(p, L) for the number of blocks containing both p and �,
and hence all of S(p, �). As in the proof of Theorem 2.2, one easily obtains

Step 1. S(p, �) ≥ q2 + q + 1 for each line � and each point p /∈ �.

But now we get a further possibility for the precise structure of S(p, �):

Step 2. Let � be a line, B a block through �, and p /∈ � a point of B. Then
S(p, �) is either a projective plane of order q, or a proper maximal subspace of
ΣB, or equal to B. In the latter case, B is the only block containing both � and p.

To see this, note that a proper subspace of ΣB contains at most q3+q2+q+1
points, by Lemma 1.2. If S(p, �) is not a projective plane of order q, it has at least
q2 + q + 2 points, by Step 1.(4) Using Lemma 1.2 again, any subspace properly
containg S then has to have cardinality at least q3 + q2 + 2q + 1, and hence has
to be equal to B.

Step 3. Let � be a line. Then the average number of blocks containing � and
a point p /∈ � is given by

� =
(qn−2 − 1)(qn−3 − 1)

(q2 − 1)(q − 1)
.

(4) Actually it would be easy to obtain a stronger bound, namely 2q2 + 2q + 2, but the
weak version given above will already suffice. However, it seems not possible to obtain
a precise cardinality for this – as we shall see, anyway entirely hypothetical – case.
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The line � is on

λ =
(qn−1 − 1)(qn−2 − 1)(qn−3 − 1)

(q3 − 1)(q2 − 1)(q − 1)

blocks, each of which contains q4+q3+q2 further points. As there are altogether
qn + qn−1 + . . . + q2 points not in �, we get

� =
(qn−1 − 1)(qn−2 − 1)(qn−3 − 1)q2(q2 + q + 1)
(q3 − 1)(q2 − 1)(q − 1)q2(qn−2 + . . . + q + 1)

,

and a short computation gives the desired result for �.

Step 4. Let � be a line, and p a point not on �. Then S(p, �) is a projective
plane of order q, provided that �(p, �) ≥ qn−4 + . . . + q2 + q + 2.

Assume otherwise. Then Step 2 shows that S := S(p, �) is a proper maximal
subspace of ΣB for every block B containing both p and �, so that any two distinct
blocks B and B′ containing both p and � intersect precisely in S. Moreover, as
we have seen in the proof of Step 2,

q2 + q + 2 ≤ |S(p, �)| ≤ q3 + q2 + q + 1.

Hence there are at most qn + . . . + q4 + q3 − 1 points not in S, and each of these
points is on at most one block containing S. Also, each such block contains at
least q4 such points. Hence we get

�(p, �) ≤ qn + . . . + q4 + q3 − 1
q4

< qn−4 + . . . + q2 + q + 2,

contradicting the hypothesis.

Step 5. Let � be a line, p a point not on �, and assume that S := S(p, �) is
a projective plane of order q. Given any point p′ /∈ S, let us put S′ = S′(p′) :=
S(� ∪ {p, p′}). Then either S′ is contained in at most one block, or |S′| =
q3 + q2 + q + 1. Moreover, there are at most τ := qn−3 + . . . + q + 1 subspaces of
cardinality q3 + q2 + q + 1 containing S, and equality holds if and only if S and
any point p′ /∈ S always span a subspace of cardinality q3 + q2 + q + 1.

Note that S is a proper subspace of S′, and therefore, by Lemma 1.2, |S′| ≥
q3 +q2 +q+1. If S′ is contained in two distinct blocks, it is a proper subspace of
both of them, and another application of Lemma 1.2 gives the desired equality.
Now the second assertion is easily seen, as there are exactly qn + . . . + q4 + q3

choices for p′.
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Step 6. Let S′ be any subspace of Σ of cardinality q3 + q2 + q + 1. Then
there are at most σ := qn−4 + . . .+ q +1 blocks containing S′, and equality holds
if and only if all such blocks give rise to a partition of the set V ′ of all points of
Σ not contained in S′.

We may assume that there are two distinct blocks containing S′, so that S′

is a proper maximal subspace of every block containing it. Then no two such
blocks can intersect in a point of V ′. Hence we indeed get at most

qn + . . . + q5 + q4

q4
= σ

blocks through S′, and clearly equality holds iff these blocks partition V ′.

Step 7. Let � be a line, p a point not on �, and assume �(p, �) ≥ �. Then
S := S(p, �) is a projective plane of order q, and one actually has �(p, �) = �.
Moreover, there are exactly τ subspaces S′ of cardinality q3+q2+q+1 containing
S, each of which lies in precisely σ blocks, and the blocks containing a given S′

give rise to a partition of the set of points of Σ not contained in S′.

By Step 4, S is a projective plane of order q. Let us write �(p, �) = � + ε,
where ε ≥ 0, and let us denote the cardinality of the set X of all points p′ /∈ S
which are on at most one block B containing S by x. We now count the number
f of all flags (p′, B) with p′ /∈ S ⊂ B in two ways. As each block B through S
contains exactly q4 + q3 points p′ /∈ S, we get

(1) f = (�+ε)(q4 +q3) = (qn−3 + . . .+q+1)(qn−4 + . . .+q+1)q3 +ε(q4 +q3).

On the other hand, counting via the points p′ /∈ S first, we also obtain

(2) f ≤ x + (qn + . . . + q4 + q3 − x)σ,

as each point in X is on at most one block B containing S, whereas each of the
qn + . . . + q4 + q3 − x points p′ /∈ S ∪ X determines a subspace S′ = S′(p′) of
cardinality q3+q2+q+1 by Step 5, which is then on at most σ blocks B through
S by Step 6. Therefore

(qn−4 + . . . + q + 1)((qn + . . . + q4 + q3) − (qn + . . . + q4 + q3 − x))
≤ x − ε(q4 + q3) ≤ x,

forcing x = ε = 0. Thus indeed �(p, �) = �, and we have also proved that each
point p′ /∈ S is on at least two blocks B through S. Now Step 5 shows that there
are exactly τ subspaces of cardinality q3 + q2 + q + 1 containing S, and that
these subspaces give rise to a partition of the set of all points p′ /∈ S. As ε = 0,
equation (1) above becomes

f = (qn + . . . + q4 + q3)σ,
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and therefore (using x = 0) the inequality (2) has to hold with equality, which
is only possible if each of the subspaces S′ = S′(p′) of cardinality q3 + q2 + q + 1
determined by the points not in S is actually on exactly σ blocks B containing
S. Now the final assertion follows from Step 6.

Step 8. Let Σ denote the linear space induced by the lines of D′. Then the
subspace spanned by any three non-collinear points of D′ is a projective plane of
order q. Moreover, any four non-planar points determine a subspace of cardinal-
ity q3 + q2 + q + 1.

By Step 3, the average number of blocks containing three non-collinear
points is �. By Step 7, this is also an upper bound for the number of blocks
containing any three given non-collinear points, and hence any three such points
always lie in exactly � common blocks. Hence the conclusions of Step 7 hold for
any three non-collinear points, and then an appeal to Step 5 establishes also the
second assertion.

Step 9. The linear space Σ is isomorphic to PG1(n, q).

Using the first assertion of Step 8, one easily checks that the points and lines
of D′ satisfy the Veblen-Young axioms and therefore define a projective space
Π; see, for instance, [1, Section XII.1]. In view of the parameters of D′, we have
Σ ∼= PG1(n, q).

Step 10. D′ is isomorphic to PG4(n, q).

It still remains to show that the blocks of D′ are actually the 4-subspaces
of Π. Again, we first note that the subspaces of cardinality q2 + q + 1 of Σ are
simply the planes of Π; this follows as in the proof of Theorem 2.2.

By Step 8, any given plane S together with any point p′ /∈ S determines a
unique subspace S′ of cardinality q3 +q2 +q+1, which has to be the union of the
q2 + q + 1 lines p′s where s runs over the points of S. But this is also the point
set of the 3-subspace of Π determined by S and p′. Therefore the subspaces of
cardinality q3 + q2 + q + 1 of Σ are precisely the 3-spaces of Π.

Finally, by Steps 6 and 7, the blocks containing any given 3-subspace S′

partition the points not in S′. Hence S′ and any such point p′′ determine a
unique block of D′, namely the union of the q3 + q2 + q + 1 lines s′p′′ where s′

runs over the points of S′. But this is also the point set of the 4-subspace of Π
determined by S′ and p′′.

4 – Conclusion

We have seen that the correct line size q + 1 characterizes any design with
the parameters of PGd(n, q) as this classical geometric design, provided that
d ∈ {2, 3, 4, n−1}. These results provide considerable evidence for the validity of
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Conjecture 1.1 . The key step in our proofs was establishing that any three non-
collinear points always determine a projective plane of order q, or, in other words,
that the given design is smooth (which was a hypothesis in the characterization
result of Lefèvre-Percsy [10]). Unfortunately, this key step becomes more and
more involved as the dimension d grows, the reason being that the number of a
priori possibilities for the subspace spanned by a line � and a point p not in this
line grows with d. For the first open case, namely d = 5, we would for the first
time have to consider the possibility that S(p, �) is neither a projective plane of
order q, nor a proper maximal subspace of a block B, nor B itself, but some
proper, non-maximal subspace of ΣB . This suggests that even this case will be a
lot more complex than the case d = 4, which was already rather involved. Thus,
settling Conjecture 1.1 in general seems a challenging problem which will most
likely require some additional ideas.
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Abstract: In this paper we discuss methods that might be employed in deter-
mining the subgroup structure of a finite group G. These methods have a particularly
combinatorial flavor connected with graphs, designs and the combinatorial nature of pre-
sentations of groups. In particular, the methods are illustrated for the case of the simple
group U3(5) = PSU3(5

2) whose maximal subgroups are determined up to conjugacy.

1 – Introduction

This paper is devoted to a discussion of some methods that might be em-
ployed in determining the subgroup structure of a finite group G. The methods
have a strong combinatorial flavor and are illustrated here for the case of the
simple group U3(5) = PSU3(52) whose maximal subgroups are determined up to
conjugacy. This example possesses a measure of difficulty suitable for exempli-
fying these methods. The reader is assumed to be acquainted with the elements
of the theory of finite groups, including finite permutation groups as for example
discussed in [8], [12], [19], [20], [22]. He is also assumed to have knowledge of the
rudiments of the theory of strongly regular graphs and association schemes as
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discussed in [2], [3], [9], [10], [11]. Finally, the reader should have some knowledge
of the beautiful Frobenius theory of ordinary characters [6], [7], [13], [16].

2 – The controlling viewpoint

The question of whether a list of subgroups is complete for a given group
G can most effectively be dealt with if anticipated. Since the minimal normal
subgroups of a group are characteristically simple, every subgroup M of a finite
group G normalizes some subgroup of the form Ar = A×A×· · ·×A with A simple.
This suggests that a systematic approach to determining the subgroups structure
of G could consist of determining, up to conjugacy, all characteristically simple
subgroups of G and subsequently determining their normalizers. The above
observation allows us to “control” the process of determining the subgroups of
G, and affords a way of verifying completeness.

We usually advance with the above procedure in two stages: First, we obtain
the class Λ of local subgroups of G, i.e. the normalizers of the elementary abelian
subgroups of G. Subsequently, we determine the class Ξ of normalizers of the
non-soluble characteristically simple groups in G. The maximal subgroups of G
must clearly occur in Ξ ∪ Λ. Of course, we often have that Ξ ∩ Λ �= ∅.

3 – Matrices belonging to subgroups

Let G be a finite group acting transitively on a set Ω, and let Γ be the
graph induced on Ω by a non-trivial, self-paired orbital of G on Ω × Ω [9], [21],
[22]. Since the orbital is self-paired and non-trivial the graph is undirected and
irreflexive. If x ∈ Ω and r is a non-negative integer, the circle of radius r about
x is defined to be the set

Sr(x) = {y ∈ Ω : d(x, y) = r}
where d is the usual distance function in the graph Γ.

If {Δ1, . . . ,Δ�} is a partition of Ω we denote by [Δ1,Δ2, . . . ,Δ�] the collec-
tion of all subgroups of G fixing each of the Δi setwise. Furthermore, if k1, . . . , k�

are positive integers such that

�∑
i=1

ki = |Ω|,

we denote by [k1, k2, . . . , k�] the collection of all subgroups of G which have
orbits of lengths k1, k2, . . . , k�.

If H ≤ G, and H has orbits Δ1, . . . ,Δ� on Ω, for x ∈ Δi we put aH(i, j) =
|S1(x) ∩ Δj |. We call the matrix AH = (aH(i, j)) the matrix belonging to the
subgroup H.
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Let M = (mi,j) be an n × n matrix with non-negative integral entries and
constant row sums. The domain of M , D(M) is defined to be the collection of
all partitions P = {Δi}k

i=1 of Ω = {1, 2, . . . , n} for which x, y ∈ Δi implies that∑
q∈Δj

mx,q =
∑

q∈Δj

my,q = mi,j

for each pair of indices i, j, 1 ≤ i, j ≤ k. We set M(P ) = (mi,j).
If N = M(P ) for some P ∈ D(M) we say that N covers M and write

M ≤ N . We note that if M ≤ N then N is a k × k matrix with non-negative
entries, constant row sums, and k ≤ n. We write

∫
M for the collection of all

covers of M and call
∫

M the cover of M . We omit the proof of the following
easy consequence:

Proposition 3.1. If H, K are subgroups of G and H ≤ K, then AH ≤
AK .

Thus, the mapping H → AH is an isotone function from the lattice of subgroups
of G to the partially ordered set of all covers of the adjacency matrix of Γ.

The connection of the above concept with the concepts developed by D.G.
Higman [10], [11], and also by Kramer and Mesner [14], [15], is apparent. The
authors wish to emphasize the utility of the concept in investigations involving
the determination of subgroup structures. We give below a hint of the way in
which the matrices AH are used and use the method more extensively in the
U3(5) example.

When the adjacency matrix A of the graph Γ is given, one can calculate∫
A. If H is any subgroup of G which is intransitive on Ω, then it corresponds

to a cover of A. In particular, the covers determine which partitions of Ω are
stabilized by intransitive subgroups of G. To obtain a focusing effect, and ignore
duplication due to conjugacy, we may select a certain cyclic subgroup H of G,
determine its matrix AH and calculate

∫
AH . This process is especially useful

when we are seeking the non-soluble simple subgroups of G which contain H or
a partial normalizer of H. Usually, only very few such covers exist, and these
point to partitions whose stabilizers are the desired simple subgroups. If one
knows the number of orbits of a sought subgroup, or even better, the vector of
orbit lengths, the number of partitions of the given type corresponding to covers
of AH is even smaller. Sometimes, other small subgroups can be used in place
of cyclic groups. For example, minimal simple groups which are known to be
contained in G and whose orbit structure on Ω as well as corresponding matrices
are easy to obtain.

The method can be used to determine whether some intransitive subgroup
H of known matrix AH is contained in any intransitive subgroup K, thus con-
tributing to questions of maximality of a given subgroup.
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The method is, of course, useful for the study of intransitive subgroups of G,
however, its effectiveness is limited to relatively small |Ω|. Transitive subgroups
can be handled if one considers simultaneously several transitive permutation
representations of G.

4 – Two-generator subgroups

Interest in two-generator subgroups becomes justified in view of the fact
that there is evidence to support a conjecture that every finite non-abelian simple
group is a 2-generator group. Even if the conjecture is false, all known simple
groups except possibly for a few sporadic ones, are known to be 2-generator
groups. For example, all PSL2(q) can be generated by two elements, one of which
is an involution [1]. If q �= 9, furthermore, PSL2(q) can be generated by two
elements, one of order 2 and one of order 3. It is convenient to use the following
notation: the conjugacy classes of G are denoted by K1 = {1}, K2, . . . , Kc.

If x is an element of G then C(x) = CG(x) denotes the centralizer of x in
G. Furthermore σx denotes the order of C(x). If G|Ω is a group action, the
meta-rank, ρ(G|Ω), is defined to be the number of G-orbits on Ω. We write:

(4.1) [Ki × Kj → Kk] = {(a, b) ∈ Ki × Kj | ab ∈ Kk}, i, j, k ∈ {1, . . . , c}

We denote | [Ki × Kj → Kk] | by |Ki × Kj → Kk|.

(4.2) 〈Ki × Kj → Kk〉 = {〈a, b〉 | (a, b) ∈ [Ki × Kj → Kk] }

Here, 〈a, b〉 denotes the subgroup of G generated by a and b.

(4.3) σi = |CG(x)|, x ∈ Ki ;

For x1, x2, . . . , x� ∈ G,

(4.4) σx1,... ,x�
= |

�⋂
i=1

CG(xi)| = |CG〈x1, . . . , x�〉|

The structure constants of the center of the group algebra are denoted by ai,j,k;
thus,

(4.5) KiKj =
c∑

k=1

ai,j,kKk i, j ∈ {1, . . . , c} ; also,

(4.6) ai,j,k =
|G|
σiσj

c∑
t=1

χt(i)χt(j)χt(k)
χt(1)
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where χt(i) is the value of the irreducible ordinary character χt of G on the
elements of the class Ki.

We also introduce the symmetric rational constants:

(4.7) βi,j,k =
ai,j,k

σk
, i, j, k ∈ {1, . . . , c}.

Consider the action of G on Ki × Kj by conjugation and define the mapping

φ : Ki × Kj →G

φ : (x, y) �→xy ,

then, (x′, y′) ∈ (x, y)G implies that φ(x′, y′) is conjugate to φ(x, y) in G. Further-
more, if z is G-conjugate to xy ∈ Ki × Kj , then there exists (x′, y′) ∈ (x, y)G

such that φ(x′, y′) = z. Hence, φ is a surjection onto a union of classes of G and
[Ki × Kj → Kk] is a union of G-orbits of Ki × Kj . We have that:

|(x, y)G| = [G : C(x) ∩ C(y)] =
|G|
σx,y

,

furthermore,

(4.8) |(x, y)G ∩ φ−1(xy)| = [C(xy) : C(x) ∩ C(y)] =
σxy

σx,y
,

an invariant of the orbit (x, y)G. Given a fixed element z ∈ Kk, ai,j,k = |φ−1(z)|.
If the G-orbits Ω1,Ω2, . . . ,Ωm of Ki × Kj and no others are carried by φ into
Kk, choose (xi, yi) ∈ Ωi such that φ(xi, yi) = xiyi = z, we get:

ai,j,k =
m∑

i=1

|Ωi ∩ φ−1(z)| =
m∑

i=1

σz/σxi,yi

hence,

(4.9) βi,j,k =
m∑

i=1

1
σxi,yi

.

Since σxi,yi = σxi,yi,xiyi , we obtain:

(4.10) σxi,yi
|gcd(σi, σj , σxiyi

)

If the induced characters θi = 1C(x) ↑G, θj = 1C(y) ↑G, (x, y) ∈ Ki × Kj are
known, then

(4.11) ρ(G|Ki × Kj ) = (θi, θj),
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and conditions (4.9), (4.10) and (4.11) are usually sufficient to determine the
number of orbits of G on [Ki × Kj → Kk] for each k ∈ {1, . . . , c}.

Now, if (x′, y′) = (x, y)g, then 〈x′, y′〉 = 〈x, y〉g. Hence, if we are interested
in {〈x, y〉 | (x, y) ∈ Ki × Kj } up to conjugacy, it suffices to consider one pair
from each G-orbit of Ki × Kj . We must, however, observe that it is possible
for (x, y), (x′, y′) to belong to different G-orbits yet 〈x, y〉 to be G-conjugate to
〈x′, y′〉. Thus,

(4.12) ρ(G| 〈Ki × Kj → Kk〉 ) ≤ ρ(G| [Ki × Kj → Kk] ) .

To determine what orbit fusion is induced when we pass from the group ac-
tion G| [Ki × Kj → Kk] to the group action G| 〈Ki × Kj → Kk〉 , in addition
to standard group action conditions we use a certain combinatorial technique
which roughly speaking, involves counting the number of ways in which a fixed
two-generator subgroup is generated by pairs of elements of Ki × Kj . More
specifically, we introduce mappings of the sort

f : [Ki × Kj → Kk] → 〈Ki × Kj → Kk〉
f : (x, y) → 〈x, y〉

and determine the uniform sizes of preimages f−1(〈x, y〉). The U3(5) example
involves several applications of the above ideas.

5 – Compound Characters

Let G be a finite group whose irreducible ordinary characters are 1G, χ2, χ3,
. . . , χc. If x ∈ G, H ≤ G, then we write gx = |[x]|, and hx = |[x] ∩ H|, where
[x] = xG is the G-conjugacy class containing x.

If θ and ψ are two ordinary characters of G, we denote by (θ, ψ) their inner
product in the algebra of class functions of G. If φ is an ordinary character of G,
then φ =

∑c
i=1 aiχi, with ai ∈ Z+ = {0, 1, 2, . . . }. Since the collection {χi}c

i=1

forms an orthonormal basis for the algebra of class functions of G, we have that
ai = (φ, χi).

If H ≤ G, then the character θ of the transitive permutation representation

π : G → Sm m = [G : H]

g → π(g) =
(

Hx

Hxg

)

is the induced character 1H ↑G of the principle character of H to G [7], [16].



[7] Determining subgroup structures of finite groups 127

It is immediate that the following necessary conditions are satisfied by θ :

(i) (θ, 1G) = 1

(ii) θ(x) ∈ Z+, for each x ∈ G

(iii) (θ, χi) ≤ χi(1) = ni

(iv) θ(xk) ≥ θ(x), for x ∈ G, k ∈ Z+

(v) θ(1) = [G : H], hence θ(1) divides |G|

(vi) θ(x) = θ(1) · (hx/gx) and therefore θ(1) divides θ(x) · gx.

(vii) (θ, χi) = (θ, χi), where χi is the complex conjugate character of χi.

By a compound character of G we mean here any character of G satisfying condi-
tions (i) to (vii). Thus, the character of every transitive permutation represen-
tation of G is a compound character but there may exist compound characters
which are not the characters of any transitive permutation representation of G
and therefore which correspond to no subgroup H of G.

In investigating the subgroup structure of a group G whose character table
is known the following question arises: “Are there any subgroups of G of index δ?
” More generally, if it is known that G possesses a subgroup H with associated
compound character θ, what are the compound characters φ corresponding to
subgroups K of G subject to H ≤ K ≤ G ? If such an intermediate subgroup
exists, then

θ = 1H ↑G= 1H ↑K↑G, and (1H ↑K , 1K) = 1

imply that:
(viii) (θ, χi) ≥ (φ, χi), i ∈ {1, . . . , c}.

i.e. the multiplicities of the irreducible characters of G in θ are greater than or
equal to those in φ. Thus, there is an order inverting homomorphism from the
lattice of subgroups of G into the cone (Z+)c, each subgroup mapping onto a
vector of multiplicities a = (a1, . . . , ac) of the associated compound character.
The authors, and undoubtedly others, have algorithms which answer the above
question by investigating all partitions of δ :

δ = 1 +
∑

aiχi(1) for each δ | |H|, |H| | δ,
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and testing that the corresponding character

θ = [1] +
∑

aiχi

satisfies (i) to (viii). Such programs can be made quite efficient if the algorithms
incorporate knowledge of special numerical conditions in the given character
table.

6 – The Maximal Subgroups of U3(5)

In this section we illustrate the methods discussed on the simple group
U3(5). We obtain the following result :

Theorem 6.1. There are eight conjugacy classes of maximal subgroups
of U3(5) as follows : a) Local: CG(z) ∼= 〈z〉 \ S5, z is an involution in G; for
Q ∈ Syl5(G), NG(Q) = NG〈51〉 ∼= Q\Z8. b) Non-local : Three conjugacy classes
of self normalizing A7’s ; Three conjugacy classes of M10’s each normalizing a
subgroup of G isomorphic to A6. The classes of A7’s and the classes of M10’s
are distinguished by the G-class of elements of order five they contain.

LOCAL ANALYSIS

6.1 – Local 2-Subgroups

There is one conjugacy class of involutions in G, and the Sylow-2 subgroup
of G is quasidihedral. Thus, the only possible elementary abelian 2-groups of
order greater than 2 that can occur in G are Klein four groups V4

∼= C2 × C2.

Lemma 6.1. There is exactly one conjugacy class of V4’s in G.

Proof. a2,2,2 �= 0 implies that there exist V4’s in G. |CG(z)| = 240, [G :
CG(z)] = 525, and from the fusion map CG(z) → G we compute the character
of the action G|K2 as

θ525 = 1C(z) ↑G= [1] + [28]1 + [28]2 + [28]3 + [84] + [105] + [125] + [126].

Hence, ρ(G|K2 × K2) = (θ525, θ525) = 8. Computation of the a2,2,k (See Table
1) shows that the 8 orbits of G|K2 × K2 are already differentiated by the class
in which k lies. i.e. There are precisely 8 a2,2,k �= 0 for k lying in 8 distinct
conjugacy classes, and consequently the orbits are [K2 × K2 → Kj ] for those j
for which a2,2,j �= 0. Thus [K2 × K2 → K2] is a G-orbit, and there exists one
conjugacy class of V4’s.
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Table 1

k : 1 2 4 81 82 3 6 51 52 53 54 10 7+ 7−

a2,2,k : 525 20 4 0 0 18 6 0 5 5 5 0 0 0

〈2, 2, k〉 : 〈z〉 V4 D4 - - S3 D6 - D52 D53 D54 - - -

|〈2, 2, k〉| : 2 4 8 - - 6 12 - 10 10 10 - - -

Let z be an involution of G. It is easy to verify that CG(z) acts primitively on
fix(z) with kernel 〈z〉. Thus CG(z) ∼= 〈z〉 \ S5.

Proposition 6.1. CG(z), |z| = 2, is maximal in G.

Proof. From the proof of Lemma 6.1

θ525 = 1C(z) ↑G= [1] + [28]1 + [28]2 + [28]3 + [84] + [105] + [125] + [126].

Suppose C(z) is not maximal, then there exists H ≤ G such that C(z) � H � G
and [G : H] | 3 ·52 ·7. By considering compound characters of degrees δ | 3 ·52 ·7,
we rule out all but one case, namely the case [G : H] = 175. In this case H
would be a group of order 720 = 24 · 32 · 5, [G : H] = 175, and θ175 = 1H ↑G=
[1] + [125] + [21] + [28]i for i ∈ {1, 2, 3}. We note that character [21] does not
appear in 1C(z) ↑G, a contradiction to 5.(viii). Hence C(z) is maximal.

6.1.1 – CG(V4), NG(V4)

a2,2,2 = 20 implies that β2,2,2 = 20/240 = 1/12; but the number of orbits
of G on [K2 × K2 → K2] is 1. Therefore β2,2,2 = 1

|C(V4)| ⇒ |C(V4)| = 12.

N(V4)/C(V4)
∼
≤ AutV4

∼= GL2(2) ∼= S3 ⇒ |N(V4)| divides 6 · 12 = 72. Consider
an A7 inside G, and represent A7 in its canonical representation. Let V4 =
[1, (12)(34), (13)(24), (14)(23)] ≤ A7, then CA7(V4) = V4 × 〈σ〉 where σ = (567).
Therefore CG(V4) = CA7(V4) ∼= V4 × Z3. The elements ρ = (23)(56), z = (234)
normalize V4 in A7; thus 〈V4, σ, ρ, z〉 ⊆ NA7(V4) ⊆ NG(V4). But |〈V4, σ, ρ, z〉| =
72 implies that |NG(V4)| = 72 and NG(V4) = NA7(V4). Therefore, NG(V4) ≤ A7,
i.e. NG(V4) is not maximal. It follows from the above that the structure of N(V4)
is (V4×Z3)\S3; in fact, since 〈ρ, z〉 ≤ N(V4), 〈ρ, z〉 ∼= S3 and 〈ρ, z〉∩〈V4, σ〉 = 1,
the extension splits.

6.2 – Local 3-groups

Clearly, there is one conjugacy class of Z3’s and one class of Z3 × Z3’s in
G. We will now investigate the structures of CG(Z3), NG(Z3), CG(Z3 × Z3),
NG(Z3 × Z3).
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Lemma 6.2. Let σ ∈ G, |σ| = 3, then CG(σ) ∼= Z3 × A4.

Proof. Take σ ∈ 3 · 14 in A7, then CA7(σ) = Z3 ×A4 ≤ A7, but |CG(σ)| =
36, therefore CG(σ) ∼= Z3 × A4.

Remark 6.1 Since CG(Z3 × Z3) ⊆ CG(Z3) ∼= Z3 × A4 ≤ A7, neither
of CG(Z3), CG((Z3 × Z3)) are maximal. Since there is exactly one conjugacy
class of elts of order 3, |NG(Z3)| = 2|CG(Z3)|, hence |NG(Z3)| = 23 · 32 and
NG(Z3) ∼= CG(Z3) \ Z2.

Lemma 6.3. If σ = (123)(4)(5)(6)(7) ∈ A7 ≤ G, then NG〈σ〉 = NA7〈σ〉.

Proof. CA7(σ) = 〈σ〉×A4 with A4 on {4, 5, 6, 7}; furthermore, ν = (23)(45)
normalizes 〈σ〉 = {1, σ, σ2}. Hence, 〈CA7(σ), ν〉 ⊆ NA7(σ), but |〈CA7(σ), ν〉| =
72; therefore, NG(〈σ〉) = NA7(〈σ〉) = 〈CA7(σ), ν〉 ≤ A7.

Corollary 6.1. NG(Z3) is not maximal in G.

Lemma 6.4. The Sylow-3 subgroups in G are self-centralizing in G.

Proof. CG(Z3 ×Z3) ⊆ CG(Z3) = CA7(3 · 14) ∼= Z3 ×A4. It suffices to find
CC3×A4(Z3 × Z3). But easily, CZ3×A4

(Z3 × Z3) = Z3 × Z3.

In 6.9 we prove that there exists a subgroup S of G with S ∼= M10, M10 the
Mathieu group on 10 letters. M10 is transitive on the 10 letters and the order of
the stabilizer of a point, M10x

, is 72. Let H = M10x
; the values of the induced

character 1H ↑M10 on the conjugacy classes yield that there will be exactly 8
elements of order 3 in H and 63 elements of 2-power orders 2a. Therefore, if
T ∈ Syl3(G), |NG(T )| ≥ 72. Now,

NG(Z3 × Z3)/CG(Z3 × Z3)
∼
≤ Aut(Z3 × Z3)

implies that
|NG(Z3 × Z3)| divides 9 · |GL2(3)| = 33 · 24.

Therefore, |N | = 72 or 2 ·72. But by Sylow’s Theorem, 2 ·72 is ruled out. Hence,
|N | = 72, and

NG(Z3 × Z3) = NM10(Z3 × Z3) ≤ M10.

Corollary 6.2. NG(Z3 × Z3) is not maximal in G.
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6.3 – Local 5-groups

Since Q ∈ Syl5(G) is non-abelian of order 53 and contain no elements of
order 25, Q must have the presentation:

Q = 〈α, β, γ | α5 = β5 = γ5 = 1, αγ = α, βγ = β, [α, β] = γ〉.

The elements of Q can be written in the form αkβlγm; k, l, m ∈ Z5, and Z(Q) =
〈γ〉. Since αβ = α4γ, βα = βγ4, the conjugacy class in Q of a non-central
element x is the coset 〈γ〉x. Thus Q contains 24 non-central classes each of size
5.

Lemma 6.5. The central element γ must belong to 51 and Q consists of
exactly

1. the identity
2. 4 elements of type 51

3. 40 elements of each of types 52, 53, 54.

Proof. Q � NG(Q), θ126 = 1NG(Q) ↑G= [1] + [125] and θ126(52) =
θ126(53) = θ126(54), |CG(5i)| = 25, i = 1, 2, 3, 4 imply that Q contains exactly
40 elements of each 5i, i ∈ {1, 2, 3, 4}.

From the character table of G follows that |CG(γ)| = 2 · 53. But 〈γ〉 is a
characteristic subgroup of Q which implies that NG(Q) ≤ NG(Y ). Therefore
|NG(Q)| | 4 · |CG(Y )| = 23 · 53. By Sylow’s Theorem, it follows that |NG(Q)| =
23 · 53. By [18], NG(Q) ∼= Q \Z8 and every element of order 5 is conjugate to its
powers. Thus there are exactly four conjugacy classes of Z5’s in G, namely 〈51〉,
〈52〉, 〈53〉, 〈54〉.

The structure and maximality of N〈51〉.
Since |σ| = 5 ⇒ σ ∼ σk, k = 1, 2, 3, 4, we have that |N〈5i〉| = 4 · |C〈5i〉|.

Hence |N〈51〉| = 1000; |N〈5i〉| = 100 if i ∈ {2, 3, 4}. Hence, N(Q) = N〈51〉 ∼=
Q \ Z8.

Proposition 6.2. N〈51〉 is maximal in G.

Proof. [G : N〈51〉] = 126000
1000 = 126. The character of the transitive permu-

tation representation of G on the right cosets of NG〈51〉 is θ126 = 1N〈51〉 ↑G=
[1]+[125]; therefore, the representation is doubly-transitive, hence it is primitive
and consequently, the stabilizer of a point, namely N〈51〉 is maximal.
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Lemma 6.6. i ∈ {2, 3, 4} ⇒ 〈51, 5i〉 contains exactly

1. the identity
2. 4 elements of type 51

3. 20 elements from class 5i.

Proof. Let γ ∈ 51 and σ ∈ 5i, i �= 1, such that σγ = σ. Also let Q ∈
Syl5(G) such that 〈γ, σ〉 ≤ Q. Then y ∈ 〈γ〉x ⇒ y is Q-conjugate to x ⇒ y is
G-conjugate to x. But also, x ∼ xk for any k �≡ 0 (mod 5).

Proposition 6.3. N〈5i〉 ≤ 〈51〉 if i ∈ {1, 2, 3, 4}. Consequently, for i �= 1
N〈5i〉 are not maximal.

Proof. Obvious for i = 1. Consider now the case where i > 1. If σ ∈ N〈5i〉,
then σ normalizes C(5i) = 〈51, 5i〉. Let γ ∈ 51 ∩ C(5i), then by Lemma 6.6
γσ ∈ 〈γ〉 ⇒ 〈γ〉σ = 〈σ〉, i.e. σ normalizes 〈51〉. Therefore N〈5i〉 ≤ N〈51〉.

Corollary 6.3. N〈51, 5i〉 ≤ N〈51〉, i �= 1.

Proof. Let σ ∈ N〈51, 5i〉 and let σ ∈ 51 ∩ 〈51, 5i〉, then γσ ∈ 51 ∩ 〈51, 5i〉,
therefore by Lemma 6.6, 〈γ〉σ = 〈γ〉.

Thus, we have the following :

Proposition 6.4. There is exactly one up to conjugacy 5-local maximal
subgroup of G; it is N〈51〉 = N(Q) of order 1000.

6.4 – Local 7-groups

It is immediate that NG(Z7) ∼= Z3
7. Furthermore, since NA7(Z7) ∼= Z3

7, we
have that NG(Z7) ≤ A7 and consequently NG(Z7) is not maximal.

6.5 – Non-local Subgroups

Proposition 6.5. If H ≤ G, H non-abelian simple group, then H is
isomorphic to one of the following: A5, PSL2(7), A6, A7.
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Proof. No simple groups not occurring in L.E.Dickson’s list are found in
the Higman-Sims group [18]. Hence, since G ≤ HS, the only possible simple
groups contained in G must occur in Dickson’s list. By consideration of order,
the possible non-abelian simple groups are: A5, A6, A7, PSL2(7), PSL2(8).
However PSL2(8) � HS, therefore, PSL2(8) � G.

Remark 6.2. Each of above indeed occurs in G. To see this we note that
A7

∼
≤ G and therefore A6, A5, PSL2(7) which are contained in A7 are subgroups

of G. There remains to determine the number of conjugacy classes of each of the
above, and their normalizers.

6.6 – The set [K2 × K3 → K7]

From |K2×K3| = |G|
240 ·

|G|
36 = 22 ·3 ·55 ·72, |K2×K3 → K7+ | = a2,3,7+ · |G|

7 =
3·|G|, |K2×K3 → K7− | = 3·|G|, a2,3,7+ |L2(7) = 7, |K2×K3 → K7+ |L2(7)| = 168,
we have:

#L2(7)′s =
|K2 × K3 → K7|

2 · 168
= 2250.

Let Ω be the set of all L2(7)’s in G and consider the group action G|Ω by
conjugation. The length of an orbit, say LG, L ∈ Ω, is |LG| = [G : GL] where
GL = NG(L). Hence, if there are k orbits with representatives Li, i = 1, 2, . . . , k,
we have

k∑
i=1

[G : GLi
] = 2 · 32 · 53.

Therefore, 24 · 32 · 53 · 7 · ∑k
i=1

1
|NG(Li)| = 2 · 32 · 53 ⇒ 23 · 7 · ∑k

i=1
1

|N(Li)| = 1.

Now since L ∈ Ω implies that CG(L) = 1, if we write |N(Li)
Li

| = �i we have:

1
168

k∑
i=1

1
�i

=
1

23 · 7 .

Hence, in particular
∑k

i=1
1
�i

= 3 and k ≥ 3. Consider the group action
G|[K2 × K3 → K7+ ] by conjugation. We have the following:

Lemma 6.7. The number of G orbits on [K2 × K3 → K7+ ] is three.

Proof. Since g.c.d(σ2, σ3, σ7) = 1, ρ(G|[K2 × K3 → K7+ ]) = β2,3,7+ =
a2,3,7+

7 = 21
7 = 3.
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Every 〈x, y〉 such that |x| = 2, |y| = 3, |xy| = 7 can be thought of as a (2, 3, 7+);
for either xy ∈ 7+ in which case (x, y) ∈ [K2 × K3 → K7+ ] or else xy ∈ 7− in
which case y−1x−1 ∈ 7+ and 〈x, y〉 = 〈x−1, y−1〉 ∈ (2, 3, 7+).

If (x, y), (x′, y′) ∈ [K2 × K3 → K7+ ] and (x, y) is G-conjugate to (x′, y′),
then clearly 〈x, y〉 is G-conjugate to (x′, y′). Therefore, if Ω = {H ≤ G | H ∼=
L2(7)}, then ρ(G|Ω) ≤ ρ(G|[K2 × K3 → K7+ ]) = 3.

Corollary 6.4. k = 3, �i = 1 for i ∈ {1, 2, 3}. i.e. each PSL2(7) in G
is self-normalizing.

6.7 – The conjugacy classes of A5’s in G

If H ∼= A5, then H ∈ (2, 3, 4). Since β2,3,51 = 0, β2,3,5i = 1 for i ∈ {2, 3, 4}
and gcd(σ2, σ3, σ5i

) = 1 for i > 1 it follows that there are exactly 3 conjugacy
classes of A5’s in G one for each 5i, i > 1. Consider A5i

= 〈x, y〉, (x, y) ∈
[K2 × K3 → K5i ]. C(A5i) = C(x) ∩ C(y) ∩ C(xy) = 1, implies that each A5 is

centralized by 1. N(A5)/C(A5)
∼
≤ AutA5

∼= S5. Therefore, |N(A5)| | 5!, hence
N(A5) ∼= A5 or S5.

Consider [K2 × K3 → K5i
] for a fixed i ∈ {2, 3, 4}. Then, |K2 × K3 →

K5i
| = a2,3,5i

· |G|
25 = |G|. Consider the mapping Φ : [K2 × K3 → K5i

] → Λi,
i ∈ {2, 3, 4}, where Λi is the conjugacy class of A5’s of type (2, 3, 5i), defined by
Φ(x, y) = 〈x, y〉. Then H ∈ Λi ⇒ |Φ−1(H)| = |K2 × K3 → K5||A5

.

Hence, |Λi| = 24·32·53·7
3·4·2·5 = 2 · 3 · 52 · 7.

On the other hand

|Λi| = [G : NG(H)], H ∈ Λi.

Hence, 24·32·53·7
22·3·5

∑3
i=1

1
ni

= 2 · 32 · 52 · 7 = |Λ2| + |Λ3| + |Λ4|.
Hence,

∑3
i=1

1
ni

= 3
2 , and consequently, each ni = 2. Thus, there is a unique

up to conjugacy A5i for each i ∈ {2, 3, 4} and each of these A5’s are contained in
a corresponding S5. We will show later that none of the above S5’s is maximal
in G.

6.8 – Groups containing Z3
7

It is well known that the full automorphism group of the Hoffman-Singleton
graph on 50 verices is a split extension of our group G = U3(5) by a group
of order 2 [17] [4]. In [17] the Higman-Sims graph of 100 vertices is viewed as
the union of two Hoffman-Singleton graphs with appropriate interconnections
between the two subgraphs on 50 vertices. In particular U3(5) acts intransitively
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on the 100 vertices of the Higman-Sims graph, and transitively, of rank 3, on
each of the two Hoffman-Singleton subgraphs of the Higman-Sims graph. In
what follows we consider the transitive, rank-3 action of G on the 50 vertices
Ω of the Hoffman-Singleton graph. In view of the discussion in Section 5, the
character of the action G|Ω must be of the form χ = [1] + [21] + [28]i for some
i ∈ {1, 2, 3}.

Suppose a subgroup H of G contains Z3
7 then

AH ≥ AZ3
7

=

⎛⎜⎜⎜⎜⎜⎝
0 7 0 0 0 0
1 0 1 1 1 3
0 1 0 0 0 6
0 1 0 0 3 3
0 1 0 3 0 3
0 1 2 1 1 2

⎞⎟⎟⎟⎟⎟⎠
Suppose H ≤ G, [G : H] = 50, then 1H ↑G= [1] + [21] + [28]j , j ∈ {1, 2, 3} ⇒
#[Orbits of H on Ω] = (1H ↑G, χ) = 3 or 2.

Lemma 6.8. If H ∼= A7, H ≤ G, then H ∈ [1, 7, 42] ∪ [15, 35].

Proof. [G : H] = 50. Via consideration of the possible compound char-
acters of degree 50, we see as above that H has 2 or 3 orbits on the canonical
set of 50 points. If there are 2 orbits then it easily follows that A7 ∈ [15, 35] by
consideration of the possible transitive representations of A7 on ≤ 50 points.
Otherwise if A7 has 3 orbits, the least orbit is of length ≤ [ 503 ] = 16, hence of
length 1, 7 or 15. If the least orbit has length = 1 then 49 = k + �, and A7

acts transitively on k (as well as �) points, therefore k = 7, � = 42. If the least
orbit has length > 1 then by considering the possible transitive representations
of A7 we see that no assignment to k and � is possible. Hence the least orbit
must be of length 1. Clearly there is an A7 ∈ [1, 7, 42], since Gα in the canonical
representation of G on 50 points is isomorphic to A7. Since G is transitive on 50
points all A7’s with orbit structure [1, 7, 42] are conjugate.

Now we will show that there are two other conjugacy classes of A7’s in G,
which in the standard representation G|Ω have orbit types [15, 35].

Lemma 6.9. If

σ =(1)(2 11 6 5 26 16 21)(3 39 31 30 36 50 41)
(4 29 32 33 17 46 9)(7 14 43 25 34 19 47)
(8 20 28 40 24 27 13)(10 49 42 23 22 35 48)
(12 44 37 15 45 18 38) ∈ G
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and cycles of σ are labelled PABCDEFK, then Z3
7 = NG〈σ〉 ∈ [P, A, CFK,

B, E, D] : [1, 7, 21, 7, 7, 7], and any cover of Z3
7 with two orbits has orbit type

[PED, ABCFK] or [PBD, ACEFK].

Proof. This follows immediately by the discussion of section 3 and AZ3
7
.

Corollary 6.5. If H ∼= A7, H ≤ G and H has two orbits on Ω, then
H ∈ [PED, ABCFK]∪ [PBD, ACEFK] and consequently there can be at most
3 conjugacy classes of A7’s in G.

Definition 6.1. Let Δ1 = PED ⊆ Ω and Δ2 = PBD ⊆ Ω, then we call
a subset Γ ⊆ Ω a decapentad of type 1 if and only if Γg = Δ1 for some g ∈ G,
or a decapentad of type 2 if and only if Γg = Δ2 for some g ∈ G. Computation
shows there are precisely 50 decapentads of each type.

Let Λi = ΔG
i . Then G acts transitively on Λ1, Λ2 and |G(Δi)| = |G|

50 = 7!
2 . Hence

each G(Δ1), G(Δ2) are subgroups of G of order 7!
2 and G(Δ1) is not G-conjugate

to G(Δ2) since Δ2 /∈ Λi.

Proposition 6.6. G(Δ1)
∼= G(Δ2)

∼= A7.

Proof. G(Δ1) has a representation on the 15 points of Δ1. Since G(Δ1)

has at most 3 orbits on Ω and since by consideration of AZ3
7
, PED or PED are

the only possible orbit structures, G(Δ1) is transitive on Δ1. H = G(Δ1) acts
primitively on Δ1, for if Hα � K ≤ H, then K would have orbit type [8, 7] or
[15] on Δ1. But K ⊇ Z3

7, since Hα ⊇ Z3
7, hence [8, 7] is not possible. Therefore,

K would be transitive on Δ1, and consequently |K| = |Kα| · 15. But clearly
Kα = Hα and therefore K = H.

It is known however [5] that the only primitive group on 15 points of order 7!
2

is a group isomorphic to A7. Therefore, G(Δ1)
∼= A7. Similarly G(Δ2)

∼= A7.

Corollary 6.6. There are at least three conjugacy classes of A7’s namely
A71

∼= Gα, A72
∼= G(Δ1), A73

∼= G(Δ2). Hence there are exactly 3 conjugacy
classes of A7’s in G.
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The standard representation is G|{right cosets of A71}. Since χ = [1]+[21]+[28]i
for some i, and since #[orb] = 3, without loss of generality we take:

χ = χ1 = 1A71
↑G= 1 + [21] + [28]1.

Since A72 , A73 have 2 orbits on Ω, without loss of generality

1A72
↑G = 1 + [21] + [28]2

and
1A73

↑G = 1 + [21] + [28]3.

Therefore, the elements of order 5 in A72 or A73 come from 53 ∪ 52. Clearly,
there is a 3 way symmetry of the above argument relating the representation of
G on the cosets of A7’s to the 3 types of A7’s. Therefore each induced character
involves each [28]i exclusively. Hence, 52 ∈ A71 , 53 ∈ A72 , 54 ∈ A73 .

Now we investigate the normalizer NG(A5i
) ∼= S5. Since each A5i

is con-
tained in an appropriate A7i and the normalizer in A7i of A5i is isomorphic to
S5, NG(A5i

) ≤ A7i
, and therefore NG(A5i

) are not maximal in G. Of course
NG(A7) = A7i

are maximal since there are no permutation characters for G of
degree less than 50.

6.9 – The A6’s and their normalizers

Suppose H ≤ G, H ∼= PGL2(9), then [G : H] = 175. Therefore, χ =
1H ↑G= 1 + [125] + [21] + [28]i i ∈ {1, 2, 3} ⇒ χ(2) = 1 + 5 + 5 + 4 + 15. But
χ(2) should be σG(2)( 1

σH(21)
+ 1

σH(22)
) = 240( 1

16 + 1
20 ) = 27, a contradiction.

Hence no subgroup of G is isomorphic to PGL2(9).
Suppose next that there exists H ≤ G, H ∼= S6. Then χ(2) = 240( 1

48 + 1
16 +

1
48 ) = 25, a contradiction; therefore S6 � G.

Hence if A6 � H � G, then H ∼= M10. Consider Ω = [K2 × K4 → K5i ]
i ∈ {2, 3, 4} fixed. |Ω| = 75 · |K5i | = 24 · 33 · 53 · 7 (Since a2,4,5i = 75). Let S ⊆ Ω
be defined by:

(x, y) ∈ Sif and only if 〈x, y〉 ∼= S5

S �= ∅, since there exists H ≤ G, H ∼= S5 ∈ (2, 4, 5i).

There exists a mapping Φ from S into the collection of all subgroups of G, namely

Φ : (x, y) → 〈x, y〉.
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We have
|Φ(S)| = #[of S5 with a 5i] = [G : S5] = 2 · 3 · 52 · 7

any H ∈ Φ(S) is generated in 120 ways as 〈x, y〉 |x| = 2, |y| = 4, |xy| = 5,
x, y ∈ H.

Therefore, |S| = 120 · |Φ(S)| = 24 · 32 · 53 · 7.
Therefore, T = Ω \ S has 25 · 32 · 53 · 7 elements.
Now consider an A6 with a 5i in it. (Such exists since A6 ≤ A7) If N(A6) =

A6, then
#[A′

6s conjugate to this A6] = [G : A6] = 350.

But each A6 is generated as a (2, 4, 5i) in 25 ·32 ·5 ways. Therefore, there would be
350·25 ·32 ·5 ordered pairs in Ω yielding A6’s. But 350·25 ·32 ·5 > |T | = 25 ·32 ·53 ·7
a contradiction. Hence, N(A6) ∼= M10 and then

|T | = 175 · 25 · 32 · 5.

Corollary 6.7. There are exactly 3 conjugacy classes of A6’s one for
each 52, 53, 54, each normalized by an M10.
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– Appendix

Generators of PSU3(52):

x :
(3, 17, 7)(4, 46, 38)(5, 11, 21)(6, 26, 16)(8, 36, 32)(9, 28, 19)
(10, 13, 33)(14, 47, 15)(18, 43, 49)(20, 44, 23)(24, 25, 39)
(29, 50, 37)(30, 35, 41)(31, 45, 40)(34, 42, 48)
y :
(1, 3, 5, 2, 4)(6, 28, 20, 12, 24)(7, 29, 16, 13, 25)(8, 30, 17, 14, 21)
(9, 26, 18, 15, 22)(10, 27, 19, 11, 23)(36, 37, 38, 39, 40)
(41, 45, 44, 43, 42)(46, 49, 47, 50, 48)

Character Table of PSU3(52):

x 1 2 4 81 82 3 6 51 52 53 54 10 71 72

σx |G| 240 8 8 8 36 12 250 25 25 25 10 7 7

κx 1 525 15750 15750 15750 3500 10500 504 5040 5040 5040 12600 18000 18000

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 20 −4 0 0 0 2 2 −5 0 0 0 1 −1 −1

χ3 28 4 0 0 0 1 1 3 3 −2 −2 −1 0 0

χ4 28 4 0 0 0 1 1 3 −2 −2 3 −1 0 0

χ5 28 4 0 0 0 1 1 3 −2 3 −2 −1 0 0

χ6 21 5 1 −1 −1 3 −1 −4 1 1 1 0 0 0

χ7 84 −4 0 0 0 3 −1 9 −1 −1 −1 1 0 0

χ8 126 6 −2 0 0 0 0 1 1 1 1 1 0 0

χ9 105 1 1 −1 −1 −3 1 5 0 0 0 1 0 0

χ10 144 0 0 0 0 0 0 −6 −1 −1 −1 0 γ δ

χ11 144 0 0 0 0 0 0 −6 −1 −1 −1 0 δ γ

χ12 125 5 1 1 1 −1 −1 0 0 0 0 0 −1 −1

χ13 126 −6 0 α β 0 0 1 1 1 1 -1 0 0

χ14 126 −6 0 β α 0 0 1 1 1 1 −1 0 0
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Hoffman-Singleton Graph

1/ 2 5 6 11 16 21 26 26/ 1 28 29 34 36 45 49

2/ 1 3 7 12 17 22 27 27/ 2 29 30 35 37 41 50

3/ 2 4 8 13 18 23 28 28/ 3 26 30 31 38 42 46

4/ 3 5 9 14 19 24 29 29 4 26 27 32 39 43 47

5/ 1 4 10 15 20 25 30 30/ 5 27 28 33 40 44 48

6/ 1 8 9 31 37 43 48 31/ 6 12 20 24 28 32 35

7/ 2 9 10 32 38 44 49 32/ 7 13 16 25 29 31 33

8/ 3 6 10 33 39 45 50 33/ 8 14 17 21 30 32 34

9/ 4 6 7 34 40 41 46 34/ 9 15 18 22 26 33 35

10/ 5 7 8 35 36 42 47 35/ 10 11 19 23 27 31 34

11/ 1 13 14 35 39 44 46 36/ 10 13 17 24 26 37 40

12/ 2 14 15 31 40 45 47 37/ 6 14 18 25 27 36 38

13/ 3 11 15 32 36 41 48 38/ 7 15 19 21 28 37 39

14/ 4 11 12 33 37 42 49 39/ 8 11 20 22 29 38 40

15/ 5 12 13 34 38 43 50 40/ 9 12 16 23 30 36 39

16/ 1 18 19 32 40 42 50 41/ 9 13 20 21 27 42 45

17/ 2 19 20 33 36 43 46 42/ 10 14 16 22 28 41 43

18/ 3 16 20 34 37 44 47 43/ 6 17 23 29 15 42 44

19/ 4 16 17 35 38 45 48 44/ 7 11 18 24 30 43 45

20/ 5 17 18 31 39 41 49 45/ 8 12 19 25 26 41 44

21/ 1 23 24 33 38 41 47 46/ 9 11 17 25 28 47 50

22/ 2 24 25 34 39 42 48 47/ 10 12 18 21 29 46 48

23/ 3 25 21 35 40 43 49 48/ 6 13 19 30 47 49 22

24/ 4 21 22 31 36 44 50 49/ 7 14 20 23 26 48 50

25/ 5 22 23 32 37 45 46 50/ 8 15 16 24 27 46 49
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Λ1

1 1 7 8 13 14 19 20 24 25 27 28 34 40 43 47
2 2 8 9 14 15 20 16 25 21 28 29 35 36 44 48
3 3 9 10 15 11 16 17 21 22 29 30 31 37 45 49
4 4 10 6 11 12 17 18 22 23 30 26 32 38 41 50
5 5 6 7 12 13 18 19 23 24 26 27 33 39 42 46
6 11 20 4 43 45 28 21 34 2 40 32 48 50 37 10
7 6 28 29 25 18 40 2 19 11 24 33 10 41 15 49
8 5 40 32 34 38 24 11 47 6 27 17 49 3 45 42
9 16 27 17 47 44 13 5 14 26 8 9 23 31 38 22
10 21 13 46 7 37 8 26 43 16 20 4 22 30 12 35
11 39 4 49 45 6 21 46 2 35 32 36 30 15 18 42
12 31 29 42 18 5 2 9 11 48 33 50 36 45 38 23
13 36 33 22 12 16 6 29 5 49 46 3 41 38 44 35
14 50 17 35 44 21 5 32 26 42 9 39 3 12 37 48
15 41 46 48 37 2 26 33 16 23 4 31 39 44 15 10
16 17 22 21 16 45 29 37 49 10 3 11 9 15 30 31
17 46 35 2 21 18 32 15 42 49 39 6 4 45 36 30
18 13 17 1 45 42 30 23 31 4 37 34 50 47 39 7
19 14 18 2 41 43 26 24 32 5 38 35 46 48 40 8
20 15 19 3 42 44 27 25 33 1 39 31 47 49 36 9
21 7 29 30 21 19 36 3 20 12 25 34 6 42 11 50
22 10 27 28 24 17 39 1 18 15 23 32 9 45 14 48
23 1 36 33 35 39 25 12 48 7 28 18 50 4 41 43
24 2 37 34 31 40 21 13 49 8 29 19 46 5 42 44
25 3 38 35 32 36 22 14 50 9 30 20 47 1 43 45
26 7 33 29 19 36 12 22 18 6 41 28 23 16 50 5
27 8 34 30 20 37 13 23 19 7 42 29 24 17 46 1
28 9 35 26 16 38 14 24 20 8 43 30 25 18 47 2
29 10 31 27 17 39 15 25 16 9 44 26 21 19 48 3
30 27 18 25 13 28 1 12 10 43 39 9 49 19 48 3
31 28 19 21 14 29 2 13 6 44 40 10 50 20 25 34
32 29 20 22 15 30 3 14 7 45 36 6 46 16 21 35
33 30 16 23 11 26 4 15 8 41 37 7 47 17 22 31
34 17 47 28 45 14 27 7 5 24 13 16 6 39 23 34
35 18 48 29 41 15 28 8 1 25 14 17 7 40 20 35
36 19 49 30 42 11 29 9 2 21 15 18 8 36 25 31
37 24 7 11 40 6 19 3 27 25 42 26 47 15 33 20
38 25 8 12 36 7 20 4 28 21 43 27 48 11 34 16
39 33 18 26 2 4 50 10 48 38 41 43 31 40 25 11
40 34 19 27 3 5 46 6 49 39 42 44 32 36 21 12
41 35 20 28 4 1 47 7 50 40 43 45 33 37 22 13
42 39 5 31 19 9 47 26 2 44 13 37 50 42 33 23
43 40 1 32 20 10 48 27 3 45 14 38 46 43 34 24
44 30 2 50 45 47 23 36 20 34 32 11 38 4 42 6
45 26 3 46 41 48 24 37 16 35 33 12 39 5 43 7
46 27 4 47 42 49 25 38 17 31 34 13 40 1 44 8
47 28 5 48 43 50 21 39 18 32 35 14 36 2 45 9
48 34 2 24 11 5 49 28 8 47 37 19 41 32 40 43
49 31 4 21 13 2 46 30 10 49 39 16 43 34 37 45
50 32 5 22 14 3 47 26 6 50 40 17 44 35 38 41
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Λ2

1 1 3 7 14 19 25 30 31 34 36 39 41 43 47 50
2 2 4 8 15 20 21 26 32 35 37 40 42 44 48 46
3 3 5 9 11 16 22 27 33 31 38 36 43 45 49 47
4 4 1 10 12 17 23 28 34 32 39 37 44 41 50 48
5 5 2 6 13 18 24 29 35 33 40 38 45 42 46 49
6 11 29 20 45 28 2 16 33 48 15 24 23 37 10 9
7 6 32 28 18 40 11 21 17 10 45 27 22 15 49 4
8 26 17 24 12 27 5 11 9 42 38 8 48 18 23 32
9 16 46 27 44 13 26 6 4 23 12 20 10 38 22 33
10 21 9 13 37 8 16 5 29 22 44 28 49 12 35 17
11 39 26 4 6 21 35 13 17 30 12 50 25 18 42 7
12 31 16 29 5 2 48 8 46 36 44 41 34 38 23 14
13 30 21 32 26 11 10 20 9 50 37 3 19 12 22 43
14 36 2 33 16 6 49 28 4 41 15 39 47 44 35 25
15 50 11 17 21 5 42 40 29 3 45 31 7 37 48 34
16 41 6 46 2 26 23 24 32 39 18 30 14 15 10 19
17 29 1 49 44 46 22 40 19 33 31 15 37 3 41 10
18 32 1 42 37 9 35 24 47 17 30 45 15 39 3 49
19 33 1 23 15 4 48 27 7 46 36 18 45 31 39 42
20 17 1 22 45 29 10 13 14 9 50 38 18 30 31 23
21 46 1 35 18 32 49 8 43 4 41 12 38 36 30 22
22 9 1 48 38 33 42 20 25 29 3 44 12 50 36 35
23 12 30 16 41 29 3 17 34 49 11 25 24 38 6 10
24 14 27 18 43 26 5 19 31 46 13 22 21 40 8 7
25 15 28 19 44 27 1 20 32 47 14 23 22 36 9 8
26 40 5 50 41 7 22 47 3 31 33 37 26 11 19 43
27 36 1 46 42 8 23 48 4 32 34 38 27 12 20 44
28 37 2 47 43 9 24 49 5 33 35 39 28 13 16 45
29 38 3 48 44 10 25 50 1 34 31 40 29 14 17 41
30 32 30 43 19 1 3 10 12 49 34 46 37 41 39 24
31 33 26 44 20 2 4 6 13 50 35 47 38 42 40 25
32 34 27 45 16 3 5 7 14 46 31 48 39 43 36 21
33 35 28 41 17 4 1 8 15 47 32 49 40 44 37 22
34 40 32 21 11 20 10 28 4 48 50 2 45 37 43 34
35 46 18 31 45 22 1 33 27 43 10 40 4 13 38 49
36 47 19 32 41 23 2 34 28 44 6 36 5 14 39 50
37 48 20 33 42 24 3 35 29 45 7 37 1 15 40 46
38 49 16 34 43 25 4 31 30 41 8 38 2 11 36 47
39 8 46 1 18 23 36 22 30 29 15 19 41 7 31 14
40 43 38 11 3 25 16 27 33 26 12 48 9 10 24 20
41 25 12 6 39 34 21 13 17 16 44 10 4 49 27 28
42 19 37 26 30 47 11 20 9 2 15 42 32 23 8 24
43 47 15 16 36 7 6 28 4 11 45 23 33 22 20 27
44 7 45 21 50 14 5 40 29 6 18 22 17 35 28 13
45 43 33 50 11 7 41 31 40 37 19 47 26 22 5 3
46 25 17 41 6 14 3 30 24 15 47 7 16 35 26 39
47 19 9 39 26 25 31 50 13 18 14 43 2 10 21 30
48 42 8 24 13 9 30 1 12 18 35 17 29 38 25 49
49 22 28 13 20 29 50 1 37 12 10 9 33 44 19 23
50 1 50 17 48 31 34 44 10 14 40 38 41 29 3 25
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