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ggg-Natural metrics on unit tangent sphere

bundles via a Musso-Tricerri process

MOHAMED TAHAR KADAOUI ABBASSI

Dedicated to the memory of Professor F. Tricerri

Abstract: E. Musso and F. Tricerri had given a process of construction of Rie-
mannian metrics on tangent bundles and unit tangent bundles, over m-dimensional
Riemannian manifolds (M, g), from some special quadratic forms an OM × IRm and
OM , respectively, where OM is the bundle of orthonormal frames [7]. We prove in
this note that every Riemannian g-natural metric on the unit tangent sphere bundle
over a Riemannian manifold can be constructed by the Musso-Tricerri’s process. As a
corollary, we show that every Riemannian g-natural metric on the unit tangent bundle,
over a two-point homogeneous space, is homogeneous.

Let (M,g) be a Riemannian manifold and TM its tangent bundle. Consid-
ering TM as a vector bundle associated with the bundle of orthonormal frames
OM , E. Musso and F. Tricerri have constructed an interesting class of Rieman-
nian metrics on TM [7]. This construction is not a classification per se, but it is
a construction process of Riemannian metrics on TM from symmetric, positive
semi-definite tensor fields Q of type (2, 0) and rank 2m on OM × IRm, which are
basic for the natural submersion Φ : OM × IRm → TM , Φ(vε) = (x,

P
i εevi),

for v = (x; v1, . . . , vm) ∈ OM and ε = (ε1, . . . , εm) ∈ IRm. Recall that Q is basic

Key Words and Phrases: Unit tangent (sphere) bundle – Einstein manifold – g-
natural metric
A.M.S. Classification: 53C07, 53C25.
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means that Q is O(m)-invariant and Q(X,Y ) = 0, if X is tangent to a fiber of
Φ. The construction can be presented as follows:

Proposition 1 ([7]). Let Q be a symmetric, positive semi-definite tensor
field of type (2, 0) and rank 2m on OM × IRm, which is basic for the natural
submersion Φ : OM × IRm → TM . Then there is a unique Riemannian metric
GQ on TM such that Φ∗(GQ) = Q. It is given by

(1) GQ
(x,u)(X,Y ) = Q(v,ε)(X 0, Y 0),

where (v, ε) belongs to the fiber Φ−1(x, u),X, Y are elements of (TM)(x, u) and
X 0, Y 0 are any tangent vectors to OM × IRm at (v, ε) such that Φ∗(X 0) = X and
Φ∗(Y 0) = Y .

On the other hand, Musso and Tricerri proposed a similar process for con-
structing Riemannian metrics on the unit tangent sphere bundle T1M from sym-
metric, positive semi-definite tensor fields Q̃ of type (2, 0) and rank 2m − 1 on
OM , which are basic for the natural submersion √m : OM → T1M , √m(v) =
(x, vm), for v = (x; v1, . . . , vm) ∈ OM . Recall that Q̃ is basic means that Q̃ is
O(m−1)-invariant and Q̃(X,Y ) = 0, if X is tangent to a fiber of √m. Note that
√m is a submersion whose fibers can be identified with the subgroup O(m− 1)

of O(m) given by the matrices of the form
µ

A 0
0 1

∂
, A ∈ O(m− 1). Then T1M

can be regarded as the quotient space OM/O(m − 1), and √m is the natural
projection. The construction can be stated as follows:

Proposition 2 ([7]). Let Q̃ be a symmetric, positive semi-definite tensor
field of type (2, 0) and rank 2m on OM , which is basic for the natural submersion
√m : OM → T1M . Then there is a unique Riemannian metric G̃Q̃ on T1M such
that √∗m(G̃Q̃) = Q̃. It is given by

(2) G̃Q̃
(x,u)(X,Y ) = Q̃(v)(X 0, Y 0),

where v belongs to the fiber √−1
m (x, u),X, Y are elements of (T1M)(x, u) and

X 0, Y 0 are any tangent vectors to OM at v such that (√m)∗(X 0) = X and
(√m)∗(Y 0) = Y .

The Musso-Tricerri processes described by Propositions 1 and 2, respec-
tively, are compatible in the following sense:

Proposition 3. If a Riemannian metric G on TM is induced from a
bilinear form Q on OM × IRm by the Musso-Tricerri process described in Propo-
sition 1, i.e., Φ∗(G) = Q, then the induced metric G̃ := i∗(G) on T1M , where i:
T1M → TM is the canonical injection, can be obtained from the bilinear form
Q̃ := i∗(Q) on OM by the Musso-Tricerri process described in Proposition 2.
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Proof. Denote by im the map OM → OM×IRm, v 7→ (v, 0, . . . , 0, 1). Then
the following diagram

(3)
OM

im→ OM × IRm

√m ↓ ↓ Φ
T1M

i
↪→ TM

commutes. If we consider Q̃ := i∗mQ, then Q̃ is a symmetric, semi-positive
definite, tensor field of type (0, 2) on OM . We can prove by a bit longer routine
computation that is basic for √m and it is of rank 2m − 1. Furthermore, we
have, by virtue of (3), that √∗m(G̃) = √∗m(i∗(G)) = (i ◦ √m)∗(G) = i∗m(Φ∗(G)) =
i∗m(Q) = Q̃.

Now we shall prove that every Riemannian g-natural metric on the unit
tangent sphere bundle T1M of a Riemannian manifold (M,g) can be constructed
by the Musso-Tricerri’s scheme, given by Proposition 2. For this, let us recall
some basic definition.

Let∇ the Levi-Civita connection of g. Then the tangent space of TM at any
point (x, u) ∈ TM split into the horizontal and vertical subspaces with respect
to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

If (x, u) ∈ TM is given then, for any vector X ∈ Mx, there exists a unique vector
Xh ∈ H(x,u) such that p∗Xh = X, p : TM → M is the natural projection. We
call Xh the horizontal lift of X to the point (x, u) ∈ TM . The vertical lift of a
vector X ∈ Mx to (x, u) ∈ TM is a vector Xv ∈ V(x,u) such that Xv(df) = Mf ,
for all functions f on M . Here we consider 1-forms df on M as functions on
TM (i.e., (df)(x, u) = uf). Note that the map X → Xh is an isomorphism
between the vector spaces Mx and H(x,u). Similarly, the map X → Xv is an
isomorphism between the vector spaces Mx and V(x,v). Obviously, each tangent
vector eZ ∈ (TM)(x,u) can be written in the form eZ = Xh + Y v, where X,
Y ∈ Mx are uniquely determined vectors.

In an obvious way we can define horizontal and vertical lifts of vector fields
on M .

If we fix an F -metric ξ on M , i.e., a mapping TM ⊕TM ⊕TM → IR which
is linear in the second and the third argument and smooth in the first argument,
then there are three distinguished constructions of metrics on the tangent bundle
TM , which are given as follows [5]:

(a) If we suppose that ξ is symmetric with respect to the last two arguments,
then the Sasaki lift ξs of ξ is defined as follows:

(
ξs
(x,u)(X

h, Y h) = ξ(u;X,Y ),

ξs
(x,u)(X

v, Y h) = 0,

(
ξs
(x,u)(X

h, Y v) = 0,

ξs
(x,u)(X

v, Y v) = ξ(u;X,Y ),
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for all X, Y ∈ Mx. If ξ is non degenerate and positive definite with respect
to the last two arguments for each fixed u, then ξs is a Riemannian metric
on TM .

(b) The horizontal lift ξh of ξ is a pseudo-Riemannian metric on TM which is
given by:

(
ξh
(x,u)(X

h, Y h) = 0,

ξh
(x,u)(X

v, Y h) = ξ(u;X,Y ),

(
ξh
(x,u)(X

h, Y v) = ξ(u;X,Y ),

ξh
(x,u)(X

v, Y v) = 0,

for all X, Y ∈ Mx. If ξ is positive definite with respect to the last two
arguments, then ξs is of signature (m,m).

(c) The vertical lift ξv of ξ is a degenerate metric on TM which is given by:

(
ξv
(x,u)(X

h, Y h) = ξ(u;X,Y ),

ξv
(x,u)(X

v, Y h) = 0,

(
ξv
(x,u)(X

h, Y v) = 0,

ξv
(x,u)(X

v, Y v) = 0,

for all X, Y ∈ Mx. For each fixed u, the rank of ξv is exactly that of ξ.

If ξ = g is a Riemannian metric on M , then the three lifts of ξ just constructed
coincide with the three well-known classical lifts of the metric g to TM .

Let (M,g) be non-oriented. Then it is known that all natural F -metrics are
of the form

F (u;X,Y ) = α(kuk2)g(X,Y ) + β(kuk2)g(X,u)g(Y, u),

where α(t), β(t) are smooth functions on [0,+1) and kuk =
p

g(u, u) (see [4]
and [2]). The three lifts above of natural F -metrics generate the class of g-
natural metrics on TM (cf. [5] and [2] for the classification and the definition of
g-natural metrics and [4] for the general definition of naturality).

More precisely, we have

Proposition 4. Let (M,g) be a Riemannian manifold. Every g-natural
metric G on TM is given by

(4) G = (α1g + β1k)s + (α2g + β2k)h + (α3g + β3k)v,

where αi, βi, i = 1, 2, 3, are smooth functions on [0,+1), and k is the natural
F -metric on M defined by

(5) k(u;X,Y ) = g(u,X)g(u, Y ), for all (u, x, Y ) ∈ TM ⊕ TM ⊕ TM.
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If we restrict an arbitrary g-natural metric (4) to a tangent sphere bundle
TrM(r> 0), then we obtain the metric eG of the form

(6) eG = a · egd + b · fgh + c · egv + d ·fkv,

where a = α1(r2), b = α2(r2), c = α3(r2), d = β3(r2) and egs, fgh, egv and fkv are
the metrics on TrM induced by gs, gh, gv and kv, respectively. We call such
metrics on TrM , induced by g-natural metrics, g-natural metrics on TrM .

Riemannian g-natural metrics on tangent sphere bundles are characterized
by

Proposition 5 ([1]). Let r > 0 and (M,g) be a Riemannian manifold.
Then every Riemannian g-natural metric eG on Trm induced form a (possibly
degenerate) g-natural G on TM , is of the form (6), where a, b, c and d are
constants satisfying the inequalities a > 0, a(a+ c)− b2 > 0 and a+ c+ dr2 > 0.

Let θ = (θ1, . . . , θm) denote the canonical 1-form on OM , and let π denote
the natural projection OM

π→ M . Then

dπv(X) =
X

i

θi(X)vi, v = (x; v1, . . . , vm).

If we denote with ω = (ωi
j) the connection form on OM , then we find that the

forms

π∗1θi, i = 1, . . . ,m; π∗1ωi
j , 1 ≤ i ≤ j ≤ m; dεi, i = 1, . . . ,m,

where π1 : OM × IRm → OM denotes the first natural projection, determine an
absolute parallelism on OM × IRm. We consider the 1-forms ∇εi on OM × IRm

defined by

(7) ∇εi = dεi +
X

j

εjπ∗1ωi
j .

The first author an M. Sarih have proved the following

Proposition 6 ([2]). Every g-natural metric on the tangent bundle TM
of a Riemannian manifold (M,g) can be constructed by the Musso-Tricerri’s
generalized scheme, given by Proposition 1.
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More precisely, and arbitrary g-natural metric G on TM , which is of the
form (4) by Proposition 4, is induced by the symmetric tensor field Q of type
(2, 0) on OM × IRm given by

(8)

Q = (α1 + α3)(r2)
X

i

(π∗1θi)2 + (β1 + β3)(r2)

√
X

i

εiπ∗1θi

!2

+

+ α1(r2)
X

i

(Dεi)2 + β1(r2)

√
X

i

εiDεi

!2

+

+ 2α2(r2)
X

i

π∗i θiDεi + 2β2(r2)

√
X

i

εiπ∗1θi

!√
X

i

εiDεi

!

,

where r2 =
P

i(ε
i)2.

Note that (8) is exactly the expression (3.4) of [2] with the abuse of notation
θ = π∗1θ (cf. [2, p. 8, line 7 from below]).

Let us mention that in the proof of this result in [2], there occurred a little
misprint which did not influence the correctness of the statement.

Combining this last proposition with Proposition 3, we obtain

Theorem 1. Every Riemannian g-natural metric on the unit tangent sphere
bundle T1M of a Riemannian manifold (M,g) can be constructed by the Musso-
Tricerri’s scheme, given by Proposition 2.

More precisely, if eG = a· egs+b ·fgh+c · egv +d ·fkv, is an arbitrary Riemannian
g-natural metric on T1M , then eG is induced, via the Musso-Tricerri process, by
the (0, 2)-tensor field eQ = (a+c)

Pm−1
i=1 (θi)2+(a+c+d)(θm)2+a

Pm−1
i=1 (ωi

m)2+
2b

Pm−1
i=1 θiωi

m on OM .

Proof. By Proposition 5, every Riemannian g-natural metric on T1M is
of the form eG = a · egs + b · fgh + c · egv + d · fkv,where a, b, c and d are constants
such that a > 0, a(a + c) − b2 > 0 and a + c + d > 0. Such a metric on T1M
is obviously induced by the g-natural metric G = a · gs + b · gh + c · gv + d · kv

on TM . If we consider, in Proposition 6, constant functions αi, βi; i = 1, 2, 3,
such that α1 = a, α2 = b, α3 = c, β3 = d and β1 = β2 = 0, then our G is
induced by the symmetric tensor filed Q of type (2, 0) on OM × IRm given by
Q = (a + c)

Pm
i=1(π

∗
1θi)2 + d(

Pm
i=1 εiπ∗1θi)2 + a

Pm
i=1(∇εi)2 + 2b

Pm
i=1 π∗1θi∇εi,

where r2 =
Pm

i=1(ε
i)2. From Proposition 3, G is induced, via the Musso-Tricerri
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process, by the bilinear form eQ = (im) ∗Q on OM , i.e., by the form

(9)

eQ = (a + c)
mX

i=1

((π1 ◦ im)∗θi)2 + d

√
mX

i=1

(εi ◦ im

!

(π1 ◦ im)∗θi)2+

+ a
mX

i=1

((im)∗∇εi)2 + 2b
X

i=1

((π1 ◦ im)∗θi)((im)∗∇εi).

But, it is easy to check that εi ◦ im = δi
m, where (δi

j) denote the Kronecker
symbols. Then

(10) r2 ◦ im =
mX

i=1

(εi ◦ im)2 = 1 and (im)∗(dεi) = 0,

and it follows from (7) that

(11) (im)∗(∇εi) = i∗m(π∗1ωi
m) = ωi

m,

and we have also

(12) i∗m(π∗1θi) = θi,

since π1 ◦ im = IdOM . Hence, substituting from (10)-(12) into (9) and using
the fact that ωm

m = 0 by the skew-symmetry of (ωi
j), we obtain eQ = (a +

c)
Pm−1

i=1 (θi)2 + (a + c + d)(θm)2 + a
Pm−1

i=1 (ωi
m)2 + 2b

Pm−1
i=1 θiωi

m.

Remark 1. Theorem 1 is a kind of weak generalization of the Main theorem
in [1], where the base manifold (M,g) was a round sphere Sm. In our weaker
analogy, the base manifold (M,g) is arbitrary. (Cf. [1], Section 4 and the
formulas (3.1), (3.2)).

Now, we prove that any Riemannian g-natural metric on the unit tangent
bundle of a two-point homogeneous space is homogeneous. This will generalize
a theorem proved in [7, p. 10] for the induced Sasaki metric.

Theorem 2. Let (M,g) be a two-point homogeneous space and let eG be a
Riemannian g-natural metric on T1M . Then (T1M, eG) is a homogeneous Rie-
mannian space.
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Proof. Let I(M,g) denote the group of isometries of (M,g). Then there
is a natural left action of I(M,g) on T1M and OM , respectively, defined by the
formulas

Lf (x, u) = (f(x), f∗u),(13)
Lf (v) = (f(x), f∗u1, . . . , f∗um),(14)

where f ∈ I(M,g), (x, u) ∈ T1M and v := (x, u1, . . . , um) ∈ OM .
We claim that eG is I(M,g)-invariant with respect to the action (13). It is

well-known that the canonical 1-form theta and the Levi-Civita connection form
ω are I(M,g)-invariant, i.e.,

L∗f (θi) = θi,(15)

L∗f (ωi
j) = ωi

j .(16)

Now, eG is induced by the (0,2)-tensor filed eQ from Theorem 1. By using (15)
and (16) we obtain that L∗f ( eQ) = eQ. Moreover, eQ = √∗m( eG) holds by the proof
of Proposition 3.

We deduce that √∗m( eG) = L∗f (√∗m( eG)) = (√m ◦ Lf )∗( eG). But it is straight-
forward, form (13) and (14), that √m ◦ Lf = Lf ◦ √m. It follows then that
√∗m(eg) = (Lf ◦ √m)∗( eG) = √∗m(L∗f (eg)). Since √m is a submersion, then L∗f (eg) =
eG, for all f ∈ I(M,g). This proves our claim.

Next, it is classical that I(M,g) is transitive on T1M if and only if (M,g) is
a two-point homogeneous space (cf. [9], p. 289). Hence if (M,g) is a two-point
homogeneous space, then I(M,g) acts transitively on T1,M , as an isometry
group. Consequently, (T1M, eG) is a homogeneous Riemannian space.

For an alternative proof of Theorem 2 see [6].
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Trigonometric approach to convolution

formulae of Bernoulli and Euler numbers

WENCHANG CHU – CHENYING WANG

Abstract: Summation formulae involving Bernoulli and Euler numbers as well
as their convolutions are systematically reviewed by applying four classically elementary
trigonometric identities.

The Bernoulli and Euler numbers are important classical numbers and have
wide applications in mathematics and physics. They can be defined, respectively,
through the following trigonometric generating functions (see [12, Section 3.1.4],
[14, Section 7.58] and [15, Section 2.5] for example)

x cotx =
1X

n=0

(−1)n (2x)2n

(2n)!
B2n,(1)

secx =
1X

n=0

(−1)n x2n

(2n)!
E2n.(2)

According to the two elementary trigonometric relations

tanx = cotx− 2 cot(2x) and cscx = cotx + tan
x

2

Key Words and Phrases: Bernoulli numbers – Euler numbers – Trigonometric sums
A.M.S. Classification: 11B68, 05A19.
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the following two power series expansions can easily be shown

x tanx =
1X

n=1

(−1)n (2x)2n

(2n)!
B0

2n,(3)

x cscx =
1X

n=0

(−1)n x2n

(2n)!
B00

2n;(4)

where B0
2n and B00

2n denote, respectively, the two variants of Bernoulli numbers
B0

2n := (1− 4n)B2n and B00
2n := (2− 4n)B2n in order to shorten lengthy expres-

sions.
It is well-known that the sum of nth powers of the first m natural numbers

can be expressed in terms of Bernoulli numbers (cf. [5, Section 3.9] and [8,
Section 6.5]):

mX

k=1

kn =
m + 1
n + 1

nX

i=0

(m + 1)i

µ
n + 1
i + 1

∂
Bn−i.

Similar relations have recently been found by Liu and Luo [10] for the first m
odd positive integers, which motivated the authors [3] to work out four classes
of arithmetic identities involving Bernoulli and Euler numbers.

Observe that the above mentioned arithmetic identities have been accom-
plished entirely by manipulating elementary trigonometric sums. This encour-
ages the authors to explore thoroughly the trigonometric approach to the arith-
metic sums involving Bernoulli and Euler numbers as well as their convolutions.
Our investigation will be carried out by employing exclusively four basic trigono-
metric sum identities. In fact, the rest of the paper will be structured into four
sections according to these trigonometric relations with each of them having five
different reformulations, that result logically in further division of each section
into five subsections. Each subsection will prove a general theorem of arithmetic
convolution sum involving Bernoulli and/or Euler numbers, followed by several
concrete identities.

Throughout the paper, we shall assume δ = 0, 1 and m,n ∈ N0. In addition,
the following Taylor series for sine and cosine functions

(5) sinx =
1X

n=0

(−1)n x2n+1

(2n + 1)!
and cosx =

1X

n=0

(−1)n x2n

(2n)!

will frequently be appealed without explanation.
Apart from the arithmetic formulae treated in this paper, there exist vast

mathematical literature dealing with different approaches and identities for Ber-
noulli and Euler numbers as well as polynomials. The interested reader may
consult, for instance, [1], [3], [4], [6] for convolution formulae, [7], [11] for Miki-
type identities and [2], [13] for Bernoulli and Euler polynomials, as well as the
handbook by Hansen [9, Section 50 and Section 51].
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1 – Trigonometric sum concerning cos(2k + ∞)x

According to the following well-known formula

2 sinα cosβ = sin(α + β)− sin(β − α)

we can evaluate via telescoping method the trigonometric sum

(6) 2 sinx
mX

k=1

cos(2k + ∞)x = sin(2m + ∞ + 1)x− sin(∞ + 1)x.

By means of five different reformulations of this identity, this section will inves-
tigate arithmetic sums involving Bernoulli and Euler numbers as well as their
convolutions.

1.1 – Firstly, it is obvious that (6) is equivalent to the equation

2
mX

k=1

cos(2k + ∞)x = cscx sin(2m + ∞ + 1)x− cscx sin(∞ + 1)x.

Applying (4) and (5), we get the following power series expansion

2
1X

n=0

mX

k=1

(−1)n (2k + ∞)2n

(2n)!
x2n =

1X

i=0

1X

j=0

(−1)i+j (2m + ∞ + 1)2j+1

(2i)!(2j + 1)!
B00

2ix
2i+2j+

−
1X

i=0

1X

j=0

(−1)i+j (∞ + 1)2j+1

(2i)!(2j + 1)!
B00

2ix
2i+2j .

Comparing the coefficients of x2n, we find immediately the following identity.

Theorem 1 (m ≥ 0 and n ≥ 0).
mX

k=1

(2k + ∞)2n =
(2m + ∞ + 1)2n+1

2(2n + 1)

nX

i=0

µ
2n + 1

2i

∂
B00

2i

(2m + ∞ + 1)2i
+

− (∞ + 1)2n+1

2(2n + 1)

nX

i=0

µ
2n + 1

2i

∂
B00

2i

(∞ + 1)2i
.

This general theorem contains several interesting identities as special cases.

Corollary 2 (m = 1 and ∞ = −1 in Theorem 1: Liu and Luo [10,
Equation 8]).

nX

k=0

4n

4k

µ
2n + 1

2k

∂
B00

2k = 2n + 1.
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Corollary 3 (m = 1 and ∞ = −2 in Theorem 1: Liu–Luo [10, Equa-
tion 5]).

nX

k=0

µ
2n + 1

2k

∂
B00

2k = 0 where n > 0.

According to (2), (4) and (5), extracting the coefficients of x2n across the trigono-
metric equation 2 sinx csc 2x = secx, we recover another similar identity.

Lemma 4 (Chu–Wang [3, Equation 19a]).

nX

i=0

4i

µ
2n + 1

2i

∂
B00

2i = (2n + 1)E2n.

In Theorem 1, letting ∞ = −δ − 1/2 with δ = 0, 1 and then simplifying the
resulting equation through the last identity, we get the following transformation
formula.

Proposition 5 (δ = 0, 1 and m,n ≥ 0).

(1− 2δ)(n + 1/2)
4n(2m− δ + 1/2)2n+1

E2n =
nX

i=0

µ
2n + 1

2i

∂
B00

2i

(2m− δ + 1/2)2i

− 2(2n + 1)
(2m− δ + 1/2)2n+1

mX

k=1

(2k − δ − 1/2)2n.

When δ = 0 and m = 1, 2, this proposition yields the following two identities

nX

k=0

µ
2n + 1

2k

∂≥2
5

¥2k
B00

2k =
2n + 1
52n+1

E2n + 4
2n + 1
52n+1

32n,

nX

k=0

µ
2n + 1

2k

∂≥2
9

¥2k
B00

2k =
2n + 1
92n+1

n
E2n + 4 · 32n + 4 · 72n

o
.

Instead for δ = 1 and m = 1, 2, we get similarly two other identities

nX

k=0

µ
2n + 1

2k

∂≥2
3

¥2k
B00

2k =
2n + 1
32n+1

(4−E2n),

nX

k=0

µ
2n + 1

2k

∂≥2
7

¥2k
B00

2k =
2n + 1
72n+1

n
4(1 + 52n)−E2n

o
.
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1.2 – Secondly, the identity (6) may equivalently be restated as

2 csc(2m + ∞ + 1)x
mX

k=1

cos(2k + ∞)x

= cscx− cscx sin(∞ + 1)x csc(2m + ∞ + 1)x.

By means of (4) and (5), extracting the coefficients of x2n−1 from the last equa-
tion leads us to the following transformation theorem.

Theorem 6 (m ≥ 0 and n ≥ 0).

B00
2n

2(2m + ∞ + 1)2n−1
−

mX

k=1

nX

i=0

µ
2n
2i

∂
(2k + ∞)2i

(2m + ∞ + 1)2i
B00

2n−2i

=
(∞ + 1)2n+1

2(2n + 1)(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
(2m+∞+1)2j

(∞ + 1)2i+2j
B00

2iB
00
2j .

Several interesting identities follow immediately from this theorem.

Corollary 7 (m = 1 and ∞ = −1 in Theorem 6: Liu–Luo [10, Equa-
tion 13]).

nX

k=0

4k

µ
2n
2k

∂
B00

2k = B00
2n.

Next letting m = ∞ = 0 in Theorem 6 gives directly the formula

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
B00

2iB
00
2j = (2n + 1)B00

2n.

In fact, combining the series rearrangement with Corollary 3 we can show the
following more general result.

Corollary 8 (W 6= 0).

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
B00

2iB
00
2j

W 2n−2i
= (2n + 1)B00

2n.
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Finally, letting ∞ = δ − 1/2 in Theorem 6 and then applying Lemma 4, we find
the following transformation formula.

Proposition 9 (δ = 0, 1 and m,n ≥ 0).

B00
2n

(2m− δ + 1/2)2n−1
= 2

nX

i=0

mX

k=1

µ
2n
2i

∂≥ 2k − δ − 1/2
2m− δ + 1/2

¥2i
B00

2n−2i

− (δ − 1/2)
nX

i=0

µ
2n
2i

∂
E2iB00

2n−2i

(4m− 2δ + 1)2i
.

For δ = 0 and m = 0, 1, 2, this proposition reduces to the following three identi-
ties

nX

k=0

µ
2n
2k

∂
B00

2kE2n−2k = 4nB00
2n,

nX

k=0

µ
2n
2k

∂
B00

2n−2k

52k

n
32k +

E2k

4

o
=

22n−2

52n−1
B00

2n,

nX

k=0

µ
2n
2k

∂
B00

2n−2k

92k

n
32k + 72k +

E2k

4

o
=

22n−2

92n−1
B00

2n.

Similarly, when δ = 1 and m = 1, 2, we have two further formulae

nX

k=0

µ
2n
2k

∂
B00

2n−2k

32k

n
1− E2k

4

o
=

22n−2

32n−1
B00

2n,

nX

k=0

µ
2n
2k

∂
B00

2n−2k

72k

n
1 + 52k − E2k

4

o
=

22n−2

72n−1
B00

2n.

1.3 – Thirdly, rewrite (6) equivalently in the following manner

2 csc(2m + ∞ + 1)x
mX

k=1

cosx cos(2k + ∞)x

= cotx− cotx sin(∞ + 1)x csc(2m + ∞ + 1)x

and then recall the relation

(11) 2 cosx cos(2k + ∞)x = cos(2k + ∞ + 1)x + cos(2k + ∞ − 1)x.

In view of (1), (4) and (5), equating the coefficients of x2n−1 across the penulti-
mate equation gives rise to the following identity.
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Theorem 10 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

µ
2n
2i

∂
(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B00

2i

Ω
(2k + ∞ + 1)2n−2i

+(2k + ∞ − 1)2n−2i

æ

=
4nB2n

(∞ + 1)2n+1
−

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
4i(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B2iB

00
2j .

As special cases of this theorem, three identities are displayed below. First letting
m = ∞ = 0 in Theorem 10, we have

X

0≤i+j≤n

4i

µ
2n + 1
2i, 2j

∂
B2iB

00
2j = (2n + 1)4nB2n.

However, considering Corollary 3, we can show the following more general result.

Corollary 11 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n + 1
2i, 2j

∂
B2iB00

2j

W 2n−2i
= (2n + 1)4nB2n.

Corollary 12 (m = 1 and ∞ = −1 in Theorem 10: Chu-Wang [3, Equa-
tion 9a]).

nX

k=0

µ
2n
2k

∂
B00

2k = 4nB2n.

Corollary 13 (m = 1 and ∞ = −3 in Theorem 10: n > 0).

nX

k=0

µ
2n + 1

2k

∂
B2k = n +

1
2
.

1.4 – Fourthly, the identity (6) may equivalently be expressed as

2 cot(2m + ∞ + 1)x
mX

k=1

cos(2k + ∞)x =

= cscx cos(2m + ∞ + 1)x− cscx sin(∞ + 1)x cot(2m + ∞ + 1)x.
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On account of (1), (4) and (5), equating the coefficients of x2n−1 across the last
equation results in the following transformation theorem.

Theorem 14 (m ≥ 0 and n ≥ 0).

nX

i=0

µ
2n
2i

∂
(2m + ∞ + 1)2n−2iB00

2i

= 2
mX

k=1

nX

i=0

4i

µ
2n
2i

∂
(2m + ∞ + 1)2i−1(2k + ∞)2n−2iB2i

+
X

0≤i+j≤n

4j

µ
2n + 1
2i, 2j

∂
(2m+∞+1)2j−1 (∞ + 1)2n+1−2i−2j

2n + 1
B00

2iB2j .

When m = 1 and ∞ = −1, Theorem 14 reduces to the following equality

nX

k=0

4n

4k

µ
2n
2k

∂
B00

2k =
nX

`=0

16`

µ
2n
2`

∂
B2`.

By extracting the coefficients of x2n−1 across the following equation

cscx cos 2x = 2 cot 2x cosx = cscx− 2 sinx

we derive the two identities together.

Corollary 15 (m = 1 and ∞ = −1 in Theorem 14: Chu-Wang [3, Equa-
tion 10a]).

nX

k=0

4n

4k

µ
2n
2k

∂
B00

2k =
nX

`=0

16`

µ
2n
2`

∂
B2` = B00

2n + 4n.

1.5 – Finally, reformulate (6) equivalently as the following equality

2 cot(2m + ∞ + 1)x
mX

k=1

cosx cos(2k + ∞)x

= cotx cos(2m + ∞ + 1)x− cotx sin(∞ + 1)x cot(2m + ∞ + 1)x.

With the help of (1), (5) and (11), extracting the coefficients of x2n−1 across this
equation, we get the following identity.
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Theorem 16 (m ≥ 0 and n ≥ 0).
nX

k=0

4k

µ
2n
2k

∂
(2m + ∞ + 1)2n−2kB2k

=
mX

k=1

nX

i=0

4i

µ
2n
2i

∂
(2m + ∞ + 1)2i−1B2i

Ω
(2k + ∞ + 1)2n−2i

+(2k + ∞ − 1)2n−2i

æ

+
X

0≤i+j≤n

4i+j

µ
2n + 1
2i, 2j

∂
B2iB2j

2n + 1
(2m + ∞ + 1)2j−1(∞ + 1)2n−2i−2j+1.

First letting m = ∞ = 0 in Theorem 16 results in the following relation
X

0≤i+j≤n

4i+j

µ
2n + 1
2i, 2j

∂
B2iB2j

2n + 1
=

nX

k=0

4k

µ
2n
2k

∂
B2k

which can also be verified by applying the following lemma.

Lamma 17.
nX

k=0

4k

µ
2n + 1

2k

∂
B2k = 2n + 1.

This identity follows easily by equating the coefficients of x2n across the trigono-
metric equation sinx cotx = cosx. Instead, by extracting the coefficients of
x2n−1 across the equalities

cot2 x sinx = cosx cotx = cscx− sinx

we get the following closed formulae.

Corollary 18 (m = ∞ = 0 in Theorem 16).
X

0≤i+j≤n

4i+j

µ
2n + 1
2i, 2j

∂
B2iB2j

2n + 1
=

nX

k=0

4k

µ
2n
2k

∂
B2k = B00

2n + 2n.

Finally we examine the case of Theorem 16 with m = 1 and ∞ = −1

2
nX

k=0

µ
2n
2k

∂
B2k = 4nB2n +

nX

i=0

4i

µ
2n
2i

∂
B2i.

Recalling Corollary 18, we find another similar closed formula.

Corollary 19 (m = 1 and ∞ = −1 in Theorem 16).
nX

k=0

µ
2n
2k

∂
B2k = n + B2n.
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2 – Trigonometric sum concerning sin(2k + ∞)x

By means of the trigonometric relation

2 sinα sinβ = cos(α− β)− cos(α + β)

it is not hard to compute the finite sum

(12) 2 sinx
mX

k=1

sin(2k + ∞)x = cos(∞ + 1)x− cos(2m + ∞ + 1)x.

According to five different reformulations of this identity, this section will inves-
tigate summation formulae involving Bernoulli and Euler numbers.

2.1 – Firstly, it is obvious that (12) is equivalent to the equation

2
mX

k=1

sin(2k + ∞)x = cscx cos(∞ + 1)x− cscx cos(2m + ∞ + 1)x.

Applying (4) and (5), we have the power series expansion

2
1X

n=0

mX

k=1

(−1)n (2k + ∞)2n+1

(2n + 1)!
x2n+1 =

1X

i=0

1X

j=0

(−1)i+j(∞ + 1)2j

(2i)!(2j)!
B00

2ix
2i+2j−1

−
1X

i=0

1X

j=0

(−1)i+j(2m+∞+1)2j

(2i)!(2j)!
B00

2ix
2i+2j−1.

Extracting the coefficients of x2n−1 from both sides of the last equation and then
simplifying the result, we derive the following formula.

Theorem 20 (m ≥ 0 and n ≥ 1).

mX

k=1

(2k + ∞)2n−1 =
nX

i=0

B00
2i

4n

µ
2n
2i

∂
(2m + ∞ + 1)2n

(2m + ∞ + 1)2i
−

nX

i=0

B00
2i

4n

µ
2n
2i

∂
(∞ + 1)2n

(∞ + 1)2i
.

According to Corollary 7, letting ∞ = −δ−1/2 in this theorem yields the formula.

Proposition 21 (δ = 0, 1 and m, n ≥ 0).

nX

i=0

µ
2n
2i

∂
B00

2i

(2m− δ + 1/2)2i
= 4n

mX

k=1

(2k − δ − 1/2)2n−1

(2m− δ + 1/2)2n
+

B00
2n

(4m− 2δ + 1)2n
.
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For δ = 0 and m = 1, 2, the last theorem reduces to the following two identities
nX

k=0

µ
2n
2k

∂≥2
5

¥2k
B00

2k =
1

52n

©
8n · 32n−1 + B00

2n

™
,

nX

k=0

µ
2n
2k

∂≥2
9

¥2k
B00

2k =
1

92n

©
8n(32n−1 + 72n−1) + B00

2n

™
.

Similarly, when δ = 1 and m = 1, 2, we get from Theorem 20 two further
interesting identities

nX

k=0

µ
2n
2k

∂≥2
3

¥2k
B00

2k =
1

32n

n
8n + B00

2n

o
,

nX

k=0

µ
2n
2k

∂≥2
7

¥2k
B00

2k =
1

72n

n
8n(1 + 52n−1) + B00

2n

o
.

2.2 – Secondly, the identity (12) may equivalently be restated as

2 sec(2m + ∞ + 1)x
mX

k=1

sin(2k + ∞)x =

= cscx cos(∞ + 1)x sec(2m + ∞ + 1)x− cscx.

By means of (2), (4) and (5), extracting the coefficients of x2n−1 across this
equation yields the following identity.

Theorem 22 (m ≥ 0 and n ≥ 1).

B00
2n

4n(2m + ∞ + 1)2n
−

mX

k=1

nX

i=1

µ
2n− 1
2i− 1

∂
(2k + ∞)2i−1

(2m + ∞ + 1)2i
E2n−2i

=
(∞ + 1)2n

4n(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n

2i, 2j

∂
(2m + ∞ + 1)2j

(∞ + 1)2i+2j
B00

2iE2j .

Letting m = ∞ = 0, Theorem 22 gives directly the formula
X

0≤i+j≤n

µ
2n

2i, 2j

∂
B00

2iE2j = B00
2n.

In fact, applying Corollary 45, we can show the following more general result.

Corollary 23 (W 6= 0).
X

0≤i+j≤n

µ
2n

2i, 2j

∂
B00

2iE2j

W 2n−2i
= B00

2n.
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Taking ∞ = δ− 1/2 in Theorem 22 and then appealing to Corollary 7, we derive
the following transformation.

Proposition 24 (δ = 0, and m ≥ 0, n ≥ 1).
mX

k=1

nX

i=1

µ
2n− 1
2i− 1

∂
(2k − δ − 1/2)2i−1

(2m− δ + 1/2)2i
E2n−2i

=
B00

2n

4n(2m− δ + 1/2)2n
− 1

4n

nX

i=0

µ
2n
2i

∂
B00

2iE2n−2i

4i(2m− δ + 1/2)2i
.

2.3 – Thirdly, rewrite (12) equivalently in the following manner

2 sec(2m + ∞ + 1)x
mX

k=1

cosx sin(2k + ∞)x

= cotx cos(∞ + 1)x sec(2m + ∞ + 1)x− cotx

and then recall the trigonometric relation

(15) 2 cosx sin(2k + ∞)x = sin(2k + ∞ + 1)x + sin(2k + ∞ − 1)x.

In view of (1), (2) and (5), extracting the coefficients of x2n+1 from the penulti-
mate equation and then simplifying the result, we derive the following arithmetic
formula.

Theorem 25 (m ≥ 0 and n ≥ 0).
X

0≤i+j≤n+1

4i

µ
2n + 2
2i, 2j

∂
(2m + ∞ + 1)2j (∞ + 1)2n+2−2i−2j

2n + 2
B2iE2j

=4n+1 B2n+2

2n + 2
−

mX

k=1

nX

i=0

µ
2n + 1

2i

∂
(2m + ∞ + 1)2iE2i

Ω
(2k + ∞ + 1)2n+1−2i

+(2k + ∞ − 1)2n+1−2i

æ
.

Two examples of this theorem are given below as applications.
Taking m = ∞ = 0 in Theorem 25, we have directly the formula

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B2iE2j = 4nB2n.

In fact, by means of Corollary 45, we can show the following more general result.

Corollary 26 (W 6= 0).
X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B2iE2j

W 2n−2i
= 4nB2n.



[13] Bernoulli and Euler numbers 261

Letting m = 1 and ∞ = −1 in Theorem 10, we have the following transformation

X

i+j=n+1

µ
2 + 2n
2i, 2j

∂
B2iE2j = B2n+2 − (n + 1)

nX

i=0

µ
2n + 1

2i

∂
E2i.

Evaluating the last sum by Corollary 34 and then replacing n by n− 1, we get
the following convolution formula between Bernoulli and Euler numbers.

Corollary 27.

nX

k=0

µ
2n
2k

∂
B2kE2n−2k = B2n

n
1 + 22n−1 − 24n−1

o
.

This can also be verified by equating the coefficients x2n−1 across the following
trigonometric equation

secx cot x
2 = tan x

2 + cot x
2 .

2.4 – Fourthly, the identity (12) may equivalently be expressed as

2 tan(2m + ∞ + 1)x
mX

k=1

sin(2k + ∞)x

= − cscx sin(2m + ∞ + 1)x + cscx cos(∞ + 1)x tan(2m + ∞ + 1)x.

On account of (3), (4) and (5), we can equate the coefficients of x2n across the
last equation and obtain the following arithmetic formula.

Theorem 28 (m ≥ 0 and n ≥ 0).

2
mX

k=1

nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i−1(2k + ∞)2n+1−2iB0

2i

= −
X

0≤i+j≤n+1

4i

µ
2n + 2
2i, 2j

∂
(2m + ∞ + 1)2i−1 (∞ + 1)2n+2−2i−2j

2n + 2
B0

2iB
00
2j

−
nX

i=0

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n+1−2iB00

2i.
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Letting m = ∞ = 0 in this theorem and then keeping in mind of Corollary 3, we
find the following strange-looking identity.

Corollary 29 (n > 1).

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iB
00
2j = 0.

2.5 – Finally, reformulate (6) equivalently as the following equality

2 tan(2m + ∞ + 1)x
mX

k=1

cosx sin(2k + ∞)x =

= cotx cos(∞ + 1)x tan(2m + ∞ + 1)x− cotx sin(2m + ∞ + 1)x.

With the help of the trigonometric relation (15), we can extract, according to
(1), (3) and (5), the coefficients of x2n across the last equation and establish the
following formula.

Theorem 30 (m ≥ 0 and n ≥ 0).
mX

k=1

nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i−1B0

2i

Ω
(2k + ∞ + 1)2n+1−2i

+(2k + ∞ − 1)2n+1−2i

æ

= −
nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n−2i+1B2i

−
X

0≤i+j≤n+1

4i+j

µ
2n + 2
2i, 2j

∂
B2iB0

2j

2n + 2
(2m + ∞ + 1)2j−1(∞ + 1)2n+2−2i−2j .

When m = ∞ = 0, the last expression yields the following transformation

X

0≤i+j≤n+1

4i+j

µ
2n + 2
2i, 2j

∂
B2iB

0
2j = −(2n + 2)

nX

i=0

4i

µ
2n + 1

2i

∂
B2i.

Evaluating the last sum by Lemma 17 and then replacing n by n− 1, we get the
following convolution formula for Bernoulli numbers.

Corollary 31.

X

0≤i+j≤n

4i+j

µ
2n

2i, 2j

∂
B2iB

0
2j = 2n(1− 2n).
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This can also be proved by equating the coefficients x2n−2 across the following
trigonometric equation

cosx tanx cotx = cosx.

3 – Alternating sum concerning sin(2k + ∞)x

Recalling the trigonometric formula

2 sinα cosβ = sin(α + β) + sin(α− β)

we have the finite trigonometric sum

(16) 2 cosx
mX

k=1

(−1)k sin(2k + ∞)x = (−1)m sin(2m + ∞ + 1)x− sin(∞ + 1)x.

By means of five different reformulations of this identity, this section will inves-
tigate convolution formulae involving Bernoulli and Euler numbers.

3.1 – Firstly, it is obvious that (16) is equivalent to the equation

2
mX

k=1

(−1)k sin(2k + ∞)x = (−1)m secx sin(2m + ∞ + 1)x− secx sin(∞ + 1)x.

According to (2) and (5), equating the coefficients of x2n+1 across the last equa-
tion, we find the following formula.

Theorem 32 (m ≥ 0 and n ≥ 0).

2
mX

k=1

(−1)k(2k + ∞)2n+1 = (−1)m
nX

i=0

µ
2n + 1
2i + 1

∂
(2m + ∞ + 1)2i+1E2n−2i

−
nX

i=0

µ
2n + 1
2i + 1

∂
(∞ + 1)2i+1E2n−2i.

Two known identities can be recovered directly from this theorem.

Corollary 33 (m = 1 and ∞ = −1 in Theorem 32: Chu-Wang [3, Equa-
tion 17a]).

nX

i=0

4n

4i

µ
2n + 1

2i

∂
E2i = 1.
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Comparing the case ∞ = −δ of this theorem with the identity due to Chu and
Wang [3, Theorem 7], we recover another formula.

Corollary 34 (Hansen [9, Equation 51.1.2] and Chu-Wang [3, Equa-
tion 16a: n > 0]).

nX

i=0

µ
2n− 1

2i

∂
E2i = −4n B0

2n

2n
.

Letting m = 1, 2 in this theorem, we get respectively the following two identities

nX

k=0

µ
2n + 1
2k + 1

∂n
(∞ + 1)2k+1 + (∞ + 3)2k+1

o
E2n−2k = 2(∞ + 2)2n+1,

nX

k=0

µ
2n + 1
2k + 1

∂n
(∞+5)2k+1−(∞ + 1)2k+1

o
E2n−2k =2

n
(∞+4)2n+1−(∞ + 2)2n+1

o
.

3.2 – Secondly, the identity (16) may equivalently be restated as

2 csc(2m + ∞ + 1)x
mX

k=1

(−1)k sin(2k + ∞)x

= (−1)m secx− secx sin(∞ + 1)x csc(2m + ∞ + 1)x.

By means of (2), (4) and (5), equating the coefficients of x2n across this equation
and then simplifying the result, we get the following identity.

Theorem 35 (m ≥ 0 and n ≥ 0).

(−1)m(2n + 1)
(2m + ∞ + 1)2n−1

E2n − 2
mX

k=1

nX

i=0

(−1)k

µ
2n + 1
2i + 1

∂
(2k + ∞)2i+1

(2m + ∞ + 1)2i
B00

2n−2i

=
(∞ + 1)2n+1

(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
(2m + ∞ + 1)2i

(∞ + 1)2i+2j
B00

2iE2j .

Letting m = ∞ = 0 in Theorem 35 gives directly the formula

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
B00

2iE2j = (2n + 1)E2n.

In fact, applying Corollary 3, we can prove the following more general result.
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Corollary 36 (W 6= 0).
X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
B00

2iE2j

W 2n−2j
= (2n + 1)E2n.

3.3 – Thirdly, rewrite (16) equivalently in the following manner

2 csc(2m + ∞ + 1)x
mX

k=1

(−1)k sinx sin(2k + ∞)x

= (−1)m tanx− tanx sin(∞ + 1)x csc(2m + ∞ + 1)x

and recall the trigonometric relation

2 sinx sin(2k + ∞)x = cos(2k + ∞ − 1)x− cos(2k + ∞ + 1)x.

In view of (3), (4) and (5), extracting the coefficient of x2n−1 across the penul-
timate equation, we get the identity.

Theorem 37 (m ≥ 0 and n ≥ 0).
mX

k=1

nX

i=0

(−1)k

µ
2n
2i

∂
(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B00

2i

Ω
(2k + ∞ − 1)2n−2i

−(2k + ∞ + 1)2n−2i

æ

= (−1)m 4nB0
2n

(∞ + 1)2n+1
−

X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
4i(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B0

2iB
00
2j .

When m = ∞ = 0, Theorem 37 yields the following identity
X

0≤i+j≤n

4i

µ
2n + 1
2i, 2j

∂
B0

2iB
00
2j = (2n + 1)4nB0

2n.

This identity can also be shown by equating the coefficients x2n−1 across the
following trigonometric equation

tanx cscx sinx = tanx.

Furthermore, we can verify through Corollary 3, the following more general re-
sult.

corollary 38 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n + 1
2i, 2j

∂
B0

2iB
00
2j

W 2n−2i
= (2n + 1)4nB0

2n.
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Corollary 39 (m = 1 and m = −3 in Theorem 37: n > 0).

nX

i=0

µ
2n + 1

2i

∂
B0

2i = −n− 1/2.

We remark that this identity is also the linear combination of Corollary 13 and
Lemma 17.

3.4 – Fourthly, the identity (16) may equivalently be expressed as

2 cot(2m + ∞ + 1)x
mX

k=1

(−1)k sin(2k + ∞)x =

= (−1)m secx cos(2m + ∞ + 1)x− secx sin(∞ + 1)x cot(2m + ∞ + 1)x.

On account of (1), (2) and (5), equating the coefficients of x2n across this equa-
tion and then simplifying the result, we get the following identity.

Theorem 40 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
22i+1(2m + ∞ + 1)2i−1(2k + ∞)2n+1−2iB2i

= (2n + 1)
nX

i=0

(−1)m

µ
2n
2i

∂
(2m + ∞ + 1)2n−2iE2i

−
X

0≤i+j≤n

4j

µ
2n + 1
2i, 2j

∂
(2m + ∞ + 1)2j−1(∞ + 1)2n+1−2i−2jE2iB2j .

When m = ∞ = 0, it yields the following expression

X

0≤i+j≤n

4j

µ
2n + 1
2i, 2j

∂
E2iB2j = (2n + 1)

nX

i=0

µ
2n
2i

∂
E2i.

According to Corollary 45, this gives rise to the following formula.

Corollary 41 (n > 0).

X

0≤i+j≤n

4i

µ
2n + 1
2i, 2j

∂
B2iE2j = 0.
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3.5 – Finally, reformulate (16) equivalently as the following equality

2 cot(2m + ∞ + 1)x
mX

k=1

(−1)k sinx sin(2k + ∞)x

= (−1)m tanx cos(2m + ∞ + 1)x + tanx sin(∞ + 1)x cot(2m + ∞ + 1)x.

With the help of (1), (3) and (5), extracting the coefficient of x2n−1 across the
last equation leads us to the following identity.

Theorem 42 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n
2i

∂
4i(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B2i

Ω
(2k + ∞ − 1)2n−2i

−(2k + ∞ + 1)2n−2i

æ

=
nX

i=0

(−1)m

µ
2n
2i

∂
4i(2m + ∞ + 1)2n−2i

(∞ + 1)2n+1
B0

2i

−
X

0≤i+j≤n

µ
2n + 1
2i, 2j

∂
4i+j(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B0

2iB2j .

When m = ∞ = 0, it yields the following transformation

X

0≤i+j≤n

4i+j

µ
2n + 1
2i, 2j

∂
B0

2iB2j

2n + 1
=

nX

i=0

4i

µ
2n
2i

∂
B0

2i.

By extracting the coefficients of x2n−1 across the expansion of the trigonometric
relation

tanx cotx sinx = cosx tanx = sinx,

we can show further the following two closed formulae.

Corollary 43.

X

0≤i+j≤n

4i+j

µ
2n + 1
2i, 2j

∂
B0

2iB2j

2n + 1
=

nX

i=0

4i

µ
2n
2i

∂
B0

2i = −2n.
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4 – Alternating sum concerning cos(2k + ∞)x

In view of the following trigonometric relation

2 cosα cosβ = cos(α + β) + cos(α− β)

it is almost trivial to derive that

(18) 2 cosx
mX

k=1

(−1)k cos(2k + ∞)x = (−1)m cos(2m + ∞ + 1)x− cos(∞ + 1)x.

According to five different reformulations of this identity, this section will inves-
tigate convolution identities involving Bernoulli and Euler numbers.

4.1 – Firstly, it is obvious that (18) is equivalent to the equation

2
mX

k=1

(−1)k cos(2k + ∞)x = (−1)m secx cos(2m + ∞ + 1)x− secx cos(∞ + 1)x.

According to (2) and (5), we have the following power series expansions

2
mX

k=1

1X

n=0

(−1)n+k (2k + ∞)2n

(2n)!
x2n +

X

i,j≥0

(−1)i+j (∞ + 1)2j

(2i)!(2j)!
E2ix

2i+2j

=
X

i,j≥0

(−1)m+i+j (2m + ∞ + 1)2j

(2i)!(2j)!
E2ix

2i+2j .

Equating the coefficients of x2n across this equation, we find the transformation.

Theorem 44 (m ≥ 0 and n ≥ 0).

2
mX

k=1

(−1)k(2k + ∞)2n = (−1)m
nX

i=0

µ
2n
2i

∂
(2m + ∞ + 1)2n−2iE2i

−
nX

i=0

µ
2n
2i

∂
(∞ + 1)2n−2iE2i.

Comparing the case ∞ = −δ of this theorem with the identity due to Chu and
Wang [3, Theorem 10], we recover the following well-known identity.
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Corollary 45 (Stromberg [14, Section 7.58]: n > 0).
nX

i=0

µ
2n
2i

∂
E2i = 0.

For m = 1 and ∞ = −3, the last theorem recovers another interesting identity.

Corollary 46 (m = 1 and ∞ = −3 in Theorem 44: Chu-Wang [3, Equa-
tion 23a]).

nX

i=0

4n

4i

µ
2n
2i

∂
E2i = 2−E2n.

4.2 – Secondly, the identity (18) may equivalently be restated as

2 sec(2m + ∞ + 1)x
mX

k=1

(−1)k cos(2k + ∞)x

= (−1)m secx− secx sec(2m + ∞ + 1)x cos(∞ + 1)x.

By means of (2), (4) and (5), equating the coefficients of x2n across this equation
yields the following identity.

Theorem 47 (m ≥ 1 and n ≥ 0).

(−1)mE2n

(2m + ∞ + 1)2n
− 2

mX

k=1

nX

i=0

(−1)k

µ
2n
2i

∂
(2k + ∞)2i

(2m + ∞ + 1)2i
E2n−2i

=
(∞ + 1)2n

(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n

2i, 2j

∂
(2m + ∞ + 1)2i

(∞ + 1)2i+2j
E2iE2j .

When m = ∞ = 0, it reduces to the following identity
X

0≤i+j≤n

µ
2n

2i, 2j

∂
E2iE2j = E2n.

By exchanging the summation order and then applying Corollary 45, we can
show the following more general result.

Corollary 48 (W 6= 0).
X

0≤i+j≤n

µ
2n

2i, 2j

∂
E2iE2j

W 2n−2i
= E2n.



270 WENCHANG CHU – CHENYING WANG [22]

4.3 – Thirdly, rewrite (18) equivalently in the following manner

2 sec(2m + ∞ + 1)x
mX

k=1

(−1)k sinx cos(2k + ∞)x

= (−1)m tanx− tanx sec(2m + ∞ + 1)x cos(∞ + 1)x

and recall to the trigonometric relation

(19) 2 sinx cos(2k + ∞)x = sin(2k + ∞ + 1)x− sin(2k + ∞ − 1)x.

In view of (2), (3) and (5), extracting the coefficients of x2n+1 across the penul-
timate equation results in the following general transformation.

Theorem 49 (m ≥ 0 and n ≥ 0).
mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i

(∞ + 1)2n+2
E2i

Ω
(2k + ∞ + 1)2n−2i+1

−(2k + ∞ − 1)2n−2i+1

æ

=
(−1)m+122n+1

(n + 1)(∞ + 1)2n+2
B0

2n+2+
X

0≤i+j≤n+1

µ
2n + 2
2i, 2j

∂
4i(2m + ∞ + 1)2j

(2n + 2)(∞ + 1)2i+2j
B0

2iE2j .

Three identities can be derived from this theorem as consequences.
Firstly, when m = ∞ = 0, the theorem yields the following identity

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iE2j = 4nB0
2n.

Applying Corollary 45, this can be generalized to the following general formula.

Corollary 50 (W 6= 0).
X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iE2j

W 2n−2i
= 4nB0

2n.

Secondly, taking m = 1 and ∞ = −1, we have the transformation expression
n+1X

i=0

µ
2n + 2

2i

∂
B0

2iE2n+2−2i = −B0
2n+2 − (n + 1)

nX

i=0

µ
2n + 1

2i

∂
E2i.

Evaluating the last sum by Corollary 34 and then replacing n by n− 1, we get
the following interesting convolution formula.

Corollary 51.
nX

i=0

µ
2n
2i

∂
B0

2iE2n−2i = (22n−1 − 1)B0
2n.
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This can also be verified by equating the coefficients of x2n−1 across the following
trigonometric equation

tanx secx = tanx− tan
x

2
.

Finally, letting m = 1 and ∞ = −3, we find another closed formula, which is , in
fact, also a linear combination of Corollary 18 and Corollary 19.

Corollary 52 (m = 1 and ∞ = −3 in Theorem 49).

nX

i=0

µ
2n
2i

∂
B0

2i = −n−B0
2n.

4.4 – Fourthly, the identity (18) may equivalently be expressed as

2 tan(2m + ∞ + 1)x
mX

k=1

(−1)k cos(2k + ∞)x

= (−1)m secx sin(2m + ∞ + 1)x− secx tan(2m + ∞ + 1)x cos(∞ + 1)x.

On account of (19), we can extract, via (2), (3) and (5), the coefficients of x2n−1

across this equation. Simplifying the result gives the following identity.

Theorem 53 (m ≥ 0 and n ≥ 0).

2
mX

k=1

n+1X

i=0

(−1)k

µ
2n + 2

2i

∂
4i(2m + ∞ + 1)2i−1(2k + ∞)2n+2−2iB0

2i

= (2n + 2)
nX

i=0

(−1)m+1

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n+1−2iE2i

−
X

0≤i+j≤n+1

4i

µ
2n + 2
2i, 2j

∂
(2m + ∞ + 1)2i−1(∞ + 1)2n+2−2i−2jB0

2iE2j .

When m = −∞ = 1, this theorem reduced a simplified transformation.

Corollary 54 (m = 1 and ∞ = −1 in Theorem 53).

nX

i=0

42i

µ
2n
2i

∂
B0

2iE2n−2i = 8n + 2
nX

i=0

42i

µ
2n
2i

∂
B0

2i.
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4.5 – Finally, reformulate (18) equivalently as the following equality

2 tan(2m + ∞ + 1)x
mX

k=1

(−1)k sinx cos(2k + ∞)x

= (−1)m tanx sin(2m + ∞ + 1)x + tanx tan(2m + ∞ + 1)x cos(∞ + 1)x.

Similarly with the help of (3) and (5), extracting the coefficient of x2n across the
last equation, we establish the following identity.

Theorem 55 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
4i (2m + ∞ + 1)2i−1

(∞ + 1)2n+2
B0

2i

Ω
(2k + ∞ + 1)2n−2i+1

−(2k + ∞ − 1)2n−2i+1

æ

=
nX

i=0

(−1)m

µ
2n + 1

2i

∂
4i (2m + ∞ + 1)2n−2i+1

(∞ + 1)2n+2
B0

2i

+
X

0≤i+j≤n+1

4i+j

µ
2n + 2
2i, 2j

∂
(2m + ∞ + 1)2j−1

(2n + 2)(∞ + 1)2i+2j
B0

2iB
0
2j .

When m = ∞ = 0, it yields the following strange identity

X

0≤i+j≤n+1

4i+j

µ
2n + 2
2i, 2j

∂
B0

2iB
0
2j = −(2n + 2)

nX

i=0

4i

µ
2n + 1

2i

∂
B0

2i.

By extracting the coefficients of x2n across the expansion of the trigonometric
relation

tan2 x cosx = tanx sinx = secx− cosx,

we have the following two convolution formulae.

Corollary 56.

nX

i=0

4i

µ
2n + 1

2i

∂
B0

2i = (2n + 1)(E2n − 1).

Corollary 57 (n > 0).

X

0≤i+j≤n

4i+j

µ
2n

2i, 2j

∂
B0

2iB
0
2j = 2n(2n− 1)(1−E2n−2).
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Taking m = −∞ = 1 in Theorem 55 and then replacing n by n− 1, we have the
transformation formula

nX

i=0

4n

4i

µ
2n
2i

∂
B0

2iB
0
2n−2i = n

nX

i=0

µ
2n− 1

2i

∂
(2− 4i)B0

2i.

Evaluating the last sum by Corollary 39 and Corollary 56, we derive further the
following convolution identity.

Corollary 58 (m = 1 and m = −1 in Theorem 55: n > 1).

nX

i=0

4n

4i

µ
2n
2i

∂
B0

2iB
0
2n−2i = n(1− 2n)E2n−2.
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Some landmarks in the history

of the tangential Cauchy Riemann equations

R. MICHAEL RANGE

Abstract: We discuss the origins of the tangential Cauchy Riemann equation
beginning with W. Wirtinger in 1926, and trace the largely unknown early developments
until the emergence of the @b− Neumann complex in the 1960s.

Vienna is a most appropriate venue for a program centered on the @− Neu-
mann Problem. Not only did the calculus of the differential operators @/@zj and
@/@zj originate in the work of Wilhelm Wirtinger, Professor at the University
of Vienna, but to my knowledge Wirtinger also was the first person to have
thought of what today we call the tangential Cauchy Riemann equations and the
corresponding notion of (tangential) Cauchy-Riemann ( = CR ) functions. Since
much of the modern literature seems to be unaware of this work and of other
early work on “tangential analytic functions”, it may be useful to trace the path
from these origins to the modern theory of the tangential @−Neumann Complex
as developed by J. J. Kohn and H. Rossi in the 1960s.

Key Words and Phrases: Tangential Cauchy-Riemann functions – CR Extension –
Global CR Extension theorem – Local CR embedding problem
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1 – The Beginning

Wilhelm Wirtinger (1865 - 1945) was born in Ybbs on the Danube and stud-
ied mathematics at the Universität Wien. He earned his doctorate in 1887 with
Emil Weyr and Gustav Ritter von Escherich, working on triple evolutions in the
plane. For the next three years he expanded his mathematical horizons in Berlin
and Göttingen, where he was strongly influenced by F. Klein. In 1890 he earned
the Habilitation in Vienna, and after a few years as assistant he was appointed
to a chair at the University of Innsbruck in 1895. He returned to Vienna in
1905 to assume a chair at his alma mater, where he stayed until his retirement
in 1935. Wirtinger was productive across a broad spectrum of mathematics and
mathematical physics, ranging from complex analysis and number theory to rela-
tivity theory and capillary waves. He was well recognized internationally as one
of the leading mathematicians of his days. Among his nine doctoral students
are W. Blaschke (1908, Wien) and L. Vietoris (1920, Wien). Other well known
mathematicians such as Schreier, Gödel, Radon, and Tausky-Todd studied with
him.

Most relevant for the present discussion is Wirtinger’s 1926 paper Zur for-
malen Theorie der Funktionen von mehr komplexen Veränderlichen [Wir]. Start-
ing with a (smooth) function F (x1, ...., x2n) of the real variables xβ , β = 1, ..., 2n,
Wirtinger introduces the complex functions zj = x2j−1 + ix2j and their con-
jugates zj , j = 1, ..., n and thinks of F as a function of the zj and zj via
x2j−1 = 1

2 (zj + zj) and x2j = 1
2i (zj − zj). Formal application of the chain

rule leads to

@

@zj
=

1
2

µ
@

@x2j−1
+

1
i

@

@x2j

∂
and

@

@zj
=

1
2

µ
@

@x2j−1
− 1

i

@

@x2j

∂
.

F is then an analytic function of z1, ...., zn precisely when F satisfies the Cauchy-
Riemann equations

@F

@zj
= 0, or, equivalently,

@F

@zj
= 0, j = 1, ...., n.

As a first elegant application of this point of view, Wirtinger notes that if W
is the real part of an analytic function, or more generally, a linear combination
aF + bG, where F and G are analytic in z1, ...., zn, then obviously

@2W

@zj@zk
= 0 for all j, k = 1, ...., n.

Conversely, if W satisfies these equations, W must be such a linear combination,
at least locally. In fact, the 1−form ω1 =

P @W
@zj

dzj has analytic coefficients and
is clearly closed, hence it is (locally) the differential dF of a function F =

R
ω1
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which is analytic in z1, ...., zn. Similarly, ω2 =
P @W

@zj
dzj is the differential dG

of a function G =
R

ω2 which depends analytically on z1, ...., zn, i.e., G depends
analytically on z1, ...., zn. Since dW = ω1 + ω2 = d(F + G), W and F + G differ
by a constant. In particular, if W is real valued, then ω2 = ω1, and hence G = F,
so W is the real part of an analytic function.

Influenced by Riemann’s point of view, who considered functions f(x, y)
on a 2−dimensional manifold which are analytic in z = x + iy, in the sense
that their differential df is just a multiple of dz, Wirtinger generalizes this idea
to the setting of an m−dimensional manifold Mm, with (real) coordinates t =
(t1, ..., tm). Given a positive integer n, with n < m ≤ 2n, he introduces 2n real
functions x∞(t), y∞(t), 1 ≤ ∞ ≤ n on Mm, and the corresponding complex valued
functions z∞ = x∞ + iy∞ , subject to the nondegeneracy condition

rank

∑
@z∞

@t∏

@z∞

@t∏

∏

m×2n

= m,

so that the points on Mm are uniquely determined by the values of the zj and
zj . Furthermore, the functions z1(t), ..., zn(t) are assumed to be independent,
i.e., dz1 ∧ .... ∧ dzn 6= 0. Wirtinger then introduces the concept of a complex
valued function Φ(t) on Mm which depends on z1, ..., zn (” . . . eine Funktion
Φ(t) [welche] als Funktion der z∞ . . . dargestellt werden kann” [Wir, p. 364]) by
the condition that

rank





@Φ
t∏

@z∞

@t∏



 < n + 1.

In the language of differential forms, this means that dΦ∧ dz1 ∧ ....∧ dzn ≡ 0 on
Mm, or dΦ =

P
a∞(t) dz∞ . Equivalently, the partial derivatives @Φ

@t∏
, ∏ = 1, ....,m,

must satisfy a system of m − n > 0 linear equations, i.e., there exist linear
differential operators Xk =

P
X∏

k
@

@t∏
, k = 1, ...,m − n, with complex valued

coefficients X∏
k on Mm, such that Φ is “analytic in z1, ..., zn” if and only if

Xk(Φ) =
mX

∏=1

X∏
k

@Φ
@t∏

= 0, k = 1, ...,m− n.

This system so generated has two basic properties:

a) The only real valued solutions are constants.
b) span {X1, ...,Xm−n} is closed under Lie brackets.

Conversely, starting with such a system which satisfies a) and b), Wirtinger
notes that if there exist n independent solutions z1, ..., zn, then all solutions of
Xk(Φ) = 0, k = 1, ...,m− n, on Mm can be thought of as analytic functions of
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these independent solutions. The key problem thus involves proving the existence
of such independent solutions. Motivated by the classical case m = 2, n = 1,
which Riemann studied by means of extremal properties, i.e, via the Dirichlet
problem, Wirtinger first attempts to introduce appropriate variational problems
and integral invariants in the higher dimensional case n > 1, m = 2n. In modern
language, Wirtinger was considering an integrable almost complex structure on
M2n, and he was trying to extend Riemann’s methods to prove that the given
data defined a complex manifold M2n. But he quickly realized that ”bis zu
bestimmten Existenzsätzen noch ein weiter Weg ist.(1) ([Wir], p. 372). He surely
was right: it took over 30 years until the problem was eventually solved by A.
Newlander and L. Nirenberg ([NeNi]).

Wirtinger then turned to the case m < 2n and set up some explicit computa-
tions in the case m = 3, n = 2, thereby attempting to outline a strategy to solve
what eventually became known as the (local) embedding problem for abstract CR
-structures. He seemed prescient, as he stated that such investigations, if they
can be carried out at all, would be much more difficult and complicated (op. cit,
p. 375). In fact, moving ahead half a century, L. Nirenberg showed in 1974
that there is in general no solution in this particular dimension, even assuming
a definite Levi form [Nir]. On the other hand, in a remarkable tour de force, M.
Kuranishi [Kur] proved in 1982 that the answer is positive in the hypersurface
case m = 2n − 1 with definite Levi form, provided n ≥ 5. Subsequently, T.
Akahori was able to extend Kuranishi’s work to the case n = 4 [Aka]. The case
n = 3 (i.e. m = 5) remains open to this date. Wirtinger’s intuition thus was
remarkably accurate. Realizing these difficulties with continuing along the path
initiated by Riemann, Wirtinger ended his paper with the statement “Vielleicht
hätte Riemann auch Ideen zur Überwindung dieser Schwierigkeiten gehabt.”(2)

2 – Early CR Extension Results

As noted above, there was no progress for a long time regarding the deep
question about existence of solutions to the system of partial differential equa-
tions introduced by Wirtinger. However, Wirtinger’s idea of “analytic functions
of the complex variables z1, ..., zn” on a real manifold led to other important de-
velopments. Remarkable results were obtained just a few years after Wirtinger’s
paper in the concrete setting in which the real manifold M2n−1 is a submanifold
of Cn, where the complex coordinates z1, ..., zn trivially provide n independent
solutions of Wirtinger’s system. Here a most natural question is to examine
the relationship between functions analytic on M2n−1 in Wirtinger’s sense, and
the functions analytic in z1, ..., zn in the ambient space in the classical sense.

(1)The path to specific existence theorems is still long.
(2)Perhaps Riemann would also have had ideas to overcome these difficulties.
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Clearly restrictions to M2n−1 of such classical analytic functions, as well as suit-
able boundary values of such functions defined on only one side of M2n−1 , are
solutions of the corresponding Wirtinger system. The obvious question then is
whether all solutions are, essentially, of this type.

Making reference to Wirtinger’s 1926 paper, Francesco Severi gave an affir-
mative answer in 1931 in the real analytic category [Sev].

Theorem (Severi 1931). If M2n−1 ⊂ Cn is real analytic, and if f is a real
analytic function on M2n−1 which satisfies the Wirtinger condition df∧dz1∧...∧
dzn = 0 in a neighborhood of a point P ∈ M2n−1 , then there exists a function
F ∈ O(U) on an open neighborhood U of P in Cn, such that F |M2n−1 ∩U = f .

The proof, which is essentially trivial in case n = 1, involves an elegant ap-
plication of Severi’s method to pass from real to complex variables in appropriate
power series. Severi proved the theorem in case n = 2, but his proof works in
higher dimensions as well with the obvious modifications. Via the identity theo-
rem, the result is easily globalized. By applying the classical Hartogs extension
theorem, Severi thus obtains the following generalization of the Hartogs theorem
to the case of Wirtinger’s tangential analytic functions.

Global CR Extension Theorem, Real Analytic Case .If n > 1 and
the bounded region D ⊂ Cn has connected real analytic boundary bD , then any
real analytic function f which satisfies df ∧ dz1 ∧ ... ∧ dzn = 0 on bD has a
holomorphic extension to D.

The local extension theory in the differentiable case is considerably more
complicated. Apparently unaware of Severi’s work, in 1936 Helmuth Kneser
studied the problem on M3 in C2 and produced examples to show that differen-
tiable functions satisfying the Wirtinger condition are not necessarily the bound-
ary values of classical holomorphic functions [Kne]. In fact, Kneser considered a
generalization of Wirtinger’s differential condition on M3 = M to a Morera type
condition (A) for continuous functions f , as follows. A continuous function f
satisfies condition (A) on the 3-dimensional manifold M if

R
bG f dz1 ∧ dz2 = 0

for every subregion G ⊂ M with C1 boundary bG. Kneser showed that for f of
class C1, condition (A) is equivalent to Wirtinger’s differential condition. More
significantly, in analogy to the E. E. Levi extension phenomenon for holomor-
phic functions, Kneser proved a deep local one-sided extension result for such
continuous CR functions near a strictly Levi pseudoconvex boundary point, as
follows.

Theorem (Kneser 1936). Assume that P ∈ bD and that D is strictly
Levi pseudoconvex at P .(3) Then there exist neighborhoods V ⊂⊂ U of P , such

(3)This implies in particular that bD is of class C2 near P.
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that every continuous function f on U ∩ bD which satisfies condition (A) can be
extended continuously to a function holomorphic on V ∩D.

In the proof, Kneser first showed that the geometric hypothesis implied
that after a local holomorphic change of coordinates one could assume that the
boundary was strictly Euclidean convex.(4) In this geometrically simple setting
Kneser then produced the holomorphic extension via an explicit integral for-
mula which was a suitably adapted variant of the Cauchy integral formula for
polydiscs. Condition (A) is the critical ingredient that makes the proof work.

Incidentally, just as Severi had done in the real analytic case, Kneser also
proved the corresponding global version.

Global CR Extension Theorem, Strictly Pseudoconvex Case.
If the bounded region D ⊂ C2 has connected strictly pseudoconvex boundary bD
then any continuous (weakly) CR function f on bD has a holomorphic extension
to D.

To my knowledge, Kneser’s result is the the first global CR extension the-
orem in the differentiable category, albeit under some restrictive geometric con-
ditions.

Unfortunately, the phenomenal progress in global complex function theory
in higher dimensions achieved by K. Oka and H. Cartan beginning in the mid
1930s, as well as the political climate in Germany and the disruptions of the
second world war, relegated the investigations begun by Wirtinger, Severi, and
Kneser to the sidelines, to the extent that for all practical purposes they were
forgotten and did not get proper recognition for a long time.

3 – Results of Lewy and Fichera in the 1950s

In the early 1950s there was renewed interest in fundamental investigations
in the theory of partial differential equations. One major result of this period was
the proof of existence of fundamental solutions for every linear partial differen-
tial operator with constant coefficients, obtained independently by L. Ehrenpreis
and B. Malgrange. Furthermore, the multivariable classical Cauchy-Riemann
equations presented a central example of an overdetermined system which re-
quired new methods for its study. Lastly, the system of linear partial differential
equations introduced by Wirtinger in 1926 provided natural important classes
of examples which were not covered by the Ehrenpreis - Malgrange theory. Al-
though it is not clear how much Wirtinger’s ideas were known in those days,

(4)This seems to be the earliest explicit occurence of what has become a well known
standard tool.
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times were certainly ripe for studying such more general equations. In partic-
ular, Hans Lewy, who had earned his doctorate in Göttingen with R. Courant
in 1925 and had moved to the University of California in Berkeley in 1935 after
he was forced to emigrate from Germany, began to investigate a linear differ-
ential equation with non-constant coefficients which is equivalent to Wirtinger’s
equation for “analytic” functions on submanifolds in the case of a 3-dimensional
submanifold in C2 [Lew 1]. While Lewy did not mention Wirtinger’s name in
his paper, he made explicit reference to Severi’s 1931 extension theorem in the
real analytic case, and thus it is most likely that he also knew Wirtinger’s work,
which is prominently cited in Severi’s paper. Unaware of Hellmuth Kneser’s 1936
work, Lewy proved Kneser’s extension theorem for continously differentiable CR
functions in the strictly pseudoconvex case. Shortly thereafter, Lewy used an
explicit example of the equation studied earlier to produce the first example -
and at that time quite unexpected - of a smooth first order complex linear partial
differential equation in 3 real variables without any solutions [Lew 2]. Lewy’s
results generated much interest and became widely known.

These developments probably contributed to overshadowing the remarkable
extension result for CR functions obtained in Italy by G. Fichera [Fic] around the
same time. Motivated by Severi, Fichera showed in 1957 that Severi’s “global
CR extension theorem” (i.e., the CR version of Hartogs’ Theorem) remained
true without assuming real analyticity and without any geometric restrictions.
Fichera’s proof, based on the solution of the Dirichlet problem, required the
given data to be of class C1+ε. His work subsequently inspired E. Martinelli
to modify his 1942 integral formula proof of the classical Hartogs Theorem to
produce a simple proof of the Severi-Fichera global extension result in the C1

category [Mar].(5) However, these results about the global CR extension problem
remained virtually unrecognized outside of Italy for a long time.

4 – The modern theory

The global CR extension theorem came to the forefront in 1965, when J.J.
Kohn and H. Rossi, inspired by Lewy’s local extension theorem, introduced tan-
gential (p, q) forms and the @b−complex on smooth boundaries of domains in
complex manifolds [KoRo]. By using Kohn’s then new deep regularity results
for the @−Neumann problem, Kohn and Rossi proved the holomorphic extension
of C1 global CR functions from the connected boundary of domains in Stein
manifolds, assuming that the Levi form has at least one positive eigenvalue at
each point on the boundary.They also proved corresponding extension results
for @b− closed forms in higher degree. Their work marks the beginning of the
modern theory of tangential CR functions and forms, either incorporated in the

(5)More recently, this author used the Bochner-Martinelli kernel to give a simple proof
of the local Kneser-Lewy extension theorem for continuous (weak) CR functions [Ran 2].
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@b−complex and in the theory of the @b−Neumann problem, or as the principal
object of study in numerous settings. The reader may consult the recent mono-
graphs by M. S. Baouendi, P. Ebenfelt, and L. Rothschild [BER] and So-Chin
Chen and Mei-Chi Shaw [ChSh] for an overview of many developments since
then.

Unfortunately, Kohn and Rossi were apparently unaware of the earlier work
on the global CR extension theorem by Severi, Fichera, and Martinelli. Fur-
thermore, a remark in the introduction of their 1965 paper connected the global
CR extension theorem to S. Bochner’s 1943 proof of the classical Hartogs ex-
tension theorem. Shortly thereafter this linkage led L. Hörmander to crediting
Bochner with the proof of the global CR extension theorem in his well known
1966 monograph. This erroneous attribution became widely accepted since then,
even though there is no evidence in the published record that Bochner stated
and proved such a theorem, nor that he had even been thinking about tangential
CR functions. The historical record was eventually corrected beginning in 1999,
when this author learned of the long forgotten 1936 paper of H. Kneser. The
interested reader should consult [Ran 1, 3] for more details.
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Dualities in convex algebraic geometry

PHILIPP ROSTALSKI – BERND STURMFELS

Abstract: Convex algebraic geometry concerns the interplay between optimization
theory and real algebraic geometry. Its objects of study include convex semialgebraic
sets that arise in semidefinite programming and from sums of squares. This article
compares three notions of duality that are relevant in these contexts: duality of convex
bodies, duality of projective varieties, and the Karush-Kuhn-Tucker conditions derived
from Lagrange duality. We show that the optimal value of a polynomial program is an
algebraic function whose minimal polynomial is expressed by the hypersurface projec-
tively dual to the constraint set. We give an exposition of recent results on the boundary
structure of the convex hull of a compact variety, we contrast this to Lasserre’s rep-
resentation as a spectrahedral shadow, and we explore the geometric underpinnings of
semidefinite programming duality.

1 – Introduction

Dualities are ubiquitous in mathematics and its applications. This article
compares several notions of duality that are relevant for the interplay between
convexity, optimization, and algebraic geometry. It is primarily expository, and is
intended for a diverse audience, ranging from graduate students in mathematics
to practitioners of optimization who are based in engineering.

Duality for vector spaces lies at the heart of linear algebra and functional
analysis. Duality in convex geometry is an involution on the set of convex bod-
ies: for instance, it maps the cube to the octahedron and vice versa (Figure 1).
Duality in optimization, known as Lagrange duality, plays a key role in designing

Key Words and Phrases: Optimization – Duality – Semidefinite programming –
Spectrahedron – Convexity – Real algebraic geometry
A.M.S. Classification: 90C22, 14P05, 52A05.
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efficient algorithms for the solution of various optimization problems. In projec-
tive geometry, points are dual to hyperplanes, and this leads to a natural notion
of projective duality for algebraic varieties.

Fig. 1: The cube is dual to the octahedron.

Our aim here is to explore these dualities and their interconnections in the
context of polynomial optimization and semidefinite programming. Towards the
end of the Introduction, we shall discuss the context and organization of this
paper. At this point, however, we jump right in and present a concrete three-
dimensional example that illustrates our perspective on these topics.

1.1 – How to Dualize a Pillow

We consider the following symmetric matrix with three indeterminate en-
tries:

(1.1) Q(x, y, z) =





1 x 0 x
x 1 y 0
0 y 1 z
x 0 z 1



 .

This symmetric 4×4-matrix specifies a 3-dimensional compact convex body

(1.2) P =
©

(x, y, z) ∈ R3 | Q(x, y, z) ∫ 0
™
.

The notation “∫ 0” means that the matrix is positive semidefinite, i.e., all four
eigenvalues are non-negative real numbers. Such a linear matrix inequality always
defines a closed convex set which is referred to as a spectrahedron.
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Fig. 2: A 3-dimensional spectrahedron P and its dual convex body P∆.

Our spectrahedron P looks like a pillow. It is shown on the left in Figure 2.
The algebraic boundary of P is the surface specified by the determinant

det(Q(x, y, z)) = x2(y − z)2 − 2x2 − y2 − z2 + 1 = 0.

The interior of P represents all matrices Q(x, y, z) whose four eigenvalues
are positive. At all smooth points on the boundary of P , precisely one eigenvalue
vanishes, and the rank of the matrix Q(x, y, z) drops from 4 to 3. However, the
rank drops further to 2 at the four singular points

(x, y, z) =
1√
2
(1, 1,−1),

1√
2
(−1,−1, 1),

1√
2
(1,−1, 1),

1√
2
(−1, 1,−1).

We find these from a Gröbner basis of the ideal of 3× 3-minors of Q(x, y, z):
©

2x2 − 1, 2z2 − 1, y + z
™
.

The linear polynomial y + z in this Gröbner basis defines the symmetry plane of
the pillow P . The four corners form a square in that plane. Its edges are also
edges of P . All other faces of P are exposed points. These come in two families,
called protrusions, one above the plane y + z = 0 and one below it.

Like all convex bodies, our pillow P has an associated dual convex body

(1.3) P∆ =
©

(a, b, c) ∈ R3 | ax + by + cz ≤ 1 for all (x, y, z) ∈ P
™

,

consisting of all linear forms that evaluate to at most one on P . Our notation
P∆ is chosen to be consistent with that in Ziegler’s text book [29, §2.3].

The dual pillow P∆ is shown on the right in Figure 2. Note the association
of faces under duality. The pillow P has four 1-dimensional faces, four singu-
lar 0-dimensional faces, and two smooth families of 0-dimensional faces. The
corresponding dual faces of P∆ have dimensions 0, 2 and 0 respectively.
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Semidefinite programming is the computational problem of minimizing a
linear function over a spectrahedron. For our pillow P , this takes the form

p∗(a, b, c) =Maximize
(x,y,z)∈R3

ax + by + cz

subject to Q(x, y, z) ∫ 0.(1.4)

We regard this as a parametric optimization problem: we are interested in the
optimal value and optimal solution of (1.4) as a function of (a, b, c) ∈ R3. This
function can be expressed in terms of the dual body P∆ as follows:

p∗(a, b, c) = Minimize
∏∈R

∏

subject to
1
∏
· (a, b, c) ∈ P∆.(1.5)

We distinguish this formulation from the duality in semidefinite programming.
The dual to (1.4) is the following program with 7 decision variables:

d∗(a, b, c) = Minimize
u∈R7

u1 + u4 + u6 + u7

subject to





2u1 2u2 u3 −2u2−a
2u2 2u4 −b 2u5

2u3 −b 2u6 −c
−2u2−a 2u5 −c 2u7



 ∫ 0.(1.6)

Since (1.4) and (1.6) are both strictly feasible, strong duality holds [4, §5.2.3],
i.e. the two programs attain the same optimal value: p∗(a, b, c) = d∗(a, b, c).
Hence, problem (1.6) can be derived from (1.5), as we shall see in Section 5.

We write M(u; a, b, c) for the 4×4-matrix in (1.6). The following equations
and inequalities, known as the Karush-Kuhn-Tucker conditions (KKT), are nec-
essary and sufficient for any pair of optimal solutions:

Q(x, y, z) ·M(u; a, b, c) = 0, (complementary slackness)
Q(x, y, z) ∫ 0,

M(u; a, b, c) ∫ 0.

We relax the inequality constraints and consider the system of equations

∏ = ax + by + cz and Q(x, y, z) ·M(u; a, b, c) = 0.

This is a system of 11 equations. Using computer algebra, we eliminate the 10
unknowns x, y, z, u1, . . . , u7. The result is a polynomial in a, b, c and ∏. Its
factors, shown in (1.7)-(1.8), express the optimal value ∏∗ in terms of a, b, c.
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At the optimal solution, the product of the two 4×4-matrices Q(x, y, z) and
M(u; a, b, c) is zero, and their respective ranks are either (3, 1) or (2, 2). In the
former case the optimal value ∏∗ is one of the two solutions of

(1.7) (b2 + 2bc + c2) · ∏2 − a2b2 − a2c2 − b4 − 2b2c2 − 2bc3 − c4 − 2b3c = 0.

In the latter case it comes from the four corners of the pillow, and it satisfies

(1.8) (2∏2 − a2 + 2ab− b2 + 2bc− c2 − 2ac)
· (2∏2 − a2 − 2ab− b2 + 2bc− c2 + 2ac) = 0.

These two equations describe the algebraic boundary of the dual body P∆.
Namely, after setting ∏ = 1, the irreducible polynomial in (1.7) describes the
quartic surface that makes up the curved part of the boundary of P∆, as seen in
Figure 2. In addition, there are four planes spanned by flat 2-dimensional faces
of P∆. The product of the four corresponding affine-linear forms equals (1.8).
Indeed, each of the two quadrics in (1.8) factors into two linear factors. These
two characterize the planes spanned by opposite 2-faces of P∆.

The two equations (1.7) and (1.8) also offer a first glimpse at the concept
of projective duality in algebraic geometry. Namely, consider the surface in pro-
jective space P3 defined by det(Q(x, y, z)) = 0 after replacing the ones along the
diagonals by a homogenization variable. Then (1.7) is its dual surface in the dual
projective space (P3)∗. The surface (1.8) in (P3)∗ is dual to the 0-dimensional
variety in P3 cut out by the 3×3-minors of Q(x, y, z).

The optimal value function of the optimization problem (1.4) is given by
the algebraic surfaces dual to the boundary of P and its singular locus. We have
seen two different ways of dualizing (1.4): the dual optimization problem (1.6),
and the optimization problem (1.5) on P∆. These two formulations are related
as follows. If we regard (1.6) as specifying a 10-dimensional spectrahedron, then
the dual pillow P∆ is a projection of that spectrahedron:

P∆ =
©
(a, b, c) ∈ R3 |∃u ∈ R7 : M(u; a, b, c) ∫ 0 and u1 + u4 + u6 + u7 = 1

™
.

Linear projections of spectrahedra are called spectrahedral shadows. These ob-
jects play a prominent role in the interplay between semidefinite programming
and convex algebraic geometry. The dual body to a spectrahedron is generally
not a spectrahedron, but it is always a spectrahedral shadow.

1.2 – Context and Outline

Duality is a central concept in convexity and convex optimization, and nu-
merous authors have written about their connections and their interplay with
other notions of duality and polarity. Relevent references include Barvinok’s text
book [1, §4] and the survey by Luenberger [19]. The latter focuses on dualities
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used in engineering, such as duality of vector spaces, polytopes, graphs, and
control systems. The objective of this article is to revisit the theme of duality
in the context of convex algebraic geometry. This emerging field aims to exploit
algebraic structure in convex optimization problems, specifically in semidefinite
programming and polynomial optimization. In algebraic geometry, there is a
natural notion of projective duality, which associates to every algebraic variety
a dual variety. One of our goals is to explore the meaning of projective duality
for optimization theory.

Our presentation is organized as follows. In Section 2 we cover preliminaries
needed for the rest of the paper. Here the various dualities are carefully defined
and their basic properties are illustrated by means of examples. In Section 3
we derive the result that the optimal value function of a polynomial program
is represented by the defining equation of the hypersurface projectively dual to
the manifold describing the boundary of all feasible solutions. This highlights
the important fact that the duality best known to algebraic geometers arises
very naturally in convex optimization. Section 4 concerns the convex hull of
a compact algebraic variety in Rn. We discuss recent work of Ranestad and
Sturmfels [24, 25] on the hypersurfaces in the boundary of such a convex body,
and we present several new examples and applications.

In Section 5 we focus on semidefinite programming (SDP), and we offer
a concise geometric introduction to SDP duality. This leads to the concept
of algebraic degree of SDP [8, 22], or, geometrically, to projective duality for
varieties defined by rank constraints on symmetric matrices of linear forms.

A spectrahedral shadow is the image of a spectrahedron under a linear pro-
jection. Its dual body is a linear section of the dual body to the spectrahedron.
In Section 6 we examine this situation in the context of sums-of-squares pro-
gramming, and we discuss linear families of non-negative polynomials.

2 – Ingredients

In this section we review the mathematical preliminaries needed for the
rest of the paper, we give precise definitions, and we fix more of the notation.
We begin with the notion of duality for vector spaces and cones therein, then
move on to convex bodies, polytopes, Lagrange duality in optimization, the KKT
conditions, projective duality in algebraic geometry, and discriminants.

2.1 – Vector Spaces and Cones

We fix an ordered field K. The primary example is the field of real numbers,
K = R, but it makes much sense to also allow other fields, such as the rational
numbers K = Q or the real Puiseux series K = R{{≤}}. For a finite dimensional
K-vector space V , the dual vector space is the set V ∗ = Hom(V,K) of all linear
forms on V . Let V and W be vector spaces and ϕ : V → W a linear map. The



[7] Dualities in convex algebraic geometry 291

dual map ϕ∗ : W ∗ → V ∗ is the linear map defined by ϕ∗(w) = w ◦ ϕ ∈ V ∗ for
every w ∈ W ∗. If we fix bases of V and W then ϕ is represented by a matrix A.
The dual map ϕ∗ is represented, relative to the dual bases for W ∗ and V ∗, by
the transpose At of the matrix A.

A subset C ⊂ V is a cone if it is closed under multiplication with positive
scalars. A cone C need not be convex, but its dual cone

(2.1) C∗ = { l ∈ V ∗ | ∀x ∈ C : l(x) ≥ 0 }
is always closed and convex in V ∗. If C is a convex cone then the second dual
(C∗)∗ is the closure of C. Thus, if C is a closed convex cone in V then

(2.2) (C∗)∗ = C.

This important relationship is referred to as biduality.
Every linear subspace L ⊂ V is also a cone. Its dual cone is the orthogonal

complement of the subspace:

L∗ = L⊥ = { l ∈ V ∗ | ∀x ∈ L : l(x) = 0 } .

The dual map to the inclusion L ⊂ V is the projection πL : V ∗ → V ∗/L⊥. Given
any cone C ⊂ V , the intersection C ∩L is a cone in L. Its dual cone (C ∩L)∗ is
the projection of the cone C into V ∗/L⊥. More precisely,

(C ∩ L)∗ = C∗ + L⊥ in V ∗.

Now, it makes sense to consider this convex set modulo L⊥. We thus obtain

(2.3) (C ∩ L)∗ = πL(C∗) in V ∗/L⊥.

This identity shows that projection and intersections are dual operations.
A subset F ⊆ C of a convex set C is a face if F is itself convex and contains

any line segment L ⊂ C whose relative interior intersects F . We say that F is
an exposed face if there exists a linear functional l that attains its minimum over
C precisely at F . Clearly, an exposed face is a face, but the converse does not
hold. For instance, the edges of the red triangle in Figure 6 are non-exposed
faces of the 3-dimensional convex body shown there.

An exposed face F of a cone C determines a face of the dual cone C∗ via

F ¶ = { l ∈ C∗ | l attains its minimum over C at F } .

The dimensions of the faces F of C and F ¶ of C∗ satisfy the inequality

(2.4) dim(F ) + dim(F ¶) ≤ dim(V ).

If C is a polyhedral cone then C∗ is also polyhedral. In that case, the number
of faces F and F ¶ is finite and equality holds in (2.4). On the other hand, most
cones considered in this article are not polyhedral, they have infinitely many
faces, and the inequality in (2.4) is usually strict. For instance, the second order
cone C = { (x, y, z) ∈ R3 :

p
x2 + y2 ≤ z} is self-dual, each proper face F of

C is 1-dimensional, and the formula (2.4) says 1 + 1 ≤ 3.
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2.2 – Convex Bodies and their Algebraic Boundary

A convex body in V is a full-dimensional convex set that is closed and
bounded. If C is a cone and z ∈ int(C∗) then C ∩ {z = 1} is a convex body
in the hyperplane { z = 1 } of V . In this manner, every pointed d-dimensional
cone gives rise to a (d−1)-dimensional convex body, and vice versa. These trans-
formations, known as homogenization and dehomogenization, respect faces and
algebraic boundaries. They allow us to go back and fourth between convex bod-
ies and cones in the next higher dimension. For instance, the 3-dimensional body
P in (1.2) corresponds to the cone in R4 we get by multiplying the constants 1
on the diagonal in (1.1) with a new variable.

Let P be a full-dimensional convex body in V and assume that 0 ∈ int(P ).
Dehomogenizing the definition for cones, we obtain the dual convex body

(2.5) P∆ = { ` ∈ V ∗ | ∀x ∈ P : `(x) ≤ 1 } .

This is derived from (2.1) using the identification l(x) = z − `(x) for z = 1.
Just as in the case of convex cones, if P is closed then biduality holds:

(P∆)∆ = P.

The definition (2.5) makes sense for arbitrary subsets P of V . That is, P need
not be convex or closed. A standard fact from convex analysis [26, Cor. 12.1.1
and §14] says that the double dual is the closure of the convex hull with the
origin:

(P∆)∆ = conv(P ∪ 0).

All convex bodies discussed in this article are semialgebraic, that is, they can be
described by polynomial inequalities. We note that if P is semialgebraic then its
dual body P∆ is also semialgebraic. This is a consequence of Tarski’s theorem
on quantifier elimination in real algebraic geometry [2, 3].

The algebraic boundary of a semialgebraic convex body P , denoted @aP ,
is the smallest algebraic variety that contains the boundary @P . In geometric
language, @aP is the Zariski closure of @P . It is identified with the squarefree
polynomial fP that vanishes on @P . Namely, @aP = V (fP ) is the zero set of
the polynomial fP . Note that fP is unique up to a multiplicative constant. Thus
@aP is an algebraic hypersurface which contains the boundary @P .

A polytope is the convex hull of a finite subset of V . If P is a polytope then
so is its dual P∆ [29]. The boundary of P consists of finitely many facets F .
These are the faces F = v¶ dual to the vertices v of P∆. The algebraic boundary
@aP is the arrangement of hyperplanes spanned by the facets of P . Its defining
polynomial fP is the product of the linear polynomials v − 1.
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Example 2.1. A polytope known to everyone is the three-dimensional cube

P = conv{(±1,±1,±1)} = {−1 ≤ x, y, z ≤ 1}.

Figure 1 illustrates the familiar fact that its dual polytope is the octahedron

P∆ = {−1 ≤ a± b± c ≤ 1} = conv{±e1,±e2,±e3}.

Here ei denotes the ith unit vector. The eight vertices of P correspond to the
facets of P∆, and the six facets of P correspond to the vertices of P∆. The
algebraic boundary of the cube is described by a degree 6 polynomial

@aP = V
°
(x2 − 1)(y2 − 1)(z2 − 1)

¢
.

The algebraic boundary of the octahedron is given by a degree 8 polynomial

@aP∆ = V
≥Y

(1− a± y ± c)
Y

(a± b± c + 1)
¥

.

Note that P and P∆ are the unit balls for the norms L1 and L1 on R3.

Recall that the Lp-norm on Rn is defined by kxkp = (
Pn

i=1 |xi|p)1/p for
x ∈ Rn. The dual norm to the Lp-norm is the Lq-norm for 1

p + 1
q = 1, that is,

kykq = sup{hy, xi |x ∈ Rn, kxkp ≤ 1}.

Geometrically, the unit balls for these norms are dual as convex bodies.

Fig. 3: The unit balls for the L4 norm and the L4/3 norm are dual. The curve on the
left has degree 4, while its dual curve on the right has degree 12.

Example 2.2. Consider the case n = 2 and p = 4. Here the unit ball equals

P = { (x, y) ∈ R2 : x4 + y4 ≤ 1 }.

This planar convex set is shown in Figure 3. In this example, since the curve is
convex, the ordinary boundary coincides with the algebraic boundary, @aP =
@P , and is represented by the defining quartic polynomial x4 + y4 − 1.



294 PHILIPP ROSTALSKI – BERND STURMFELS [10]

The dual body is the unit ball for the L4/3-norm on R2:

P∆ = {(a, b) ∈ R2 : |a|4/3 + |b|4/3 ≤ 1} .

The algebraic boundary of P∆ is an irreducible algebraic curve of degree 12,

(2.6) @aP∆ = V
°
a12+3a8b4+3a4b8+b12−3a8+21a4b4−3b8+3a4+3b4−1

¢
,

which again coincides precisely with the (geometric) boundary @P∆. This dual
polynomial is easily produced by the following one-line program in the computer
algebra system Macaulay2 due to Grayson and Stillman [9]:

R = QQ[x,y,u,v]; eliminate(x,y,ideal(x 4̂+y 4̂-1,x 3̂-u,y 3̂-v))

In Subsection 2.4 we shall introduce the algebraic framework for performing such
duality computations, not just for curves, but for arbitrary varieties.

2.3 – Lagrange Duality in Optimization

We now come to a standard concept of duality in optimization theory. Let
us consider the following general nonlinear polynomial optimization problem:

Minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p.(2.7)

Here the g1, . . . , gm, h1, . . . , hp and f are polynomials in R[x1, . . . , xn]. The
Lagrangian associated to the optimization problem (2.7) is the function

L : Rn × Rm
+ × Rp → Rn

(x,∏, µ) 7→ f(x) +
Pm

i=1 ∏igi(x) +
Pp

j=1 µjhj(x)

The scalars ∏i ∈ R+ and µj ∈ R are the Lagrange multipliers for the constraints
gi(x) ≤ 0 and hj(x) = 0. The Lagrange function L(x,∏, µ) can be interpreted
as an augmented cost function with penalty terms for the constraints. For more
information on the above formulation see [4, §5.1].

One can show that problem (2.7) is equivalent to finding

u∗ = Minimize
x∈Rn

Maximize
µ∈Rp and ∏≥0

L(x,∏, µ).

The key observation here is that any positive evaluation of one of the polynomials
gi(x), or any non-zero evaluation of one of the polynomials hj(x), would render
the inner optimization problem unbounded.
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The dual optimization problem to (2.7) is obtained by exchanging the order
of the two nested optimization subproblems in the above formulation:

v∗ = Maximize
µ∈Rp and ∏≥0

Minimize
x∈Rn

L(x,∏, µ)
| {z }

φ(∏,µ)

.

The function φ(∏, µ) is known as the Lagrange dual function to our problem.
This function is always concave, so the dual is always a convex optimization
problem. It follows from the definition of the dual function that φ(∏, µ) ≤ u∗ for
all ∏, µ. Hence the optimal values satisfy the inequality

v∗ ≤ u∗.

If equality happens, v∗ = u∗, then we say that strong duality holds. A necessary
condition for strong duality is ∏∗i gi(x∗) = 0 for all i = 1, . . . ,m, where x∗,∏∗

denote the primal and dual optimizer. We see this by inspecting the Lagrangian
and taking into account the fact that hj(x) = 0 for all feasible x.

Collecting all inequality and equality constraints in the primal and dual
optimization problems yields the following optimality conditions:

Theorem 2.3. (Karush-Kuhn-Tucker (KKT) conditions) Let (x∗,∏∗, µ∗)
be primal and dual optimal solutions with u∗ = v∗ (strong duality). Then

∇xf
ØØØ
x∗

+
mX

i=1

∏∗i ·∇xgi

ØØØ
x∗

+
pX

j=1

µ∗j ·∇xhj

ØØØ
x∗

= 0,

gi(x∗) ≤ 0 for i = 1, . . . ,m,

∏∗i ≥ 0 for i = 1, . . . ,m,

hj(x∗) = 0 for j = 1, . . . , p,

Complementary slackness: ∏∗i · gi(x∗) = 0 for i = 1, . . . ,m.(2.8)

For a derivation of this theorem see [4, §5.5.2]. Several comments on the
KKT conditions are in order. First, we note that complementary slackness
amounts to a case distinction between active (gi = 0) and inactive inequalities
(gi < 0). For any index i with gi(x∗) 6= 0 we need ∏i = 0, so the corresponding
inequality does not play a role in the gradient condition. On the other hand, if
gi(x∗) = 0, then this can be treated as an equality constraint.

From an algebraic point of view, it is natural to relax the inequalities and
to focus on the KKT equations. These are the polynomial equations in (2.8):
(2.9) h1(x) = · · · = hp(x) = ∏1g1(x) = · · · = ∏mgm(x) = 0.
If we wish to solve our optimization problem exactly then we must compute the
algebraic variety in Rn × Rm × Rp that is defined by these equations.

In what follows we explore Lagrange duality and the KKT conditions in two
special cases, namely in optimizing a linear function over an algebraic variety
(Section 3) and in semidefinite programming (Section 5).
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2.4 – Projective varieties and their duality

In algebraic geometry, it is customary to work over an algebraically closed
field, such as the complex numbers C. All our varieties will be defined over a
subfield K of the real numbers R, and their points have coordinates in C. It
is also customary to work in projective space Pn rather than affine space Cn,
i.e., we work with equivalence classes x ∼ ∏x for all ∏ ∈ C\{0}, x ∈ Cn+1\{0}.
Points (x0 : x1 : · · · : xn) in projective space Pn are lines through the origin in
Cn+1, and the usual affine coordinates are obtained by dehomogenization with
respect to x0 (i.e. setting x0 = 1). All points with x0 = 0 are then considered
as points at infinity. We refer to [6, Chapter 8] for an elementary introduction
to projective algebraic geometry.

Let I = hh1, . . . , hpi be a homogeneous ideal in the polynomial ring
K[x0, x1, . . . , xn]. We write X = V (I) for its variety in the projective space
Pn over C. The singular locus Sing(X) is a proper subvariety of X. It is defined
inside X by the vanishing of the c× c-minors of the m×(n+1)-Jacobian matrix
J(X) =

°
@hi/@xj

¢
, where c = codim(X). See [6, §9.6] for background on singu-

larities and dimension. While the matrix J(X) depends on our choice of ideal
generators hi, the singular locus of X is independent of that choice. Points in
Sing(X) are called singular points of X. We write Xreg = X\Sing(X) for the
set of regular points in X. We say that the projective variety X is smooth if
Sing(X) = ∅, or equivalently, if X = Xreg.

The dual projective space (Pn)∗ parametrizes hyperplanes in Pn. A point
(u0 : · · · : un) ∈ (Pn)∗ represents the hyperplane

©
x ∈ Pn |

Pn
i=0 uixi = 0

™
. We

say that u is tangent to X at a regular point x ∈ Xreg if x lies in that hyperplane
and its representing vector (u1, . . . , un) lies in the row space of the Jacobian
matrix J(X) at the point x.

We define the conormal variety CN(X) of X to be the closure of the set

©
(x, u) ∈ Pn × (Pn)∗ | x ∈ Xreg and u is tangent to X at x

™
.

The projection of CN(X) onto the second factor is denoted X∗ and is called the
dual variety. More precisely, the dual variety X∗ is the closure of the set

©
u ∈ (Pn)∗ | the hyperplane u is tangent to X at some regular point

™
.

Proposition 2.4.. The conormal variety CN(X) has dimension n− 1.

Proof. We may assume that X is irreducible. Let c = codim(X). There
are n−c degrees of freedom in picking a point x in Xreg. Once the regular point x
is fixed, the possible tangent vectors u to X at x form a linear space of dimension
c−1. Hence the dimension of CN(X) is (n−c) + (c−1) = n−1.
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Since the dual variety X∗ is a linear projection of the conormal variety
CN(X), Proposition 2.4 implies that the dimension of X∗ is at most is n − 1.
We typically expect X∗ to have dimension n−1, i.e. regardless of the dimension
of X, the dual variety X∗ is typically a hypersurface in (Pn)∗.

Example 2.5. [Example 2.2 cont.] Fix coordinates (x:y:z) on P2 and
consider the ideal I = hx4 + y4 − z4i. Then X = V (I) is the projectivization of
the quartic curve in Example 2.2. The dual curve X∗ is the projectivization of
the curve @aP∆ in (2.6). Hence, X∗ is a curve of degree 12 in (P2)∗.

To compute the dual X∗ of a given variety X, we can utilize Gröbner bases
[6, 9] as follows. We augment the ideal I with the bilinear polynomial

Pn
i=0 uixi

and all the (c+1)×(c+1)-minors of the matrix obtained from Jac(X) by adding
the extra row u. Let J 0 denote the resulting ideal in K[x0, . . . , xn, u0, . . . , un].
In order to remove the singular locus of X from the variety of J 0, we replace J 0

with the saturation ideal

J :=
°
J 0 : h c× c-minors of Jac(X) i1

¢
.

See [6, Exercise 8 in §4.4] for the definition of saturation of ideals.
The ideal J is bi-homogeneous in x and u respectively. Its zero set in

Pn × (Pn)∗ is the conormal variety CN(X). The ideal of the dual variety X∗ is
finally obtained by eliminating the variables x0, . . . , xn from J :

(2.10) ideal of the dual variety X∗ = J ∩ K[u0, u1, . . . , un].

As was remarked earlier, the expected dimension of X∗ is n−1, so the elimination
ideal (2.10) is expected to be principal. We seek to compute its generator. We
shall see many examples of such dual hypersurfaces later on.

Theorem 2.6. (Biduality, [7, Theorem 1.1]) Every irreducible projective
variety X ⊂ Pn satisfies

(X∗)∗ = X.

Proof idea The main step in proving this important theorem is that the
conormal variety is self-dual, in the sense that CN(X) = CN(X∗). In this
identity the roles of x ∈ Pn and u ∈ (Pn)∗ are swapped. It implies (X∗)∗ = X.
A proof for the self-duality of the conormal variety is found in [7, §I.1.3].

Example 2.7. Suppose that X ⊂ Pn is a general smooth hypersurface of
degree d. Then X∗ is a hypersurface of degree d(d− 1)n−1 in (Pn)∗. A concrete
instance for d = 4 and n = 2 was seen in Examples 2.2 and 2.5.

Example 2.8. Let X be the variety of symmetric m×m matrices of rank
at most r. Then X∗ is the variety of symmetric m × m matrices of rank at
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most m − r [7, §I.1.4]. Here the conormal variety CN(X) consists of pairs of
symmetric matrices A and B such that A ·B = 0. This conormal variety will be
important for our discussion of duality in semidefinite programming.

An important class of examples, arising from toric geometry, is featured in
the book by Gel’fand, Kapranov and Zelevinsky [7]. A projective toric variety XA

in Pn is specified by an integer matrix A = (a0, a1, . . . , an) of format d× (n+1)
and rank d whose row space contains the vector (1, 1, . . . , 1). We define XA as
the closure in Pn of the set

©
(ta0 : ta1 : · · · : tan) | t ∈ (C\{0})d

™
.

The dual variety X∗
A is called the A-discriminant. It is usually a hypersur-

face, in which case we identify the A-discriminant with the irreducible polyno-
mial ∆A that vanishes on X∗

A. The A-discriminant is indeed a discriminant in
the sense that its vanishing characterizes Laurent polynomials

p(t) =
nX

j=0

cj · ta1j

1 t
a2j

2 . . . t
adj

d

with the property that the hypersurface {p(t) = 0} has a singular point in
(C\{0})d. In other words, we can define (and compute) the A-discriminant as

∆A =
Ω

c ∈ (Pn)∗ | ∃ t ∈ (C\{0})d with p(t) =
@p

@t1
= · · · = @p

@td
= 0

æ
.

Example 2.9. Let d = 2, n = 4, and fix the matrix

A =
µ

4 3 2 1 0
0 1 2 3 4

∂

The associated toric variety is the rational normal curve
XA =

©
(t41 : t31t2 : t21t

2
2 : t1t

3
2 : t42) ∈ P4 | (t1 : t2) ∈ P1

™

= V (x0x2−x2
1, x0x3−x1x2, x0x4−x2

2, x1x3−x2
2, x1x4−x2x3, x2x4−x2

3).

A hyperplane {
P4

j=0 cjxj = 0} is tangent to XA if and only if the binary form

p(t1, t2) = c0t
4
2 + c1t1t

3
2 + c2t

2
1t

2
2 + c3t

3
1t2 + c4t

4
1

has a linear factor of multiplicity ≥ 2. This is controlled by the A-discriminant

(2.11) ∆A =
1
c4

· det





c0 c1 c2 c3 c4 0 0
0 c0 c1 c2 c3 c4 0
0 0 c0 c1 c2 c3 c4

c1 2c2 3c3 4c4 0 0 0
0 c1 2c2 3c3 4c4 0 0
0 0 c1 2c2 3c3 4c4 0
0 0 0 c1 2c2 3c3 4c4





,

given here in form of the determinant of a Sylvester matrix. The sextic hyper-
surface X∗

A = V (∆A) is the dual variety of the curve XA.
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3 – The Optimal Value Function

In this section we examine the optimization problem (2.7) under the hy-
potheses that the cost function f(x) is linear and that there are no inequality
constraints gi(x). The purposes of these restrictions is to simplify the presenta-
tion and focus on the key ideas. Our analysis can be extended to the general
problem (2.7) and we discuss this briefly at the end of this section.

We consider the problem of optimizing a linear cost function over a compact
real algebraic variety X in Rn:

c∗0 = minimize
x

hc, xi

subject to x ∈ X = {v ∈ Rn |h1(v) = · · · = hp(v) = 0} .(3.1)

Here h1, h2, . . . , hp are fixed polynomials in n unknowns x1, . . . , xn. The expres-
sion hc, xi = c1x1 + · · ·+ cnxn is a linear form whose coefficients c1, . . . , cn are
unspecified parameters. Our aim is to compute the optimal value function c∗0.
Thus, we regard the optimal value c∗0 as a function Rn → R of the parameters
c1, . . . , cn, and we seek to determine this function.

The hypothesis that X be compact has been included to ensure that the
optimal value function c∗0 is well-defined on all of Rn. Again, also this hypothesis
can be relaxed. We assume compactness here just for convenience.

Our problem is equivalent to that of describing the dual convex body P∆ of
the convex hull P = conv(X), assuming that the latter contains the origin in its
interior. A small instance of this was seen in (1.5). Since our convex hull P is
a semi-algebraic set, Tarski’s theorem on quantifier elimination in real algebraic
geometry [2, 3] ensures that the dual body P∆ is also semialgebraic. This implies
that the optimal value function c∗0 is an algebraic function, i.e., there exists a
polynomial Φ(c0, c1, . . . , cn) in n + 1 variables such that

(3.2) Φ(c∗0, c1, . . . , cn) = 0.

Our aim is to compute such a polynomial Φ of least possible degree. The input
consists of the polynomials h1, . . . , hp that cut out the variety X. The degree of
Φ in the unknown c0 is called the algebraic degree of the optimization problem
(2.7). This number is an intrinsic algebraic complexity measure for the problem
of optimizing a linear function over X. For instance, if c1, . . . , cn are rational
numbers then the algebraic degree indicates the degree of the field extension K
over Q that contains the coordinates of the optimal solution.

We illustrate our discussion by computing the optimal value function and
its algebraic degree for the trigonometric space curve featured in [24, §1].

Example 3.1. Let X be the curve in R3 with parametric representation

(x1, x2, x3) =
°
cos(θ), sin(2θ), cos(3θ)

¢
.
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In terms of equations, our curve can be written as X = V (h1, h2), where

h1 = x2
1 − x2

2 − x1x3 and h2 = x3 − 4x3
1 + 3x1.

The optimal value function for maximizing c1x1+c2x2+c3x3 over X is given by

Φ = (11664c4
3) · c6

0 + (864c3
1c

3
3 + 1512c2

1c
2
2c

2
3 − 19440c2

1c
4
3

+576c1c
4
2c3 − 1296c1c

2
2c

3
3 + 64c6

2 − 25272c2
2c

4
3 − 34992c6

3) · c4
0

+(16c6
1c

2
3 + 8c5

1c
2
2c3 − 1152c5

1c
3
3 − 1920c4

1c
2
2c

2
3 + 8208c4

1c
4
3 − 724c3

1c
4
2c3 + 144c3

1c
2
2c

3
3

+c4
1c

4
2 − 17280c3

1c
5
3 − 80c2

1c
6
2 − 2802c2

1c
4
2c

2
3 − 3456c2

1c
2
2c

4
3 + 3888c2

1c
6
3 − 1120c1c

6
2c3

+540c1c
4
2c

3
3 + 55080c1c

2
2c

5
3 − 128c8

2 − 208c6
2c

2
3+15417c4

2c
4
3+15552c2

2c
6
3+34992c8

3) · c2
0

+(−16c8
1c

2
3 − 8c7

1c
2
2c3 + 256c7

1c
3
3 − c6

1c
4
2 + 328c6

1c
2
2c

2
3 − 1600c6

1c
4
3 + 114c5

1c
4
2c3

−2856c5
1c

2
2c

3
3 + 4608c5

1c
5
3 + 12c4

1c
6
2 − 1959c4

1c
4
2c

2
3 + 9192c4

1c
2
2c

4
3 − 4320c4

1c
6
3

−528c3
1c

6
2c3 + 7644c3

1c
4
2c

3
3 − 7704c3

1c
2
2c

5
3 − 6912c3

1c
7
3 − 48c2

1c
8
2 + 3592c2

1c
6
2c

2
3

−4863c2
1c

4
2c

4
3 − 13608c2

1c
2
2c

6
3 + 15552c2

1c
8
3 + 800c1c

8
2c3 − 400c1c

6
2c

3
3 − 10350c1c

4
2c

5
3

+16200c1c
2
2c

7
3 + 64c1

20 + 80c8
2c

2
3 − 1460c6

2c
4
3 + 135c4

2c
6
3 + 9720c2

2c
8
3 − 11664c10

3 ).

The optimal value function c∗0 is the algebraic function of c1, c2, c3 obtained by
solving Φ = 0 for the unknown c0. Since c0 has degree 6 in Φ, we see that the
algebraic degree of this optimization problem is 6. Note that we can write c∗0 in
terms of radicals in c1, c2, c3 because there are no odd powers of c0 in Φ, which
ensures that the Galois group of c∗0 over Q(c1, c2, c3) is solvable.

We now come to the main result in this section. It will explain what the
polynomial Φ means and how it was computed in the previous example. For the
sake of simplicity, we shall first assume that the given variety X is smooth, i.e.
X = Xreg, where the set Xreg denotes all regular points on X.

Theorem 3.2. Let X∗ ⊂ (Pn)∗ be the dual variety to the projective closure
of X. If X is irreducible, smooth and compact in Rn then X∗ is an irreducible
hypersurface, and its defining polynomial equals Φ(−c0, c1, . . . , cn) where Φ rep-
resents the optimal value function as in (3.2) of the optimization problem (3.1).
In particular, the algebraic degree of (3.1) is the degree in c0 of the irreducible
polynomial that vanishes on the dual hypersurface X∗.

Here the change of sign in the coordinate c0 is needed because the equation
c0 = c1x1 + · · · + cnxn for the objective function value in Rn becomes the
homogenized equation (−c0)x0 + c1x1 + · · ·+ cnxn = 0 when we pass to Pn.

Proof. Since X is compact, for every cost vector c there exists an optimal
solution x∗. Our assumption that X is smooth ensures that x∗ is a regular point
of X, and c lies in the span of the gradient vectors ∇xhi

ØØ
x∗

for i = 1, . . . , p. In
other words, the KTT conditions are necessary at the point x∗:

c =
pX

i=1

∏∗i ·∇xhi

ØØ
x∗

,

hi(x∗) = 0 for i = 1, 2, . . . , p.
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The scalars ∏∗1, . . . ,∏∗p express c as a vector in the orthogonal complement of
the tangent space of X at x∗. In other words, the affine hyperplane {x ∈ Rn :
hc, xi = c∗0} contains the tangent space of X at x∗. This means that the pair°
x∗ , (−c∗0 : c1 : · · · : cn)

¢
lies in the conormal variety CN(X) ⊂ Pn × (Pn)∗ of

the projective closure of X. By projection onto the second factor, we see that
(−c∗0 : c1 : · · · : cn) lies in the dual variety X∗.

Our argument shows that the boundary of the dual body P∆ is a sub-
set of X∗. Since that boundary is a semialgebraic set of dimension n − 1,
we conclude that X∗ is a hypersurface. If we write its defining equation as
Φ(−c0, c1, . . . , cn) = 0, then the polynomial Φ satisfies (3.2), and the statement
about the algebraic degree follows as well.

The KKT condition for the optimization problem (3.1) involves three sets
of variables, two of which are dual variables, to be carefully distinguished:

1. Primal variables x1, . . . , xn to describe the set X of feasible solutions.
2. (Lagrange) dual variables ∏1, . . . ,∏p to parametrize the linear space of all

hyperplanes that are tangent to X at a fixed point x∗.
3. (Projective) dual variables c0, c1, . . . , cn for the space of all hyperplanes.

These are coordinates for the dual variety X∗ and the dual body P∆.

We can compute the equation Φ that defines the dual hypersurface X∗

by eliminating the first two groups of variables x = (x1, . . . , xn) and ∏ =
(∏1, . . . ,∏p) from the following system of polynomial equations:

c0 = hc, xi and h1(x) = · · · = hp(x) = 0 and c = ∏1∇xh1 + · · ·+ ∏p∇xhp.

Example 3.3. (Example 2.2 cont.) We consider (3.1) with n = 2, p = 1
and h1 = x4

1 + x4
2 − 1. The KKT equations for maximizing the function

(3.3) c0 = c1x1 + c2x2

over the “TV screen” curve X = V (h1) are

(3.4) c1 = ∏1 · 4x3
1 , c2 = ∏1 · 4x3

2 , x4
1 + x4

2 = 1.

We eliminate the three unknowns x1, x2,∏1 from the system of four polynomial
equations in (3.3) and (3.4). The result is the polynomial Φ(−c0, c1, c2) of degree
12 which expresses the optimal value c∗0 as an algebraic function of c1 and c2.
We note that Φ(1, a, b) is precisely the polynomial in (2.6).

It is natural to ask what happens with Theorem 3.2 when X fails to be
smooth or compact, or if there are additional inequality constraints. Let us first
consider the case when X is no longer smooth, but still compact. Now, Xreg is a
proper (open, dense) subset of X. The optimal value function c∗0 for the problem



302 PHILIPP ROSTALSKI – BERND STURMFELS [18]

(3.1) is still perfectly well-defined on all of Rn, and it is still an algebraic function
of c1, . . . , cn. However, the polynomial Φ that represents c∗0 may now have more
factors than just the equation of the dual variety X∗.

Example 3.4. Let n = 2 and p = 1 as in Example 3.3, but now we consider
a singular quartic. The bicuspid curve, shown in Figure 4, has the equation

h1 = (x2
1 − 1)(x1 − 1)2 + (x2

2 − 1)2.

The algebraic degree of optimizing a linear function c1x1 + c2x2 over X = V (h1)
equals 8.

Fig. 4: The bicuspid curve in Example 3.4.

The optimal value function c∗0 = c∗0(c1, c2) is represented by

Φ =
°
c0 − c1 + c2

¢
·
°
c0 − c1 − c2

¢
·
°
16c6

0 − 48(c2
1 + c2

2)c4
0+

(24c2
1c

2
2 + 21c4

2 + 64c4
1)c2

0 + (54c1c4
2+32c5

1)c0 + 8c4
1c

2
2−3c2

1c
4
2+11c6

2

¢
.

The first two linear factors correspond to the singular points of the bicuspid
curve X , and the larger factor of degree six represents the dual curve X∗.

This example shows that, when X has singularities, it does not suffice to
just dualize the variety X but we must also dualize the singular locus of X.
This process is recursive, and we must also consider the singular locus of the
singular locus etc. We believe that, in order to characterize the value function
Φ, it always suffices to dualize all irreducible varieties occurring in a Whitney
stratification of X but this has not been worked out yet. In our view, this topic
requires more research, both on the theoretical side and on the computational
side. The following result is valid for any variety X in Rn.

Corollary 3.5. If the dual variety of X is a hypersurface then its defining
polynomial contributes a factor to the value function of the problem (3.1).
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This result can be extended to an arbitrary optimization problem of the form
(2.7). We obtain a similar characterization of the optimal value c∗0 as a semi-
algebraic function of c1, c2, . . . , cn by eliminating all primal variables x1, . . . , xn

and all dual (optimization) variables x,∏, µ from the KKT equations. Again,
the optimal value function is represented by a unique square-free polynomial
Φ(c0, c1, . . . , cn), and each factor of this polynomial is the dual hypersurface Y ∗

of some variety Y that is obtained from X by setting gi(x) = 0 for some of the
inequality constraints, by recursively passing to singular loci. In Section 5 we
shall explore this for semidefinite programming.

We close this section with a simple example involving A-discriminants.

Example 3.6. Consider the calculus exercise of minimizing a polynomial

q(t) = c1t + c2t
2 + c3t

3 + c4t
4

of degree four over the real line R. Equivalently, we wish to minimize

c0 = c1x1 + c2x2 + c3x3 + c4x4

over the rational normal curve XA ∩ {x0 = 1} = V (x2
1 − x2, x3

1 − x3, x4
1 − x4),

seen in Example 2.9. The optimal value function c∗0 is given by the equation
∆A(−c0, c1, c2, c3, c4) = 0, where ∆A is the discriminant in (2.11). Hence the
algebraic degree of this optimization problem is equal to three.

4 – An Algebraic View of Convex Hulls

The problem of optimizing arbitrary linear functions over a given subset of
Rn, discussed in the previous section, leads naturally to the geometric question
of how to represent the convex hull of that subset. In this section we explore
this question from an algebraic perspective. To be precise, we shall study the
algebraic boundary @aP of the convex hull P = conv(X) of a compact real
algebraic variety X in Rn. Biduality of projective varieties (Theorem 2.6) will
play an important role in understanding the structure of @aP . The results to be
presented are drawn from [24, 25]. In Section 6 we shall discuss the alternative
representation of P as a spectrahedral shadow.

We begin with the seemingly easy example of a plane quartic curve.

Example 4.1. We consider the following smooth compact plane curve

(4.1) X =
©
(x, y) ∈ R2 | 144x4 + 144y4− 225(x2 + y2) + 350x2y2 + 81 = 0

™
.

This curve is known as the Trott curve. It was first constructed by Michael
Trott in [28], and is illustrated above in Figure 5. A classical result of algebraic
geometry states that a general quartic curve in the complex projective plane P2
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has 28 bitangent lines, and the Trott curve X is an instance where all 28 lines
are real and have a coordinatization in terms of radicals over Q. Four of the 28
bitangents form edges of conv(X). These special bitangents are

{(x, y) ∈ R2 | ± x ± y = ∞}, where ∞ =

p
48050 + 434

√
9889

248
= 1.2177...

The boundary of conv(X) alternates between these four edges and pieces of the
curve X. The eight transition points have the floating point coordinates

(± 0.37655...,± 0.84122...) , (± 0.84122...,± 0.37655...).

Fig. 5: A quartic curve in the plane can have up to 28 real bitangents.

These coordinates lie in the field Q(∞) and we invite the reader to write
them in the form q1 + q2∞ where qi ∈ Q. The Q-Zariski closure of the 4 edge
lines of conv(X) is a curve Y of degree 8. Its equation has two irreducible factors:

(992x4−3968x3y+5952x2y2−3968xy3+992y4−1550x2+3100xy−1550y2+117)
(992x4+3968x3y+5952x2y2+3968xy3+992y4−1550x2−3100xy−1550y2+117)

Each reduces over R to four parallel lines, two of which contribute to the bound-
ary. The point of this example is to stress the role of the (arithmetic of) bitan-
gents in any exact description of the convex hull of a plane curve.

We now present a general formula for the algebraic boundary of the convex
hull of a compact variety X in Rn. The key observation is that the algebraic
boundary of P = conv(X) will consist of different types of components, resulting
from planes that are simultaneously tangent at k different points of X, for various
values of the integer k. For the Trott curve X in Example 4.1, the relevant
integers were k = 1 and k = 2, and we demonstrated that the algebraic boundary
of its convex hull P is a reducible curve of degree 12:

(4.2) @a(P ) = X ∪ Y.
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In the following definitions we regard X as a complex projective variety in Pn.
Let X [k] be the variety in the dual projective space (Pn)∗ which is the closure

of the set of all hyperplanes that are tangent to X at k regular points which span
a (k− 1)-plane in Pn. This definition makes sense for k = 1, 2, . . . , n. Note that
X [1] coincides with the dual variety X∗, and X [2] parametrizes all hyperplanes
that are tangent to X at two distinct points. Typically, X [2] is an irreducible
component of the singular locus of X∗ = X [1]. We have the following nested
chain of projective varieties in the dual space:

X [n] ⊆ X [n−1] ⊆ · · · ⊆ X [2] ⊆ X [1] ⊆ (Pn)∗.

We now dualize each of the varieties in this chain. The resulting varieties (X [k])∗
live in the primal projective space Pn. For k = 1 we return to our original variety,
i.e., we have (X [1])∗ = X by biduality (Theorem 2.6). In the following result
we assume that X is smooth as a complex variety in Pn, and we require one
technical hypothesis concerning tangency of hyperplanes.

Theorem 4.2. [25, Theorem 1.1] Let X be a smooth and compact real
algebraic variety that affinely spans Rn, and such that only finitely many hyper-
planes are tangent to X at infinitely many points. The algebraic boundary @aP
of its convex hull, P = conv(X), can be computed by biduality as follows:

(4.3) @aP ⊆
n[

k=1

(X [k])∗.

Since @aP is pure of codimension one, in the union we only need indices
k having property that (X [k])∗ is a hypersurface in Pn. As argued in [25], this
leads to the following lower bound on the relevant values to be considered:

(4.4) k ≥
ß n

dim(X) + 1
®
.

The formula (4.3) computes the algebraic boundary @aP in the following sense.
For each relevant k we check whether (X [k])∗ is a hypersurface, and, if yes,
we determine its irreducible components (over the field K of interest). For each
component we then check, usually by means of numerical computations, whether
it meets the boundary @P in a regular point. The irreducible hypersurfaces which
survive this test are precisely the components of @aX.

Example 4.3. When X is a plane curve in R2 then (4.3) says that

(4.5) @aP ⊆ X ∪ (X [2])∗.
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Here X [2] is the set of points in (P2)∗ that are dual to the bitangent lines of X,
and (X [2])∗ is the union of those lines in P2. If we work over K = Q and the
curve X is general enough then we expect equality to hold in (4.5). For special
curves the inclusion can be strict. This happens for the Trott curve (4.1) since Y
is a proper subset of (X [2])∗. Namely, Y consists of two of the six Q-components
of (X [2])∗. However, a small perturbation of the coefficients in (4.1) leads to a
curve X with equality in (4.5), as the relevant Galois group acts transitively on
the 28 points in X [2] for general quartics X. Now, the algebraic boundary over
Q is a reducible curve of degree 32 = 28 + 4.

If we are given the variety X in terms of equations or in parametric form,
then we can compute equations for X [k] by an elimination process similar to our
computation of the dual variety X∗. However, expressing the tangency condition
at k different points requires a larger number of additional variables (which need
to be eliminated afterwards) and thus the computations are quite involved. The
subsequent step of dualizing X [k] to get the right hand side of (4.3) is even more
forbidding. The resulting hypersurfaces (X [k])∗ tend to have high degree and
their defining polynomials are very large when n ≥ 3.

The article [24] offers a detailed study of the case when X is a space curve
in R3. Here the lower bound (4.4) tells us that @aX ⊆ (X [2])∗ ∪ (X [3])∗. The
surface (X [2])∗ is the edge surface of the curve X, and (X [3])∗ is the union of all
tritangent planes of X. The following example illustrates these objects.

Example 4.4. We consider the trigonometric curve X in R3 which has the
parametrization x = cos(θ), y = cos(2θ), z = sin(3θ). This is an algebraic curve
of degree six. Its implicit representation equals X = V (h1, h2) where

h1 = 2x2 − y − 1 and h2 = 4y3 + 2z2 − 3y − 1.
The edge surface (X [2])∗ has three irreducible components. Two of the compo-
nents are the quadric V (h1) and the cubic V (h2). The third and most interesting
component of (X [2])∗ is the surface of degree 16 with equation h3 =
− 419904x14y2 + 664848x12y4 − 419904x10y6 + 132192x8y8 − 20736x6y10 + 1296x4y12

− 46656x14z2 + 373248x12y2z2 − 69984x10y4z2−22464x8y6z2+4320x6y8z2+31104x12z4

+ 5184x10y2z4 + 4752x8y4z4 + 1728x10z6 + 699840x14y − 46656x12y3 − 902016x10y5

+694656x8y7−209088x6y9−1150848x10y3z2+279936x8y5z2+17280x6y7z2−4032x4y9z2

− 98496x10yz4 + 27072x4y11 − 1152x2y13 − 419904x12yz2 − 25920x8y3z4 − 4608x6y5z4

− 1728x8yz6 − 291600x14 − 169128x12y2 − 256608x10y4 + 956880x8y6 − 618192x6y8

+ 148824x4y10 − 13120x2y12 + 256y14 + 392688x12z2 + 671976x10y2z2 + 1454976x8y4z2

− 292608x6y6z2 − 4272x4y8z2 + 1016x2y10z2−116208x10z4+135432x8y2z4+18144x6y4z4

+ 1264x4y6z4 − 5616x8z6 + 504x6y2z6 − 1108080x12y + 925344x10y3 + 215136x8y5

− 672192x6y7 + 331920x4y9 − 54240x2y11 + 2304y13+273456x10yz2+282528x8y3z2

− 1185408x6y5z2 + 149376x4y7z2 − 368x2y9z2 − 32y11z2+273456x8yz4−67104x6y3z4



[23] Dualities in convex algebraic geometry 307

− 4704x4y5z4 − 64x2y7z4 + 4752x6yz6 − 32x4y3z6 + 747225x12 + 636660x10y2

− 908010x8y4 − 65340x6y6 + 291465x4y8 − 101712x2y10 + 8256y12 − 818100x10z2

− 1405836x8y2z2 − 905634x6y4z2 + 583824x4y6z2 − 39318x2y8z2 + 368y10z2+193806x8z4

− 282996x6y2z4 + 15450x4y4z4 + 716x2y6z4 + y8z4 + 6876x6z6 − 1140x4y2z6 + 2x2y4z6

+ x4z8 + 507384x10y − 809568x8y3 + 569592x6y5 − 27216x4y7 − 71648x2y9 + 13952y11

+ 555768x8yz2 + 869040x6y3z2 + 688512x4y5z2 − 154128x2y7z2+4416y9z2−343224x6yz4

+ 127360x4y3z4 − 1656x2y5z4 − 64y7z4 − 4536x4yz6+48x2y3z6−775170x10−191808x8y2

+ 599022x6y4 − 245700x4y6 + 31608x2y8 + 7872y10 + 765072x8z2 + 589788x6y2z2

− 66066x4y4z2 − 234252x2y6z2 + 16632y8z2 − 173196x6z4 + 248928x4y2z4 − 26158x2y4z4

− 32y6z4 − 3904x4z6 + 804x2y2z6 + 2y4z6 − 2x2z8 + 5832x8y + 98280x6y3 − 219456x4y5

+ 72072x2y7 − 8064y9 − 724032x6yz2 − 515760x4y3z2 − 99672x2y5z2 + 29976y7z2

+ 225048x4yz4 − 76216x2y3z4 + 1912y5z4 + 1696x2yz6 − 32y3z6 + 411345x8 − 66096x6y2

−62532x4y4+29388x2y6−11856y8−365346x6z2+19812x4y2z2+104922x2y4z2+24636y6z2

+ 85090x4z4−104580x2y2z4+8282y4z4+1014x2z6−144y2z6 + z8−39744x6y+61992x4y3

+ 2304x2y5 + 576y7 + 305328x4yz2 + 86640x2y3z2 + 960y5z2 − 73480x2yz4 + 16024y3z4

− 200yz6 − 114966x6 + 24120x4y2 − 5958x2y4 + 6192y6 + 85494x4z2 − 39696x2y2z2

− 11970y4z2 − 21610x2z4 + 16780y2z4 − 94z6 − 3672x4y − 11024x2y3 + 272y5

− 46904x2yz2 − 4632y3z2 + 9368yz4 + 15246x4 − 84x2y2 − 1908y4 − 6892x2z2

+ 2204y2z2 + 2215z4 + 3216x2y + 168y3 + 904yz2 − 664x2 + 292y2 − 282z2 − 96y + 9.

The boundary of P = conv(X) contains patches from all three surfaces V (h1),
V (h2) and V (h3). There are also two triangles, with vertices at (

√
3/2, 1/2,±1),

(
√

3/2, 1/2,±1) and (0,−1,±1). They span two of the tritangent planes of X,
namely, z = 1 and z = −1. The union of all tritangent planes equals (X [3])∗.
Only one triangle is visible in Figure 6. It is colored in white. The curved
black patch adjacent to one of the edges of the triangle is given by the cubic h3,
while the other two edges of the triangle lie in the degree 16 surface V (h3). The
curve X has two singular points at (x, y, z) = (±1/2,−1/2, 0). Around these
two singular points, the boundary is given by four alternating patches from the
quadric V (h1) highlighted in dark grey and the degree 16 surface V (h3) in light
gray. We conclude that the edge surface (X [2])∗ = V (h1h2h3) is reducible of
degree 21 = 2 + 3 + 16, and the algebraic boundary @a(P ) is a reducible surface
of degree 23 = 2 + 21.

In our next example we examine the convex hull of space curves of degree
four that are obtained as the intersection of two quadratic surfaces in R3.

Example 4.5. Let X = V (h1, h2) be the intersection of two quadratic
surfaces in 3-space. We assume that X has no singularities in P3. Then X is
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a curve of genus one. According to recent work of Scheiderer [27], the convex
body P = conv(X) can be represented exactly using Lasserre relaxations, a

Fig. 6: The convex hull of the curve (cos(θ), cos(2θ), sin(3θ)) in R3.

topic we shall return to when discussing spectrahedral shadows in Section 6. If
we are willing to work over R then P is in fact a spectrahedron, as shown in [24,
Example 2.3]. We here derive that representation for a concrete example.

Lazard et al. [18, §8.2] examine the curve X cut out by the two quadrics

h1 = x2 + y2 + z2 − 1 and h2 = 19x2 + 22y2 + 21z2 − 20.

Figure 7 shows the two components of X on the unit sphere V (h1).

Fig. 7: The curve on the unit sphere discussed in Example 4.5 and 4.6.

The dual variety X∗ is a surface of degree 8 in (P3)∗. The singular locus
of X∗ contains the curve X [2] which is the union of four quadratic curves. The
duals of these four plane curves are the singular quadratic surfaces defined by

h3 = x2−2y2− z2, h4 = 2x2−y2−1, h5 = 3y2 +2z2−1, h6 = 3x2 + z2−2.
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The edge surface of X is the union of these four quadrics:

(X [2])∗ = V (h3) ∪ V (h4) ∪ V (h5) ∪ V (h6).

The algebraic boundary of P consists of the last two among these quadrics:

@aP = V (h5) ∪ V (h6).

These two quadrics are convex. From this we derive a representation of P as a
spectrahedron by applying Schur complements to the quadrics h5 and h6:

P =
Ω

(x, y, z) ∈ R3

ØØØØ





1+
√

3y
√

2z 0 0√
2z 1−

√
3y 0 0

0 0
√

2−x
√

3x
0 0

√
3x

√
2+x



 ∫ 0
æ

.

5 – Spectrahedra and Semidefinite Programming

Spectrahedra and semidefinite programming (SDP) have already surfaced a
few times in our discussion. In this section we take a systematic look at these
topics and their dualities. We write Sn for the space of real symmetric n×n-
matices and Sn

+ for the cone of positive semidefinite matrices in Sn ' R(n+1
2 ).

This cone is self-dual with respect to the inner product hU, V i = trace(U · V ).
A spectrahedron is the intersection of the cone Sn

+ with an affine subspace

K = C + Span(A1, A2, . . . , Am)
| {z }

W

.

Here W is a linear subspace of dimension m in Sn, and the spectrahedron is

(5.1) P =
©

x ∈ Rm | C −
mX

i=1

xiAi ∫ 0
™
' K ∩ Sn

+.

We shall assume that C is positive definite or, equivalently, that 0 ∈ int(P ). The
dual body to our spectrahedron is written in the coordinates on Rm as

P∆ = { y ∈ Rm | ∀x ∈ P with hy, xi ≤ 1} .

We can express P∆ as a projection of the
°n+1

2

¢
-dimensional spectrahedron

(5.2) Q = {U ∈ Sn
+ | hU,Ci ≤ 1 }.
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Namely, consider the linear map dual to the inclusion of the linear subspace
W = Span(A1, A2, . . . , Am) in the

°n+1
2

¢
-dimensional real vector space Sn:

πW : Sn → Sn/W⊥ ' Rm

U 7→
°
hU,A1i, hU,A2i, . . . , hU,Ami

¢
.

Remark 5.1. The convex body P∆ dual to the spectrahedron P is affinely
isomorphic to the closure of the image of the spectrahedron (5.2) under the linear
map πW , i.e. P∆ ' πW(Q). This result is due to Ramana and Goldman [23].
In summary, while the dual to a spectrahedron is generally not a spectrahedron,
it is always a spectrahedral shadow. See also Theorem 6.1.

Example 5.2. The elliptope En is the spectrahedron consisting of all corre-
lation matrices of size n, see [15]. These are the positive semidefinite symmetric
n×n-matrices whose diagonal entries are 1. We consider the case n = 3:

(5.3) E3 =




(x, y, z) ∈ R3

ØØØØ




1 x y
x 1 z
y z 1



 ∫ 0




 .

This spectrahedron of dimension m = 3 is shown on the left in Figure 8. The
algebraic boundary of E3 is the cubic surface X defined by the vanishing of the
3× 3-determinant in (5.3). That surface has four isolated singular points

Xsing = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.

The six edges of the tetrahedron conv(Xsing) are edges of the elliptope E3. The
dual body, shown on the right of Figure 8, is the spectrahedral shadow

(5.4) E∆
3 =




(a, b, c) ∈ R3

ØØØØ ∃u, v ∈ R :




u a b
a v c
b c 2−u−v



 ∫ 0




 .

The algebraic boundary of E∆
3 can be computed by the following method. We

form the ideal generated by the determinant in (5.4) and its derivatives with
respect to u and v, and we eliminate u, v. This results in the polynomial

(a2b2 + b2c2 +a2c2−2abc)(a+ b+ c+1)(a− b− c+1)(a− b+ c−1)(a+ b− c−1).
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Fig. 8: The elliptope P = E3 and its dual convex body P∆.

The first factor is the equation of the Steiner quartic surface X∗ which is
dual to Cayley cubic surface X = @aE3. The four linear factors represent the
arrangement (Xsing)∗ of the four planes dual to the four singular points.

Thus the algebraic boundary of the dual body E∆
3 is the reducible surface

(5.5) @aE∆
3 = X∗ ∪ (Xsing)∗ ⊂ (P3)∗.

We note that E∆
3 is not a spectrahedron as it fails to be a basic semi-algebraic

set, i.e. no polynomial φ satisfies E∆
3 = {(a, b, c) ∈ R3 : φ(a, b, c) ≥ 0}. This is

seen from the fact that the Steiner surface intersects the interior of E∆
3 .

Semidefinite programming (SDP) is the branch of convex optimization that
is concerned with maximizing a linear function b over a spectrahedron:

p∗ = Maximize
x

hb, xi

subject to x ∈ P.(5.6)

Here P is as in (5.1). As the semidefiniteness of a matrix is equivalent to the
simultaneous non-negativity of its principal minors, SDP is an instance of the
polynomial optimization problem (2.7). Lagrange duality theory applies here by
[4, §5]. We shall derive the optimization problem dual to (5.6) from

(5.7) d∗ = Minimize
∏

∏ subject to
1
∏

b ∈ P∆ .

Since we assumed 0 ∈ int(P ), strong duality holds and we have p∗ = d∗.
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The fact that P∆ is a spectrahedral shadow implies that the dual opti-
mization problem is again a semidefinite optimization problem. In light of Re-
mark 5.1, the condition 1

∏b ∈ P∆ can be expressed as follows:

∃ U U ∫ 0 , hC,Ui ≤ 1 and bi = ∏hAi, Ui for i = 1, 2, . . . ,m.

Since the optimal value of (5.7) is attained at the boundary of P∆, we can here
replace the condition hC,Ui ≤ 1 with hC,Ui = 1. This is in fact what was done
to obtain (5.4). If we now set Y = ∏U , then (5.7) translates into

d∗ = Minimize
Y ∈Sn

+

hC, Y i

subject to hAi, Y i = bi for i = 1, . . . ,m(5.8)
and Y ∫ 0.

We recall that W = Span(A1, A2, . . . , Am) and we fix any matrix B ∈ Sn with
hAi, Bi = bi for i = 1, . . . ,m. Then (5.8) can be written as follows:

(5.9) d∗ = Minimize
Y ∈Sn

+

hC, Y i subject to Y ∈ (B +W⊥) ∩ Sn
+

The following reformulation of (5.6) highlights the symmetry between the primal
and dual formulations of our semidefinite programming problem:

(5.10) p∗ = Maximize
X∈Sn

+

hB,C −Xi subject to X ∈ (C +W) ∩ Sn
+

Then the following variant of the Karush-Kuhn-Tucker Theorem holds:

Theorem 5.3. [4, §5.9.2] If both the primal problem (5.10) and its dual
(5.9) are strictly feasible, then the KKT conditions take the following form:

X ∈ (C +W) ∩ Sn
+

Y ∈ (B +W⊥) ∩ Sn
+

X · Y = 0 (complementary slackness).

These conditions characterize all the pairs (X,Y ) of optimal solutions.
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This theorem can be related to the general optimality conditions (2.8) by
regarding the entries of Y ∈ Sn as the (Lagrangian) dual variables to the positive
semidefinite constraint X = C −

Pm
i=1 xiAi ∫ 0. The three conditions are both

necessary and sufficient since semidefinite programming is a convex problem and
every local optimum is also a global optimal solution.

In order to study algebraic and geometric properties of SDP, we will relax
the conic inequalities X,Y ∈ Sn

+ and focus only on the KKT equations

(5.11) X ∈ C +W , Y ∈ B +W⊥ and X · Y = 0.

Given B,C and W, our problem is to solve the polynomial equations (5.11). The
theorem ensures that, among its solutions (X,Y ), there is precisely one pair of
positive semidefinite matrices. That pair is the one desired in SDP.

Example 5.4. Consider the problem of minimizing a linear function Y 7→
hC, Y i over the set of all correlation matrices Y , that is, over the elliptope En

of Example 5.2. Here m = n, B is the identity matrix, W is the space of all
diagonal matrices, and W⊥ consists of matrices with zero diagonal. The dual
problem is to maximize the trace of C −X over all matrices X ∈ Sn

+ such that
C − X is diagonal. Equivalently, we seek to find the minimum trace t∗ of any
positive semidefinite matrix that agrees with C in its off-diagonal entries.

For n = 4, the KKT equations (5.11) can be written in the form

(5.12) X · Y =





x1 c12 c13 c14

c12 x2 c23 c24

c13 c23 x3 c34

c14 c24 c34 x4



 ·





1 y12 y13 y14

y12 1 y23 y24

y13 y23 1 y34

y14 y24 y34 1



 = 0.

This is a system of 10 quadratic equations in 10 unknowns. For general values of
the 6 parameters cij , these equations have 14 solutions. Eight of these solutions
have rank(X) = 3 and rank(Y ) = 1 and they are defined over Q(cij). The other
six solutions form an irreducible variety over Q(cij) and they satisfy rank(X) =
rank(Y ) = 2. This case distinction reflects the boundary structure of the dual
body to the six-dimensional elliptope E4:

(5.13) @aE∆
4 = {rank(Y ) ≤ 2}∗ ∪ {rank(Y ) = 1}∗.

Indeed, the boundary of E4 is the quartic hypersurface {rank(Y ) ≤ 3}, its sin-
gular locus is the degree 10 threefold {rank(Y ) ≤ 2}, and, finally, the singular
locus of that threefold consists of eight matrices of rank one:

{rank(Y ) = 1} =
©

(u1, u2, u3, u4)T · (u1, u2, u3, u4) : ui ∈ {−1,+1}
™
.

The last two strata are dual to the hypersurfaces in (5.13). The second com-
ponent in (5.13) consists of eight hyperplanes, while the first component is ir-
reducible of degree 18. The corresponding projective hypersurface is defined
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by an irreducible homogeneous polynomial of degree 18 in seven unknowns
c12, c13, c14, c23, c24, c34, t∗. That polynomial has degree 6 in the special unknown
t∗. Hence, the algebraic degree of our SDP is 6 when rank(Y ) = 2.

In algebraic geometry, it is natural to regard the matrix pairs (X,Y ) as
points in the product of projective spaces P(Sn)×P(Sn)∗. This has the advantage
that solutions of (5.11) are invariant under scaling, i.e. whenever (X,Y ) is a
solution, then so is (∏X,µY ) for any nonzero ∏, µ ∈ R. In that setting, there are
no worries about complications due to solutions at infinity.

For the algebraic formulation we assume that, without loss of generality,

b1 = 1, b2 = 0, b3 = 0, . . . , bm = 0.

This means that hA1,Xi = 1 plays the role of the homogenizing variable. Our
SDP instance is specified by two linear subspaces of symmetric matrices:

L = Span(A2, A3, . . . , Am) ⊂ U = Span(C,A1, A2, . . . , Am) ⊂ Sn.

Note that we have the following identifications:

RC +W = U and RB +W⊥ = RB + (L⊥ ∩A⊥1 ) = L⊥.

With the linear spaces L ⊂ U , we write the homogeneous KKT equations as

(5.14) X ∈ U , Y ∈ L⊥ and X · Y = 0.

Here is an abstract definition of semidefinite programming that might appeal
to some of our readers: Given any flag of linear subspaces L ⊂ U ⊂ Sn with
dim(U/L) = 2, locate the unique semidefinite point in the variety (5.14). For
instance, in Example 5.4 the space L consists of traceless diagonal matrices and
U/L is spanned by the unit matrix B and one off-diagonal matrix C. We seek to
solve the matrix equation X ·Y = 0 where the diagonal entries of X are constant
and the off-diagonal entries of Y are proportional to C.

The formulation (5.14) suggests that we study the variety {XY = 0} for
pairs of symmetric matrices X and Y . In [22, Eqn. (3.9)] it was shown that this
variety has the following decomposition into irreducible components:

{XY = 0} =
n−1[

r=1

{XY = 0}r ⊂ P(Sn)× P(Sn)∗.

Here {XY = 0}r denotes the subvariety consisting of pairs (X,Y ) where
rank(X) ≤ r and rank(Y ) ≤ n − r. This is irreducible because, by Exam-
ple 2.8, it is the conormal variety of the variety of symmetric matrices of rank
≤ r. The KKT equations describe sections of these conormal varieties:

(5.15) {XY = 0}r ∩
°

P(U)× P(L⊥)
¢
.
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All solutions of a semidefinite optimization problem (and thus also the boundary
of a spectrahedron and its dual) can be characterized by rank conditions. The
main result in [22] describes the case when the section in (5.15) is generic:

Theorem 5.5. [22, Theorem 7] For generic subspaces L ⊂ U ⊂ Sn with
dim(L) = m− 1 and dim(U) = m + 1, the variety (5.15) is empty unless

(5.16)
µ

n− r + 1
2

∂
≤ m and

µ
r + 1

2

∂
≤

µ
n + 1

2

∂
−m.

In that case, the variety (5.15) is reduced, nonempty and zero-dimensional and
at each point the rank of X and Y is n− r and r respectively (strict complemen-
tarity). The cardinality of this variety depends only on m, n and r.

The generic choice of subspaces L ⊂ U corresponds to the assumption that
our matrices A1, A2, . . . , Am, B,C lie in a certain dense open subset in the space
of all SDP instances. The inequalities (5.16) are known as Pataki’s inequalities.
If m and n are fixed then they give a lower bound and an upper bound for the
possible ranks r of the optimal matrix of a generic SDP instance. The variety
(5.15) represents all complex solutions of the KTT equations for such a generic
SDP instance. Its cardinality, denoted δ(m,n, r), is known as the algebraic
degree of semidefinite programming.

Corollary 5.6. Consider the variety of symmetric n×n-matrices of rank
≤ r that lie in the generic m-dimensional linear subspace P(U) of P(Sn). Its
dual variety is a hypersurface if and only if Pataki’s inequalities (5.16) hold, and
the degree of that hypersurface is δ(m,n, r), the algebraic degree of SDP.

Proof. The genericity of U ensures that {XY = 0}r ∩ ( P(U)× P(U)∗) is
the conormal variety of the given variety. We obtain its dual by projection onto
the second factor P(U)∗ = P(Sn/U⊥). The degree of the dual hypersurface is
found by intersecting with a generic line. The line we take is P(L⊥/U⊥). That
intersection corresponds to the second factor P(L⊥) in (5.15).

We note that the symmetry in the equations (5.14) implies the duality

δ
°
m,n, r

¢
= δ

°µn + 1
2

∂
−m,n, n− r

¢
,

first shown in [22, Proposition 9]. See also [22, Table 2]. Bothmer and Ranestad
[8] derived an explicit combinatorial formula for the algebraic degree of SDP.
Their result implies that δ(m,n, r) is a polynomial of degree m in n when n− r
is fixed. For example, in addition to [22, Theorem 11], we have

δ(6, n, n− 2) =
1
72

°
11n6 − 81n5 + 185n4 − 75n3 − 196n2 + 156n

¢
.
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The algebraic degree of SDP represents a universal upper bound on the in-
trinsic algebraic complexity of optimizing a linear function over any m-dimensio-
nal spectrahedron of n×n-matrices. The algebraic degree can be much smaller
for families of instances involving special matrices Ai, B or C.

Example 5.7. Fix n = 4 and m = 6 = dim(E4). Pataki’s inequalities
(5.16) state that the rank of the optimal matrix is r = 1 or r = 2, and this was
indeed observed in Example 5.4. For r = 2 we had found the algebraic degree six
when solving (5.12). However, here B is the identity matrix and A1, A2, A3, A4

are diagonal. When these are replaced by generic symmetric matrices, then the
algebraic degree jumps from six to δ(6, 4, 2) = 30.

We now state a result that elucidates the decompositions in (5.5) and (5.13).

Theorem 5.8. If the matrices A1, . . . , Am and C in the definition (5.1) of
the spectrahedron P are sufficiently generic, then the algebraic boundary of the
dual body P∆ is the following union of dual hypersurfaces:

(5.17) @aP∆ ⊆
[

r as in (5.16)

{X ∈ L | rank(X) ≤ r}∗

Proof. Let Y be any irreducible component of @aP∆ ⊂ (Pm)∗. Then
Y ∩ @P∆ is a semi-algebraic subset of codimension 1 in P∆. We consider a
general point in that set. The corresponding hyperplane H in the primal Rm

supports the spectrahedron P at a unique point Z. Then r = rank(Z) satisfies
Pataki’s inequalities, by Theorem 5.5. Moreover, the genericity in our choices
of A1, . . . , Am, C,H ensure that Z is a regular point in {X ∈ L | rank(X) ≤
r}. Bertini’s Theorem ensures that this determinantal variety is irreducible and
that its singular locus consists only of matrices of rank < r. This implies that
{X ∈ L | rank(X) ≤ r} is the Zariski closure of {X ∈ P | rank(X) = r}, and
hence also of a neighborhood of Z in that rank stratum. Likewise, Y is the
Zariski closure in (Pm)∗ of Y ∩@P∆. An open dense subset of points in Y ∩@P∆

corresponds to hyperplanes that support P at a rank r matrix. We conclude
Y∗ = {X ∈ L | rank(X) ≤ r}. Biduality completes the proof.

Theorem 5.8 is similar to Theorem 4.2 in that it characterizes the algebraic
boundary in terms of dual hypersurfaces. Just like in Section 4, we can apply
this result to compute @aP∆. For each rank r in the Pataki range (5.16), we
need to check whether the corresponding dual hypersurface meets the boundary
of P∆. The indices r which survive this test determine @aP∆.

When the data that specify the spectrahedron P are not generic but special
then the computation of @aP∆ is more subtle and we know of no formula as
simple as (5.17). This issue certainly deserves further research.

We close this section with an interesting 3-dimensional example.
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Example 5.9. The cyclohexatope is a spectrahedron with m = 3 and n = 5
that arises in the study of chemical conformations [10]. Consider the following
Schönberg matrix for the pairwise distances

p
Dij among six carbon atoms:





2D12 D12+D13−D23 D12+D14−D24 D12+D15−D25 D12+D16−D26
D12+D13−D23 2D13 D13+D14−D34 D13+D15−D35 D13+D16−D36
D12+D14−D24 D13+D14−D34 2D14 D14+D15−D45 D14+D16−D46
D12+D15−D25 D13+D15−D35 D14+D15−D45 2D15 D15+D56−D56
D12+D16−D26 D13+D16−D36 D14+D16−D46 D15+D56−D56 2D16





The Dij are the squared distances among six points in R3 if and only if this
matrix is positive-semidefinite of rank ≤ 3. The points represent the carbon
atoms in cyclohexane C6H12 if and only if Di,i+1 = 1 and Di,i+2 = 8/3 for all
indices i, understood cyclically. The three diagonal distances are unknowns, so,
for cyclohexane conformations, the above Schönberg matrix equals

C6(x, y, z) =





2 8/3 x− 5/3 11/3− y −2/3
8/3 2 5/3 + x 8/3 11/3− z

x− 5/3 5/3 + x 16/3 x + 5/3 x− 5/3
11/3− y 8/3 x + 5/3 2y 8/3
−2/3 11/3− z x− 5/3 8/3 16/3




.

The cyclohexatope Cyc6 is the spectrahedron in R3 defined by C6(x, y, z) ∫ 0.
Its algebraic boundary decomposes as @aCyc6 = V (f) ∪ V (g), where

f = 27xyz − 75x− 75y − 75z − 250 and
g = 3xy + 3xz + 3yz − 22x− 22y − 22z + 121.

The conformation space of cyclohexane is the real algebraic variety

©
(x, y, z) ∈ Cyc6 | rank(C6(x, y, z)) ≤ 3

™
= V (f, g) ∪ V (g)sing.

The first component is the closed curve of all chair conformations. The second
component is the boat conformation point (x, y, z) =

°
11
3 , 11

3 , 11
3

¢
. These are

well-known to chemists [10]. Remarkably, the cyclohexatope coincides with the
convex hull of these two components. This spectrahedron is another example
of a convex hull of a space curve, now with an isolated point. Semidefinite
programming over the cyclohexatope means computing the conformation which
minimizes a linear function in the squared distances Dij .
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6 – Spectrahedral Shadows

A spectrahedral shadow is the image of a spectrahedron under a linear map.
The class of spectrahedral shadows is much larger than the class of spectrahedra.
In fact, it has even been conjectured that every convex basic semialgebraic set in
Rn is a spectrahedral shadow [13]. Our point of departure is the result, known
to optimization experts, that the convex body dual to a spectrahedral shadow is
again a spectrahedral shadow [11, Proposition 3.3]

Theorem 6.1. The class of spectrahedral shadows is closed under duality.

Construction A spectrahedral shadow can be written in the form

P =




x ∈ Rm
ØØ ∃ y ∈ Rp with C +

mX

i=1

xiAi +
pX

j=1

yjBj ∫ 0




 .

An expression for the dual body P∆ is obtained by the following variant of the
construction in Remark 5.1. We consider the same linear map as before:

π : Sn
+ → Rm, U 7→ (hA1, Ui, . . . , hAm, Ui).

We apply this linear map π to the spectrahedron

Q =
©
U ∈ Sn

+ | hC,Ui ≤ 1 and hB1, Ui = · · · = hBp , Ui = 0
™

.

The closure of the spectrahedral shadow π(Q) equals the dual convex body P∆.
This closure is itself a spectrahedral shadow, by [11, Corollary 3.4].

We now consider the following problem: Given a real variety X ⊂ Rn, find
a representation of its convex hull conv(X) as a spectrahedral shadow. A sys-
tematic approach to computing such representations was introduced by Lasserre
[16], and further developed by Gouveia et al. [12]. It is based on the relaxation
of non-negative polynomial functions on X as sums of squares in the coordinate
ring R[X]. This approach is known as moment relaxation, in light of the duality
between positive polynomials and moments of measures.

We shall begin by exploring these ideas for homogeneous polynomials of
even degree 2d that are non-negative on Rn. These form a cone in a real vector
space of dimension N =

°d+n−1
d

¢
. Inside that cone lies the smaller SOS cone of

polynomials p that are sums of squares of polynomials of degree d:

(6.1) p = q2
1 + q2

2 + · · · + q2
N .

By Hilbert’s Theorem [20], this inclusion of convex cones is strict unless (n, 2d)
equals (1, 2d) or (n, 2) or (3, 4). The SOS cone is easily seen to be a spectrahedral
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shadow. Indeed, consider an unknown symmetric matrix Q ∈ SN and write
p = vT Qv where v is the vector of all N monomials of degree d. The matrix Q is
positive semidefinite if it has a Cholesky factorization Q = CT C. The resulting
identity p = (Cv)T (Cv) can be rewritten as (6.1). Hence the SOS cone is the
image of SN

+ under the linear map Q 7→ vT Qv.
Recent work of Nie [21] studies the boundaries of our two cones via compu-

tations with the discriminants we encountered at the end of Section 2.4.

Proposition 6.2. (Theorem 4.1 in [21]) The algebraic boundary of the
cone of homogeneous polynomials p of degree 2d that are non-negative on Rn

is given by the discriminant of a polynomial p with unknown coefficients. This
discriminant is the irreducible hypersurface dual to the Veronese embedding

Pn−1 ↪→ PN−1, (x1 : · · · : xn) 7→ (xd
1 : xd−1

1 x2 : · · · : xd
n)

The degree of this discriminant is n(2d− 1)n−1.

Proof. The discriminant of p vanishes if and only if there exists x ∈ Pn−1

with p(x) = 0 and ∇p
ØØ
x

= 0. If p is in the boundary of the cone of positive
polynomials then such a real point x exists. For the degree formula see [7].

Results similar to Proposition 6.2 hold when we restrict to polynomials p
that lie in linear subspaces. This is why the A-discriminants ∆A from Section 2.4
are relevant. We show this for a 2-dimensional family of polynomials.

Example 6.3. Consider the two-dimensional family of ternary quartics

fa,b(x, y, z) = x4 + y4 + ax3z + ay2z2 + by3z + bx2z2 + (a + b)z4.

Here a and b are parameters. Such a polynomial is non-negative on R3 if and
only if it is a sum of squares, by Hilbert’s Theorem. This condition defines a
closed convex region C in the (a, b)-plane R2. It is non-empty because (0, 0) ∈ C.
Its boundary @a(C) is derived from the A-discriminant ∆A, where

A =




4 0 3 0 0 2 0
0 4 0 2 3 0 0
0 0 1 2 1 2 4



 .

This A-discriminant is an irreducible homogeneous polynomial of degree 24 in
the seven coefficients. What we are interested in here is the specialized dis-
criminant which is obtained from ∆A by substituting the vector of coefficients
(1, 1, a, a, b, b, a + b) corresponding to our polynomial fa,b. The specialized dis-
criminant is an inhomogeneous polynomial of degree 24 in the two unknowns
a and b, and it is no longer irreducible. A computation reveals that it is the
product of four irreducible factors whose degrees are 1, 5, 5 and 13.
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Fig. 9: The discriminant in Example 6.3 defines a curve in the (a, b)-plane. The
spectrahedral shadow C is the set of points where the ternary quartic fa,b is SOS. The ranks of
the corresponding SOS matrices Q are indicated.

The linear factor equals a + b. The two factors of degree 5 are

256a2−27a5+512ab+144a3b−27a4b+256b2−128ab2+144a2b2−128b3−4a2b3+16b4,
256a2−128a3+16a4+512ab−128a2b+256b2+144a2b2−4a3b2+144ab3−27ab4−27b5.

Finally, the factor of degree 13 in the specialized discriminant equals

2916a11b2 + 19683a9b4 + 19683a8b5 + 2916a7b6 + 2916a6b7 + 19683a5b8

+19683a4b9 + 2916a2b11 − 11664a12 − 104976a10b2 − 136080a9b3 − 27216a8b4

−225504a7b5 − 419904a6b6 − 225504a5b7 − 27216a4b8 − 136080a3b9

−104976a2b10 − 11664b12 + 93312a11 + 217728a10b + 76032a9b2

+1133568a8b3 + 1976832a7b4 + 891648a6b5 + 891648a5b6 + 1976832a4b7

+1133568a3b8 + 76032a2b9 + 217728ab10 + 93312b11 − 241920a10

−1368576a9b− 2674944a8b2 − 1511424a7b3 − 4729600a6b4 − 9369088a5b5

−4729600a4b6 − 1511424a3b7 − 2674944a2b8 − 1368576ab9 − 241920b10

+663552a9 + 2949120a8b + 10539008a7b2 + 17727488a6b3 + 9981952a5b4

+9981952a4b5 + 17727488a3b6 + 10539008a2b7 + 2949120ab8 + 663552b9

−2719744a8 − 8847360a7b− 14974976a6b2 − 36503552a5b3 − 56360960a4b4

−36503552a3b5 − 14974976a2b6 − 8847360ab7 − 2719744b8 + 4587520a7

+25821184a6b + 52035584a5b2 + 50724864a4b3+50724864a3b4+52035584a2b5

+25821184ab6 + 4587520b7 − 6291456a6 − 31457280a5b− 94371840a4b2

−138412032a3b3 − 94371840a2b4 − 31457280ab5 − 6291456b6 + 16777216a5

+50331648a4b + 67108864a3b2 + 67108864a2b3 + 50331648ab4 + 16777216b5

−16777216a4 − 67108864a3b− 100663296a2b2 − 67108864ab3 − 16777216b4.

The relevant pieces of these four curves in the (a, b)-plane are depicted in Fig-
ure 9. The line a + b = 0 is seen in the lower left, the degree 13 curve is the
swallowtail in the upper right, and the two quintic curves form the upper-left
and lower-right boundary of the enclosed convex region C.



[37] Dualities in convex algebraic geometry 321

For each (a, b) ∈ C, the ternary quartic fa,b has an SOS representation

fa,b(x, y, z) = (x2, xy, y2, xz, yz, z2) · Q · (x2, xy, y2, xz, yz, z2)T ,

where Q is a positive semidefinite 6×6-matrix. This identity gives 15 indepen-
dent linear constraints which, together with Q ∫ 0, define an 8-dimensional
spectrahedron in the (21 + 2)-dimensional space of parameters (Q, a, b). The
projection of this spectrahedron onto the (a, b)-plane is our convex region C.
This proves that C is a spectrahedral shadow. If (a, b) lies in the interior of C
then the fiber of the projection is a 6-dimensional spectrahedron. If (a, b) lies
in the boundary @C then the fiber consists of a single point. The ranks of these
unique matrices are indicated in Figure 9. Notice that @C has three singular
points, at which the rank drops from 5 to 4 and 3 respectively.

We now shift towards a functional analytic point of view. The degree d is
no longer fixed, and we consider all polynomials, not just homogeneous ones.
Polynomials that are non-negative on Rn form a convex cone C in the infinite-
dimensional real vector space R[x1, . . . , xn]. Its dual cone C∗ is the set of all
linear functionals R[x1, . . . , xn] → R that are non-negative on C. We consider
functionals that evaluate to 1 on the constant polynomial 1. These are repre-
sented by the moments of probability measures µ on Rn:

yα =
Z

Rn

xαdµ for α ∈ Nn.

Points in C∗ are moment sequences (yα) ∈ RNn
of Borel measures µ on Rn.

This setup allows for an elegant and fruitful interpretation of Lagrange
duality for polynomial optimization problems (2.7). To keep the exposition and
notation simple, we restrict ourselves to the unconstrained problem

minimize
x∈Rn

f(x) =
X

α

fαxα

Here we assume that f is bounded from below, say f ≥ ≤, and deg(f) = 2d. Our
problem is equivalent to finding the best possible lower bound:

maximize
t∈R

t

subject to f(x)− t ≥ 0 for all x ∈ Rn.(6.2)

The Lagrange dual of the problem (6.2) reads

minimize
µ∈P

Z

Rn

f(x)dµ,
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where P is the convex set of all Borel probability measures on Rn. We can
rewrite this now as an infinite-dimensional linear optimization problem:

minimize
y∈Y

X

α

fαyα

where Y :=
Ω

y ∈ RNn
ØØØ yα =

Z

Rn

xαdµ with µ ∈ P
æ

.(6.3)

The two dual problems (6.2) and (6.3) are as difficult to solve as our original
optimization problem. There is a natural relaxation which is easier, and we can
express this either on the primal side or on the dual side. In (6.2) we replace the
constraint that f(x) − t be non-negative on Rn with the easier constraint that
f(x)− t be a sum of squares. We relax the dual (6.3) by enlarging the convex set
Y to the infinite-dimensional spectrahedron consisting of all positive semidefinite
moment matrices

M(y) = ( yα+β )α,β∈Nn ∫ 0.

These two relaxations are again related by Lagrange duality, but now they rep-
resent a dual pair of semidefinite programs. Of course, when we solve such an
SDP in practise, we always restrict to a finite submatrix of M(y), usually that
indexed by all monomials xα, xβ of some bounded degree ≤ d. The question of
when such a relaxtion is exact and, if not, how large the gap can be, is an active
area of research in convex algebraic geometry [12, 17, 27].

We now turn our attention to a variant of the above procedure which approx-
imates the convex hull of a variety by a nested family of spectrahedral shadows.
Let I be an ideal in R[x1, . . . , xn] and VR(I) its variety in Rn. Consider the set
of affine-linear polynomials that are non-negative on VR(I):

NN(I) = { f ∈ R[x1, . . . , xn]≤1 | f(x) ≥ 0 for all x ∈ VR(I)}.

In light of the biduality theorem for convex sets (cf. Section 2.2), we can char-
acterize the (closure of) the convex hull of our variety as follows:

conv(VR(I)) = {x ∈ Rn | f(x) ≥ 0 for all f ∈ NN(I)}.

The geometry behind this formula is shown in Figure 10.
Following Gouveia et al. [12], we now replace the hard constraint that f(x)

be non-negative on VR(I) with the (hopefully easier) constraint that f(x) be a
sum of squares in the coordinate ring R[x1, . . . , xn]/I. Introducing a parameter d
that indicates the degree of the polynomials allowed in that SOS representation,
we consider the following set of affine-linear polynomials:

SOSd(I) =
©

f | f − q2
1 − · · ·− q2

r ∈ I for some qi ∈ R[x1, . . . , xn]≤d

™
.
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Fig. 10: Convex hull as intersection of half spaces.

The following chain of inclusions holds:

(6.4) SOS1(I) ⊆ SOS2(I) ⊆ SOS3(I) ⊆ · · · ⊆ NN(I).

We now dualize the situation by considering the subsets of Rn where the various
f are non-negative. The d-th theta body of the ideal I is the set

THd(I) =
©

x ∈ Rn | f(x) ≥ 0 for all f ∈ SOSd(I)
™
.

The following reverse chain of inclusions holds among subsets in Rn:

(6.5) TH1(I) ⊇ TH2(I) ⊇ TH3(I) ⊇ · · · ⊇ conv(VR(I)).

This chain of outer approximations can fail to converge in general, but there are
various convergence results when the geometry is nice. For instance, if the real
variety VR(I) is compact then Schmüdgen’s Positivstellensatz [27, §3] ensures
asymptotic convergence. When VR(I) is a finite set, so that conv(VR(I)) is a
polytope, then we have finite convergence, that is, ∃ d : THd(I) = conv(VR(I)).
This was shown in [14]. For more information on theta bodies see [12]. The main
point we wish to record here is the following:

Theorem 6.4. ([12, 17]) Each theta body THd(I) is a spectrahedral shadow.

Proof. We may assume, without loss of generality, that the origin 0 lies in
the interior of conv(VR(I)). Then SOSd(I) is the cone over the convex set dual
to THd(I). Since the class of spectrahedral shadows is closed under duality, and
under intersecting with affine hyperplanes, it suffices to show that SOSd(I) is a
spectrahedral shadow. But this follows from the formula f − q2

1 − · · ·− q2
r ∈ I,

by an argument similar to that given after (6.1).
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In this article we have seen two rather different representations of the convex
hull of a real variety, namely, the characterization of the algebraic boundary
in Section 4, and the representation as a theta body suggested above. The
relationship between these two is not yet well understood. A specific question
is how to best compute the algebraic boundary of a spectrahedral shadow. This
leads to problems in elimination theory that seem to be particularly challenging
for current computer algebra systems.

We conclude by revisiting one of the examples we had seen in Section 4.

Example 6.5. (Example 4.5 cont.) We revisit the curve X = V (h1, h2)
with

h1 = x2 + y2 + z2 − 1,
h2 = 19x2 + 21y2 + 22z2 − 20.

Scheiderer [27] proved that finite convergence holds in (6.5) whenever I defines
a curve of genus 1, such as X. We will show that d = 1 suffices in our example,
i.e. we will show that TH1(I) = conv(X) for the ideal I = hh1, h2i.

We are interested in affine-linear forms f that admit a representation

(6.6) f = 1 + ux + vy + wz = µ1h1 + µ2h2 +
X

i

q2
i .

Here µ1 and µ2 are real parameters. Moreover, we want f to lie in SOS1(I), so
we require deg qi = 1 for all i. The sum of squares can be written as

X

i

q2
i = (1, x, y, z) ·Q · (1, x, y, z)T , where Q ∈ S4

+.

After matching coefficients in (6.6), we obtain the spectrahedral shadow

SOS1(I) =
©
(u, v, w) ∈ R3

ØØ∃µ1, µ2 :



1 + µ1 + 20µ2 u v w

u −µ1 − 19µ2 0 0
v 0 −µ1 − 21µ2 0
w 0 0 −µ1 − 22µ2



 ∫ 0
™
.

Dual to this is the theta body TH1(I) = SOS1(I)∆. It has the representation

TH1(I) =
©
(x, y, z) ∈ R3

ØØ∃u1, u2, u3, u4 :





1 x y z
x 2

3 −
1
3u4 u1 u2

y u1
1
3 −

2
3u4 u3

z u2 u3 u4



 ∫ 0
™
.

We consider the ideal generated by this 4×4-determinant and its derivatives
with respect to u1, u2, u3, u4, we saturate by the ideal of 3×3-minors, and then
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we eliminate u1, u2, u3, u4. The result is the principal ideal hh4h5h6i, with hi

as in Example 4.5. This computation reveals that the algebraic boundary of
conv(X) consists of quadrics, and we can conclude that TH1(I) = conv(X).

Fig. 11: Convex hull of the curve in Figure 7 and its dual convex body.

Pictures of our convex body and its dual are shown in Figure 11. Diagrams
such as these can be drawn fairly easily for any spectrahedral shadow in R3. To
be precise, the matrix representation of TH1(I) and SOS1(I)∆ given above can
be used to rapidly sample the boundaries of these convex bodies, by maximizing
many linear functions via semidefinite programming.
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Regularity results for planar quasilinear equations

GABRIELLA ZECCA

Abstract: We study the Dirichlet problem for the quasilinear elliptic equation

−div A(x,∇v) = f

in a planar domain ≠, when f belongs to the Zygmund space L(log L)
1
2 (log log L)

1
2 (≠).

We prove that the gradient of the variational solution v ∈ W 1,2
0 (≠) belongs to the

Zygmund space L2 log log L(≠).

1 – Introduction

Let ≠ ⊂ R2 be a bounded open set with C1-boundary. We consider the
following Dirichlet problem

(1.1)
Ω −div A(x,∇v) = f in ≠

v ∈ W 1,2
0 (≠),

where A : ≠× R2 → R2 is a mapping such that:

x → A(x, ξ) is measurable for any ξ ∈ R2;(1,2)
ξ → A(x, ξ) is continuous for almost every x ∈ ≠.(1.3)

Key Words and Phrases: Elliptic equations – Zygmund spaces – Gradient regularity
A.M.S. Classification: 35B65, 46E30.
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Moreover we assume that there exists K > 1 such that for almost every
x ∈ ≠ we have

|A(x, ξ)−A(x, η)| 6 K|ξ − η| (Lipschitz continuity)(1.4)
|ξ − η|2 6 KhA(x, ξ)−A(x, η), ξ − ηi (strong monotonicity)(1.5)
A(x, 0) = 0(1.6)

for any vectors ξ and η in R2 (see [18]).
In [9] an existence and uniqueness theorem for the Dirichlet problem for

the equation div A(x,∇v) = f is proved where f ∈ L1(≠) and the solution v

belongs to the so called grand Sobolev space W 1,2)
0 (≠) i.e. the space of function

v ∈ W 1,1
0 (≠) whose gradient |∇v| satisfies

sup
1<s<2

∑
(2− s)

Z

≠
|∇v|sdx

∏ 1
s

= kvk
W 1,2)

0
< 1.

Note that the space of such functions W 1,2)
0 (≠) is slightly larger than W 1,2

0 (≠)
and this is the appropriate space when the right-hand side f is assumed to be
only L1−integrable (see [9], [11] for more details).

In this paper we study cases where the solution v is the variational W 1,2
0 (≠)-

solution, under the assumption

(1.7) f ∈ L(log L)
1
2 (log log L)

1
2 (≠) ⊂ L(log L)

1
2 (≠).

Let us observe that by the Sobolev-Trudinger imbedding in the plane

(1.8) W 1,2
0 (≠) ↪→ EXP2(≠),

hypothesis (1.7) guarantees that f belongs to the dual space of W 1,2
0 (≠) and

then, at least in the linear case A(x, ξ) = A(x)ξ the Lax-Milgram Theorem
ensure that there exists a unique solution v ∈ W 1,2

0 (≠).
The case where f belongs to the Zygmund space

(1.9) f ∈ L(log L)δ(≠) ⊂ L1(≠), for
1
2

6 δ 6 1

is treated in [3] (see also [2], [21] for the case δ = 1) where e.g. the authors prove
that under the assumption (1.9), there is a unique solution v ∈ W 1,2

0 (≠) to the
Dirichlet problem (1.1) with ∇v ∈ L2(log L)2δ−1 and

(1.10) k∇vkL2(log L)2δ−1(≠) 6 c(K) kfkL(log L)δ(≠) ,

where c(K) > 0 depends only on K.



[3] Regularity results for planar quasilinear equations 331

We prove the following

Theorem 1.1. Let A = A(x, ξ) satisfy conditions (1.2)-(1.6) and let f ∈
L(log L) 1

2 (log log L) 1
2 (≠). Then, there exists an unique v ∈ W 1,2

0 (≠) solution to

(1.11)
Ω −div A(x,∇v) = f in ≠

v ∈ W 1,2
0 (≠),

such that ∇v ∈ L2(log log L)(≠) and

k∇vkL2(log log L)(≠) 6 C(K) kfk
L(log L)

1
2 (log log L)

1
2 (≠)

.

Note that by imbedding theorems for Orlicz-Sobolev spaces, (see [5]) we
obtain in particular that the solution v in Theorem 1.1 belongs to the Orlicz
space LΛ(≠) generated by the Young function Λ(t) = exp

©
t2 log(e + t)

™
− 1.

It is worth to point out that under the assumptions of Theorem 1.1 we
cannot expect the boundedness of the solution u. In fact in [2] is proved that
f ∈ L log L(≠) is a sufficient condition for the boundedness (and continuity) of
the solution u and in [3] there are examples where f ∈ L logδ L(≠), δ ∈ [12 , 1[,
and the solution u is not bounded.

In Section 5 we prove that also approaching L log L(≠) in the scale of spaces
L log L(log log L)α, L log L(log log log L)α(≠), L log L(log log log ... log L)α(≠),
α < 0, we cannot obtain the boundedness of the solution.

The case n > 3 is extensively treated for the n-harmonic equations in the
recent papers [14] and [12].

2 – Young’s functions and Orlicz spaces

Let Φ : [0,+1) → [0,+1) be a Young’s function, i.e. a convex function
of type Φ(t) =

R t
0 ϕ(s)ds, t > 0, where ϕ : [0,1[→ R is nondecreasing, right-

continuous and such that

(2.1) ϕ(s) > 0 ∀s > 0, ϕ(0) = 0, lim
s→1

ϕ(s) = +1.

The Young’s function Φ̃(t), complementary to Φ(t), is defined by Φ̃(t) =
sup {st− Φ(s) : s > 0} and it is easy to see that ˜̃Φ = Φ.

In the sequel we will deal with a particular class of Young functions Φ
verifying a suitable sub-homogeneity property at infinity called ∆2-condition.
Namely,
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Definition 1. A young function Φ satisfies the ∆2-condition (we will write
Φ ∈ ∆2) if there exists a constant l > 0 such that

(2.2) Φ(∏t) 6 ∏lΦ(t), ∀∏ > 1, ∀t > t0,

where t0 > 0 is a suitable large constant.

Let ≠ be an open and bounded set in Rn, n > 1. The Orlicz class ΛΦ(≠) is
the set of all measurable functions u : ≠ → R satisfying

Z

≠
Φ(|u(x)|)dx < 1

The Orlicz Space LΦ = LΦ(≠) is the linear hull of ΛΦ(≠) and the equality
LΦ(≠) ≡ ΛΦ(≠) holds if and only if Φ ∈ ∆2.

Define the functional kukLΦ(≠) : LΦ(≠) → [0,+1[ by

(2.3) kukLΦ(≠) = inf
Ω

K > 0 :
Z

≠
Φ

µ
|u(x)|

K

∂
dx 6 1

æ
.

It is a norm, called the Luxemburg norm, and LΦ(≠) is a Banach space when
endowed with it. When no confusion arise we will simply write kukLΦ or kukΦ
instead of kukLΦ(≠).

We recall that:

i) If Φ(t) = tp and 1 6 p < 1 then LΦ(≠) = Lp(≠), the classical Lebesgue
space and k · kLΦ(≠) = k · kLp .

ii) If Φ(t) = tp(log(e + t))q where either p > 1 and −1 < q < 1 or p = 1 and
q > 0, then the Orlicz space LΦ(≠) is the Zygmund space Lp(log L)q(≠),
and the norm (2.3) is equivalent to the quantity (see [16])

(2.4) [v]Lp(log L)q(≠) =





Z
\ ≠|v|p logq




e +

|v|
µZ
\ ≠|v|pdx

∂ 1
p




dx





1
p

where, for all Lebesgue measurable set E with positive measure, we denote

by
Z
\ Efdx the mean value of f taken over the set E, i.e.

Z
\ Efdx = fE =

1
|E|

Z

E
fdx, where |E| denotes the Lebesgue measure of E.

iii) If Φ(t) = eta−1, a > 0, then the Orlicz space LΦ(≠) reproduces the space
of exponentially integrable functions EXP (≠) when a = 1 and EXPa(≠)
otherwise.
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iv) If Φ(t) = tp(log log(ee + t))q where either p > 1 and −1 < q < 1 or
p = 1 and q > 0, then the Orlicz space LΦ(≠) is the space Lp(log log L)q(≠).

The closure of C1
0 (≠) in LΦ(≠) is denoted by EΦ(≠) and the inclusions

(2.5) EΦ(≠) ⊆ ΛΦ(≠) ⊆ LΦ(≠)

are trivial with equality holding if and only if Φ ∈ ∆2.
The Orlicz-Sobolev space W 1,Φ(≠) is defined as

W 1,Φ(≠) =
©
u ∈ W 1,1(≠) ∩ LΦ(≠) : |Du| ∈ LΦ(≠)

™
,

and, equipped with the norm

kukW 1,Φ = kukΦ + kDukΦ

it is a Banach space.
By W 1,Φ

0 (≠) we denote the subspace of W 1,Φ(≠) of those functions whose
continuation by 0 outside ≠ belongs to W 1,Φ(Rn). Properties of Orlicz-Sobolev
spaces are presented in [7], [20].

The Orlicz space LΦ(≠) is isometrically isomorphic to the dual space of
EΦ̃(≠) (see [17], [20]) and [LΦ(≠)]0 ' LΦ̃(≠) if and only if Φ ∈ ∆2. In particular
the space LΦ(≠) is reflexive if and only if both Φ and Φ̃ belong to class ∆2.

Here below we recall the explicit expression of the dual spaces of some Orlicz
space (see [4] and [8]) which will be useful in the sequel

i) for any 1 < p < 1 and −1 < q < 1 it is

(Lp(log L)q(≠))0 ∼=
Lp0

(log L)
q

p−1
(≠)

where p0 is the conjugate exponent of p, i.e. 1
p + 1

p0 = 1
ii) for any 1 < p < 1 and −1 < q < 1 it is

(Lp(log log L)q(≠))0 ∼=
Lp0

(log log L)
q

p−1
(≠)

iii) for p = 1 and q > 0 it is

(2.6) (L(log L)q(≠))0 ∼= EXP 1
q
(≠)

The following partial ordering relation between functions is involved in
imbedding theorems between Orlicz spaces associated with different Young func-
tions.
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Definition 2. The function ™ is said to dominate the function Φ globally
(respectively near infinity) if there exists c > 0 such that

(2.7) Φ(t) 6 ™(ct)

for any t > 0 (respectively for any t greater than some positive number).
The functions Φ and ™ are called equivalent globally (respectively near

infinity) if each dominates the other globally (respectively near infinity).

Lemma 2.1. Let Θ(t) = exp
n

t2

log(e+t)

o
− 1. Then the conjugate Young

function Θ̃(t) of Θ is equivalent, near infinity, to the function

™(t) = t log
1
2 (e + t)(log log(e + t))

1
2 .

Proof. Let us start the proof by observing that the derivative function of
Θ

θ(t) = Θ0(t) = exp
Ω

t2

log t

æ
2t log t− t

log2 t

is equivalent near infinity to Θ. In fact, for any t sufficiently large we have

θ(t) ∼= exp
Ω

t2

log t

æ
2t

log t

and
exp

Ω
t2

log t

æ
6 exp

Ω
t2

log t

æ
2t

log t
6 exp

Ω
(ct)2

log ct

æ
,

for some constant c > 1. On the other hand it is not hard to see that the inverse
function θ−1 of θ is equivalent near infinity to the function

√(s) =
1√
2

log
1
2 s(log log s)

1
2 .

Hence, near infinity we have

Θ̃(y) =
Z y

0
θ−1(s)ds ∼= y log

1
2 y(log log y)

1
2

as we claimed.

Theorem 2.1. The continuous imbedding L™(≠) → LΦ(≠) holds if and
only if either ™ dominates Φ globally or |≠| < 1 and ™ dominates Φ near
infinity.
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In particular, for any Young function ™ = ™(t) which is dominated (near
infinity) by the Young function

Θ(t) = exp
Ω

t2

log(e + t)

æ
− 1,

by Theorem 2.1 we have

(2.8) EXP2(≠) → LΘ(≠) → L™(≠).

Moreover, for any 0 < ε < p < 1 and −1 < a < b < 1 the following imbedding
are obvious

Lp+ε(≠) → Lp(log L)b(≠) → Lp(log L)a(≠) → Lp−ε(≠)

Lp(log L)ε(≠) → Lp(≠) → Lp(log L)−ε(≠).

The following Sobolev-Trudinger type embedding holds

(2.9) W0
L2

(log L)a
(≠) ↪→ EXP 2

1+a
(≠) for a < 1,

(see [22], [10], [5]), where we denote by W0
L2

(log L)a (≠) the space W 1,Φ
0 (≠) where

Φ(t) = t2 log−a(e+ t). It is worth to point out that in case a = 0 imbedding (1.8)
follows.

We will finish this section by recalling the following result (see [5], Example
2 pag. 43 )

Lemma 2.2. Let ≠ ⊂ R2 be an open bounded set with C1-boundary. If we
consider Young functions Φ(t) which are equivalent to tp(log log(e + t))q near
infinity, where either p > 1 and q ∈ R or p = 1 and q > 0, then

W 1,Φ(≠) → Cb(≠)

if p > 2 and

(2.10) W 1,Φ(≠) → LΦ2(≠)

otherwise, where Φ2 is equivalent near infinity to
(

t
2p

2−p (log log(t))
2q

2−q if 1 6 p < 2

et2(log(t))q
if p = 2
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(Here Cb(≠) denotes the space of continuous bounded functions on ≠).
For more details and proofs of results about Young function and Orlicz

spaces we refer the reader to [1], [5], [6], [17], [20], [23].

3 – Preliminaries

The results we are going to obtain in this section are true in all dimensions.
Hence, here we assume A = A(x, ξ) to be defined on ≠ × Rn, where conditions
(1.2)–(1.6) hold for x ∈ ≠ ⊂ Rn and ξ, η ∈ Rn. Let us recall the following
regularity result for the solution to quasilinear elliptic problem with the right-
hand side in divergence form (see Theorem 3.2 of [3]).

Theorem 3.1. Let ≠ ⊂ Rn be a bounded open set with C1-boundary and
let A = A(x, ξ) be as before. Then for √1,√2 ∈ L2

(log L)a (≠; Rn) with 0 6 a 6 1,
each of the two problems

Ω
div A(x,∇ϕ1) = div √1 in ≠
ϕ1 ∈ W 1,1

0 (≠)
Ω

div A(x,∇ϕ2) = div √2 in ≠
ϕ2 ∈ W 1,1

0 (≠)

has a unique solution and

(3.1) k∇ϕ1 −∇ϕ2k L2
(log L)a (≠)

6 c(K)k√1 − √2k L2
(log L)a (≠)

where c(K) > 0 depends only on K.

We prove the following

3.2. Let A = A(x, ξ) satisfy hypotheses (1.2)–(1.6). Then for √1,√2 ∈
L2

log log L (≠) each of the two problems

(3.2)

Ω
div A(x,∇ϕ1) = div √1 in ≠
ϕ1 ∈ W 1,1

0 (≠)

Ω
div A(x,∇ϕ2) = div √2 in ≠
ϕ2 ∈ W 1,1

0 (≠)

has a unique solution and

(3.3) k∇ϕ1 −∇ϕ2k L2
log log L (≠)

6 c(K)k√1 − √2k L2
log log L (≠)
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Proof. For i = 1, 2 let √i ∈ L2

log log L (≠). Then obviously √i belong to
L2

(log L)a (≠), 0 < a 6 1. Hence, by Theorem 3.1, there exists a unique solution ϕi

to the Dirichlet Problem (3.2) and the estimate

(3.4) k∇ϕ1 −∇ϕ2k L2
(log L)a (≠)

≤ c(K)k√1 − √2k L2
(log L)a (≠)

holds uniformly with respect to a ∈ ]0, 1].
Now we claim that the following inequality holds true:

(3.5)

µ
1− 1

e

∂Z

≠

k(x)2

log log(k(x) + ee)
dx 6

Z 1

0
da

Z

≠

k(x)2

loga(k(x) + ee)
dx 6

6
Z

≠

k(x)2

log log(k(x) + ee)
dx.

Indeed by
Z 1

0

1
loga(ee + k(x))

da =
∑
1− 1

log(k(x) + ee)

∏
1

log log(k(x) + ee)
,

we have
µ

1− 1
e

∂
1

log log(k(x) + ee)
6

Z 1

0

1
loga(ee + k(x))

da 6
1

log log(k(x) + ee)

so that Inequality (3.5) follows.
Integrating both sides of (3.4) with respect to 0 6 a 6 1 and using suitably

(2.4) and (3.5) with k(x) = |∇ϕ1−∇ϕ2| and k(x) = |√1−√2| the thesis follows.

4 – The main result

In this Section we will give the proof of Theorem 1.1. Here and below we
assume

Φ(t) = t log
1
2 (e + t)(log log(e + t))

1
2 .

Proof of Theorem 1.1. We start the proof by using the linearization
procedure contained in [15] (see also [3]) which we report for the convenience of
the reader. So, let v ∈ W 1,2)

0 (≠) be the solution to quasilinear problem

(4.1)
Ω −div A(x,∇v) = f in ≠

v = 0 on @≠,
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which exists and is unique because f ∈ LΦ(≠) ⊂ L1(≠) (see [9], [15]). We will
determine a symmetric measurable matrix valued function A = A(x) such that
v satisfies the linear problem

(4.2)
Ω −div A(x)∇v = f in ≠

v = 0 on @≠,

and A verifying

(4.3)
|ξ|2

C(K)
6 hA(x)ξ, ξi 6 C(K)|ξ|2,

for any ξ ∈ R2, a.e.x ∈ ≠, and where C(K) is a constant depending only upon
K.

Setting

(4.4) B = A(x,∇v(x)), E = ∇v(x).

one obtain, by assumptions (1.4)-(1.6)

(4.5) |B| 6 K|E|, |E|2 6 K|hB,Ei|.

Moreover if we set,

∏ =
hB,Ei
|E|2 , Λ =

|B|
|E| (|E| > 0)

by (4.5) we have

(4.6)
1
K

6 ∏ 6 Λ 6 K and
|B|2 + |E|2
hB,Ei =

1 + Λ2

∏
.

Define H > 1 by solving the equation

H +
1
H

=
1 + Λ2

∏

that is,

H =
1
2



1 + Λ2

∏
+

sµ
1 + Λ2

∏
− 4

∂2


 .

Then, consider the 2× 2 matrix defined by

A = HId +
µ

1
H
−H

∂
B −HE

|B −HE| ⊗
B −HE

|B −HE| ,



[11] Regularity results for planar quasilinear equations 339

where for z = (x, t), we have used the shorthand notation

z ⊗ z =
µ

x2 xt
xt t2

∂

and Id = (δij) is identical matrix. It holds (see [15])

(4.7) AE = B

and

(4.8)
|ξ|2
H

6 hA(x)ξ, ξi 6 H|ξ|2, ∀ξ ∈ R2.

By (4.4) and (4.8), we have

A(x)∇v(x) = B

which implies (4.2). Finally, by (4.8) and observing that it holds

H(x) 6 C(K),

(4.3) follows, with

C(K) =
1
2

h
(K + K3) +

p
(K + K3)2 − 4

i
.

Now, let
L· = −div A(x)∇ · .

Since f ∈ LΦ(≠) then v is the variational solution in W 1,2
0 (≠) to the equation

Lv = f . Hence we have
Z

≠
hA(x)∇v,∇ϕidx =

Z

≠
ϕfdx

for any ϕ ∈ W 1,2
0 (≠).

Now, let us fix √ ∈ C1(≠̄; R2) with

(4.9) k√k L2
(log log L) (≠)

6 1

and let ϕ be the (unique) solution to the Dirichlet problem
Ω

Lϕ = div √ in ≠
ϕ = 0 on @≠.
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given by Theorem 3.2. Note that ϕ verifies

(4.10) k∇ϕk L2
(log log L) (≠;R2)

6 c(K)k√k L2
(log log L) (≠;R2)

6 c(K).

We have

(4.11) |h∇v,√i| =
ØØØØ

Z

≠
hA(x)∇v,∇ϕi dx

ØØØØ =
ØØØØ

Z

≠
ϕfdx

ØØØØ .

On the other hand, using Lemma 2.2 with p = 2 and q = −1, the Orlicz-Sobolev
imbedding

W 1,
0

L2

log log L
(≠) → LΘ(≠) where Θ(t) = exp

t2

log(e + t)
− 1

holds. Moreover, by Lemma 2.1 the conjugate Young function Θ̃ of Θ is equiva-
lent (near infinity) to the Young function Φ and then

(4.12) LΘ̃(≠) = LΦ(≠).

Thus, for any √ ∈ C1(≠̄, R2) verifying (4.9), by (4.11) and using Hölder inequality
between associated Orlicz spaces (see for example [1]), we obtain

(4.13) |h∇v,√i| 6 ckϕkLΘ(≠)kfkLΦ(≠)

Taking the supremum under conditions √ ∈ C1(≠̄; R2) and k√k L2
(log log L) (≠)

6 1,

the estimates (4.10) and (4.13) give

sup
Ω
|h∇v,√i| : √ ∈ C1(≠̄; R2) and k√k L2

(log log L) (≠)
6 1

æ
6 c(K, |≠|)kfkLΦ(≠)

and the thesis follows. In fact it is now sufficient to observe that

k∇vkL2(log log L)(≠) = sup
k√k L2

(log log L) (≠)
61
|h∇v,√i|.

and that by (2.5) the space C1(≠̄) is dense in L2

log log L (≠).

Remark 4.1 It is evident that the thesis of Theorem 1.1 remains invaried
whenever f ∈ L™(≠), ™ any Young function verifying

™(t) > t log
1
2 (e + t)(log log(e + t))

1
2

for any t > 0 sufficiently large.
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5 – On the boundedness of the solution

In this section we show with an example that we cannot expect the bound-
edness of the solution under the assumptions of Theorem 1.1 (see also [3], [14]).

Example 1. Let
u(x) = log log log

1
|x|

and let ≠ =
©
x ∈ R2 : |x| < e−e

™
. Then, the unbounded function u verifies

|∇u| ∈ L2 log log L(≠) and solves the Dirichlet problem

(5.1)
Ω −∆u = f in ≠

u ∈ W 1,2
0 (≠),

where

f :=
1

|x|2 log2 1
|x| log log 1

|x|

√

1 +
1

log log 1
|x|

!

∈ L(log L)(log log L)α(≠), ∀α < 0.

Proof. We have

∇u(x) =
−x

|x|2 log 1
|x| log log 1

|x|
, ∀x 6= 0,

so that

|∆u(x)| = |div ∇u(x)| = 1

|x|2
≥
log 1

|x|

¥2
log log 1

|x|

√

1 +
1

log log 1
|x|

!

.

Hence, by |f | = |∆u| we have, for any α < 0,
Z

≠
|f | log(|f |) (log log |f |)α dx 6

6 c

Z

≠

1

|x|2 log 1
|x|

≥
log log 1

|x|

¥1−α dx =

= c

Z e−e

0

1
ρ log 1

ρ (log log 1
ρ )1−α

dρ =

=
c

−α

∑µ
log log

1
ρ

∂α∏e−e

0

< 1,

so that f belongs to L log L(log log L)α(≠) for any α < 0. Note that for α = 0
first integral in last inequality is infinite.
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In a similar way we have the following

Example 2. Let
u(x) = log log log log

1
|x|

and let ≠ =
©
x ∈ R2 : |x| < e−ee™

. Then, the unbounded function u verifies
∇u ∈ L2 log log L(≠) and solves the Dirichlet problem

(5.2)
Ω −∆u = f in ≠

v ∈ W 1,2
0 (≠),

where

f :=
1

|x|2 log2 1
|x| log log 1

|x| log log log 1
|x|

√

1+
1

log log 1
|x|

+
1

log log 1
|x| log log log 1

|x|

!

and holds
f ∈ L(log L)(log log log L)α(≠), ∀α < 0.

By continuing in the same way, we can conclude that if by one hand f ∈ L log L
is a sufficient condition to obtain the boundedness of the solution u (see [2])
by the other hand slightly weaker condition f ∈ L log L(log log log ... log L)α(≠),
α < 0, is insufficient.
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