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– Preface

The present manuscript collects the most significative results achieved during
my PhD program. The problems I have been working on derive from two differ-
ent branches in control theory for partial differential equations: the stabilization
of systems of hyperbolic equations and the controllability of degenerate/singular
parabolic equations.

Coherently, the first part of the thesis is focused on stabilization properties for
systems of two weakly coupled hyperbolic equations. As examples, we imagine to
study the stabilization problem for a system of two wave equations, or of two plate
equations, or a wave-plate system. While the stabilization issue is well-understood
for a single (linear) hyperbolic equation, where exponential decay rate can be en-
sured by a damping acting locally on the boundary or in the interior of the domain,
much less clear is the situation for a system of two equations, even though this
might occur in several application to mechanical flexible structures.

I first present the analysis for the indirect stabilization of systems with globally
distributed coupling and damping. In this case, a compatibility conditions between
the operators involved in the system ensures the polynomial decay rate for the total
energy of the system. The abstract setting relies on the use of semigroup and inter-
polation theory. The main purpose is to prove general energy estimates, depending
on the initial conditions, achieved by means of suitable (operator) multipliers.

Moreover, the polynomial decay rate of some systems to which the previous
compatibility condition applies can be improved by means of sharp estimates of the
norm of the resolvent operator along the imaginary axis.

On the other hand, the multiplier technique allows to show polynomial stabi-
lization rate for systems with coupling and damping located at the boundary. But,
in this situation, the coupling operator is unbounded in the energy space, and so
the exponential decay rate cannot be ruled out as before.

The second part of the thesis treats parabolic equations with operator degener-
ating at the interior or at the boundary of the domain.

I consider the null controllability problem for the generalized Grushin operator
Au = ∂tu − ∂2

xxu − |x|2γ∂2
yyu in dimension two, for positive values of the parame-

ter γ, in the domain D = (−1, 1) × (0, 1), so that the operator degenerates inside
the domain. By a duality argument, the null controllability is equivalent to an
observability estimate for the adjoint system. By means of a Fourier series de-
composition, the problem reduces to deduce a uniform observability inequality for
a one dimensional equation, that can be proven thanks to an appropriate Carle-
man estimate. Thus, I show that a null controllability result in an arbitrary time
holds for γ ∈ (0, 1), while null controllability fails for γ > 1. Interesting is the
behaviour in the transition state γ = 1: a minumum time T ∗ > 0 is needed to
achieve null controllability, that fails for small times. The negative result requires
explicit supersolution and comparison estimates.
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Motivated by a recent result on the Laplace-Beltrami operator in almost Rie-
mannian manifolds, I have started developing the analysis of controllability prop-
erties for the Grushin operator with a singular potential. I show null controllability
in large time for the operator Lu = ∂tu − ∂2

xxu − |x|2∂2
yyu − λ

x2u, in the domain
Ω = (0, 1) × (0, 1), that is, with both degeneracy and singularity occurring at the
boundary of the domain, for all coefficients λ < 1/4, the constant in the Hardy-
Poincaré inequality.

– Resumé

Le présent manuscrit rassemble les résultats les plus significatifs obtenus au cours
de mon doctorat. Les problèmes sur lesquels j’ai travaillé dérivent de deux branches
différentes de la théorie du contrôle des équations aux dérivées partielles: la sta-
bilisation des systèmes d’équations hyperboliques et la contrôlabilité des équations
paraboliques dégénérées/singulières.

En particulier, la première partie de la thèse se concentre sur les propriétés
de stabilisation de certains systèmes de deux équations hyperboliques faiblement
couplées. Par exemple, on étudie le problème de stabilisation pour un système de
deux équations des ondes, ou de deux équations des plaques, ou un système d’onde-
plaque. Bien que la question de la stabilisation soit bien comprise pour une seule
équation hyperbolique (linéaire), où le taux de décroissance exponentiel peut être
assuré par un amortissement agissant localement sur la frontière ou à l’intérieur du
domaine, le cas d’un système de deux équations est beaucoup moins clair, même si
cela pourrait se produire dans plusieurs applications à la mécanique des structures
flexibles.

J’ai d’abord présenté l’analyse pour la stabilisation indirecte de systèmes avec
couplage et amortissement distribués globalement. Dans ce cas, une condition de
compatibilité entre les opérateurs impliqués dans le système garantit le taux de
décroissance polynomial de l’énergie totale du système. Le cadre abstrait repose
sur l’utilisation de semi-groupes et la théorie de l’interpolation. Le but principal
est de prouver des estimations générales sur l’énergie, en fonction des conditions
initiales, obtenues par des multiplicateurs appropriés (de l’opérateur).

Par ailleurs, le taux de décroissance polynomial de certains systèmes sur lesquels
la condition de compatibilité précédente s’applique peut être amélioré au moyen
d’estimations optimales de la norme de l’opérateur résolvant le long de l’axe imag-
inaire.

D’autre part, la technique des multiplicateurs permet de montrer la stabilisation
avec taux polynomial pour des systèmes ayant le couplage et l’amortissement situés
sur la frontière. Mais, dans cette situation, l’opérateur de couplage n’est pas borné
dans l’espace de l’énergie, et donc le taux de décroissance exponentiel ne peut pas
être exclu comme avant.

La deuxième partie de la thèse traite d’équations paraboliques où l’opérateur
dégénère à l’intérieur ou à la frontière du domaine.
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Je considère le problème de la contrôlabilité à zéro pour l’opérateur généralisé de
Grushin Au = ∂tu− ∂2

xxu− |x|2γ∂2
yyu en dimension deux, pour les valeurs positives

du paramètre γ, dans le domaine D = (−1, 1) × (0, 1), de sorte que l’opérateur
dégénère à l’intérieur du domaine. Par un argument de dualité, la contrôlabilité à
zéro équivaut à une estimation d’observabilité pour le système adjoint. Au moyen
d’une décomposition en série de Fourier, le problème se réduit à déduire une inégalité
d’observabilité uniforme pour une équation unidimensionnelle, qui peut être prouvée
grâce à une estimation de Carleman appropriée. Ainsi, je montre qu’un résultat de
contrôlabilité nulle dans un temps arbitraire est valable pour γ ∈ (0, 1), alors que
contrôlabilité à zéro n’est vraie pour aucun temps quand γ > 1. Le comportement
de l’état de transition γ = 1 est particulièrement intéressant : un temps minimum
T ∗ > 0 est nécessaire pour réaliser la contrôlabilité à zéro, qui n’est pas vraie
en temps petit. Le résultat négatif nécessite une supersolution explicite et des
estimations de comparaison.

Enfin, motivé par un résultat récent concernant l’opérateur de Laplace-Beltrami
sur les variétés presque riemanniennes, j’ai commencé à développer l’analyse des
propriétés de contrôlabilité pour l’opérateur de Grushin avec un potentiel singulier.
Je montre la contrôlabilité à zéro en temps grand pour l’opérateur Lu = ∂tu −
∂2
xxu − x2∂2

yyu − λ
x2u, dans le domaine Ω = (0, 1) × (0, 1), c’est-à-dire, avec la

dégénérescence et la singularité qui se produisent à la frontière du domaine, pour
tous les coefficients λ < 1/4, la constante dans l’inégalité de Hardy-Poincaré.

– Introduction to Part I

The interest of the scientific community in the stabilization and control of sys-
tems of partial differential equations has remarkably increased during last decades.
This is probably due to the fact that such systems arise in several applied math-
ematical models, such as those used for studying the vibrations of flexible struc-
tures and networks (see, for example, the book by Dager and Zuazua [62] and
references therein), or fluids and fluid-structure interactions (see, for instance,
[17, 16, 34, 100, 131, 142]).

When dealing with systems involving quantities described by several compo-
nents, pretending to control or observe all the state variables might be irrealistic, or
too expensive. In applications to mathematical models for the vibrations of flexible
structures (see [5] and [10]), electromagnetism (see, for instance, [105]), or fluid
control (see [55] and the references therein), it may happen that only part of such
components can be observed. This is why it becomes essential to study whether
controlling only a reduced number of state variables suffices to ensure the stability
of the full system. As an example, vibrations of elastic or visco-elastic structures
are described by reversible PDEs. In such applications, the main goal is to reduce
oscillations through a feedback law implemented within the system, in order to
stabilize the system as time increases.
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The asymptotic behavior of wave-like equations and, in particular, the deriva-
tion of optimal decay rates for the energy when the geometry of the domain and
damping region allow rays to be trapped, have been intensively studied by sev-
eral authors over last years. For such questions and results, we refer the reader to
Lebeau [111] and Burq [39] (and the references therein). In [111], Lebeau consid-
ered a locally damped wave equation and proved optimal logarithmic decay rates
for the energy, provided that damping is active on a nonempty open set. The proof
relies on optimal resolvent estimates for the corresponding infinitesimal generator
of the associated semigroup. Later on these results were completed by Burq in [39]
in exterior domains, in particular for cases in which rays may be trapped by the
obstacle.

Indirect stabilization for symmetric hyperbolic systems was first considered by
Alabau-Boussouira in [1], and further developed in [4, 2, 6, 8] for more general
systems, using energy type methods, together with some new ideas such as the
new integral inequality given in [1, 2] (see also Lemma 1.8 in Chapter 1). In this
approach, the purpose is rather to focus on the properties of the operators involved
in the system, in order to allow the transfer of the damping action of the feedback
to the undamped equation.

Indeed, it turns out that certain systems possess an internal structure that com-
pensates for the aforementioned lack of control/feedback variables. Such a phe-
nomenon is referred to as indirect stabilization or indirect control (see [135]).

Let us describe this feature through an example. Let β, κ > 0, and consider the
system {

∂2
t u− ∆u + β∂tu− κv = 0

∂2
t v − ∆v − κu = 0

in Ω × (0,+∞) (1)

with boundary conditions

u(·, t) = 0 = v(·, t) on Γ ∀t > 0 (2)

and initial conditions
{
u(x, 0) = u0(x) u′(x, 0) = u1(x)

v(x, 0) = v0(x) v′(x, 0) = v1(x)
x ∈ Ω . (3)

As explained in [2, Example 6.1], the above system describes the evolution of two
elastic membranes subject to an elastic force that attracts one membrane to the
other with coefficient κ > 0. Moreover, the term β∂tu acts on the first membrane
as a stabilizer, whereas no direct feedback takes effect on the second membrane.
As shown in [2], for sufficiently small κ and enough regular initial conditions (3),
the natural energy associated to system (1) decays in time at a polynomial rate.
Therefore, we might consider the first membrane as an indirect stabilizer for the
conservative membrane.



[7] Stabilization and control of partial differential equations of evolution 89

Subsequently, indirect stabilization of coupled systems was investigated in [22],
where resolvent estimates were obtained and spectral analysis was used to prove
polynomial decay of abstract semigroup, with applications to system (1) or to sim-
ilar examples of symmetric systems. The works by Liu-Rao [116, 117] and Loreti-
Rao [120], used spectral conditions and a Riesz basis approach, achieving polynomial
decay rates for the energy of a simplified case of coupled systems, where the dy-
namics of each component is led by the same operator (wave-wave for example) and
the damping operator is a nonpositive fractional power of it (in [120]), so that a
dispersion relation for eigenvalues can be precisely exploited.

More recently, inspired by the methods in [111] and [39] and encouraged by
previous results on decay rate estimates for weakly coupled systems [22, 1, 4, 2], the
works [23] and [32] addressed the optimality of spectral-analysis-derived decay rates,
taking into account the asymptotic behaviour of the resolvent along the imaginary
axis. However, optimality for the PDE evolution system is subject to the optimality
of the required resolvent estimate, that remains usually uncertain.

In the context of indirect stabilization for coupled systems, we would like to
stress the fact that checking the asymptotic behaviour of the resolvent norm for the
operators involved in the system may be a difficult task. In particular, resolvent
estimates may be hard to obtain when the two operators A1 and A2 that rule
the dynamics of the first and second component do not commute, or damping and
coupling operators do not commute with A1 and A2. For results when the operators
A1, A2 are not necessarily equal and B does not commute with them, we refer
the reader to [1, 4, 6]. The case of localized or boundary damping, together with
localized coupling, is analyzed in [8], supposing the geometric control condition holds
for both subdomains. In this case, since the coupling acts locally, the corresponding
operator is no longer coercive, and this feature generates additional difficulties.
Under the same geometric condition, the controllability problem for a system of
two wave-type equation has been addressed in [7, 9].

– Structure of Part I

The Part I of the thesis is organized as follow: in Chapter 1 we propose a new
compatibility condition in order to ensure polynomial stabilization for systems of
evolution equations in Hilbert space, with several applications to systems of hyper-
bolic PDEs. In Chapter 2 we show how to take advantage of resolvent estimates
to improve the decay rate for some systems considered in Chapter 1, through a
general criterion introduced in [32]. Chapter 3 takes into account the stabilization
problem for a system of two wave equation coupled at the boundary. This kind of
coupling produces relevant consequences in the abstract framework introduced in
Chapter 1, Section 1.1.1. Indeed, in this situation the coupling operator loses its
compactness in the energy space, thus the exponential stability is not ruled out as
in the distributed coupling case. However, by means of energy methods and suitable
multipliers, we will show that the total energy of the system decays at a polynomial
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rate.

1 – A compatibility condition for indirect stabilization of evolution equa-
tions with compact coupling

The present chapter reproduces the article Indirect stabilization of weakly cou-
pled systems with hybrid boundary conditions, in collaboration with Fatiha Alabau-
Boussouira and Piermarco Cannarsa, published in Mathematical Control and Re-
lated Fields, Volume 1, Number 4, December 2011.

1.1 – Introduction

An example of indirect stabilization occurs with the hyperbolic system




∂2
t u− ∆u + ∂tu + αv = 0 in Ω × R

∂2
t v − ∆v + αu = 0 in Ω × R

u = 0 = v on ∂Ω × R ,

(4)

where Ω is a bounded open domain of Rd. We observe that, in case α = 0, sys-
tem (4) reduces to two decoupled equations, an exponentially stable wave equation
(component u) and a conservative wave equation (in v). Indeed, the “frictional”
term ∂tu acts as a stabilizer for the first equation. The indirect stabilization prob-
lem consists in evaluating under which conditions such frictional term ∂tu might
suffice to stabilize the whole system, through a weak (zero order terms) coupling
with coefficient α, and, if so, at which decay rate. A general result proved in [2]
ensures that, for sufficiently smooth initial conditions and |α| > 0 small enough, the
energy of the solution (u, v) of (4) decays to zero at a polynomial rate as t → ∞.

The above indirect stabilization property holds true for more general systems
of partial differential equations, under the compatibility assumption (13) below,
introduced in [2]. For applications to problems in mechanical engineering, however,
it is extremely important to consider also boundary conditions that fail to satisfy
the assumption (13). This is the case of Neumann or Robin boundary conditions,
which describe different physical situations such as hinged or clamped devices. For
instance, let us change the boundary conditions in (4) as follows:





∂2
t u− ∆u + ∂tu + αv = 0 in Ω × R

∂2
t v − ∆v + αu = 0 in Ω × R

u + ∂u
∂ν = 0 = v on ∂Ω × R .

(5)

Then, as is shown in Proposition 1.26 below, the compatibility assumption (13) is
not satisfied. Nevertheless, in this chapter we will prove polynomial stability for
system (5), using a new hypothesis (see condition (14)) which is specially designed
to handle boundary conditions as above—that we call hybrid.
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1.1.1 – Abstract setting

More generally, in a real Hilbert space H, with scalar product 〈·, ·〉 and norm
| · |H , we shall study the system of evolution equations

{
u′′(t) + A1u(t) + Bu′(t) + αv(t) = 0 in H

v′′(t) + A2v(t) + αu(t) = 0 in H
(6)

where

(H1) Ai : D(Ai) ⊂ H → H (i = 1, 2) are densely defined closed linear operators
such that

Ai = A∗
i , 〈Aiu, u〉 ≥ ωi|u|2H ∀u ∈ D(Ai) for some ω1, ω2 > 0 ,

(H2) B is a bounded linear operator on H such that

B = B∗ , 〈Bu, u〉 ≥ β|u|2H ∀u ∈ H for some β > 0 ,

(H3) α is a real number such that 0 < |α| < √
ω1ω2 .

System (6), with the initial conditions

{
u(0) = u0 , u′(0) = u1 ,
v(0) = v0 , v′(0) = v1 ,

(7)

can be formulated as a Cauchy problem for a certain first order evolution equation
in the product space

H := D(A
1/2
1 ) ×H ×D(A

1/2
2 ) ×H .

More precisely, let us define the energies associated to operators A1, A2 by

Ei(u, p) =
1

2

(
|A1/2

i u|2H + |p|2H
)

∀(u, p) ∈ D(A
1/2
i ) ×H (i = 1, 2) , (8)

and the total energy of the system as

E(U) := E1(u, p) + E2(v, q) + α〈u, v〉 (9)

for every U = (u, p, v, q) ∈ H. Then, assumption (H1) yields, for i = 1, 2,

|u|2H ≤ 2

ωi
Ei(u, p) ∀u ∈ D(A

1/2
i ), ∀p ∈ H . (10)
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Moreover, in view of (H3), for all U = (u, p, v, q) ∈ H

E(U) ≥ ν(α)
[
E1(u, p) + E2(v, q)

]
, (11)

where ν(α) = 1 − |α|(ω1ω2)
−1/2 > 0.

Let us introduce the bilinear form on H

(U |Û) = 〈A1/2
1 u,A

1/2
1 û〉 + 〈p, p̂〉 + 〈A1/2

2 v,A
1/2
2 v̂〉 + 〈q, q̂〉 + α〈u, v̂〉 + α〈v, û〉 .

Since

(U |U) = 2E(U) ∀U ∈ H ,

thanks to (11) the above form is a scalar product on H, and H is a Hilbert space
with such a product. Let now A : D(A) ⊂ H → H be the operator defined by

{
D(A) = D(A1) ×D(A

1/2
1 ) ×D(A2) ×D(A

1/2
2 )

AU = ( p , −A1u−Bp− αv , q ,−A2v − αu ) ∀U ∈ D(A) .

Then, problem (6) takes the equivalent form

{
U ′(t) = AU(t)

U(0) = U0 := (u0, u1, v0, v1) .
(12)

As will be proved in Lemma 1.16, A is a maximal dissipative operator. Then, from
classical results (see, for instance, [130]), it follows that A generates a C0-semigroup,
etA, on H. Also,

etAU0 = (u(t), p(t), v(t), q(t)) ,

where (u, v) is the solution of problem (6)-(7), and (p, q) = (u′, v′).

1.1.2 – Strategy for the indirect stabilization

In order to introduce our asymptotic analysis of system (6)-(7)—or, equiva-
lently, (12)—let us observe that, as is explained in [2], no exponential stability can
be expected. Therefore, weaker decay rates at infinity, such as polynomial ones, are
to be sought for. Polynomial decay results for (6) were obtained in [2] assuming
that, for some integer j ≥ 2,

|A1u|H ≤ c|Aj/2
2 u|H ∀u ∈ D(A

j/2
2 ) . (13)

Similar decay estimates for the case of boundary damping (that is, when operator
B is unbounded) were derived in [4]. Also, we refer the reader to [31, 30] for indirect
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stabilization with localized damping, and to [11] for the study of a one-dimensional
wave system coupled through velocities.

In this chapter we will replace (13) by the compatibility condition

D(A2) ⊂ D(A
1/2
1 ) and |A1/2

1 u|H ≤ c|A2u|H ∀u ∈ D(A2), (14)

which is satisfied by a large class of systems including (5) as a special case (see
Section 1.5 below). Under such a condition we will show that any solution U of
(12) satisfies the integral inequality

∫ T

0

E(U(t))dt ≤ c1

4∑

k=0

E(U (k)(0)) ∀T > 0 , U0 ∈ D(A4) . (15)

Moreover, since the energy of solutions is decreasing in time, and thanks to a ab-
stract result due to Alabau-Boussouira [1] (see also Lemma 1.8), (15) implies, in
turn, the polynomial decay of order n of E , that is,

E(U(t)) ≤ cn
tn

4n∑

k=0

E(U (k)(0)) ∀t > 0 (16)

for all n ≥ 1 and U0 ∈ D(A4n) (see Corollary 1.11 below). Notice that (16) yields,
in particular, the strong stability of etA.

The compatibility condition (14) is equivalent to the boundedness of A
1/2
1 A−1

2 .
Let us point out that this hypothesis is sufficient but not necessary. For example,
let us consider A2 = Aτ

1 with τ ∈ (0, 1/2). In this case, condition (14) is violated,
but it is easy to check that condition (13) holds for the smallest integer j such that
j > 2/τ . On the other hand, condition (14) is satisfied for all τ ≥ 1/2. This example
shows that the present results and those of [2] are in some sense complementary
—and, for A2 = Aτ

1 (τ ≥ 0), exactly complementary. One should also note that,
for general operators A1 and A2, the two compatibility conditions (13) and (14) do
not cover all possible cases.

Passing from polynomial to a general power-like decay estimate is quite natural,
once (16) has been established. Indeed, in Section 1.4, using interpolation theory,
we obtain the fractional decay rate

E(U(t)) ≤ cn
tn/4

n∑

k=0

E(U (k)(0)) ∀t > 0 (17)

for all n ≥ 1 and U0 ∈ D(An) (see Corollary 1.19 below). Moreover, taking initial
data in

(
H, D(An)

)
θ,2

for any 0 < θ < 1, we deduce the continuous decay rate

‖U(t)‖2H ≤ cn,θ
tnθ/4

‖U0‖2(H,D(An))θ,2
∀t > 0 (18)
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(compare also with [22, Proposition 3.1], where a comparable result is achieved
using different techniques). In particular, for n = 1, relation (17) implies that, for
every U0 ∈ D(A) , the solution U of problem (12) satisfies

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ c

t1/4
‖U0‖2D(A) ∀t > 0 , (19)

and there exists c1 > 0 such that

‖U0‖2D(A) ≤ c1

(
|A1u

0|2H + |A1/2
1 u1|2H + |A2v

0|2H + |A1/2
2 v1|2H

)
.

Thus, interpolation theory applied to systems satisfying (14) allows to prove con-
tinuous energy decay rates, together with decay rates under explicit smoothness
conditions on the initial data. Furthermore, we would like to point out that it also
yields stronger results in the framework studied in [2], that is, under condition (13).
We describe such applications in Section 1.6, where we show how to deduce power-
like decay rates from the energy estimates of [2], thus recovering, in a more general
set-up, related asymptotic estimates that can be obtained by spectral analysis.

1.1.3 – Open questions

Let us now mention some open questions. One interesting problem is to de-
rive optimal decay rates for the energy of an indirectly damped coupled system in
geometric situations for which trapped rays may exist for the uncoupled damped
equation. More precisely, it would be very interesting to generalize Lebeau’s resol-
vent analysis in [111] to such coupled systems obtaining optimal energy estimates.
In a somewhat different spirit, another open question would be to determine if it
is possible to combine the results of [111] and [39] with the techniques developed
in [4, 2, 8] in order to derive sharp upper decay rates for the energy. In all the
examples we discuss in the present chapter—as well as in [1, 4, 2, 8]—operators A1

and A2 happen to have compact resolvents. It would be very interesting to see if
explicit energy decay rates can be derived in different situations. For instance, it
would be nice to extend Burq’s approach [39] in order to obtain indirect damping
of coupled systems in exterior domains, and prove decay of the local total energy
of solutions.

1.1.4 – Structure of the chapter

This chapter is organized as follows. In Section 1.1.1 we have introduced the
abstract setting that fits the weakly coupled systems we are concerned with in a
standard semigroup framework, providing well-posedness of the abstract Cauchy
problem. Section 1.2 recalls preliminary notions, mainly related to interpolation
theory which is so relevant in the method here developed. Section 1.3 is devoted
to the polynomial decay result and its proof. In Section 1.4, we complete the
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analysis with estimates in interpolation spaces. In Section 1.5, we describe several
applications to systems of partial differential operators. Finally, in Section 1.6, we
show how to improve the results of [2] by interpolation.

1.2 – Preliminaries

In this section we introduce the main tools required to deal with interpolation theory
between Banach spaces. For a general exposition of this theory the reader is referred
to [138] and [122]. Interesting introductions are also given in [29] from the point of
view of control theory, and [121] for the specific case of analytic semigroups.

Let (X, | · |X) and (Y, | · |Y ) two real Banach spaces. We say that Y is contin-
uously embedded into X, and we write Y ↪→ X, if Y ⊂ X and

|x|X ≤ c|x|Y ∀x ∈ Y

for some constant c > 0.
We denote by L(Y ;X) the Banach space of all bounded linear operators T :

Y → X equipped with the standard operator norm. If Y = X, we refer to such a
space as L(X). For any given subspace D of X, we denote by T|D the restriction
of T to D.

Definition 1.1. Let (D, | · |D) be a closed subspace of X. A subspace (Y, | · |Y )
of X is said to be an interpolation space between D and X if

(a) D ↪→ Y ↪→ X, and
(b) for every T ∈ L(X) such that T|D ∈ L(D), we have that T|Y ∈ L(Y ).

Let X, D be Banach spaces, with D continuously embedded into X. For any
α ∈ [0, 1], we denote by Jα(X,D) the family of all subspaces Y of X containing D
such that

|x|Y ≤ c|x|αD |x|1−α
X ∀x ∈ D

for some constant c > 0.
Let us introduce, for each x ∈ X and t > 0, the quantity

K(t, x,X,D) := inf
x=a+b,

a∈X, b∈D

(|a|X + t|b|D) . (20)

Let 0 < θ < 1 be fixed. We define

(X,D)θ,2 :=

{
x ∈ X :

∫ +∞

0

|t−θ− 1
2K(t, x,X,D)|2 dt < +∞

}
(21)

and

|x|2θ,2 :=

∫ +∞

0

|t−θ− 1
2K(t, x,X,D)|2 dt .

The space (X,D)θ,2, endowed with the norm | · |θ,2, is a Banach space.
The reader is referred to [122] for the proof of the following results.
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Theorem 1.2. Let X1, X2, D1, D2 be Banach spaces such that Di is continu-
ously embedded in Xi, for i = 1, 2. If T ∈ L(X1;X2) ∩ L(D1;D2), then we have
that T ∈ L((X1, D1)θ,2; (X2, D2)θ,2) for every θ ∈ (0, 1). Moreover,

‖T‖L((X1,D1)θ,2;(X2,D2)θ,2) ≤ ‖T‖1−θ
L(X1;X2)

‖T‖θL(D1;D2)
.

Consequently, the space (X,D)θ,2 belongs to Jθ(X,D) for every θ ∈ (0, 1). Let
α ∈ [0, 1] and denote by Kα(X,D) the family of all subspaces (Y, | · |Y ) of X
containing D such that

sup
t>0, x∈Y

K(t, x,X,D)

tα|x|Y
< +∞ .

Theorem 1.3 (Reiteration Theorem). Let 0 < θ0 < θ1 < 1. Fix θ ∈ ]0, 1[ and
set ω = (1 − θ)θ0 + θθ1.

1) If Ei ∈ Kθi(X,D), i = 0, 1, then (E0, E1)θ,2 ⊂ (X,D)ω,2 .
2) If Ei ∈ Jθi(X,D), i = 0, 1, then (X,D)ω,2 ⊂ (E0, E1)θ,2.

Consequently, if Ei ∈ Jθi(X,D)∩Kθi(X,D), i = 0, 1, then (E0, E1)θ,2 = (X,D)ω,2,
with equivalence between the respective norms.

Remark 1.4. Since (X,D)θ,2 is contained in Jθ(X,D) ∩ Kθ(X,D), for every
0 < θ0, θ1 < 1 we have

((X,D)θ0,2, (X,D)θ1,2)θ,2 = (X,D)(1−θ)θ0+θθ1,2 . (22)

Since X ∈ J0(X,D) ∩K0(X,D) and D ∈ J1(X,D) ∩K1(X,D), we also have

(X, (X,D)θ1,2)θ,2 = (X,D)θθ1,2 and (23)

((X,D)θ0,2, D)θ,2 = (X,D)(1−θ)θ0+θ,2 . (24)

1.2.1 – Interpolation spaces and fractional powers of operators

Let (H, 〈 · , · 〉) be a real Hilbert space, with norm | · |H . Let A : D(A) ⊂ H → H
be a densely defined closed linear operator on H such that

〈Ax, x〉 ≥ δ|x|2H , ∀x ∈ D(A) (25)

for some δ > 0. As usual, we denote by Aθ the fractional power of A for any θ ∈ R
(see, for instance, [29, Chapter 1 - Section 5]), and by A∗ the adjoint of A. We recall
that A is self-adjoint if D(A) = D(A∗) and 〈Ax, y〉 = 〈x,Ay〉 for every x, y ∈ D(A).
For the proof of the following result we refer to [122, Theorem 4.36].
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Theorem 1.5. Let A be a self-adjoint operator satisfying (25). Then, for every
θ ∈ (0, 1), α, β ∈ R such that β > α ≥ 0,

(D(Aα), D(Aβ))θ,2 = D(A(1−θ)α+θβ) . (26)

In particular,
(H,D(Aβ))θ,2 = D(Aβθ) . (27)

We say that A is an m-accretive operator if

{
〈Ax, x〉 ≥ 0 ∀x ∈ D(A) (accretivity)

(λI + A)D(A) = H for some λ > 0 (maximality)

Notice that, if the above maximality condition is satisfies for some λ > 0, then the
same condition holds for every λ > 0. Moreover, we say that A is m-dissipative if
−A is m-accretive.

We refer the reader to [122, Section 4.3] for the proof of the next result.

Proposition 1.6. Let (A,D(A)) be an m-accretive operator on a Hilbert space
H, with A−1 bounded in H. Then for every α, β ∈ R, β > α ≥ 0, θ ∈ (0, 1), A
satisfies (26) and (27). In particular,

D(Aθ) = (H,D(A))θ,2 ∀ 0 < θ < 1 . (28)

Corollary 1.7. If A is the infinitesimal generator of a C0-semigroup of con-
tractions on H, with A−1 bounded in H, then D(Am) = (H,D(Ak))θ,2 for every
k ∈ N, θ ∈ (0, 1) such that m = θk is an integer.

1.2.2 – An abstract decay result

We recall an abstract result obtained in [1] in a slightly different form, and in
[2, Theorem 2.1] in the current version.
Let A : D(A) ⊂ H → H be the infinitesimal generator of a C0-semigroup of bounded
linear operators on H.

Lemma 1.8. Let L : H → [0,+∞) be a continuous function such that, for some
integer K ≥ 0 and some constant c ≥ 0,

∫ T

0

L(etAx)dt ≤ c

K∑

k=0

L(Akx) ∀T ≥ 0 , ∀x ∈ D(AK) . (29)

Then, for any integer n ≥ 1, any x ∈ D(AnK) and any 0 ≤ s ≤ T

∫ T

s

L(etAx)
(t− s)n−1

(n− 1)!
dt ≤ cn(1 + K)n−1

nK∑

k=0

L(esAAkx) . (30)
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If, in addition, L(etAx) ≤ L(esAx) for any x ∈ H and any 0 ≤ s ≤ t, then

L(etAx) ≤ cn(1 + K)n−1 n!

tn

nK∑

k=0

L(Akx) ∀t > 0 (31)

for any integer n ≥ 1 and any x ∈ D(AnK).

1.3 – Main result

We are now ready to state and prove the polynomial decay of solutions to weakly
coupled systems. In addition to the standing assumptions (H1), (H2), (H3), we will
assume that

D(A2) ⊂ D(A
1/2
1 ) and |A1/2

1 u|H ≤ c|A2u|H ∀u ∈ D(A2) (32)

for some constant c > 0. Condition (32) can be formulated in the following equiva-
lent ways.

Lemma 1.9. Under assumption (H1) the following properties are equivalent.

(a) Assumption (32) holds.

(b) A
1/2
1 A−1

2 ∈ L(H).
(c) For some constant c > 0

|〈A1u, v〉| ≤ c|A2v|H〈A1u, u〉1/2 ∀u ∈ D(A1) , ∀v ∈ D(A2) . (33)

Proof. The implications (a)⇔(b)⇒(c) being straightforward, let us proceed

to show that (c)⇒(a). Consider the Hilbert space V1 = D(A
1/2
1 ) with the scalar

product

〈u, v〉V1 = 〈A1/2
1 u,A

1/2
1 v〉

and recall that D(A1) is a dense subspace of V1. Let v ∈ D(A2) and define the
linear functional φv : D(A1) → R by

φv(u) = 〈A1u, v〉 ∀u ∈ D(A1) .

Owing to (c), φv can be extended to a bounded linear functional on V1 (still denoted
by φv) satisfying ‖φv‖ ≤ c|A2v|H . Therefore, by the Riesz Theorem, there is a
unique vector w ∈ V1 such that

φv(u) = 〈A1/2
1 u,A

1/2
1 w〉 ∀u ∈ V1 .
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Hence, 〈A1u, (v − w)〉 = 0 for all u ∈ D(A1), and so v = w ∈ V1 since A1 is

invertible. Moreover, |A1/2
1 v|H = |w|V1 ≤ c|A2v|H . �

The main result of this section is the following.

Theorem 1.10. Assume (H1), (H2), (H3) and (32). If U0 ∈ D(A4), then the
solution U of problem (12) satisfies

∫ T

0

E(U(t))dt ≤ c1

4∑

k=0

E(U (k)(0)) ∀T > 0 (34)

for some constant c1 > 0.

The proof of Theorem 1.10 will be given in several steps. First, let us recall
that, as showed in [2, Lemma 3.3], system (12) is dissipative. Indeed, under the
only assumptions (H1) and (H2), the energy of the solution U = (u, u′, v, v′) of
problem (12) with U0 ∈ D(A) satisfies

d

dt
E(U(t)) = −|B1/2u′(t)|2H ∀t ≥ 0. (35)

In particular, t �→ E(U(t)) is nonincreasing on [0,∞).

Corollary 1.11. Assume (H1), (H2), (H3) and (32).

(a) If U0 ∈ D(A4n) for some integer n ≥ 1, then the solution U of problem (12)
satisfies

E(U(t)) ≤ cn
tn

4n∑

k=0

E(U (k)(0)) ∀t > 0 (36)

for some constant cn > 0.
(b) For every U0 ∈ H we have

E(U(t)) → 0 as t → +∞.

Proof. Statement (a) follows by combining the dissipation relation (35), Theo-
rem 1.10, and Lemma 1.8. To prove part (b), we fix U0 ∈ H and consider a sequence
(Un

0 )n∈N such that Un
0 ∈ D(A4n) for every n ≥ 1 and Un

0 → U0 in H for n → +∞.
We set Un(t) = etAUn

0 and U(t) = etAU0 for t ≥ 0. Then, by linearity and the
contraction property of (etA)t≥0, we have

||Un(t) − U(t)|| ≤ ||Un
0 − U0|| , ∀ t ≥ 0 , n ∈ N .

Therefore, recalling the definition of E , we deduce that E(Un(.)) converges to E(U(.))
as n → +∞, uniformly on [0,∞). Since, for any fixed n ∈ N, E(Un(t)) converges
to 0 as t → ∞, we easily obtain the conclusion. �
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We now proceed with the proof of Theorem 1.10. Hereafter, C will denote
a generic positive constant, independent of α. To begin with, let us recall that,
thanks to [2, Lemma 3.4], the solution of (12) with U0 ∈ D(A) verifies

∫ T

0

E(U(t))dt ≤
∫ T

0

|v′(t)|2Hdt + C E(U(0)) (37)

for some constant C ≥ 0 and every T ≥ 0. Hence, the main technical point of the
proof is to bound the right-hand side of (37) by the total energy of U (and a finite
number of its derivatives) at 0.

Lemma 1.12. Let U = (u, u′, v, v′) be the solution of problem (12) with U0 ∈
D(A). Then

∫ T

0

|A−1/2
1 v|2Hdt ≤ C

∫ T

0

|A−1/2
2 u|2Hdt +

C

α2

[
E(U(0)) + E(U ′(0))

]
. (38)

Proof. Rewrite (12) as system (6) to obtain

∫ T

0

〈u′′ + A1u + Bu′ + αv,A−1
1 v〉dt−

∫ T

0

〈v′′ + A2v + αu,A−1
2 u〉dt = 0 .

Hence, by straightforward computations,

α

∫ T

0

|A−1/2
1 v|2Hdt ≤ α

∫ T

0

|A−1/2
2 u|2Hdt

−
∫ T

0

〈Bu′, A−1
1 v〉dt +

∫ T

0

[
〈v′′, A−1

2 u〉 − 〈u′′, A−1
1 v〉

]
dt .

Integration by parts transforms the last inequality into

α

∫ T

0

|A−1/2
1 v|2Hdt ≤ α

∫ T

0

|A−1/2
2 u|2Hdt−

∫ T

0

〈A−1/2
1 Bu′, A−1/2

1 v〉dt

+

∫ T

0

[
〈A−1/2

1 v,A
1/2
1 A−1

2 u′′〉 − 〈A−1/2
1 u′′, A−1/2

1 v〉
]
dt

+
[
〈v′, A−1

2 u〉 − 〈v,A−1
2 u′〉

]T
0
.

(39)

We now proceed to bound the right-hand side of (39). We have

∣∣∣∣∣

∫ T

0

〈A−1/2
1 Bu′, A−1/2

1 v〉dt
∣∣∣∣∣ ≤

α

4

∫ T

0

|A−1/2
1 v|2Hdt +

C

α

∫ T

0

|B1/2u′|2Hdt .
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Similarly, thanks to assumption (32) and the fact that B is positive definite,
∣∣∣∣∣

∫ T

0

〈A−1/2
1 v,A

1/2
1 A−1

2 u′′〉dt
∣∣∣∣∣ ≤

α

4

∫ T

0

|A−1/2
1 v|2Hdt +

C

α

∫ T

0

|B1/2u′′|2Hdt .

Also,
∣∣∣∣∣

∫ T

0

〈A−1/2
1 u′′, A−1/2

1 v〉dt
∣∣∣∣∣ ≤

α

4

∫ T

0

|A−1/2
1 v|2Hdt +

C

α

∫ T

0

|B1/2u′′|2Hdt .

Finally, observe that the last term in (39) can be bounded as follows
∣∣∣∣
[
〈v′, A−1

2 u〉 − 〈v,A−1
2 u′〉

]T
0

∣∣∣∣ ≤ CE(U(0)) .

Combining the above estimates with (39), we obtain

∫ T

0

|A−1/2
1 v|2Hdt ≤ C

∫ T

0

|A−1/2
2 u|2Hdt +

C

α
E(U(0))

+
C

α2

∫ T

0

[
|B1/2u′|2H + |B1/2u′′|2H

]
dt .

The conclusion follows from the above inequality and the dissipation identity (35)
applied to u and u′. �

Lemma 1.13. Let U = (u, u′, v, v′) be the solution of problem (12) with U0 ∈
D(A). Then

∫ T

0

|v|2Hdt ≤ Cα2

∫ T

0

|u|2Hdt +
C

α2

3∑

k=1

E(U (k)(0)) . (40)

Proof. Since 〈v′′ + A2v + αu,A−1
2 v〉 = 0, integrating over [0, T ] we have

∫ T

0

|v|2Hdt = −α

∫ T

0

〈v,A−1
2 u〉dt−

∫ T

0

〈v′′, A−1
2 v〉dt . (41)

The last term in the above identity can be bounded using assumption (32) and
Lemma 1.9 as follows

∣∣∣∣∣

∫ T

0

〈v′′, A−1
2 v〉dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

〈A−1/2
1 v′′, A1/2

1 A−1
2 v〉dt

∣∣∣∣∣

≤ 1

4

∫ T

0

|v|2Hdt + C

∫ T

0

|A−1/2
1 v′′|2Hdt .

(42)
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Now, applying (38) to v′′ and (35) to u′, we obtain

∫ T

0

|A−1/2
1 v′′|2Hdt ≤ C

∫ T

0

|A−1/2
1 u′′|2Hdt +

C

α2

[
E(U ′′(0)) + E(U ′′′(0))

]

≤ CE(U ′(0)) +
C

α2

[
E(U ′′(0)) + E(U ′′′(0))

]
.

(43)

On the other hand,
∣∣∣∣∣α

∫ T

0

〈v,A−1
2 u〉dt

∣∣∣∣∣ ≤
1

4

∫ T

0

|v|2Hdt + Cα2

∫ T

0

|u|2Hdt . (44)

The conclusion follows combining (41), . . . , (44). �
Let us now complete the proof of Theorem 1.10.

Proof of Theorem 1.10. To prove (34) it suffices to apply (40) to v′ and
use the resulting estimate to bound the right-hand side of (37). Since B is positive
definite, the conclusion follows by the dissipation identity (35). �

Remark 1.14. (i) Similar results can be obtained for systems of equations cou-
pled with different coefficients, such as

{
u′′(t) + A1u(t) + Bu′(t) + α1v(t) = 0

v′′(t) + A2v(t) + α2u(t) = 0 .
(45)

In this case, (H3) should be replaced with

(H3’) α1, α2 are two real numbers such that 0 < α1α2 < ω1ω2.

Let us explain how to adapt our approach to the case of α1 �= α2, when α1, α2 > 0.
The total energy is defined by

E(U) := α2E1(u, p) + α1E2(v, q) + α1α2〈u, v〉 ,

where E1 and E2 are the energies of the two components, defined in (8). Moreover,
for each U ∈ H,

E(U) ≥ ν(α1, α2)
[
α2E1(u, p) + α1E2(v, q)

]
,

with ν(α1, α2) = 1 − (α1α2)
1/2(ω1ω2)

−1/2 > 0. Finally, for each U0 ∈ D(A), the
solution U(t) = (u(t), p(t), v(t), q(t)) of the first order evolution equation associated
with system (45) satisfies

d

dt
E(U(t)) = −α2|B1/2u′(t)|2H ∀t ≥ 0. (46)
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In particular, t �→ E(U(t)) is nonincreasing on [0,∞). From this point, reasoning
as in the above proof, the reader can easily derive the conclusion of Theorem 1.10.

(ii) Another interesting situation occurs when α1 = 0, that is, when the first
equation of system (45) is damped, whereas the second component is undamped
and weakly coupled with the first one. In this case there is no hope to stabilize
the full system by one single feedback. Indeed, let A1 = A2 =: A and consider the
sequence of positive eigenvalues (ωk)k≥1 of A, satisfying ωk → +∞, with associated
eigenspaces (Zk)k≥1. Moreover, let B = 2βI, with 0 < β <

√
ω1, and λk =√

ωk − β2. Then, the equation

u′′(t) + Au(t) + 2βu′(t) = 0 (47)

with initial conditions

u(0) = u0 =
∑

k≥1

u0
k , u′(0) = u1 =

∑

k≥1

u1
k ,

where ui
k ∈ Zk for every k ≥ 1, (i = 1, 2), admits the solution

u(t) = e−βt
∑

k≥1

[
u0
k cos(λkt) +

u1
k + βu0

k

λk
sin(λkt)

]
.

In particular, choosing u0 ∈ Z1 and u1 ∈ Z1, we have that u(t) lies in Z1 for every
t ≥ 0. On the other hand, the solution to

v′′(t) + Av(t) + αu(t) = 0 (48)

is coupled with (47) only in the component in Z1, while it is conservative in Z⊥
1 .

More precisely, writing v(t) = v1(t) + v2(t) ∈ Z1 + Z⊥
1 , equation (48) implies that

{
v′′1 (t) + ω1v1(t) + αu(t) = 0

v′′2 (t) + Av2(t) = 0 .
(49)

Therefore, taking v(0) = v0 /∈ Z1 and v′(0) = v1 /∈ Z1,

E(v2(t), v
′
2(t)) =

1

2

(
|v′2(t)|2H + 〈Av2(t), v2(t)〉

)
= E(v(0), v′(0)) > 0

for all t ≥ 0. So, system (45) is not stabilizable.
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1.4 – Results with data in interpolation spaces

When the initial data belong to an interpolation space between H and the domain
of a power of A we can improve Corollary 1.11 as follows.

Theorem 1.15. Assume (H1), (H2), (H3) and (32). If U0 ∈ (H, D(A4n))θ,2 for
some n ≥ 1 and 0 < θ < 1, then the solution U of problem (12) satisfies

‖U(t)‖2H ≤ cn,θ
tnθ

‖U0‖2(H,D(A4n))θ,2
∀t > 0 (50)

for some constant cn,θ > 0.

Proof. The proof easily follows from the interpolation results recalled in
Section 2 applied to the operator Λt : H → H defined by

Λt(U0) = etAU0 ∈ H

for each U0 ∈ H. �
Although (H, D(A4n))θ,2 is usually difficult to identify explicitly, we can single

out important special cases where such an identification is possible. We need a
preliminary result.

Lemma 1.16. The operator A : D(A) → H is invertible, with A−1 bounded.
Moreover, A is m-dissipative (thus, A generates a C0-semigroup of contractions on
H).

Proof. For any U = (u, p, v, q), Û = (û, p̂, v̂, q̂) ∈ H, the identity AU = Û is
equivalent to

p = û , −A1u−Bp− αv = p̂ , q = v̂ , −A2v − αu = q̂ .

Hence, p = û ∈ D(A
1/2
1 ), q = v̂ ∈ D(A

1/2
2 ). So, in order to compute A−1 it suffices

to solve the system {
A1u + αv = f

A2v + αu = g ,
(51)

for suitably chosen f, g ∈ H. Since I − α2A−1
1 A−1

2 is invertible thanks to (H3), it
is easy to check that (51) admits the solution

{
ū =

(
I − α2A−1

1 A−1
2

)−1
A−1

1 (f − αA−1
2 g) ∈ D(A1)

v̄ = A−1
2 (g − αū) ∈ D(A2) .

Thus, A is invertible, and A−1 is bounded. Moreover, A is dissipative, since

(AU |U) ≤ −〈Bp, p〉H ≤ −β|p|2H ≤ 0 ∀U ∈ D(A) .
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In addition, it is easy to check that there exists λ > 0 such that the range of λI−A
equals H. Thus, by the Lumer-Phillips Theorem (see, e.g., [130, Theorem 4.3]), A
generates a C0-semigroup of contractions on H. �

Applying Corollary 1.7, we obtain the following result.

Corollary 1.17. If θk = m, for some 0 < θ < 1 and k, m ∈ N, then

D(Am) = (H, D(Ak))θ,2 . (52)

Remark 1.18. In particular, let us take k = 4n (n ≥ 1) and θj = j
4n for

j = 1, . . . , 4n− 1. Then, (52) yields

(H, D(A4n))θj ,2 = D(Aj) (j = 1, . . . , 4n− 1) . (53)

Thus, applying Theorem 1.15 to the above values of θj , one can show that, if
U0 ∈ D(Aj), then the associated solution U(t) of problem (12) satisfies

‖U(t)‖2H ≤ cn,j
tj/4

‖U0‖2D(Aj) ∀t > 0

for some constant cn,j > 0. Moreover, we claim that cn,j can be chosen independent
of n. Indeed, since j �= 4n, one can take the smallest positive nj such that j < 4nj ,
and use (53) with θj = j/(4nj) to conclude that cnj ,j = cj . As already mentioned
in the introduction, this result can be compared with the one in [22, Proposition
3.1], which was obtained by a different method.

Corollary 1.19. Assume (H1), (H2), (H3) and (32).

i) If U0 ∈ D(An) for some n ≥ 1, then the solution of (12) satisfies

E(U(t)) ≤ cn
tn/4

n∑

k=0

E(U (k)(0)) ∀t > 0 (54)

for some constant cn > 0.
ii) If U0 ∈ (H, D(An))θ,2 for some n ≥ 1 where 0 < θ < 1, then the solution of

(12) satisfies

‖U(t)‖2H ≤ cn,θ
tnθ/4

‖U0‖2(H,D(An))θ,2
∀t > 0 (55)

for some constant cn,θ > 0.
iii) If U0 ∈ D((−A)θ) for some 0 < θ < 1, then the solution of problem (12)

satisfies

‖U(t)‖2H ≤ cθ
tθ/4

‖U0‖2D((−A)θ) ∀t > 0 (56)

for some constant cθ > 0.
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Proof. Points i) and ii) derive from Corollary 1.11 and following the proof
of Theorem 1.15, thanks to Remark 1.18. In order to prove point iii), first we
deduce from Lemma 1.16 that −A is invertible with bounded inverse. Moreover, it
is m-accretive on H, hence (28) yields

(H, D(A))θ,2 = (H, D(−A))θ,2 = D((−A)θ)

for every 0 < θ < 1. The conclusion follows applying ii) with n = 1. �
Under further assumptions, the norm in (H, D(A))θ,2 can be given a more ex-

plicit form. For this purpose, for each k ≥ 0 consider the space

Hk = D(A
(k+1)/2
1 ) ×D(A

k/2
1 ) ×D(A

(k+1)/2
2 ) ×D(A

k/2
2 ) .

We recall the following result (see [2, Lemma 3.1]).

Lemma 1.20. Assume (H1), and (H2). Let n ≥ 1 be such that

BD(A
(k+1)/2
1 ) ⊂ D(A

k/2
1 ) (57)

D(A
(k/2)+1
1 ) ⊂ D(A

k/2
2 ) (58)

D(A
(k/2)+1
2 ) ⊂ D(A

k/2
1 ) (59)

for every integer k satisfying 0 < k ≤ n − 1. (no assumption is made if n = 1).
Then Hk ⊂ D(Ak) for every 0 ≤ k ≤ n.

In [2], it is also shown that Hk = D(Ak) for every 0 ≤ k ≤ n, provided (58) and
(59) are replaced by the stronger assumptions

D(A
(k+1)/2
1 ) ⊂ D(A

k/2
2 )

D(A
(k+1)/2
2 ) ⊂ D(A

k/2
1 )

for every 0 < k ≤ n− 1 .

Let 0 < θ < 1 and k ≥ 1 be fixed. As a direct consequence of Theorem 1.2, choosing
appropriate spaces and operator T , one can show that, if Hk is contained in D(Ak),
then (H,Hk)θ,2 is contained in (H, D(Ak))θ,2. Moreover, (H,Hk)θ,2 equals

Hk,θ := (D(A
1/2
1 ), D(A

(k+1)/2
1 ))θ,2 × (H,D(A

k/2
1 ))θ,2

×(D(A
1/2
2 ), D(A

(k+1)/2
2 ))θ,2 × (H,D(A

k/2
2 ))θ,2 .

Notice that, since Ai is self-adjoint and (25) holds for i = 1, 2, applying Theorem
1.5 we have, for every 0 ≤ α < β (i = 1, 2),

(D(Aα
i ), D(Aβ

i ))θ,2 = D(A
(1−θ)α+θβ
i ) .

Therefore, Hk,θ equals D(A
1
2+

k
2 θ

1 ) ×D(A
k
2 θ
1 ) ×D(A

1
2+

k
2 θ

2 ) ×D(A
k
2 θ
2 ) .

Observing that, for initial data in Hn,θ, we can bound (above and below) the
norm of U0 by the norms of its components, we have the following.
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Corollary 1.21. Assume (H1), (H2), (H3) and (32).
1) If Hn ⊂ D(An) for some n ≥ 2, then for each U0 ∈ Hn the solution U of

problem (12) satisfies

‖U(t)‖2H ≤ cn
tn/4

‖U0‖2Hn
∀t > 0 (60)

for some constant cn > 0, where

‖U0‖2Hn
= |u0|2

D(A
(n+1)/2
1 )

+ |u1|2
D(A

n/2
1 )

+ |v0|2
D(A

(n+1)/2
2 )

+ |v1|2
D(A

n/2
2 )

.

2) Let n ≥ 1 and 0 < θ < 1 be fixed. If Hn ⊂ D(An), then for every U0 ∈ Hn,θ

the solution U of (12) satisfies

‖U(t)‖2H ≤ cn,θ
tnθ/4

‖U0‖2Hn,θ
∀t > 0 (61)

for some constant cn,θ > 0, with

‖U0‖2Hn,θ
� |u0|2

D(A
(1+nθ)/2
1 )

+ |u1|2
D(A

nθ/2
1 )

+ |v0|2
D(A

(1+nθ)/2
2 )

+ |v1|2
D(A

nθ/2
2 )

,

where � stands for the equivalence between norms.

1.5 – Applications to PDEs

In this section we describe some examples of systems of partial differential equations
that can be studied by the results of this paper, but fail to satisfy the compatibility
condition (13).

Notation 1.22. We will hereafter denote by Ω a bounded domain in Rd with
a sufficiently smooth boundary Γ. For i = 1, . . . , d we will denote by ∂i the partial
derivative with respect to xi and by ∂t the derivative with respect to the time
variable. We will also use the notation Hk(Ω), Hk

0 (Ω) for the usual Sobolev spaces
with norm

‖u‖k,Ω =



∫

Ω

∑

|p|≤k

|Dpu|2dx




1
2

,

where we have set Dp = ∂p1

1 · · · ∂pd

d for any multi-index p = (p1, . . . , pd). Finally,
we will denote by CΩ > 0 the largest constant such that Poincaré’s inequality

CΩ‖u‖20,Ω ≤ ‖∇u‖20,Ω (62)

holds true for any u ∈ H1
0 (Ω), or, for simplicity with the same notation, the constant

CΩ such that
CΩ‖u‖20,Ω ≤ ‖∇u‖20,Ω + ‖u‖20,Γ , (63)

for all u ∈ H1(Ω), where ‖u‖20,Γ :=
(∫

Γ
u2dΣ

)1/2
stands for the L2−norm of u on

the boundary Γ of Ω.



108 ROBERTO GUGLIELMI [26]

In the following examples we take H = L2(Ω) , B = βI.

Example 1.23. Let β, λ > 0, α ∈ R, and consider the problem

{
∂2
t u− ∆u + β∂tu + λu + αv = 0

∂2
t v − ∆v + αu = 0

in Ω × (0,+∞) (64)

with boundary conditions

∂u

∂ν
(·, t) = 0 on Γ , v(·, t) = 0 on Γ ∀t > 0 (65)

and initial conditions
{
u(x, 0) = u0(x) u′(x, 0) = u1(x)

v(x, 0) = v0(x) v′(x, 0) = v1(x)
x ∈ Ω . (66)

The above system can be rewritten in abstract form taking

D(A1) =

{
u ∈ H2(Ω) :

∂u

∂ν
= 0 on Γ

}
, A1u = −∆u + λu ,

D(A2) = H2(Ω) ∩H1
0 (Ω) , A2v = −∆v .

(67)

Notice that, in order to verify assumption (H3), we shall choose α such that 0 <

|α| < (CΩ(CΩ + λ))
1/2

. Then,

|〈A1u, v〉| =

∣∣∣∣
∫

Ω

∇u∇v dx + λ

∫

Ω

uv dx

∣∣∣∣

≤
(∫

Ω

|∇u|2 dx
)1/2 (∫

Ω

|∇v|2 dx
)1/2

+ λ

(∫

Ω

u2dx

)1/2 (∫

Ω

v2dx

)1/2

≤ c 〈A1u, u〉1/2 |A2v|H ,

where we have used the coercivity of A2 and the well-known inequality

∫

Ω

v2 + |∇v|2 dx ≤ c

∫

Ω

|∆v|2 dx ∀ v ∈ H2(Ω) ∩H1
0 (Ω) .

Since condition (33) is fulfilled, we get the following conclusions.

i) If (u0, u1, v0, v1) ∈ D(A1)×D(A
1/2
1 )×D(A2)×D(A

1/2
2 ), then the solution U

of problem (64)-(65)-(66) satisfies

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ c

t1/4
‖U0‖2D(A) ∀t > 0 (68)
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for some constant c > 0. Moreover, there exists c1 > 0 such that

‖U0‖2D(A) ≤ c1
(
‖u0‖22,Ω + ‖u1‖21,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
.

ii) By point ii) of Corollary 1.19, if U0 ∈ (H, D(An))θ,2 for some 0 < θ < 1,
n ≥ 1, then the solution of (64)-(65)-(66) satisfies

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ cn,θ

tnθ/4
‖U0‖2(H,D(An))θ,2

(69)

for every t > 0 and some constant cn,θ > 0. Moreover, point iii) of Corollary 1.19
ensures that, if U0 ∈ D((−A)θ) for some 0 < θ < 1, then

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ cθ

tθ/4
‖U0‖2D((−A)θ) ∀t > 0 (70)

for some constant cθ > 0.

Of interest is the case when an operator fulfills different boundary conditions on
proper subsets of Γ. For instance, let Γ0 be an open subset of Γ (with respect to
the topology of Γ) and set Γ1 = Γ\Γ0. We assume that Γ0 ∩ Γ1 = ∅. Consider the
system (64) with boundary conditions

u(·, t) = 0 on Γ0 ,
∂u

∂ν
(·, t) = 0 on Γ \ Γ0

v(·, t) = 0 on Γ
∀t > 0 (71)

and initial conditions (66). Let us set

D(A1) =

{
u ∈ H2(Ω) : u = 0 on Γ0 ,

∂u

∂ν
= 0 on Γ \ Γ0

}
,

A1u = −∆u .

Then, |〈A1u, v〉| ≤ c 〈A1u, u〉1/2 |A2v|H . So, for 0 < |α| < (CΩ(CΩ + λ))
1/2

, condi-
tion (32) is fulfilled, and the same conclusions i)−ii) hold for problem (64)-(71)-(66).

Example 1.24. Another interesting situation occurs while coupling two equa-
tions of different orders. Let d = 1 or d = 2, β > 0, α ∈ R, and (for d = 2) denote
by ν(x) = (ν1, ν2) the unit normal vector in x ∈ Γ and by τ the tangential unit
vector for point at the boundary of the domain. Consider the system

{
∂2
t u + ∆2u + β∂tu + αv = 0

∂2
t v − ∆v + αu = 0

in Ω × (0,+∞) (72)
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with boundary conditions on Γ

∆u(·, t) + (1 − µ)B1u(·, t) = 0

∂∆u

∂ν
(·, t) − u(·, t) + (1 − µ)

∂B2u

∂τ
(·, t) = 0

v(·, t) = 0

∀t > 0 , (73)

where the constant µ ∈ (0, 1/2) is the Poisson coefficient, and the operators B1 and
B2 are zero for d = 1, while for d = 2 are defined by

B1v = 2ν1ν2∂
2
xyv − ν21∂

2
yyv − ν22∂

2
xxv ,

B2v =
∂

∂τ

[
(ν21 − ν22)∂2

xyv + ν1ν2(∂
2
yyv − ∂2

xxv)
] (74)

(we refer to [108] for a detailed description of this model), and initial conditions
(66). Define the operators

D(A1) =



u ∈ H4(Ω) :

∆u + (1 − µ)B1u = 0

∂∆u

∂ν
− u + (1 − µ)

∂B2u

∂τ
= 0

on Γ



 ,

A1u = ∆2u ,

D(A2) = H2(Ω) ∩H1
0 (Ω) , A2v = −∆v .

Suppose 0 < |α| < C
1/2
Ω , as required by (H3). Thanks to [110, Lemma 3C.2], for

any u ∈ D(A1) and v ∈ D(A2) we have

〈A1u, v〉 =

∫

Ω

∆u∆vdx +

∫

Γ

(1 − µ)B1u
∂v

∂ν
dΣ

=

∫

Ω

∆u∆vdx + (1 − µ)

∫

Ω

[2uxyvxy − uxxvyy − uyyvxx] dx .

(75)

Moreover, owing to [110, Equation (3C.28)], we know that D(A
1/2
1 ) = H2(Ω),

with equivalence between the norms ‖ · ‖
D(A

1/2
1 )

and ‖ · ‖H2(Ω), and for every

u ∈ D(A
1/2
1 )

‖A1/2
1 u‖2L2(Ω)=〈A1u, u〉

=

∫

Ω

[
µ|∆u|2 + (1 − µ)(u2

xx + u2
yy) + 2(1 − µ)u2

xy

]
dx +

∫

Γ

u2dΣ .
(76)

From relations (75) and (76) we deduce that

|〈A1u, v〉| ≤ c 〈A1u, u〉1/2 |A2v|H ,
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so condition (33) is fulfilled. Thus, for every U0 ∈ D(A), the solution U of problem
(72)-(73)-(66) satisfies

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ c

t1/4
‖U0‖2D(A) ∀t > 0 (77)

for some constant c > 0. Moreover, there exists c1 > 0 such that

‖U0‖2D(A) ≤ c1
(
‖u0‖24,Ω + ‖u1‖22,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
.

Note that we give in Example 1.31 another set of boundary conditions for the same
symbols for the operators. It is interesting to see that both examples are treated for
different classes of compatibility conditions, namely the present example satisfies the
compatibility condition (14), whereas the example (1.31) satisfies the compatibility
condition (13).

Example 1.25. Let β > 0, α ∈ R, and consider the problem

{
∂2
t u− ∆u + β∂tu + αv = 0

∂2
t v − ∆v + αu = 0

in Ω × (0,+∞) (78)

with boundary conditions

(
∂u

∂ν
+ u

)
(·, t) = 0 on Γ

v(·, t) = 0 on Γ
∀t > 0 (79)

and initial conditions (66). Let us define

D(A1) =

{
u ∈ H2(Ω) :

∂u

∂ν
+ u = 0 on Γ

}
, A1u = −∆u ,

D(A2) = H2(Ω) ∩H1
0 (Ω) , A2v = −∆v ,

(80)

and assume 0 < |α| < CΩ. Observe that

|〈A1u, v〉| =

∣∣∣∣
∫

Ω

∇u∇v dx

∣∣∣∣

≤
(∫

Ω

|∇u|2 dx
)1/2 (∫

Ω

|∇v|2 dx
)1/2

≤ c 〈A1u, u〉1/2 |A2v|H ,

since

〈A1u, u〉 =

∫

Ω

|∇u|2 dx +

∫

Γ

|u|2 dS ,

∫

Ω

|∇v|2 dx ≤ c

∫

Ω

|∆v|2 dx .
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Thus, condition (32) is fulfilled. So, the energy of the solution of problem (78)-(79)-
(66) satisfies

E1(u(t), u′(t)) + E2(v(t), v
′(t)) ≤ c

t1/4
‖U0‖2D(A) ∀t > 0 (81)

for some constant c > 0. Moreover, there exists c1 > 0 such that

‖U0‖2D(A) ≤ c1

(
|A1u

0|2H + |A1/2
1 u1|2H + |A2v

0|2H + |A1/2
2 v1|2H

)
.

Our next result show that the operators in Example 1.25 do not fulfill the compat-
ibility condition (13).

Proposition 1.26. Let A1, A2 be defined as in (80). Then for every k ∈ N,
k ≥ 2, D(A

k/2
2 ) is not included in D(A1).

Proof. Since D(Ak
2) ⊂ D(A

k/2
2 ) for every k ∈ N, it is sufficient to prove that

D(Ak
2) is not included in D(A1) for every k ∈ N, k ≥ 1. For this purpose, let us fix

k ∈ N, k ≥ 1, and consider the problem

{
(−∆)kv0 = 1

v0 = 0 = ∆v0 = · · · = ∆k−1v0 on Γ .
(82)

Define the sequence v1, v2, . . . , vk−1 by

{
−∆v0 = v1

v0|Γ = 0
. . .

{
−∆vk−2 = vk−1

vk−2|Γ = 0

{
−∆vk−1 = 1

vk−1|Γ = 0 .
(83)

We will argue by contradiction, assuming D(Ak
2) ⊂ D(A1). Since v0 belongs to

D(A2)∩D(A1), we have v0|Γ = 0 = ∂v0

∂ν |Γ. Moreover, from the first system in (83),

it follows that ∫

Ω

v1dx =

∫

Ω

(−∆v0)dx = −
∫

Γ

∂v0
∂ν

dS = 0 .

Hence,

∫

Ω

v1dx = 0. Let us prove by induction that

∫

Ω

∇vk−i∇vidx = 0 ∀ i = 1, 2, . . . , k − 1 . (84)

For i = 1 we have
∫

Ω

∇vk−1∇v1dx =

∫

Ω

(−∆vk−1)v1dx =

∫

Ω

v1dx = 0 ,
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since vk−1|Γ = 0 = v1|Γ . Now, let i > 1 and suppose

∫

Ω

∇vk−i∇vidx = 0 .

Then,

0 =

∫

Ω

vk−i(−∆vi)dx =

∫

Ω

vk−ivi+1dx

=

∫

Ω

(−∆vk−i−1)vi+1dx =

∫

Ω

∇vk−(i+1)∇vi+1dx .

Thus, (84) holds for i + 1. Moreover, from (84) follows that

∫

Ω

vk−ivi+1dx = 0 ∀ i = 1, 2, . . . , k − 1 , (85)

since ∫

Ω

vk−ivi+1dx =

∫

Ω

vk−i(−∆vi)dx =

∫

Ω

∇vk−i∇vidx = 0 .

Now, let k be even, say k = 2p, p ∈ N∗. Then, by (84) with i = p we obtain

∫

Ω

|∇vp|2dx = 0 , whence vp = 0 .

So, by a cascade effect,

vp+1 = −∆vp = 0 ⇒ vp+2 = −∆vp+1 = 0 ⇒ · · · ⇒ vk−1 = −∆vk−2 = 0 .

Since −∆vk−1 = 1, we get a contradiction. If, on the contrary, k is odd, i.e.
k = 2p + 1, then, applying (85) with i = p, we conclude that

∫

Ω

|vp+1|2dx = 0 , whence vp+1 = 0 .

Finally, we have that vp+1 = vp+2 = · · · = vk−1 = 0. Since −∆vk−1 = 1, we get a
contradiction again. Therefore, D(Ak

2) is not included in D(A1). �
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Example 1.27. Given β > 0, α ∈ R, let us now consider the undamped
Petrowsky equation coupled with the damped wave equation,

{
∂2
t u− ∆u + β∂tu + αv = 0

∂2
t v + ∆2v + αu = 0

in Ω × (0,+∞) (86)

with Robin boundary conditions

(
∂u

∂ν
+ u

)
(·, t) = 0 on Γ ∀t > 0 (87)

on u and either

v(·, t) = ∆v(·, t) = 0 on Γ ∀t > 0 (88)

or

v(·, t) =
∂v

∂ν
(·, t) = 0 on Γ ∀t > 0 (89)

on v, with initial conditions (66). Define

D(A1) =

{
u ∈ H2(Ω) :

∂u

∂ν
+ u = 0 on Γ

}
, A1u = −∆u ,

D(A2) =
{
v ∈ H4(Ω) : v = ∆v = 0 on Γ

}
, A2v = ∆2v

(with boundary conditions (88) on v), or

D̃(A2) =

{
v ∈ H4(Ω) : v =

∂v

∂ν
= 0 on Γ

}
, A2v = ∆2v

(with boundary conditions (89) on v). Once again, we have

|〈A1u, v〉| =

∣∣∣∣
∫

Ω

∇u∇v dx

∣∣∣∣

≤
(∫

Ω

|∇u|2 dx
)1/2 (∫

Ω

|∇v|2 dx
)1/2

≤ c 〈A1u, u〉1/2 |A2v|H .

Thus, condition (32) is fulfilled and, for 0 < |α| < C
3/2
Ω , the polynomial decay of

the energy of solution to (86)-(87)-(88)-(66) and (86)-(87)-(89)-(66) follows as in
Example 1.23.
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1.6 – Improvement of previous results

In this section we apply interpolation theory to extend the polynomial stability
result of [2] to a larger class of initial data. We will denote by j ≥ 2 the integer
for which (13) is satisfied. As is shown in [2, Theorem 4.2], under assumptions
(H1), (H2), (H3) and (13), if U0 ∈ D(Anj) for some integer n ≥ 1, the solution U
of problem (12) satisfies

E(U(t)) ≤ cn
tn

nj∑

k=0

E(U (k)(0)) ∀t > 0 (90)

for some constant cn > 0. We recall that assumption (13) covers many situations of
interest for applications to systems of evolution equations. Indeed (see [2, Section
5] for further details), this is the case for

i) (A1, D(A1)) = (A2, D(A2)), where (13) is fulfilled with j = 2;
ii) D(A1) = D(A2), with j = 2;
iii) (A2, D(A2)) = (A2

1, D(A2
1)), again with j = 2;

iv) (A1, D(A1)) = (A2
2, D(A2

2)), with j = 4.

The following result completes the analysis of [2], taking the initial data in suitable
interpolation spaces.

Theorem 1.28. Assume (H1), (H2), (H3) and (13), and let 0 < θ < 1, n ≥ 1.
Then for every U0 in (H, D(Anj))θ,2, the solution U of (12) satisfies

‖U(t)‖2H ≤ cn,θ
tnθ

‖U0‖2(H,D(Anj))θ,2
∀t > 0 (91)

for some constant cn,θ > 0.

Reasoning as in Remark 1.18, one can derive estimate (90) also for U0 ∈ D(Ak),
for every k = 1, . . . , nj − 1, with decay rate k/j.

Corollary 1.29. Assume (H1), (H2), (H3) and (13).

i) If U0 ∈ D(An) for some n ≥ 1, then the solution of (12) satisfies

‖U(t)‖2H ≤ cn
tn/j

‖U0‖2D(An) ∀t > 0 (92)

for some constant cn > 0.
ii) If U0 ∈ (H, D(An))θ,2 for some n ≥ 1 and 0 < θ < 1, then the solution of (12)

satisfies

‖U(t)‖2H ≤ cn,θ
tnθ/j

‖U0‖2(H,D(An))θ,2
∀t > 0 (93)

for some constant cn,θ > 0.
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iii) If U0 ∈ D((−A)θ) for some 0 < θ < 1, then the solution of problem (12)
satisfies

‖U(t)‖2H ≤ cθ
tθ/j

‖U0‖2D((−A)θ) ∀t > 0 (94)

for some constant cθ > 0.

In particular, the previous fractional decay rates can be achieved for initial data
in Hn or in Hn,θ, whenever Hn ⊂ D(An), as in Corollary 1.21. This happens, for
instance, if any of the following conditions is satisfied:

i) (A1, D(A1)) = (A2, D(A2));
ii) D(A1) = D(A2);
iii) (A2, D(A2)) = (A2

1, D(A2
1)).

Let us apply Corollary 1.29 to two examples from [2].

Example 1.30. Given β > 0, κ > 0, α ∈ R, let us study the problem

{
∂2
t u− ∆u + β∂tu + κu + αv = 0

∂2
t v − ∆v + κv + αu = 0

in Ω × (0,+∞) (95)

with boundary conditions

u(·, t) = 0 = v(·, t) on Γ ∀t > 0 (96)

and initial conditions

{
u(x, 0) = u0(x) , u′(x, 0) = u1(x)

v(x, 0) = v0(x) , v′(x, 0) = v1(x)
x ∈ Ω . (97)

Let H = L2(Ω), B = βI, and A1 = A2 = A be defined by

D(A) = H2(Ω) ∩H1
0 (Ω) , Au = −∆u + κu ∀u ∈ D(A) .

Notice that (13) is fulfilled with j = 2, and condition 0 < |α| < CΩ + κ =: ω is
required in order to fulfill (H3).

As showed in [2, Example 6.1], if u0, v0 ∈ H2(Ω) ∩H1
0 (Ω) and u1, v1 ∈ H1

0 (Ω),
then

∫

Ω

(
|∂tu|2 + |∇u|2 + |∂tv|2 + |∇v|2

)
dx

≤ c

t

(
‖u0‖22,Ω + ‖u1‖21,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
∀t > 0 .
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Moreover, if u0, v0 ∈ Hn+1(Ω) and u1, v1 ∈ Hn(Ω) are such that

u0 = · · · = ∆[n2 ]u0 = 0 = v0 = · · · = ∆[n2 ]v0 on Γ,

u1 = · · · = ∆[n−1
2 ]u1 = v1 = · · · = ∆[n−1

2 ]v1 = 0 on Γ,

then
∫

Ω

(
|∂tu|2 + |∇u|2 + |∂tv|2 + |∇v|2

)
dx

≤ cn
tn

(
‖u0‖2n+1,Ω + ‖u1‖2n,Ω + ‖v0‖2n+1,Ω + ‖v1‖2n,Ω

)
∀t > 0 .

Furthermore, applying Corollary 1.29, we conclude that if U0 belongs to Hn,θ =
(H, D(An))θ,2 for some 0 < θ < 1, n ≥ 1, then the solution to (95)-(96)-(97)
satisfies

∫

Ω

(
|∂tu|2 + |∇u|2 + |∂tv|2 + |∇v|2

)
dx ≤ cn,θ

tnθ/2
‖U0‖2Hn,θ

∀t > 0 (98)

for some constant cn,θ > 0, with

‖U0‖2Hn,θ
� |u0|2

D(A
1
2
+n

2
θ

1 )
+ |u1|2

D(A
n
2

θ

1 )
+ |v0|2

D(A
1
2
+n

2
θ

2 )
+ |v1|2

D(A
n
2

θ

2 )
.

Example 1.31. Taking β > 0, 0 < |α| < C
3/2
Ω , and the same operators A1 and

A2 as in Example 1.24, but with different boundary conditions, we can consider the
system {

∂2
t u + ∆2u + β∂tu + αv = 0

∂2
t v − ∆v + αu = 0

in Ω × (0,+∞) (99)

with boundary conditions

v(·, t) = u(·, t) = ∆u(·, t) = 0 on Γ ∀t > 0 (100)

and initial conditions as in (97). Let us set H = L2(Ω), B = βI, and

D(A1) =
{
u ∈ H4(Ω) : ∆u = 0 = u on Γ

}
, A1u = ∆2u ,

D(A2) = H2(Ω) ∩H1
0 (Ω) , A2v = −∆v .

In this case, since A1 = A2
2, condition (13) holds with j = 4. Consequently, as is

shown in [2, Example 6.4], for initial condition U0 ∈ D(A4)

∫

Ω

(
|∂tu|2 + |∆u|2 + |∂tv|2 + |∇v|2

)
dx ≤ C

t
‖U0‖2D(A4) ∀t > 0 ,



118 ROBERTO GUGLIELMI [36]

for some constant C > 0. By point i) of Corollary 1.29, we can generalize this result
to initial data U0 ∈ D(An) for some n ≥ 1. Indeed, in this case the solution to
(99)-(100)-(97) satisfies

∫

Ω

(
|∂tu|2 + |∆u|2 + |∂tv|2 + |∇v|2

)
dx ≤ cn

tn/4
‖U0‖2D(An) ∀t > 0 ,

for some constant cn > 0. Moreover, thanks to point ii) of Corollary 1.29, if
U0 ∈ (H, D(An))θ,2 for some n ≥ 1 and 0 < θ < 1, then

∫

Ω

(
|∂tu|2 + |∆u|2 + |∂tv|2 + |∇v|2

)
dx ≤ cn,θ

tnθ/4
‖U0‖2(H,D(An))θ,2

∀t > 0

for some constant cn,θ > 0. Furthermore, thanks to point iii) of Corollary 1.29,
if U0 belongs to H1,θ = D((−A)θ) for some 0 < θ < 1, then the solution to (99)-
(100)-(97) satisfies

∫

Ω

(
|∂tu|2 + |∆u|2 + |∂tv|2 + |∇v|2

)
dx ≤ cθ

tθ/4
‖U0‖2D((−A)θ) ∀t > 0 (101)

for some constant cθ > 0, with

‖U0‖2D((−A)θ) � |u0|2
D(A

1
2
+ 1

2
θ

1 )
+ |u1|2

D(A
1
2
θ

1 )
+ |v0|2

D(A
1
2
+ 1

2
θ

2 )
+ |v1|2

D(A
1
2
θ

2 )
.

2 – Resolvent condition for indirect stabilization

The present chapter collects results from the preprint Resolvent condition for indirect

stabilization of systems of weakly coupled hyperbolic equations, submitted.

2.1 – Introduction

The stabilization of weakly coupled systems starts with the pioneering works of
Lagnese and Lions [107] and Russell [135]. In their approach, the multiplier method
is the main tool to reach the desired estimates on the energy of each component of
the system. This techniques has been further developed in [106] and later in [1] for
systems of hyperbolic equations.

In particular, [135] address the indirect stabilization problem, that occurs when
the damping (or the control) acts on a reduced number of equations of the system.
In this situation the (uniformly) exponential decay rate is usually out of the range
of possible targets. This is the case in [2] as well as in Chapter 1, where polynomial
stability is achieved for the whole system, by means of multipliers properly adapted
to the peculiar structure of the system under investigation. Indeed, it turns out
that different multipliers are required to cope with systems with “homogeneous” [2]
or “hybrid” (see Chapter 1) boundary conditions.
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In [22] a different method has been proposed to prove polynomial stabilization for
the solution of abstract first order Cauchy problems. As far as indirect stabilization
for weakly coupled systems is concerned, this technique has revealed successful
for few systems of hyperbolic equations, requiring strong compatibility conditions
among the operators involved in the system in order to perform the needed spectral
analysis.

An operator-theoretical approach has been recently proposed by [23] and [32],
referring to the issue of optimality for the established decay rate. Indeed, as first
noted by Lebeau [111], the decay rate of the system ruled by the dynamics A is
related to the size of the resolvent operator of A on the imaginary axis. Thus, the
growth of the resolvent operator norm along the imaginary axis gives an explicit rate
for the decay of the total energy associated to the system (with the optimality of the
decay related to the optimality of the growth estimate for the resolvent operator).
This technique has been successfully applied in [137] to systems of Euler-Bernoulli
and wave equations with a globally distributed coupling. Let us point out that,
however, multipliers cannot be completely avoided, since again suitable multipliers
(adapted to the operators of the system) are needed to deal with elliptic estimates
for the resolvent operator.

In this chapter we study the indirect stabilization problem for several systems
of hyperbolic-type equations, by means of the general criterion given in [32]. Since
these systems fall into the general description given in Chapter 1, polynomial stabi-
lization is already ensured (see equation (111)). Here we succeed in improving the
stabilization decay rate, thanks to a sharp analysis of the behaviour of the resolvent
operator along the imaginary axis.

More precisely, let Ω ⊂ Rd (d ≥ 1) be open and bounded, with sufficiently
smooth boundary Γ. Let λ > 0 and α, β ∈ L∞(Ω), strictly positive. We will first
consider the weakly coupled system of wave equations

{
utt − ∆u + λu + βut + αv = 0 in Ω × (0,+∞)

vtt − ∆v + αu = 0 in Ω × (0,+∞)
(102)

with boundary conditions

∂u

∂ν
(·, t) = 0 = v(·, t) on Γ , t > 0 (103)

and initial conditions

u(0) = u0 , ut(0) = u1 , v(0) = v0 , vt(0) = v1 in Ω , (104)

for functions ui, vi (i = 0, 1) in suitable spaces (see (115)). Also operators with
different boundary conditions on separated portions of the boundary can be treated.
Indeed, let Γ0 and Γ1 be open subsets of Γ such that

Γ = Γ0 ∪ Γ1 , Γ0 ∩ Γ1 = ∅ .
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In this situation, we can consider system (102) with boundary conditions

u(·, t) = 0 on Γ0,
∂u

∂ν
(·, t) = 0 on Γ1

v(·, t) = 0 on Γ

t > 0 (105)

and initial conditions (104). Then we will address the system of two wave equations
with respectively Robin and Dirichlet boundary conditions,





utt − ∆u + βut + αv = 0 in Ω × (0,+∞)

vtt − ∆v + αu = 0 in Ω × (0,+∞)
∂u

∂ν
+ σu = 0 = v on Γ × (0,+∞) ,

(106)

for some σ>0, with initial conditions (104). Finally, we will focus on the Petrowsky-
wave system {

utt − ∆u + βut + αv = 0 in Ω × (0,+∞)

vtt + ∆2v + αu = 0 in Ω × (0,+∞) ,
(107)

with Robin boundary conditions

∂u

∂ν
(·, t) + σu(·, t) = 0 on Γ , t > 0 (108)

on u and either
v(·, t) = 0 = ∆v(·, t) on Γ , t > 0 (109)

or

v(·, t) = 0 =
∂v

∂ν
(·, t) on Γ , t > 0 (110)

on v, with initial conditions (104).
We first point out that the three systems presented above fulfill the compatibility

condition (32) introduced in Chapter 1, so by point i) of Corollary 1.19 we deduce
that

E(U(t)) ≤ C

(1 + t)1/4
|U0|2H (111)

for every initial condition U0 = (u0, u1, v0, v1) ∈ D(A) and for some constant C > 0
(see the section below for precise definitions of D(A) and H). However, in the
present chapter we will show that the total energy E(t) decays faster, indeed, it
decays polynomially in time with a decay rate 1/2 for initial condition in D(A),
that is,

E(U(t)) ≤ C

(1 + t)1/2
|U0|2H
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for every U0 = (u0, u1, v0, v1) ∈ D(A) and for some C > 0 (see also equation (132)).
In this way, we succeed to improve the decay rate of an exponential factor 2.

In the next section we introduce the abstract setting that fits the previous PDEs
systems into a first order Cauchy problem.

2.2 – Abstract setting

We briefly recall the abstract setting we have introduced in Section 1.1.1, but on
the field C of complex numbers. Let (H, 〈 , 〉) be a Hilbert space on the field C of
complex numbers with associated norm | |H . We consider the abstract system of
evolution equations

{
u′′(t) + A1u(t) + Bu′(t) + αv = 0 in H

v′′(t) + A2v(t) + αu = 0 in H
(112)

with hypotheses (H1)-(H2)-(H3) on the operators A1, A2, B and on the coefficient
α. We associate to the operator Ai the energy

Ei(u, p) =
1

2

(
|A1/2

i u|2H + |p|2H
)

∀(u, p) ∈ D(A
1/2
i ) ×H (i = 1, 2) , (113)

so that assumption (H1) yields

|u|2H ≤ 2

ωi
Ei(u, p) ∀(u, p) ∈ D(A

1/2
i ) ×H (i = 1, 2) . (114)

System (112), with the initial conditions

{
u(0) = u0 ∈ D(A

1/2
1 ) , u′(0) = u1 ∈ H ,

v(0) = v0 ∈ D(A
1/2
2 ) , v′(0) = v1 ∈ H ,

(115)

can be formulated as a first order Cauchy problem in the space

H = D(A
1/2
1 ) ×H ×D(A

1/2
2 ) ×H ,

that becomes a Hilbert space on C endowed with the scalar product

(U, Û) := 〈A1/2
1 u,A

1/2
1 û〉+ 〈p, p̂〉+ 〈A1/2

2 v,A
1/2
2 v̂〉+ 〈q, q̂〉+α〈u, v̂〉+α〈v, û〉 (116)

for every U = (u, p, v, q), Û = (û, p̂, v̂, q̂) ∈ H and associated norm |U |H :=
(U,U)1/2. Indeed, introducing the operator

{
D(A) = D(A1) ×D(A

1/2
1 ) ×D(A2) ×D(A

1/2
2 )

AU = (p,−A1u−Bp− αv, q,−A2v − αu) ∀U ∈ D(A) ,
(117)
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problem (112) can be recast as





U ′(t) = AU(t) =




0 I 0 0

−A1 −B −αI 0

0 0 0 I

−αI 0 −A2 0


 ·




u

u′

v

v′




U(0) = U0 = (u0, u1, v0, v1) ∈ H ,

(118)

where I stands for the identity operator on H. Moreover, for every U ∈ H, we
define the total energy of system (118) by

E(U(t)) := E1(u, p) + E2(v, q) + 2αR〈u, v〉 = 2|U |2H , (119)

where R(z) stands for the real part of z ∈ C. By assumption (H3), the total energy
E satisfies

ν1(α) [E1(u, p) + E2(v, q)] ≤ E(U(t)) ≤ ν2(α) [E1(u, p) + E2(v, q)] , (120)

where ν1(α) = 1− |α|(ω1ω2)
−1/2 > 0 and ν2(α) = 1 + |α|(ω1ω2)

−1/2. The operator
A generates a C0-semigroup etA on H (see Lemma 1.16 in Chapter 1), that satisfies
etAU0 = (u(t), p(t), v(t), q(t)), where (u, v) is the solution of problem (112) with
initial conditions (115) and (p, q) = (u′, v′).

2.2.1 – Stability properties

In [2] the authors prove that system (112)-(115), or, equivalently, system (118),
fails to be exponentially (uniformly) stable. This feature is a consequence of the

compactness of the coupling operator K
(
u
u′
)

=
(

0
αu

)
in the energy space D(A

1/2
i )×H

(i = 1, 2). Thus, concerning the asymptotic behaviour of system (112)-(115), we
look for decay rates weaker than exponentials, such as polynomial ones. A first step
in this direction relies on the dissipation relation fulfilled by the total energy of the
system, whose proof is achieved by a straightforwards computation.

Proposition 2.1. For every U0 ∈ D(A) we have that

d

dt
E(U(t)) = −|B1/2p|2H = R(AU,U)H . (121)

The next result investigates the spectrum of the operator A.

Proposition 2.2. Under hypotheses (H1)-(H2)-(H3) holds iR ⊂ ρ(A).
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Proof. Let b ∈ R and U = (u, p, v, q) ∈ D(A) such that

AU = ibU . (122)

We claim that U = 0. We first address the case b �= 0. In this case, equation (122)
implies 




ibu = p

ibp = −A1u−Bp− αv

ibv = q

ibq = −A2v − αu .

(123)

Multiplying both sides of (122) for U and taking the real part, owing to (121) we
deduce that |B1/2p|H = 0. Thanks to hypothesis (H2) we get p = 0, by the first
equation in (123) we have u = 0 (since b �= 0), thus from the second equation in
(123) we find v = 0 (since α �= 0), finally from the third equation in (123) we have
q = 0, so we conclude that U = 0. On the other hand, if b = 0, system (123) reduces
to p = q = 0 and {

A1u + αv = 0

A2v + αu = 0 .
(124)

We now argue by contradiction. Suppose there exist u �= 0, v �= 0 satisfying system
(124). Thus, multiplying the first equation therein by u and the second by v, thanks
to hypothesis (H1), we have

ω1|u|2H ≤ 〈A1u, u〉 = −α〈v, u〉 ,
ω2|v|2H ≤ 〈A2v, v〉 = −α〈u, v〉 .

(125)

Since the left upper terms in (125) are positive, multiplying both sides together and
thanks to the Cauchy-Schwarz inequality we have

ω1ω2|u|2H |v|2H ≤ α2|〈u, v〉|2 ≤ α2|u|2H |v|2H , (126)

so infering ω1ω2 ≤ α2, that negates hypothesis (H3). Therefore u = v = 0 and we
conclude again that U = 0. �

As a consequence, we deduce that system (118) is strongly stable, relying on a
characterization due to Benchimol [28].

Corollary 2.3. Under hypotheses (H1)-(H2)-(H3), the semigroup e tA is
strongly stable, that is

lim
t→+∞

|etAU0|H = 0 ∀U0 ∈ H . (127)
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We now analyze the asymptotic behaviour of the contraction semigroup etA

with generator (A, D(A)). For this purpose, we recall a result due to Borichev and
Tomilov [32, Theorem 2.4], which gives a necessary and sufficient condition for the
polynomial decay of the semigroup norm. Given two functions f and g, we use the
notation f(t) = O(g(t)) as t → ∞ when the function |f(t)/g(t)| is bounded for large
t; we denote f(t) = o(g(t)) as t → ∞ if the function f(t)/g(t) tends to 0 as t → ∞.

Theorem 2.4. Let T (t) be a bounded C0-semigroup on a Hilbert space H with
generator A such that the imaginary axis iR lies in the resolvent set ρ(A) of A. For
every fixed γ > 0, the following conditions are equivalent:

‖R(ib, A)‖L(H) = O(|b|γ) as b → +∞ ; (128)

‖T (t)A−1‖L(H) = O(|t|−1/γ) as t → +∞ ; (129)

‖T (t)A−1x‖H = o(|t|−1/γ) as t → +∞ ∀x ∈ H . (130)

In particular, we are interested in the case γ = 4, that is the decay rate we will
show for all the systems addressed in Section 2.1. Indeed, in the following sections
we will prove for each of those systems the next stabilization result.

Theorem 2.5. Suppose hypotheses (H1)-(H2)-(H3) hold. Assume moreover that

‖R(ib,A)‖L(H) = O(|b|4) as b → +∞ . (131)

Then, for every integer m ∈ N there exists Cm > 0 such that

|U(t)|H = |etAU0|H ≤ Cm

(1 + t)m/4
|U0|D(Am) ∀t ≥ 0 , U0 ∈ D(Am) . (132)

Once condition (131) has been proved for each system under consideration, we can
conclude that the total energy decays polynomially at infinity, with respect to the
regularity of the initial condition U0. In particular, for every U0 = (u0, u1, v0, v1) ∈
D(A),

E(U(t)) ≤ C

(1 + t)1/2
|U0|2H . (133)

Remark 2.6.

i) Whether the decay rate in (133) is sharp or not, is related to the optimality
of the estimate we give in the relation (131). Since, along the computations
of the proof below, we try to get the finest estimate on the exponent γ (see
equations (145)-(175)-(195)), we conjecture that the estimate (133) is optimal
for the systems under consideration in Section 2.3.
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ii) We can consider systems with more general coupling operators such as

{
u′′(t) + A1u(t) + Bu′(t) + α1Pv = 0 in H

v′′(t) + A2v(t) + α2P
∗u = 0 in H

(134)

where P is a bounded linear coercive operator on H, P ∗ is its adjoint operator,
and hypothesis (H3) is replaced by

(H3)’ α1 and α2 are two real numbers such that 0 < α1α2 <
ω1ω2

‖P‖2L(H)

.

In the case αi > 0, the total energy of system (134) is defined by

E(U(t)) := α2E1(u, p) + α1E2(v, q) + α1α2〈Pu, v〉 + α1α2〈P ∗v, u〉

and still verifies the estimate of Theorem 2.5.
iii) In all the systems introduced in Section 2.1, the constants α, β and σ can be

replaced by bounded functions of the space variable, provided they are strictly
positive.

2.3 – Indirect stabilization by resolvent estimate

Let Ω ⊂ Rd be open and bounded, with sufficiently smooth boundary Γ. For
i = 1, . . . , d we will denote by ∂i the partial derivative with respect to the component
xi and by ∂tu or ut the derivative with respect to the time variable of function u.
We will also use the notation Hk(Ω), Hk

0 (Ω) for the usual Sobolev spaces with norm

|u|Hk =



∫

Ω

∑

|p|≤k

|Dpu|2dx




1/2

where we have set Dp = ∂p1

1 . . . ∂pd

d for any multi-index p = (p1, . . . , pd). Moreover,
we will refer to CΩ > 0 as the largest constant such that Poincaré’s inequality

CΩ|u|2L2 ≤ |∇u|2L2 (135)

holds true for any u ∈ H1
0 (Ω).

In the following sections we set H := L2(Ω) and we define the bounded operator
B : H → H by Bu = βu for all u ∈ H, for some positive constant β > 0.
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2.3.1 – Stabilization for a first wave-wave system

Consider the weakly coupled system of wave equations





utt − ∆u + λu + βut + αv = 0 in Ω × (0,+∞)

vtt − ∆v + αu = 0 in Ω × (0,+∞)
∂u

∂ν
= 0 = v on Γ × (0,+∞)

u(0) = u0 , ut(0) = u1 , v(0) = v0 , vt(0) = v1 in Ω ,

(136)

where λ > 0 and α > 0.
We can rewrite system (136) as (112) (or (118), equivalently) introducing the

operators

D(A1) := {u ∈ H2(Ω) :
∂u

∂ν
(·, t) = 0 on Γ , t > 0} , A1u = −∆u + λu , (137)

D(A2) := H2(Ω) ∩H1
0 (Ω) , A2v = −∆v . (138)

Let λ2
0 be the least eigenvalue of −∆ on H2(Ω) ∩ H1

0 (Ω), and µ2
0 be the least

eigenvalue of −∆+λI with Neumann boundary condition. So the assumption (H3)
on α yields

0 < |α| < λ0µ0 . (139)

For every U ∈ H = H1(Ω) × L2(Ω) × H1
0 (Ω) × L2(Ω), the energy associated to

system (136) is

E(U(t)) =
1

2

∫

Ω

[
u2
t + |∇u|2 + λu2 + v2t + |∇v|2 + 2αR(uv̄)

]
dx =

1

2
|U |2H , (140)

which, for every U ∈ D(A), satisfies

d

dt
E(U(t)) = −

∫

Ω

βu2
tdx = R(AU(t), U(t))H . (141)

Corollary 2.3 ensures that system (136) is strongly stable. In order to achieve a
better understanding of the asymptotic behaviour of the contraction semigroup etA

with generator (A, D(A)), in the sequel we show that condition (131) holds. In
this way we will prove that the total energy of system (136) decays polynomially at
infinity, with respect to the regularity of the initial condition U0. In particular, for
every U0 = (u0, u1, v0, v1) ∈ D(A),

E(U(t)) ≤ C

(1 + t)1/2

(
|u0|2H2 + |u1|2H1 + |v0|2H2 + |v1|2H1

0

)
. (142)
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Proof of Theorem 2.5 for system (136). Thanks to Proposition 2.2 we
know that iR ⊂ ρ(A). Thus, we need to show that

‖(ibI −A)−1‖L(H) = O(|b|4) as s → +∞ . (143)

Let U ∈ H and b ∈ R such that |b| ≥ max(1, β, λ). Since Rank(ibI −A) = H, there
exists Z ∈ D(A) such that

ibZ −AZ = U in H . (144)

Thus, the estimate (143) will hold once provided that there exists Cα > 0 (depend-
ing on Ω and α but not on b) such that

|Z| ≤ Cα|b|4|U | , (145)

where Cα blows up as |α| goes to 0 or to λ0µ0. Denoting Z = (u, p, v, q) ∈ D(A)
and U = (f, g, h, k) ∈ H, equation (144) reads as





ibu− p = f in H1(Ω)

ibp− ∆u + λu + βp + αv = g in L2(Ω)

ibv − q = h in H1
0 (Ω)

ibq − ∆v + αu = k in L2(Ω) .

(146)

We will proceed in several steps, evaluating each term of the norm |Z|.

Step 1 : Estimate of |p|H and |bu|H .
We first multiply by Z both sides of equation (144) and then take the real part

of it. Thanks to the right identity in (141), we deduce that |βp|2H = R(U,Z), so

β|p|2H ≤ |U | |Z| . (147)

Then, from the first equation of system (146) we deduce that

|bu|2H ≤ 2|p|2H + 2|f |2H ≤ 2

β
|U | |Z| + 2

µ2
0

|f |2H1(Ω)

≤ 2

β
|U | |Z| + 2µ−2

0

1 − |α|(λ0µ0)−1
|U |2 ,

so

|bu|2H ≤ 2

β
|U | |Z| + Kα|U |2 , (148)
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where here and in the following Kα denotes a generic constant depending on α and
Ω, which blows up as α ↗ λ0µ0.

Step 2 : Estimate of |∇u|2H + λ|u|2H .
Consider the scalar product in H of the second identity in system (146) with u

∫

Ω

(ibp− ∆u + λu + βp + αv)udx =

∫

Ω

gudx .

Integration by parts leads to

∫

Ω

(|∇u|2 + λu2)dx = R
∫

Ω

(g − (ib + β)p− αv)udx . (149)

We now evaluate each terms in the right-hand side integral.

∣∣∣∣
∫

Ω

gudx

∣∣∣∣ ≤ |g|H |u|H ≤ 1

µ0
|g|H

[∫

Ω

(|∇u|2 + λu2)dx

]1/2

≤ 1

2µ2
0

|g|2H +
1

2

∫

Ω

(|∇u|2 + λu2)dx ≤ Kα|U |2 +
1

2

∫

Ω

(|∇u|2 + λu2)dx .

Thanks to (147)-(148), and keeping in mind that |b| ≥ β,

∣∣∣∣
∫

Ω

(ib + β)pudx

∣∣∣∣ ≤
b2 + β2

4
|u|2H + |p|2H ≤ 1

2
|bu|2H + |p|2H ≤ 2

β
|U | |Z| + Kα|U |2 .

Finally, thanks to (148),

∣∣∣∣
∫

Ω

αvudx

∣∣∣∣ ≤ |α||u|H |v|H ≤ |α|
|b|Kα|Z| |bu|H

≤ |α|Kα

|b| |Z|
(
|U |1/2|Z|1/2 + Kα|U |

)
≤ |α|Kα

|b|
(
|U |1/2|Z|3/2 + Kα|U | |Z|

)
.

Plugging the last three inequalities in equation (149), we derive that

∫

Ω

(|∇u|2 + λu2)dx ≤ Kα

(
|U | |Z| + |U |2 +

|α|
|b| |U |1/2|Z|3/2

)
, (150)
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or ∫

Ω

(|∇u|2 + λu2)dx ≤ 4

β
|U | |Z| + Kα|U |2 + 2|α||u|H |v|H . (151)

Step 3 : Partial estimate of |∇v|H .

From the third identity in system (146) we derive that q = ibv − h, and using
this relation in the fourth equation of (146) we obtain −b2v − ∆v + αu = ibh + k.
The scalar product by v of both sides of this relation gives

∫

Ω

(−b2v − ∆v + αu)vdx =

∫

Ω

(ibh + k)vdx ,

so that, after integration by parts,

∫

Ω

|∇v|2dx =

∫

Ω

b2v2dx + R
∫

Ω

(ibh + k − αu)vdx . (152)

Since

∣∣∣∣
∫

Ω

(ibh + k − αu)vdx

∣∣∣∣ ≤ |h|H |bv|H +
|k|H
|b| |bv|H + |α| |u|H|b| |bv|H

≤ |bv|2H +
1

4
(|h|2H + |k|2H) +

|α|2
2b4

|bu|2H ≤ |bv|2H +
|α|2
βb4

|U | |Z| + Kα|U |2 ,

from equation (152) we deduce that

∫

Ω

|∇v|2dx ≤ 2|bv|2H +
|α|2
βb4

|U | |Z| + Kα|U |2 . (153)

Step 4 : Estimate of |bv|H .

Taking the inner product between the second equation in (146) and b2v, we have

∫

Ω

{[(ib + β)p− ∆u + λu + αv]b2v}dx =

∫

Ω

b2gvdx ,

so we have that

∫

Ω

b2v2dx =
b2

α
R

∫

Ω

[(g − (ib + β)p− λu)v −∇u.∇v]dx . (154)
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First, note that, thanks to (147), (148) and |b| ≥ λ,

∣∣∣∣
b2

α

∫

Ω

(g − (ib + β)p− λu)vdx

∣∣∣∣ ≤
∫

Ω

[
3b2v2

4
+

b2g2

α2
+

b4p2

α2
+

λ2b2u2

α2

]
dx

≤ 3

4
|bv|2H +

Kα

α2
b2|U |2 +

C

α2
b4|U | |Z| ,

(155)

where here and in the following C denotes a generic positive constant, independent
from α and b. Second, observe that, thanks to (151) and (153), we find out that

∣∣∣∣
b2

α

∫

Ω

∇u∇vdx

∣∣∣∣≤
b2

|α| |∇u|H |∇v|H

≤ b2

|α|

(√
2|α|1/2|u|1/2H |v|1/2H +

2√
β
|U |1/2|Z|1/2 + Kα|U |

)
·

·
(√

2|bv|H +
|α|√
βb2

|U |1/2|Z|1/2 + Kα|U |
)

≤C

(
b

|α|1/2 |bv|
3/2
H |bu|1/2H +

b2

|α| |U |1/2|Z|1/2|bv|H+
Kα

|α| b
2|U ||bv|H

+ |α|1/2|u|1/2H |v|1/2H |U |1/2|Z|1/2 + |U | |Z| + Kα|U |3/2|Z|1/2

+
Kα

|α|1/2 b
2|u|1/2H |v|1/2H |U | + Kα

|α| b
2|U |3/2|Z|1/2 +

Kα

|α| b
2|U |2

)
.

(156)

Let ε be a positive real number. We recall Young’s inequality in the form

|xy| ≤ |x|p
pq1/qεp/q

+ ε|y|q (157)

that holds for every real numbers x, y and for a suitable pair of conjugate exponents
(p, q). So we have

b

|α|1/2 |bv|
3/2
H |bu|1/2H ≤ ε|bv|2H + Cε

b4

α2
|bu|2H

≤ ε|bv|2H + Cε
b4

α2
|U | |Z| + Kα,ε

α2
b4|U |2 ,

(158)
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where Cε and Kα,ε are positive constants that diverge as ε goes to 0+. Similarly,
thanks to standard Young’s inequality with parameter ε, we deduce that

b2

|α| |U |1/2|Z|1/2|bv|H ≤ ε|bv|2H + Cε
b4

α2
|U | |Z| , (159)

Kα

|α| b
2|U | |bv|H ≤ ε|bv|2H +

Kα,εb
4

α2
|U |2 , (160)

|α|1/2|u|1/2H |v|1/2H |U |1/2|Z|1/2

= (|bv|1/2H |U |1/4|Z|1/4)
( |α|1/2

|b| |bu|1/2H |U |1/4|Z|1/4
)

≤ |bv|H |U |1/2|Z|1/2 +
|α|
4b2

|bu|H |U |1/2|Z|1/2

≤ ε|bv|2H + Cε|U | |Z| + 1

b4
|bu|2H

≤ ε|bv|2H + Cε|U | |Z| + Kα

b4
|U |2 ,

(161)

Kα

|α|1/2 b
2|u|1/2H |v|1/2H |U | ≤ Kα

|α|1/2 |b||U |
( |bu|H

2
+

|bv|H
2

)

≤ ε|bv|2H +
Kα,ε

|α| b2|U |2 + |bu|2H +
Kα

|α| b
2|U |2

≤ ε|bv|2H +
Kα,ε

|α| b2|U |2 +
2

β
|U | |Z| .

(162)

Gathering estimates (158)-. . . -(162) in relation (156), we end up with

∣∣∣∣
b2

α

∫

Ω

∇u.∇vdx

∣∣∣∣ ≤ 5Cε|bv|2H + Cε
b4

α2
|U | |Z| + Kα,εb

4

α2
|U |2

+
Kα

|α| b
2|U |3/2|Z|1/2 .

(163)

Back to relation (154), owing to (155) and (163), we have

(1 − 20Cε)|bv|2H ≤ Kα,εb
4

α2
|U |2 +

Cε

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 ,

that, for a sufficiently small ε > 0, ensures that

|bv|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (164)

Step 5 : Estimate of |∇v|H and |q|H .
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Using estimate (164), relation (153) yields

|∇v|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (165)

On the other hand, by the third equation in system (146), we conclude that

|q|2H ≤ 2|bv|2H + 2|h|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (166)

Thanks to equations (147)-(150)-(165)-(166), we deduce that

|Z|2 ≤ ν2(α)

[∫

Ω

(
p2 + |∇u|2 + λu2 + q2 + |∇v|2

)
dx

]

≤ Cα

[
b4|U |2 + b4|U | |Z| + b2|U |3/2|Z|1/2 + |U |1/2|Z|3/2

]
,

where Cα is a positive constant depending only on Ω and α (but not on b) that blows
up as |α| goes to 0 or to λ0µ0. Applying again Young’s inequality with suitable
choices of conjugate exponents (p, q), we infer that

|Z|2 ≤ Cα|b|8|U |2 ,

that completes the proof of relation (145). �

2.3.2 – Stabilization for a second wave-wave system

We consider now the weakly coupled system of wave equations





utt − ∆u + βut + αv = 0 in Ω × (0,+∞)

vtt − ∆v + αu = 0 in Ω × (0,+∞)
∂u

∂ν
+ σu = 0 = v on Γ × (0,+∞)

u(0) = u0 , ut(0) = u1 , v(0) = v0 , vt(0) = v1 in Ω ,

(167)

where σ > 0 and α ∈ R. We can rewrite system (167) as (112) (or (118), equiva-
lently) introducing the operators

D(A1) := {u ∈ H2(Ω) :

(
∂u

∂ν
+ σu

)
(·, t) = 0 on Γ , t > 0}, A1u = −∆u (168)

D(A2) := H2(Ω) ∩H1
0 (Ω) , A2v = −∆v . (169)

Let λ2
0 be the least eigenvalue of −∆ on H2(Ω) ∩ H1

0 (Ω), and µ2
0 be the least

eigenvalue of −∆ with Robin boundary condition. So the assumption (H3) implies
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0 < |α| < λ0µ0. For every U ∈ H = H1(Ω) × L2(Ω) ×H1
0 (Ω) × L2(Ω), the energy

associated to system (167) is

E(U(t)) =
1

2

∫

Ω

[
u2
t + |∇u|2 + v2t + |∇v|2 + 2αR(uv̄)

]
dx +

∫

Γ

σu2dΣ , (170)

which, for every U ∈ D(A), satisfies

d

dt
E(U(t)) = −

∫

Ω

βu2
tdx = R(AU(t), U(t))H . (171)

From Corollary 2.3 we deduce that system (167) is strongly stable. We further ana-
lyze the polynomial stabilization for system (167), by means of Theorem 2.5. Thus,
the total energy of system (167) decays polynomially at infinity, with respect to the
regularity of the initial condition U0. In particular, for every U0 = (u0, u1, v0, v1) ∈
D(A),

E(U(t)) ≤ C

(1 + t)1/2

(
|u0|2H2 + |u1|2H1 + |v0|2H2 + |v1|2H1

0

)
. (172)

Proof of Theorem 2.5 for system (167). Thanks to Proposition 2.2 we
know that iR ⊂ ρ(A). Thus, we need to show that

‖(ibI −A)−1‖L(H) = O(|b|4) as s → +∞ . (173)

Let U ∈ H and b ∈ R such that |b| ≥ max(1, β). Since Rank(ibI − A) = H, there
exists Z ∈ D(A) such that

ibZ −AZ = U in H . (174)

Thus, the estimate (173) will hold once provided that there exists Cα > 0 (depend-
ing on Ω and α but not on b) such that

|Z| ≤ Cα|b|4|U | , (175)

where Cα blows up as |α| goes to 0 or to λ0µ0.
Denoting Z = (u, p, v, q) ∈ D(A) and U = (f, g, h, k) ∈ H, equation (174) reads

as 



ibu− p = f in H1(Ω)

ibp− ∆u + βp + αv = g in L2(Ω)

ibv − q = h in H1
0 (Ω)

ibq − ∆v + αu = k in L2(Ω) .

(176)

We will proceed as in Section 2.3.1, evaluating each term of the norm |Z|.
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We first estimate the terms |p|H and |bu|H as in the Step 1 of the previous
section, finding that

|p|2H ≤ 1

β
|U | |Z| . (177)

and

|bu|2H ≤ 2

β
|U | |Z| + Kα|U |2 , (178)

where here and in the following Kα denotes a generic constants depending on α and
Ω, which blows up as |α| ↗ λ0µ0.

Then, we need an estimate of
∫
Ω
|∇u|2dx+

∫
Γ
σu2dΣ. To this aim, consider the

scalar product in H of the second identity in system (176) with u

∫

Ω

(ibp− ∆u + βp + αv)udx =

∫

Ω

gudx .

Integration by parts leads to

∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ = R
∫

Ω

(g − (ib + β)p− αv)udx . (179)

We now evaluate each terms in the right hand side integral.

∣∣∣∣
∫

Ω

gudx

∣∣∣∣ ≤ |g|H |u|H ≤ 1

µ0
|g|H

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]1/2

≤ 1

2µ2
0

|g|2H +
1

2

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]

≤ Kα|U |2 +
1

2

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]
.

Thanks to (177)-(178), and keeping in mind that |b| ≥ β,

∣∣∣∣
∫

Ω

(ib + β)pudx

∣∣∣∣ ≤
b2 + β2

4
|u|2H + |p|2H ≤ 2

β
|U | |Z| + Kα|U |2 .

Finally, thanks to (178),

∣∣∣∣
∫

Ω

αvudx

∣∣∣∣ ≤ |α||u|H |v|H ≤ |α|
|b|Kα|Z| |bu|H

≤ |α|Kα

|b| |Z|
(
|U |1/2|Z|1/2+Kα|U |

)
≤ |α|Kα

|b|
(
|U |1/2|Z|3/2+Kα|U ||Z|

)
.
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Plugging the last three inequalities in equation (179), we derive that

∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ ≤ Kα

(
|U | |Z| + |U |2 +

|α|
|b| |U |1/2|Z|3/2

)
, (180)

or ∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ ≤ 4

β
|U | |Z| + Kα|U |2 + 2|α||u|H |v|H . (181)

Proceedings as for the previous example, we can deduce estimates of |∇v|H and
|q|H , more precisely that

|∇v|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (182)

and

|q|2H ≤ 2|bv|2H + 2|h|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (183)

Thanks to equations (177)-(180)-(182)-(183), we deduce that

|Z|2 ≤ ν2(α)

[∫

Ω

(
p2 + |∇u|2 + q2 + |∇v|2

)
dx +

∫

Γ

σu2dΣ

]

≤ Cα

[
b4|U |2 + b4|U | |Z| + b2|U |3/2|Z|1/2 + |U |1/2|Z|3/2

]
,

where Cα is a positive constant depending only on Ω and α (but not on b) that blows
up as |α| goes to 0 or to λ0µ0. Applying again Young’s inequality with suitable
choices of conjugate exponents (p, q), we have that

|Z|2 ≤ Cα|b|8|U |2 ,

and so we conclude that the claimed relation (175) holds true. �

2.3.3 – Stabilization for a wave-Petrowsky system

We now focus on the stabilization problem for the weakly coupled system





utt − ∆u + βut + αv = 0 in Ω × (0,+∞)

vtt + ∆2v + αu = 0 in Ω × (0,+∞)

u(0) = u0 , ut(0) = u1 , v(0) = v0 , vt(0) = v1 in Ω ,

(184)

with Robin boundary conditions

∂u

∂ν
(·, t) + σu(·, t) = 0 on Γ , t > 0 (185)
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on u (for some σ > 0) and either clamped boudary conditions

v(·, t) = 0 =
∂v

∂ν
(·, t) on Γ , t > 0 (186)

or hinged boundary conditions

v(·, t) = 0 = ∆v(·, t) on Γ , t > 0 (187)

on v. We can rewrite systems (184)-(185)-(186) and (184)-(185)-(187) as (112) (or
(118), equivalently) introducing the operators

D(A1) := {u ∈ H2(Ω) :

(
∂u

∂ν
+ σu

)
(·, t) = 0 on Γ , t > 0} , A1u = −∆u (188)

and

D(A2) := {v ∈ H4(Ω) : v(·, t) = 0 =
∂v

∂ν
(·, t) on Γ , t > 0} , A2v = ∆2v (189)

or

D(A2) := {v ∈ H4(Ω) : v(·, t) = 0 = ∆v(·, t) on Γ , t > 0} , A2v = ∆2v , (190)

and defining (A, D(A)) as in (117). Let λ2
0 be the least eigenvalue of −∆ with Robin

boundary conditions, and µ2
0 be the least eigenvalue of ∆2 with either clamped or

hinged boundary conditions. So the assumption (H3) on α yields 0 < |α| < λ0µ0.
For every U ∈ H = H1(Ω) × L2(Ω) × H2

0 (Ω) × L2(Ω), the energy associated to
systems (184)-(185)-(186) or (184)-(185)-(187) is

E(U(t))=
1

2

∫

Ω

[
u2
t +|∇u|2+v2t +|∆v|2+2αR(uv̄)

]
dx+

1

2

∫

Γ

σu2dΣ =
1

2
|U |2H , (191)

which, for every U ∈ D(A), satisfies

d

dt
E(U(t)) = −

∫

Ω

βu2
tdx = R(AU(t), U(t))H . (192)

We now analyze the asymptotic behaviour of the contraction semigroup etA with
generator (A, D(A)).

Proof of Theorem 2.5 for systems (184)-(185)-(186) and (184)-(185)-
(187). Thanks to Proposition 2.2 we know that iR ⊂ ρ(A). Thus, systems (184)-
(185)-(186) and (184)-(185)-(187) are strongly stable and we are left to show that

‖(ibI −A)−1‖L(H) = O(|b|4) as s → +∞ . (193)
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Let U ∈ H and b ∈ R such that |b| ≥ max(1, β). Since Rank(ibI − A) = H, there
exists Z ∈ D(A) such that

ibZ −AZ = U in H . (194)

Thus, the estimate (193) will hold once provided that there exists Cα > 0 (depend-
ing on Ω and α but not on b) such that

|Z| ≤ Cα|b|4|U | , (195)

where C blows up as |α| goes to 0 or to λ0µ0.
Denoting Z = (u, p, v, q) ∈ D(A) and U = (f, g, h, k) ∈ H, equation (194) reads

as 



ibu− p = f in H1(Ω)

ibp− ∆u + βp + αv = g in L2(Ω)

ibv − q = h in H2
0 (Ω)

ibq + ∆2v + αu = k in L2(Ω) .

(196)

We will proceed in several steps, evaluating each terms of the norm |Z|.
Step 1 : Estimate of |p|H and |bu|H .

We first multiply by Z both sides of equation (194) and then take the real part
of it. Thanks to the right identity in (192), we deduce that |βp|2H = R(U,Z), so

|p|2H ≤ 1

β
|U | |Z| . (197)

Then, from the first equation of system (196) we deduce that

|bu|2H ≤ 2|p|2H + 2|f |2H ≤ 2

β
|U | |Z| + 2µ−2

0

1 − |α|(λ0µ0)−1
|U |2 ,

so

|bu|2H ≤ 2

β
|U | |Z| + Kα|U |2 , (198)

where here and in the following Kα denotes a generic constant depending on α and
Ω, which blows up as |α| ↗ λ0µ0.

Step 2 : Estimate of

∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ.

Consider the scalar product in H of the second identity in system (196) with u

∫

Ω

(ibp− ∆u + βp + αv)udx =

∫

Ω

gudx .



138 ROBERTO GUGLIELMI [56]

Integration by parts leads to
∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ = R
∫

Ω

(g − (ib + β)p− αv)udx . (199)

We now evaluate each terms in the right hand side integral.
∣∣∣∣
∫

Ω

gudx

∣∣∣∣ ≤ |g|H |u|H ≤ 1

µ0
|g|H

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]1/2

≤ 1

2µ2
0

|g|2H +
1

2

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]

≤ Kα|U |2 +
1

2

[∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ

]
.

Thanks to (197)-(198), and keeping in mind that |b| ≥ max(1, β),
∣∣∣∣
∫

Ω

(ib + β)p + αv)udx

∣∣∣∣ ≤
b2 + β2

4
|u|2H + |p|2H + |α||u|H |v|H

≤ 1

2
|bu|2H + |p|2H +

|α|
|b|Kα|Z| |bu|H

≤ 2

β
|U | |Z|+Kα|U |2+

|α|Kα

|b|
(
|U |1/2|Z|3/2+Kα|U ||Z|

)
.

Plugging the last two inequalities in equation (199), we derive that
∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ ≤ Kα

(
|U | |Z| + |U |2 +

|α|
|b| |U |1/2|Z|3/2

)
, (200)

or ∫

Ω

|∇u|2dx +

∫

Γ

σu2dΣ ≤ 4

β
|U | |Z| + Kα|U |2 + |α||u|H |v|H . (201)

Step 3 : Partial estimate of |∆v|H .
From the third identity in system (196) we derive that q = ibv − h, and using

this relation in the fourth equation of (196) we obtain ∆2v − b2v + αu = ibh + k.
The scalar product by v of both sides of this relation gives, after integrations by
parts, ∫

Ω

|∆v|2dx =

∫

Ω

b2v2dx + R
∫

Ω

(ibh + k − αu)vdx . (202)

Since |b| ≥ 1, and thanks to (198),
∣∣∣∣
∫

Ω

(ibh + k − αu)vdx

∣∣∣∣ ≤ |h|H |bv|H +
|k|H
|b| |bv|H + |α| |bu|H

b2
|bv|H

≤ |bv|2H + |h|2H +
|k|2H
b2

+
|α|2
2b4

|bu|2H ≤ |bv|2H +
|α|2
βb4

|U | |Z| + Kα

b2
|U |2 ,
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from equation (202) we deduce that

∫

Ω

|∆v|2dx ≤ 2|bv|2H +
|α|2
βb4

|U | |Z| + Kα

b2
|U |2 . (203)

Step 4 : Estimate of |bv|H .
Taking the inner product between the second equation in (196) and b2v, we have

∫

Ω

{[(ib + β)p− ∆u + αv]b2v}dx =

∫

Ω

b2gvdx ,

so we have that

∫

Ω

b2v2dx =
b2

α
R

∫

Ω

[(g − (ib + β)p)v −∇u.∇v]dx . (204)

First, note that, after integrations by parts, we get

∣∣∣∣
b2

α

∫

Ω

(g − (ib + β)p)vdx

∣∣∣∣ ≤
∫

Ω

[
3b2v2

4
+

b2g2

α2
+

b4p2

α2

]
dx

≤ 3

4
|bv|2H +

Kα

α2
b2|U |2 +

C

α2
b4|U | |Z| .

(205)

Afterwards, thanks to the well-known inequality

∫

Ω

(v2 + |∇v|2)dx ≤
∫

Ω

|∆v|2dx ∀v ∈ H2(Ω) ∩H1
0 (Ω) , (206)

and owing to (201) and (203), we find out that

∣∣∣∣
b2

α

∫

Ω

∇u.∇vdx

∣∣∣∣≤
b2

|α| |∇u|H |∇v|H ≤ |∇u|H |∆v|H

≤ b2

|α|

(
|α|1/2|u|1/2H |v|1/2H +

2√
β
|U |1/2|Z|1/2 + Kα|U |

)
·

·
(√

2|bv|H +
|α|√
βb2

|U |1/2|Z|1/2 +
Kα

b
|U |

)

≤C

(
b

|α|1/2 |bv|
3/2
H |bu|1/2H +

b2

|α| |U |1/2|Z|1/2|bv|H+
Kα

|α| b
2|U | |bv|H

+|α|1/2|u|1/2H |v|1/2H |U |1/2|Z|1/2 + |U | |Z| + Kα|U |3/2|Z|1/2

+
Kα

|α|1/2 b
2|u|1/2H |v|1/2H |U | + Kα

|α| b
2|U |3/2|Z|1/2 +

Kα

|α| b
2|U |2

)
.

(207)
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Let ε be a positive real number. Applying Young’s inequality together with esti-
mates (158)-. . . -(162), from (207) we conclude that

∣∣∣∣
b2

α

∫

Ω

∇u.∇vdx

∣∣∣∣ ≤ 5Cε|bv|2H+

+ Cε
b4

α2
|U | |Z| + Kα,εb

4

α2
|U |2 +

Kα

|α| b
2|U |3/2|Z|1/2 .

(208)

Back to relation (204), owing to (205) and (208), we have

(1 − 20Cε)|bv|2H ≤ Kα,εb
4

α2
|U |2 +

Cε

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 ,

that, fixing a sufficiently small ε > 0, ensures that

|bv|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (209)

Step 5 : Estimate of |∇v|H and |q|H .
Using (209), relation (203) yields

|∇v|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (210)

On the other hand, by the third equation in system (196), we conclude that

|q|2H ≤ 2|bv|2H + 2|h|2H ≤ Kα

α2
b4|U |2 +

C

α2
b4|U | |Z| + Kα

|α| b
2|U |3/2|Z|1/2 . (211)

Thanks to equations (197)-(200)-(210)-(211), we deduce that

|Z|2 ≤ ν2(α)

[∫

Ω

(
p2 + |∇u|2 + q2 + |∇v|2

)
dx +

∫

Γ

σu2dΣ

]

≤ Cα

[
b4|U |2 + b4|U | |Z| + b2|U |3/2|Z|1/2 + |U |1/2|Z|3/2

]
,

where Cα is a positive constant depending only on Ω and α (but not on b) that blows
up as |α| goes to 0 or to λ0µ0. Applying again Young’s inequality with suitable
choices of conjugate exponents (p, q), we conclude that

|Z|2 ≤ Cα|b|8|U |2 ,
completing the proof of relation (195). �

Thus, the total energy of system (184)-(185) decays polynomially at infinity,
with respect to the regularity of the initial condition U0.
In particular, for every U0 = (u0, u1, v0, v1) ∈ D(A),

E(U(t)) ≤ C

(1 + t)1/2

(
‖u0‖2H2 + ‖u1‖2H1 + ‖v0‖2H4 + ‖v1‖2H2

0

)
∀t > 0 . (212)
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2.4 – Prospectives

2.4.1 – Localizing the damping/coupling regions

A first open issue concerns the extension of the previous results for systems
with damping and/or coupling acting locally in Ω. Indeed, in our approach both
damping and coupling are globally distributed in Ω, but it is natural to consider
the case where they acts only in two open subset ωd and ωc of Ω. In this setting,
one challenging question arises: is it possible to have polynomial stabilization of
the system, even in the case ωd ∩ ωc = ∅? In this case, there would be region of
Ω where the two equations involved in the system evolve completely independently
and without any dissipation of energy. A first result in this direction can be found
in [8], where the authors prove a polynomial indirect stabilization result in the case
of a system with the same operator acting on both components u and v, provided
the two subset ωd and ωc satisfy the geometrical optical control condition, that is,
each optical ray travelling at speed one must intersect both subset ωd and ωc in
finite time. The problem of extending this property for larger classes of operators
is widely open, and relies on the possibility to show some observability inequalities
through the geometrical optical control condition.

In Chapter 3 we will address a different configuration of the stabilization problem
for two wave equations, with damping and coupling acting only on the boundary
of the domain. In this case, it happens that in the domain Ω the two components
are uncoupled and both conservative. However, we will give positive answer for the
indirect stabilization of the whole system (see Theorem 3.6).

2.4.2 – Different boundary conditions

Let us consider the system




utt + ∆2u + βut + αv = 0 in Ω × (0,+∞)

vtt − ∆v + αu = 0 in Ω × (0,+∞)

u(0) = u0 , ut(0) = u1 , v(0) = v0 , vt(0) = v1 in Ω ,

(213)

with Robin boundary conditions

∂v

∂ν
(·, t) + σv(·, t) = 0 on Γ , t > 0 (214)

on v and either clamped boudary conditions

u(·, t) = 0 =
∂u

∂ν
(·, t) on Γ , t > 0 (215)

or hinged boundary conditions

u(·, t) = 0 = ∆u(·, t) on Γ , t > 0 (216)
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on u. Also in this case we can rewrite systems (213)-(214)-(215) and (213)-(214)-
(216) with suitable initial conditions as system (112) (or (118), equivalently) intro-
ducing the operators

D(A2) := {v ∈ H2(Ω) :

(
∂v

∂ν
+ σv

)
(·, t) = 0 on Γ , t > 0} , A2v = −∆v (217)

and

D(A1) := {u ∈ H4(Ω) : u(·, t) = 0 =
∂u

∂ν
(·, t) on Γ , t > 0} , A1u = ∆2u (218)

or

D(A1) := {u ∈ H4(Ω) : u(·, t) = 0 = ∆u(·, t) on Γ , t > 0} , A1u = ∆2u , (219)

and defining the operator (A, D(A)) as in (117).
Moreover, for every U ∈ H = H2

0 (Ω) × L2(Ω) × H1(Ω) × L2(Ω), the energy
associated to systems (213)-(214)-(215) or (213)-(214)-(216) is

E(U(t)) =
1

2

∫

Ω

[
u2
t + |∆u|2 + v2t + |∇v|2 + 2αR(uv̄)

]
dx

+
1

2

∫

Γ

σv2dΣ =
1

2
|U |2H ,

(220)

which, for every U ∈ D(A), still satisfies

d

dt
E(U(t)) = −

∫

Ω

βu2
tdx = R(AU(t), U(t))H . (221)

But, while trying to get an estimate of the norm of the resolvent operator along the
imaginary axis of the type

∃γ > 0 s.t. ‖(ibI −A)−1‖L(H) ≤ C|b|γ ∀b ∈ R ,

we get stucked in controlling the norm

∥∥∥∥
∂∆u

∂ν

∥∥∥∥
L2(Γ)

∀u ∈ D(A1) , (222)

preventing to achieve the desired estimate. Thus, the indirect polynomial stabiliza-
tion for systems (213)-(214)-(215) and (213)-(214)-(216) is still an open problem.
At least two different approaches might be pursued: perform a better estimate of
the term (222) to solve this specific problem, or, more in general, look for new
compatibility conditions between operators (A1, D(A1)) and (A2, D(A2)) in order
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to reach polynomial stabilization with a certain decay rate related to the compati-
bility condition, as has been done in Chapter 1.

Moreover, observe that the structure of the proof of the resolvent estimate in
Sections 2.3.1 - 2.3.2 - 2.3.3 is similar. Therefore, having improved (thanks to the
resolvent estimate) the decay rate established by Theorem 1.10, we expect that for
these systems a compatibility condition sharper than (32) shall hold, ensuring the
decay rate 1/2.

3 – Indirect stabilization for two wave equations with boundary coupling

The present chapter is extracted from the preprint Indirect stabilization of two wave
equations with boundary coupling, in collaboration with Fatiha Alabau-Boussouira
and Piermarco Cannarsa, in progress.

3.1 – Introduction

From the point of view of applications to mechanical vibrating systems, it appears
natural to consider two membranes (or two plates, or one membrane and one plate)
connected at the boundary only, or possibly on a subdomain of it. In this case,
we shall exploit the transmission of information between the two components, that
occurs only at the boundary, and nowhere else inside the domain. As we will show
below, this feature has major consequences.

More precisely, let Ω be a nonempty bounded open subset of Rd, d ≥ 1, with
sufficiently smooth boundary Γ.

Notation 3.1. Let Γ0 and Γ1 be open subsets of Γ such that

Γ = Γ0 ∪ Γ1 , Γ0 ∩ Γ1 = ∅ .

Suppose the existence of a point x0 ∈ Rd such that (x − x0). ν ≤ 0 for every
x ∈ Γ0 and (x− x0). ν ≥ m0 > 0 for every x ∈ Γ1, where ν stands for the outward
unit vector at the boundary Γ of Ω, and set m(x) = x − x0 for every x ∈ Rd,
R = R(x0) = supx∈Ω |m(x)|.

With the same notations as in Notation 1.22, we recall the well-known Rellich’s
identity, that holds for every u ∈ H2(Ω),

2R
∫

Ω

∆u(m.∇u)dx = (d− 2)

∫

Ω

|∇u|2dx

+ 2R
∫

Γ

∂u

∂ν
(m.∇u)dΣ −

∫

Γ

(m. ν)|∇u|2dΣ ,

(223)
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where R(z) denotes the real part of z ∈ C. We will consider the following system
of hyperbolic equations with mixed boundary conditions





∂2
t u− ∆u = 0 in Ω × R ,

∂2
t v − ∆v = 0 in Ω × R ,
∂u

∂ν
+ σ1u + a∂tu + αv = 0 on Γ1 × R ,

∂v

∂ν
+ σ2v + αu = 0 on Γ1 × R ,

u = 0 = v on Γ0 × R ,

(224)

where α, a, σ1, σ2 ∈ L∞(Γ1) and α ≥ α, a(x) ≥ a, σi(x) ≥ σi for some positive
constant α, a and σi (i = 1, 2). For simplicity, in the following we will consider
α, a, σ1, σ2 positive constants.

Let us first note that system (224) do not fit into the abstract system of evolution
equation (6) introduced in Chapter 1. Indeed, in system (224) the damping operator
is no longer bounded in H, thus it does not satisfy hypothesis (H2). Most important,
the coupling operator is no compact anymore in the energy space and, as a matter of
fact, it is not even bounded in H. For this reason, in the next section we introduce
a suitable abstract setting for this model.

3.2 – Abstract setting and well-posedness

Following [106] and [4], we consider V1, V2, H separable real Hilbert spaces, such
that the embeddings Vi ⊂ H are dense, compact and continuous, for i = 1, 2.

We identify H with its dual space, so that the inclusions Vi ⊂ H ⊂ V ′
i are con-

tinuous, dense and compact, i = 1, 2. We denote by ( , )Vi
and ( , )H (respectively

| |Vi
and | |H) the scalar products (resp. norms) on Vi, i = 1, 2, and H. The

symbol 〈 , 〉V ′
i ,Vi

stands for the duality product between Vi and V ′
i , whereas Ai is

the duality map from Vi to V ′
i defined by

〈Aiu, v〉V ′
i ,Vi

= (u, v)Vi
∀u, v ∈ Vi , i = 1, 2 . (225)

Thanks to the Riesz-Frćhet rapresentation theorem, each operator Ai is an isometric
isomorphism of Vi onto V ′

i (i = 1, 2). Moreover, relation (225) ensures that

(Aiu, v)H = (u, v)Vi
∀u ∈ Vi s.t. Aiu ∈ H, ∀v ∈ Vi , i = 1, 2 , (226)

that, in turn, implies that

(A−1
i u, v)Vi = (u, v)H ∀u, v ∈ Vi , i = 1, 2 . (227)

Relation (226) leads us to introduce the domain

D(Ai) := {u ∈ Vi : Aiu ∈ H} ⊂ Vi (i = 1, 2)
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and, by abuse of notation, we denote by the same symbol Ai the operator Ai :
D(Ai) ⊂ H → H.

Let B be a linear continuous operator from V1 to V ′
1 , which satisfies

〈Bu, u〉V ′
1 ,V1

≥ 0 , 〈Bu, z〉V ′
1 ,V1

= 〈Bz, u〉V ′
1 ,V1

∀u, z ∈ V1 .

We moreover consider a nonzero parameter α ∈ R and two linear continuous oper-
ators P1 : V2 → V ′

1 and P2 : V1 → V ′
2 such that

〈P1u2, u1〉V ′
1 ,V1

= 〈P2u1, u2〉V ′
2 ,V2

∀u1 ∈ V1, u2 ∈ V2 .

We are interested in studying the stabilization properties of the following weakly
coupled system of evolution equations





u′′
1 + A1u1 + Bu′

1 + αP1u2 = 0 in V ′
1 ,

u′′
2 + A2u2 + αP2u1 = 0 in V ′

2 ,

(u1, u
′
1)(0) = (u0

1, u
1
1) ∈ V1 ×H ,

(u2, u
′
2)(0) = (u0

2, u
1
2) ∈ V2 ×H .

(228)

We further assume the existence of a subspace V0 ⊂ Vi which is closed with respect
to the norm induced by ( , )Vi

, i = 1, 2, and dense in (H, ( , )H). For any i = 1, 2,
denoting by πi the canonical injection from V0 to Vi and by Πi the projection from
Vi to V0, we can characterize Πi by

{
〈Aiπi(Πiui), πi(φ)〉V ′

1 ,V1
= 〈Aiui, πi(φ)〉V ′

1 ,V1
∀φ ∈ V0 , ui ∈ Vi ,

Πiui ∈ V0 .
(229)

Moreover, we ask that for every φ ∈ V0 , ui ∈ Vi , i = 1, 2 ,

〈Bu1, π1(φ)〉V ′
1 ,V1

= 〈P1u2, π1(φ)〉V ′
1 ,V1

= 〈P2u1, π2(φ)〉V ′
2 ,V2

= 0 . (230)

We set V = V1 × V2 equipped with the scalar product

(u, ũ)V = (u1, ũ1)V1 + (u2, ũ2)V2 ∀u = (u1, u2), ũ = (ũ1, ũ2) ∈ V

and with the corresponding norm ‖ ‖V . The embeddings V ⊂ H × H ⊂ V ′ are
continuous, dense and compact. Define a linear continuous operator A : V → V ′ by

Au = (A1u1 + αP1u2, A2u2 + αP2u1) ∀u = (u1, u2) ∈ V,

and consider the bilinear continuous form on V

(u, ũ)α = (u, ũ)V + α〈P1u2, ũ1〉V ′
1 ,V1

+ α〈P2u1, ũ2〉V ′
2 ,V2

for all u = (u1, u2), ũ = (ũ1, ũ2) ∈ V .
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Proposition 3.2. There exists α0 > 0 such that for all 0 ≤ |α| < α0 there exist
two positive constants ν1(α), ν2(α) such that

ν1(α)‖u‖V ≤ (u, u)1/2α ≤ ν2(α)‖u‖V ∀u ∈ V. (231)

Hence, for all 0 ≤ |α| < α0, the application

u ∈ V �−→ ‖u‖α := (u, u)1/2α

defines a norm on V equivalent to ‖ ‖V . Moreover, for all 0 ≤ |α| < α0, the
operator A is the duality map from (V, ‖ ‖α) to V ′.

Proof. A straightforward calculation yields the estimates

(1 − |α|‖P1‖L)‖u‖2V ≤ |(u, u)α| ≤ (1 + |α|‖P1‖L)‖u‖2V ,

where ‖P1‖L = ‖P1‖L(V2,V ′
1 )

is the operator norm of P1 from V2 to V ′
1 . Hence,

fixing α0 = ‖P1‖−1
L , the conditions in (231) hold for every 0 ≤ |α| < α0 with

ν1(α) =
√

1 − |α|‖P1‖L and ν2(α) =
√

1 + |α|‖P1‖L.
Moreover, for every u = (u1, u2), ũ = (ũ1, ũ2) ∈ V , we have

〈Au, ũ〉V ′,V = 〈(A1u1 + αP1u2, A2u2 + αP2u1), (ũ1, ũ2)〉V ′,V

(u, ũ)V + α〈P1u2, ũ1〉V ′
1 ,V1

+ α〈P2u1, ũ2〉V ′
2 ,V2

= (u, ũ)α ,

thus A is the duality map between V endowed with the scalar product ( , )α and
V ′. �

We introduce the space H = V1 ×H × V2 ×H, equipped with the bilinear form

(U, Ũ)H = ((u1, u2), (v1, v2))α + ((p1, p2), (q1, q2))H×H (232)

for every U = (u1, p1, u2, p2), Ũ = (v1, q1, v2, q2) ∈ H. Then, for every 0 ≤ |α| < α0,
the application ( , )H is a scalar product on H that satisfies

ν1(α)(‖(u1, u2)‖2V + ‖(p1, p2)‖2H×H)≤(U,U)H≤ν2(α)(‖(u1, u2)‖2V +‖(p1, p2)‖2H×H)

for every U ∈ H, with related norm ‖U‖H := (‖(u1, u2)‖2α +‖(p1, p2)‖2H×H)1/2, and
(H, ( , )H) is a Hilbert space. We consider the unbounded linear operator A on H
defined by

D(A)={U =(u1, p1, u2, p2) ∈ (V1 × V2)
2 : A(u1, u2) + (Bp1, 0)∈H ×H} ,

AU =(p1,−A1u1 −Bp1 − αP1u2, p2,−A2u2 − αP2u1) ∀U ∈ D(A) .
(233)

We can now reformulate the system (228) as the abstract first order equation
{
U ′(t) = AU(t) ,

U(0) = U0 ∈ H (234)

and deduce a well-posedness result by standard semigroup theory.



[65] Stabilization and control of partial differential equations of evolution 147

Proposition 3.3. For every 0 ≤ |α| < α0 the operator A is maximal dis-
sipative on H. Thus, for every U0 ∈ H, problem (234) admits a unique solu-
tion U ∈ C([0,+∞),H). In addition, if U0 ∈ D(Ak) for some k ∈ N, then
U ∈ Ck−j([0,+∞), D(Aj)) for all j = 0, . . . , k. Moreover, the energy of the so-
lution

E(U(t)) :=
1

2
‖U(t)‖2H (235)

is locally absolutely continuous and, for every U0 ∈ D(A), it satisfies the dissipation
relation

E ′(U(t)) = −〈Bp1, p1〉V ′
1 ,V1

.

Proof. Note that for every U = (u1, p1, u2, p2) ∈ D(A)

(AU,U)H = ((p1, p2), (u1, u2))α − (A(u1, u2) + (Bp1, 0), (p1, p2))H×H

= −〈Bp1, p1〉V ′
1 ,V1

≤ 0 ,

thus A is a dissipative operator. We now prove that I − A is onto H. For this
purpose, fix Û = (û1, p̂1, û2, p̂2) ∈ H. Denoting U = (u1, p1, u2, p2) ∈ D(A), the

identity (I − A)U = Û reduces to the system
{

(I + A1 + B)u1 + αP1u2 = f ∈ V ′
1

(I + A2)u2 + αP2u1 = g ∈ V ′
2 ,

(236)

that, thanks to the Lax-Milgram theorem, admits a unique solution (ū1, ū2) that
satisfies

‖(ū1, ū2)‖V ≤ 1

1 − |α|‖P1‖
‖(f, g)‖V ′ .

Indeed, consider the bilinear form a : V × V → R defined by

a((u1, u2), (ϕ1, ϕ2)) =

〈(I + A1 + B)u1 + αP1u2, ϕ1〉V ′
1 ,V1

+ 〈(I + A2)u2 + αP2u1, ϕ2〉V ′
2 ,V2

for every (u1, u2), (ϕ1, ϕ2) ∈ V . Then

i) a is continuous, that is, there exists a constant C > 0 such that

|a((u1, u2), (ϕ1, ϕ2))| ≤ C‖(u1, u2)‖V ‖(ϕ1, ϕ2)‖V
for every (u1, u2), (ϕ1, ϕ2) ∈ V ;

ii) a is coercive, since

a((u1, u2), (u1, u2)) ≥ (1 − |α|‖P1‖)‖(u1, u2)‖V
for every (u1, u2) ∈ V .

Then, by the Lumer-Phillips theorem (for instance, see [130]), we conclude that the
problem (234) admits an unique solution. Moreover, a direct calculation shows that

E ′(U(t)) = (AU,U)H = −〈Bp1, p1〉V ′
1 ,V1

. �



148 ROBERTO GUGLIELMI [66]

3.3 – Two wave equations with boundary coupling

Let assume Notations 1.22 and 3.1. We consider the system of two wave equations
with mixed boundary conditions and coupling acting at the part Γ1 of the boundary





∂2
t u− ∆u = 0 in Ω × R ,

∂2
t v − ∆v = 0 in Ω × R ,
∂u

∂ν
+ σ1u + a∂tu + αv = 0 on Γ1 × R ,

∂v

∂ν
+ σ2v + αu = 0 on Γ1 × R ,

u = 0 = v on Γ0 × R ,

(237)

where α, a, σ1, σ2 are positive constants.
The total energy E(t) associated with system (237) is defined by

1

2

∫

Ω

(
|ut|2 + |vt|2 + |∇u|2 + |∇v|2

)
dx +

1

2

∫

Γ1

(σ1u
2 + σ2v

2 + 2αuv)dΣ . (238)

We set H = (L2(Ω), ‖ ‖L2(Ω)), V0 = (H1
0 (Ω), ‖ ‖H1

0 (Ω)) and, for every i = 1, 2,

Vi = H1
Γ0

(Ω) endowed with the scalar products

(u, v)Vi
=

∫

Ω

∇u.∇vdx +

∫

Γ1

σiuvdΣ ∀u, v ∈ H1
Γ0

(Ω)

and with the corresponding norms. We define the duality maps A1 and A2 as in
(225).

Remark 3.4. Note that, for every w ∈ D(Ω) = C∞
0 (Ω) and u ∈ V1, we have

〈A1u,w〉V ′
1 ,V1

=

∫

Ω

∇u.∇wdx =

∫

Ω

−∆uwdx = 〈−∆u,w〉D′(Ω),D(Ω) ,

that yields A1u = −∆u in D′(Ω). Thanks to relation (226), the same reasoning
ensures that, if u ∈ D(A1), then for every w ∈ D(Ω)

(A1u,w)H =

∫

Ω

−∆uwdx = 〈−∆u,w〉D′(Ω),D(Ω) ,

thus A1u = −∆u ∈ H by density of D(Ω) in H.

Moreover, we introduce a linear continuous operator B : V1 → V ′
1 defined by

〈Bu, v〉V ′
1 ,V1

=

∫

Γ1

auvdΣ ∀u, v ∈ V1
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and two linear continuous operators P1 : V2 → V ′
1 and P2 : V1 → V ′

2 as

〈P2u, v〉V ′
2 ,V2

=

∫

Γ1

uvdΣ = 〈P1v, u〉V ′
1 ,V1

∀u ∈ V1, v ∈ V2 .

Hence, system (237) with initial conditions

{
u(0) = u0 ∈ H1

Γ0
(Ω) , u′(0) = u1 ∈ L2(Ω) ,

v(0) = v0 ∈ H1
Γ0

(Ω) , v′(0) = v1 ∈ L2(Ω) ,
(239)

can be read as system (234). Thus, fixed any U0 = (u0, u1, v0, v1) ∈ H, system
(237)-(239) admits a unique solution, provided 0 ≤ |α| < α0 = ‖P1‖L. We can
further characterize the domain D(A) as follows.

Proposition 3.5. Let us consider

W :=
{
(u, p, v, q)∈H2(Ω) ∩H1

Γ0
(Ω)×H1

Γ0
(Ω) ×H2(Ω) ∩H1

Γ0
(Ω) ×H1

Γ0
(Ω) :

∂u

∂ν
+ σ1u + a∂tu + αv = 0 =

∂v

∂ν
+ σ2v + αu on Γ1 × R

}
.

(240)

Then D(A) = W .

Proof. We first show that D(A) ⊂ W . Indeed, let U = (u, p, v, q) ∈ D(A),
then we have ϕ = A1u + Bp + αP1v ∈ H and ψ = A2v + αP2u ∈ H. So, for every
w ∈ D(Ω) ⊂ V0,

(ϕ,w)H = 〈ϕ,w〉V ′
1 ,V1

=

∫

Ω

∇u.∇wdx =

∫

Ω

−∆uwdx , (241)

where the last identity holds in the sense of distributions. Thus (see also Remark
3.4), A1u = −∆u = ϕ in D′(Ω), and ϕ ∈ L2(Ω). By density of D(Ω) in H, relation
(241) yields

A1u = −∆u = ϕ in H , (242)

that is, u ∈ D(A1). Moreover, for every w ∈ D(A1),

(ϕ,w)H =

∫

Ω

∇u.∇wdx +

∫

Γ1

(σ1u + ap + αv)wdΣ

=

∫

Ω

−∆uwdx +

∫

Γ1

(
∂u

∂ν
+ σ1u + ap + αv

)
wdΣ ,

that, thanks to (242), the arbitrariness of w ∈ D(A1) and the density of D(A1) in
V1, implies

∂u

∂ν
+ σ1u + ap + αv = 0 on Γ1 . (243)
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Finally, since σ1u+ ap+αv ∈ H1/2(Γ1), by elliptic regularity we can conclude that
u ∈ H2(Ω), so that D(A1) = H2(Ω) ∩H1

Γ0
(Ω). By the same reasoning for ψ ∈ H,

we can show that v ∈ D(A2) = H2(Ω) ∩H1
Γ0

(Ω) and satisfies

∂v

∂ν
+ σ2v + αu = 0 on Γ1 , (244)

that completes the proof of the first inclusion.
On the other hand, chosen U = (u, p, v, q) ∈ W , we only need to show that

ϕ = A1u + Bp + αP1v ∈ H and ψ = A2v + αP2u ∈ H.
Since A1u + Bp + αP1v ∈ V ′

1 , for every w ∈ H2(Ω) ∩H1
Γ0

(Ω)

〈A1u + Bp + αP1v, w〉V ′
1 ,V1

=

∫

Ω

∇u.∇wdx +

∫

Γ1

(σ1uw + apw + αvw)dΣ

=

∫

Ω

−∆uwdx = (−∆u,w)H .

This relation, together with the density of H2(Ω) ∩ H1
Γ0

(Ω) in H, ensures that
A1u+Bp+αP1v ∈ H. In a similar way, considering w ∈ H2(Ω)∩H1

Γ0
(Ω), we prove

that ψ = A2v + αP2u ∈ H. �
In the next section we focus on the indirect stabilization problem for system

(237).

3.3.1 – Indirect stabilization

Main result We first remark that, even though the feedback acts on only one com-
ponent of system (237), for every U0 ∈ D(A), the total energy of the system defined
in (235) satisfies the dissipation relation

d

dt
(E(U(t))) = −

∫

Γ1

a|ut|2dΣ . (245)

For this reason it is reasonable to expect stabilization for system (237), with a
proper decay rate, as shown in the following result.

Theorem 3.6. Let α be a real number such that 0 < |α| < α0.

i) If U0 ∈ D(Am) for some m ≥ 1, then there exists C > 0 such that

E(U(t)) ≤ C

(1 + t)m

m∑

k=0

E(U (k)(0)) ∀t > 0 . (246)

ii) For every U0 ∈ H
lim
t→∞

E(U(t)) = 0 , (247)

that is, the semigroup etA generated by the operator A is strongly stable.
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Proof of Theorem 3.6 In view of the abstract Lemma 1.8, we look for an estimate
of the integral in time of the total energy E(U(t)). In the following we denote by c
and C(α) two generic positive constants, with C(α) depending on α.

We will proceed in three steps. We first address the problem of the transmission
of information between u (the damped component) and v (the undamped one) on
the part Γ1 of the boundary.

Lemma 3.7. Let 0 < |α| < α0. For every U0 ∈ D(A) holds

|α|
2

∫ T

S

∫

Γ1

v2dΣdt ≤ C(α)

∫ T

S

∫

Γ1

(
u2 + u2

t

)
dΣdt + C(α)E(U(S)) , (248)

for some constant C(α) > 0.

Proof. Multiplying the first equation of (237) for v, respectively the second
for u, and integrating over Ω × [S, T ], for every 0 ≤ S < T , we obtain

0 =

∫ T

S

∫

Ω

(utt − ∆u)vdxdt = [〈ut, v〉L2 ]TS −
∫ T

S

∫

Ω

utvtdxdt

−
∫ T

S

∫

Γ1

∂u

∂ν
vdΣdt +

∫ T

S

∫

Ω

∇u.∇vdxdt ,

0 =

∫ T

S

∫

Ω

(vtt − ∆v)udxdt = [〈vt, u〉L2 ]TS −
∫ T

S

∫

Ω

utvtdxdt

−
∫ T

S

∫

Γ1

∂v

∂ν
udΣdt +

∫ T

S

∫

Ω

∇u.∇vdxdt .

Using the boundary conditions in (237) and subtracting the two equations we have
∫ T

S

∫

Γ1

[(σ2v + αu)u− (σ1u + aut + αv)v] dΣdt + [〈vt, u〉L2 − 〈ut, v〉L2 ]TS = 0 ,

and so we deduce that

α

∫ T

S

∫

Γ1

v2dΣdt = [〈vt, u〉L2 − 〈ut, v〉L2 ]TS

+

∫ T

S

∫

Γ1

[
(σ2 − σ1)uv + αu2 − autv

]
dΣdt .

(249)

We now estimate each term in the right-hand side. Owing to (245) the total energy
E(U(t)) is decreasing, so by Young’s inequality we have
∣∣[〈vt, u〉L2 − 〈ut, v〉L2 ]TS

∣∣

≤ 1

2

(
|vt(T )|2L2(Ω) + |u(T )|2L2(Ω) + |ut(T )|2L2(Ω) + |v(T )|2L2(Ω) + |vt(S)|2L2(Ω)

+|u(S)|2L2(Ω) + |ut(S)|2L2(Ω) + |v(S)|2L2(Ω)

)
≤ C(α)E(U(S)) .

(250)
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Thanks to Young’s inequalities with appropriate constants,
∣∣∣∣∣

∫ T

S

∫

Γ1

[
(σ2 − σ1)uv + αu2 − autv

]
dΣdt

∣∣∣∣∣

≤
∫ T

S

∫

Γ1

[
1

|α| (σ2 − σ1)
2u2 +

|α|
4
v2 + |α|u2 +

1

|α|a
2u2

t +
|α|
4
v2
]
dΣdt

≤ |α|
2

∫ T

S

∫

Γ1

v2dΣdt + Kα

∫ T

S

∫

Γ1

(
u2 + u2

t

)
dΣdt ,

(251)

where Kα := max
(

1
|α| (σ2 − σ1)

2 + |α|, 1
|α|a

2
)
. From (249), (250) and (251) we

conclude that

|α|
2

∫ T

S

∫

Γ1

v2dΣdt ≤ C(α)

∫ T

S

∫

Γ1

(
u2 + u2

t

)
dΣdt + C(α)E(U(S)) . (252)

�
The second lemma gives a simultaneous estimate of u and v on the boundary

of Ω.

Lemma 3.8. Let 0 < |α| < min(α0, (σ1σ2)
1/2). Then, for every U0 ∈ D(A) and

for every ε > 0,

∫ T

S

∫

Γ1

(u2 + v2)dΣdt ≤ cE(U(S)) + ε

∫ T

S

E(U(t))dt

+
c

ε

∫ T

S

∫

Γ1

(|ut|2 + |vt|2)dΣdt .

(253)

Proof. Let U0 ∈ D(A) and U(t) be the corresponding solution of (234). From
Proposition 3.3, we have that U(t) = (u(t), v(t), p(t), q(t)) ∈ D(A) for all t ≥ 0. In
particular, u(t), v(t) ∈ H2(Ω) ∩H1

Γ0
(Ω) and u(t)|Γ, v(t)|Γ ∈ H3/2(Γ) for all t ≥ 0.

For any fixed time t ≥ 0, we consider two functions z and w (depending on the
parameter t) such that

{
∆z = 0 in Ω ,

z = u(t) on Γ ,

{
∆w = 0 in Ω ,

w = v(t) on Γ .
(254)

Thus z, w ∈ H2(Ω) and moreover
∫

Ω

∇z.∇(u(t) − z)dx = −
∫

Ω

(u(t) − z)∆zdx +

∫

Γ

(u(t) − z)
∂z

∂ν
dΣ = 0 ,

∫

Ω

∇w.∇(v(t) − w)dx = −
∫

Ω

(v(t) − w)∆wdx +

∫

Γ

(v(t) − w)
∂w

∂ν
dΣ = 0 ,
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so
∫

Ω

∇z.∇u(t)dx =

∫

Ω

|∇z|2dx ≥ 0 ,

∫

Ω

∇w.∇v(t)dx =

∫

Ω

|∇w|2dx ≥ 0 . (255)

Moreover, since ut, vt ∈ H1
Γ0

(Ω), then ut(t)|Γ, vt(t)|Γ ∈ H1/2(Γ) for all t ≥ 0, so zt,
wt are weak solutions of systems

{
∆zt = 0 in Ω ,

zt = ut(t) on Γ ,

{
∆wt = 0 in Ω ,

wt = vt(t) on Γ ,
(256)

respectively. By elliptic regularity theory, and since σi > 0, i = 1, 2, we have that
∫

Ω

z2dx ≤ c

∫

Γ1

|u(t)|2dΣ ≤ C(α)E(U(t)) ,

∫

Ω

w2dx ≤ c

∫

Γ1

|v(t)|2dΣ ≤ C(α)E(U(t)) ,

(257)

and ∫

Ω

|zt|2dx ≤ c

∫

Γ1

|ut(t)|2dΣ ,

∫

Ω

|wt|2dx ≤ c

∫

Γ1

|vt(t)|2dΣ . (258)

We multiply the first two equations in (237) for z and for w, respectively, and
integrate over [S, T ] × Ω, for every 0 ≤ S < T ,

0 =

∫ T

S

∫

Ω

(utt − ∆u)zdxdt = [〈ut, z〉L2 ]TS −
∫ T

S

∫

Ω

utztdxdt

−
∫ T

S

∫

Γ

∂u

∂ν
zdΣdt +

∫ T

S

∫

Ω

∇u.∇zdxdt ,

(259)

0 =

∫ T

S

∫

Ω

(vtt − ∆v)wdxdt = [〈vt, w〉L2 ]TS −
∫ T

S

∫

Ω

vtwtdxdt

−
∫ T

S

∫

Γ

∂v

∂ν
wdΣdt +

∫ T

S

∫

Ω

∇v.∇wdxdt .

(260)

Adding identities (259) and (260), thanks to the boundary conditions in (237) and
relations (255), we obtain

∫ T

S

∫

Γ1

(σ1u
2 + σ2v

2)dΣdt ≤
[∫

Ω

(utz + vtw)dx

]S

T

+

∫ T

S

∫

Ω

(utzt + vtwt)dxdt−
∫ T

S

∫

Γ1

(auut + 2αuv)dΣdt .

(261)

We now estimate each term on the right-hand side of (261).
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Thanks to estimates (257) and the dissipation relation (245) of the total energy,
we have∣∣∣∣∣

[∫

Ω

(utz + vtw)dx

]S

T

∣∣∣∣∣ ≤
1

2

∫

Ω

(
|ut(S)|2 + |z(S)|2

)
dx

+
1

2

∫

Ω

(
|vt(S)|2 + |w(S)|2 + |ut(T )|2 + |z(T )|2 + |vt(T )|2 + |w(T )|2

)
dx

≤ C(α)(E(U(S)) + E(U(T ))) ≤ C(α)E(U(S)) ,

where z(t) and w(t) refer to the solutions of systems (254) associated at the fixed
time t. Thanks to Young’s inequality and relations (258), we deduce that for every
ε > 0

∣∣∣∣∣

∫ T

S

∫

Ω

(utzt + vtwt)dxdt

∣∣∣∣∣

≤ ε

∫ T

S

∫

Ω

(
|ut|2 + |vt|2

)
dxdt +

c

ε

∫ T

S

∫

Ω

(
|zt|2 + |wt|2

)
dxdt

≤ 2ε

∫ T

S

E(U(t))dt +
c

ε

∫ T

S

∫

Γ1

(
|ut|2 + |vt|2

)
dΣdt .

Again thanks to Young’s inequality, for every ε2 > 0 we have
∣∣∣∣∣

∫ T

S

∫

Γ1

auutdΣdt

∣∣∣∣∣ ≤ ε2

∫ T

S

∫

Γ1

u2dΣdt +
c

ε2

∫ T

S

∫

Γ1

|ut|2dΣdt .

Finally, since |α| < (σ1σ2)
1/2,

∣∣∣∣∣2
∫ T

S

∫

Γ1

αuvdΣdt

∣∣∣∣∣ =

∣∣∣∣∣2
∫ T

S

∫

Γ1

(σ1α)1/2

(σ1σ2)1/4
u

(σ2α)1/2

(σ1σ2)1/4
vdΣdt

∣∣∣∣∣

≤
∫ T

S

∫

Γ1

(
δσ1u

2 + δσ2v
2
)
dΣdt ,

where 0 < δ = |α|/(σ1σ2)
−1/2 < 1. Back to equation (261), combining the last four

inequalities ensures that for all ε, ε2 > 0
∫ T

S

∫

Γ1

((1 − δ)σ1 − ε2)u
2 + (1 − δ)σ2v

2)dΣdt ≤ C(α)E(U(S))

+ ε

∫ T

S

E(U(t))dt +

(
c

ε
+

c

ε2

)∫ T

S

∫

Γ1

(|ut|2 + |vt|2)dΣdt .

Fix ε2 > 0 such that (1 − δ)σ1 − ε2 > 0. Then relation (253) holds for every
ε > 0. �
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Remark 3.9. It shall be possible to compare the two quantities bounding |α|, the
hypothesis |α| < (σ1σ2)

1/2 from Lemma 3.8 with the “well-posedness“ hypothesis
0 ≤ |α| < α0 = ‖P1‖−1

L . Indeed, ‖P1‖L depends on the values of σ1 and σ2, since
they appear in the norm of the spaces (Vi, | · |Vi

), i = 1, 2.

The next lemma links the integral of the total energy on a time interval to the
contributions of u, v and their derivatives on the part Γ1 of the boundary Γ.

Lemma 3.10. Let 0 < |α| < α0, for some positive constant α0. Then, for every
U0 ∈ D(A),

∫ T

S

E(U(t))dt ≤ cE(U(S)) + c

∫ T

S

∫

Γ1

(u2 + |ut|2 + v2 + |vt|2)dΣdt . (262)

Proof. We now introduce the multiplier Mu = m.∇u + 1
2 (d− 1)u. Then, we

multiply the first equation of (237) for Mu, respectively the second for Mv, and
integrate over Ω × [S, T ], for every 0 ≤ S < T . Integrations by parts and Rellich’s
identity (223) lead to

1

2

∫ T

S

∫

Ω

[
|ut|2 + |∇u|2

]
dxdt = [〈ut,Mu〉L2 ]ST +

∫ T

S

∫

Γ0

m. ν

2

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΣdt

+

∫ T

S

∫

Γ1

[m. ν

2

(
|ut|2 − |∇u|2

)
− (σ1u + aut + αv)Mu

]
dΣdt

and

1

2

∫ T

S

∫

Ω

[
|vt|2 + |∇v|2

]
dxdt = [〈vt,Mv〉L2 ]ST +

∫ T

S

∫

Γ0

m. ν

2

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dΣdt

+

∫ T

S

∫

Γ1

[m. ν

2

(
|vt|2 − |∇v|2

)
− (σ2v + αu)Mv

]
dΣdt .

So, we deduce that
∫ T

S

E(U(t))dt=
1

2

∫ T

S

∫

Ω

[
|ut|2 + |∇u|2 + |vt|2 + |∇v|2

]
dxdt

+
1

2

∫ T

S

∫

Γ1

[
σ1u

2 + σ2v
2 + 2αuv

]
dΣdt

=

[∫

Ω

(utMu + vtMv) dx

]S

T

+
1

2

∫ T

S

∫

Γ0

(∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+

∣∣∣∣
∂v

∂ν

∣∣∣∣
2
)
m. νdΣdt

+

∫ T

S

∫

Γ1

[m. ν

2

(
|ut|2 − |∇u|2 + |vt|2 − |∇v|2

)
+ αuv

]
dΣdt

+

∫ T

S

∫

Γ1

[
1

2
(σ1u

2+σ2v
2)−(σ1u+aut+αv)Mu−(σ2v+αu)Mv

]
dΣdt
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Since m. ν ≥ m0 > 0 on Γ1, we have that

m. ν

2

(
|ut|2 − |∇u|2 + |vt|2 − |∇v|2

)
− (σ1u + aut + αv)Mu +

1

2
σ1u

2

− (σ2v + αu)Mv +
1

2
σ2v

2 + αuv ≤ c(u2 + |ut|2 + v2 + |vt|2) on Γ1 .

Moreover, the integral on Γ0 is non-positive and
∣∣∣∣∣

[∫

Ω

(utMu + vtMv) dx

]S

T

∣∣∣∣∣ ≤ C(α)E(U(S)) .

Then we conclude that
∫ T

S

E(U(t))dt ≤ C(α)E(U(S)) + c

∫ T

S

∫

Γ1

(u2 + |ut|2 + v2 + |vt|2)dΣdt . �

Proof of Theorem 3.6. Thanks to (253), for every ε > 0 we have

∫ T

S

E(U(t))dt ≤ C(α)E(U(S)) + ε

∫ T

S

E(U(t))dt +
c

ε

∫ T

S

∫

Γ1

(|ut|2 + |vt|2)dΣdt .

Morover, the transmission relation (252) applied to vt gives

|α|
2

∫ T

S

∫

Γ1

|vt|2dΣdt ≤ C(α)

∫ T

S

∫

Γ1

(
|ut|2 + |utt|2

)
dΣdt + C(α)E(U ′(S)) . (263)

So, choosing 0 < ε < 1 and thanks to (263) we conclude that

∫ T

S

E(U(t))dt ≤ C(α) (E(U(S)) + E(U ′(S)))+c

∫ T

S

∫

Γ1

(|ut|2+ |utt|2)dΣdt . (264)

Moreover, applying the equation (245) to U ′(t) = (ut, vt, utt, vtt) yields

d

dt
(E(U ′(t))) = −

∫

Γ1

a|utt|2dΣ . (265)

Thanks to (245), (265) and condition a > 0, equation (264) implies

∫ T

S

E(U(t))dt ≤ C(α)(E(U(S)) + E(U ′(S))) (266)

for every 0 ≤ S < T . Thus, by Lemma 1.8 we deduce that

E(U(t)) ≤ C

(1 + t)m

m∑

k=0

E(U (k)(0)) ∀t > 0 . �
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3.4 – Direct proof of strong stability

We now consider H on the field of complex numbers C. A well-known characteriza-
tion of strong stability (see [28]) ensures the equivalence with the spectral condition

iR ∩ σ(A) = ∅ ; (strongly stable) (267)

We will show that system (237) satisfies the condition (267) for every coupling
coefficient 0 < |α| < α0 = ‖P1‖−1

L .
Indeed, let b ∈ R and U = (u, v, p, q) ∈ D(A) such that AU = ibU . By definition

(233) yields 



p = ibu in Ω

q = ibv in Ω

∆u = ibp in Ω

∆v = ibq in Ω

u = 0 = v on Γ0

∂u

∂ν
+ σ1u + βp + αv = 0 on Γ1

∂v

∂ν
+ σ2v + αu = 0 on Γ1 .

(268)

Our aim is to show that U = 0.

Case b = 0. From the first two equations in (268) we deduce that p = 0 = q.
Moreover, multiplying the third and fourth equation of (268) for ū and v̄ respec-
tively, integrating over Ω, summing the two relations and integrating by parts, we
get

0 =

∫

Ω

(|∇u|2 + |∇v|2)dx +

∫

Γ1

[σ1u
2 + σ2v

2 + α(uv̄ + ūv)]dΣ , (269)

so u = 0 = v for α sufficiently small, thus U = 0.

Case b �= 0. Multiplying for −U both terms of the identity AU = ibU , then
taking the real part, we have that

∫

Γ1

βp2dΣ = 〈Bp, p〉V ′
1 ,V1

= −R(AU,U)H = 0 ,

so p = 0 on Γ1 and, from the first identity in (268), also u = 0 on Γ1. Thus, the
boundary conditions on Γ1 in (268) become





∂u

∂ν
+ αv = 0

∂v

∂ν
+ σ2v = 0

on Γ1 , (270)
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whereas, combining the first with the third equations and the second with the forth,
the equations in Ω reduce to

{
∆u + b2u = 0

∆v + b2v = 0
in Ω . (271)

Multiplying the first equation for v̄ and the second for ū in the L2(Ω)-scalar product,
then integrating by parts, we deduce

0 =

∫

Ω

(b2vū−∇v.∇ū)dx +

∫

Γ1

v
∂ū

∂ν
dΣ ,

0 =

∫

Ω

(b2vū−∇v.∇ū)dx .

Then, subtracting these two relations, and using the first equation in (270), we
have that α

∫
Γ1

v2dΣ = 0, so v = 0 on Γ1, and again from (270) we have that
∂νu = 0 = ∂νv on Γ1. So we conclude that ∇u = 0 = ∇v on Γ1. By applying the
multiplier Mū = dū+ 2m.∇ū to the first equation in (271), we deduce the identity

2

∫

Ω

|∇u|2dx =

∫

Γ0

m. ν|∂u
∂ν

|2dΣ ≤ 0 ,

so ∇u = 0 in Ω and u = 0 by Poincaré’s inequality. We obtain also that v = 0,
multiplying the second equation of (271) for Mv̄. Thus, we have U = 0.

Finally, we have shown that iR ⊂ ρ(A), that is, condition (267) holds. We point
out that condition (267), together with relation

sup{‖(iβ −A)−1‖L(H) : β ∈ R} < +∞ , (272)

gives a characterization of (uniform) exponential stability for the linear dynamical
system (237) (see [98]), that remains, for the time being, an open issue. Indeed,
exponential stability for system (237) cannot be ruled out by the same compactness
argument as in the case of distributed coupling (see Chapter 1). It would be in-
teresting to look to disprove condition (272) for system (237), in this way ensuring
that exponential stability cannot occur for system (237).

– Introduction to Part II

One of the most fascinating aspects of the theory of parabolic equations lies
on the wide connection and interaction of several different mathematical subjects,
either abstract in nature such as evolution equations, harmonic analysis, stochastic
processes, or toward applications such as fluid models, population dynamics and
mathematical finance.
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In this prospective, one very challenging topic in the theory of parabolic op-
erators concerns the issue of control theory for parabolic equations, ranging from
approximate and null controllability to optimality conditions.
In view of optimal control problems, thanks to the regularizing effect of the heat
operator, most of the results connected with the Pontryagin Maximum Principle
(see, e.g., [76, 77]) extends to parabolic control systems, as well as a substantial
part of the dynamic programming approach for both linear quadratic problems
(see, e.g., [109]; see also [29]) and nonlinear control problems (see, e.g., [57, 58]; see
also [49, 51]).

On the other hand, as far as controllability and stabilization are concerned,
the case of parabolic operators differs strongly from the finite-dimensional one or
other kinds of partial differential equations like the wave equation, owing to peculiar
aspects of parabolic operators, for example, with regards to the infinite speed of
propagation and the subsequent instantaneous regularizing effect.

Pioneering works on the controllability of parabolic equations are mainly due
to Fattorini and Russell [79, 134, 78, 67]. Their approach was essentially based
on Riesz basis expansion techniques, proving very effective to treat operators with
constant coefficients.

Thereafter, new substantial developments were achieved in the nineties by the
systematic use of Carleman type estimates. Such estimates are weighted energy esti-
mates in suitable Sobolev norms, with weights of exponential type. First introduced
in early works by Carleman [52] for the quantification of the unique continuation
property for elliptic operators in dimension two, Carleman estimates were then
extended to large classes of partial differential operators in arbitrary space dimen-
sions by Hörmander [96, 97] and other authors (see, e.g., [145]), still in a unique
continuation context. In the prospective of control theory, Lebeau and Robbiano
[112] applied Carleman estimates to control problems for parabolic operators, by
combining local Carleman estimates (i.e., for solutions with compact support) with
Riesz basis techniques. Then, Fursikov and Imanuvilov [102, 90] performed global
estimates for solutions satisfying boundary conditions, and applied them in order
to derive null controllability results directly.

More recently, controllability theory for (uniformly) parabolic equations has
grown in various directions, such as:

– semilinear parabolic problems (see for example [12, 13, 56, 68, 69, 73, 82, 85, 84,
143]),

– problems in unbounded domains (see [40, 64, 65, 125, 126] and also [50] and
[119]),

– fluid models such as Euler, Stokes and Navier-Stokes equations (see [20, 53, 54,
74, 75, 101, 99, 83, 87, 90]), and

– equations with discontinuous coefficients (see [26, 133]).
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On the other hand, up to now fewer results are known for degenerate parabolic op-
erator, even though this class of problems has received increasing attention in recent
years, being associated with both important theoretical subject, such as stochastic
diffusion processes, and interesting applications to engineering, physics, biology, and
economics. Compared to nondegenerate parabolic problems, degenerate parabolic
equations require major technical adaptations and a frequent use of Hardy type
inequalities.

We describe below typical examples where degeneracy of the parabolic equations
is entailed in the mathematical modelisation of the problem.

– Stochastic invariance for subset of Rd

The interaction between degenerate parabolic operators and stochastic processes
is well-known since Feller’s investigations [80, 81]. Moreover, in recent years, sev-
eral authors have singled out the class of degenerate elliptic operators which may
degenerate at the boundary of the space domain, in the normal direction to the
boundary. Such class of operators is related with the study of invariant sets for
stochastic diffusion processes. Given Lipschitz continuous maps b : Rd → Rd and
σ : Rd → L(Rd;Rm), with d,m ∈ N, let X(x, ·) denote the unique solution of

{
dX(t) = b(X(t))dt + σ(X(t))dW (t) t ≥ 0

X(0) = x ∈ Rn ,

where W (t) is a standard m−dimensional Brownian motion on a complete filtered
probability space. A set S ⊂ Rd is said to be invariant for X(·, ·) if and only if

x ∈ S ⇒ X(x, t) ∈ S P− a.s. ∀t ≥ 0 .

Several investigations and results were obtained for the problem of finding conditions
for the invariance of a closed domain Ω for the stochastic flow X(·, ·), and even for
more general problems such as stochastic differential inclusions and control systems
(see [89, 14, 15, 36, 21, 61, 60, 59]). Within the conditions for the invariance of a
set, a main role is played by the distance function and the elliptic operator

Lu(x) =
1

2
Tr[a(x)∇2u(x)] + 〈b(x),∇u(x)〉 , (273)

where a(x) = σ(x)σ∗(x). More precisely, one can show that, assuming the boundary
Γ := ∂Ω to be regular, the domain Ω is invariant if and only if for all x ∈ Γ

(i) LdΓ,Ω(x) ≥ 0
(274)

(ii) 〈a(x)∇dΓ,Ω(x),∇dΓ,Ω(x)〉 = 0
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where

dΓ,Ω(x) :=

{
d(x; Γ) if x ∈ Ω
−d(x; Γ) if x ∈ Ωc

is the so-called oriented distance from Γ. In particular, observe that condition (ii)
in (274) forces a(x) to be a singular matrix for all x ∈ Γ, with ∇dΓ,Ω(x)−the inward
unit normal to Ω at x−eigenvector of a(x) associated with the zero eigenvalue. The
same conditions (274) show to be necessary and sufficient for the invariance of the
open set Ω. Using the invariance of Ω, one can then show that, for any sufficiently
smooth function ϕ : Ω → R, the transition semigroup

u(x, t) = E[ϕ(X(x, t))]

is the unique solution of the parabolic equation





ut = Lu in Ω × (0, T )

〈a∇u,∇dΓ,Ω〉 = 0 on Γ × (0, T )

u(x, 0) = ϕ(x) x ∈ Ω ,

where the above boundary condition is a direct consequence of (274).

– Laminar flow

Another example of a degenerate parabolic operator arises from a completely
different domain, in fluid dynamics models. Consider the Prandtl equations (see,
e.g., [129]), that describes the velocity field of a laminar flow on a flat plate. Ap-
plying the so-called ”Crocco change of variables”, these equations transform into
a nonlinear degenerate parabolic equation–the Crocco equation–on the plane do-
main Ω = (0, L) × (0, 1). At this point, in order to study properties of equilibria of
the system, we focus our interest on the linearization of the Crocco equation at a
stationary solution





ut + bux − auyy + cu = f (x, y, t) ∈ Ω × (0, T ) ,

uy(x, 0, t) = u(x, 1, t) = 0 (x, t) ∈ (0, L) × (0, T ) ,

u(0, y, t) = u1(y, t) (y, t) ∈ (0, 1) × (0, T ) ,

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω ,

(275)

where f and u1 depend on the incident velocity of the flow. Moreover, the co-
efficients a, b and c are regular but degenerate at the boundary, indeed hold the
conditions

0 < b1 ≤ b(y)

y
≤ b2 , 0 < a1 ≤ a(x, y)

−(y − 1)2ln(µ(1 − y))
≤ a2 , c(x, y) ≥ 0 ,
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for suitable constants ai, bi (i = 1, 2) and µ ∈ (0, 1) (see [35]). Clearly, another
degeneracy for problem (275) occurs owing to the second derivative uxx, that is
missing throughout the whole domain.

– Budyko-Sellers climate models

Two classical models for climate changes go back to the end of sixties, inde-
pendently due to Budyko [37, 38] and Sellers [136] (see also [66]). Both of them
investigate the evolution of the (sea level zonally averaged) temperature u(x, t) on
the Earth surface, for a long period of time, taking into account the interaction
between large ice masses and solar radiation. The mathematical model describing
such evolution takes the form of a semilinear parabolic equation defined on a com-
pact manifold in R3. By considering the temperature constant along a parallel, we
obtain a simplified one-dimensional model, representing the evolution of tempera-
ture along a fixed meridian. Then, the heat-balance equation for the temperature
u is given by

cut − (k(1 − x2)ux)x =
1

4
S0s(x)α(x, u) − I(u) , (x, t) ∈ (−1, 1) × (0, T ) , (276)

where c is the thermal capacity of the Earth, k the horizontal thermal conductivity
which may be a function of x, S0 the solar constant, s(x) the normalized distribution
of solar input, α the coalbedo and I(u) the outgoing infrared radiation which, in
Budyko’s model, is an affine function, that is, I(u) = a + bu. Notice that the
diffusion coefficient of the operator in equation (276) degenerates at the boundary
of the space domain. The above equation shall be endowed with the following
boundary conditions

(1 − x2)ux = 0 at x = ±1 . (277)

– Structure of Part II

The Part II of this monograph addresses controllability properties of degener-
ate parabolic operators. In Chapter 4 we prove a null controllability result for a
generalized Grushin operator, and lack thereof, with dependence of a parameter
that characterizes the degeneracy order. This operator has been first introduced in
works due to Baouendi [19] and Grushin [93, 94], in the contest of hypoelliptic oper-
ators and elliptic pseudodifferential operators degenerating on a submanifold of the
domain, further developed by Hörmander [95, 97]. Subsequently, Grushin equation
has been investigated concerning strong unique continuation [91] (see Section 4.1.2).

Chapter 5 is devoted to prove the null controllability in large time of a Grushin
operator with a singular potential, that locally models the Laplace-Beltrami oper-
ator

as recently suggested by the study of the Grushin metric on a two dimensional
compact manifold endowed with an almost Riemannian structure [33].
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4 – The generalized Grushin operator in dimension two

The present chapter is based on the article Null controllability of Grushin-type operators

in dimension two, Journal of European Mathematical Society, 67-101 (16) 2014, in collab-

oration with Karine Beauchard and Piermarco Cannarsa.

4.1 – Introduction

4.1.1 – Main result

We consider the generalized Grushin equation
{

∂tu− ∂2
xu− |x|2γ∂2

yu = f(x, y, t)1ω(x, y) (x, y, t) ∈ Ω × (0,∞) ,
u(x, y, t) = 0 (x, y, t) ∈ ∂Ω × (0,∞) ,

(278)

where Ω := (−1, 1) × (0, 1), ω ⊂ Ω, and γ > 0. Problem (278) is a linear control
system in which

• the state is u,
• the control f is supported in the subset ω.

It is a degenerate parabolic equation, since the coefficient of ∂2
yu vanishes on the

line {x = 0} × {y ∈ (0, 1)}. We will investigate the null controllability of (278).

Definition 4.1 (Null controllability). Let T > 0. System (278) is null control-
lable in time T if, for every u0 ∈ L2(Ω), there exists f ∈ L2(Ω × (0, T )) such that
the solution of





∂tu− ∂2
xu− |x|2γ∂2

yu = f(x, y, t)1ω(x, y) (x, y, t) ∈ Ω × (0, T ) ,
u(t, x, y) = 0 (t, x, y) ∈ ∂Ω × (0, T ) ,
u(0, x, y) = u0(x, y) (x, y) ∈ Ω ,

(279)

satisfies u(·, ·, T ) = 0.
System (278) is null controllable if there exists T > 0 such that it is null con-

trollable in time T .

The main result of this chapter is the following one.

Theorem 4.2. Let ω be an open subset of (0, 1) × (0, 1).

1. If γ ∈ (0, 1), then system (278) is null controllable in any time T > 0.

2. If γ = 1 and ω = (a, b)× (0, 1) where 0 < a < b � 1, then there exists T ∗ � a2

2
such that

• for every T > T ∗ system (278) is null controllable in time T ,
• for every T < T ∗ system (278) is not null controllable in time T .

3. If γ > 1, then (278) is not null controllable.
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Remark 4.3. Indeed, in Section 4.3.3 we will prove that there exists T ∗ � a2

2

such that point 2. is verified (compare with Theorem 4.17). The identity T ∗ = a2

2
has been recently proved by Miller [128] (see also [71]).

By a duality argument, the null controllability of (278) is equivalent to an ob-
servability inequality for the adjoint system

{
∂tg − ∂2

xg − |x|2γ∂2
yg = 0 (x, y, t) ∈ Ω × (0,∞) ,

g(x, y, t) = 0 (x, y, t) ∈ ∂Ω × (0,∞) .
(280)

Definition 4.4 (Observability). Let T > 0. System (280) is observable in ω in
time T if there exists C > 0 such that, for every g0 ∈ L2(Ω), the solution of





∂tg − ∂2
xg − |x|2γ∂2

yg = 0 (x, y, t) ∈ Ω × (0, T ) ,
g(x, y, t) = 0 (x, y, t) ∈ ∂Ω × (0, T ) ,
g(x, y, 0) = g0(x, y) (x, y) ∈ Ω ,

(281)

satisfies ∫

Ω

|g(x, y, T )|2dxdy � C

∫ T

0

∫

ω

|g(x, y, t)|2dxdydt .

System (280) is observable in ω if there exists T > 0 such that it is observable in ω
in time T .

Thus, Theorem 4.2 is equivalent to the following observability/lack of observ-
ability result.

Theorem 4.5. Let ω be an open subset of (0, 1) × (0, 1).

1. If γ ∈ (0, 1), then system (281) is observable in ω in any time T > 0.

2. If γ = 1 and ω = (a, b)× (0, 1) where 0 < a < b � 1, then there exists T ∗ � a2

2
such that

• for every T > T ∗ system (281) is observable in ω in time T ,
• for every T < T ∗ system (281) is not observable in ω in time T .

3. If γ > 1, then system (281) is not observable in ω.

Remark 4.6. When γ = 1, the geometric restriction on the control domain ω
only affects our positive result. Indeed, Theorem 4.2 trivially implies that (278) fails
to be null controllable (if γ = 1 and T is small) when ω is any connected open set at
positive distance from the degeneracy region {x = 0}. It is also straightforward to
observe that, if ω contains a strip containing {x = 0}, then null controllability holds
for any γ > 0 thanks to standard localization arguments (see the Appendix 4.6).
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4.1.2 – Motivation and bibliographical comments

Null controllability of the heat equation The null and approximate controllability
of the heat equation are essentially well understood subjects for both linear and
semilinear equations, and for bounded or unbounded domains (see, for instance,
[68, 73, 84, 85, 86, 92, 104, 112, 118, 126, 127, 143, 144]). Let us summarize one of
the existing main results. Consider the linear heat equation





∂tu− ∆u = f(x, t)1ω(x) (x, t) ∈ Ω × (0, T ) ,
u(x, t) = 0 (x, t) ∈ ∂Ω × (0, T ) ,
u(x, 0) = u0(x) x ∈ Ω ,

(282)

where Ω is an open subset of Rd, d ∈ N∗, and ω is a subset of Ω. The following
theorem is due, for the case d = 1, to H. Fattorini and D. Russell [79, Theorem 3.3],
and, for d � 2, to O. Imanuvilov [102, 103] (see also the book [90] by A. Fursikov
and O.Imanuvilov) and G. Lebeau and L. Robbiano [112] (see also [113]).

Theorem 4.7. Let Ω be a bounded connected open set with boundary of class
C2 and ω be a nonempty open subset of Ω. Then the control system (282) is null
controllable in any time T > 0.

So, the heat equation on a smooth bounded domain is null controllable

– in arbitrarily small time;
– with an arbitrarily small control support ω.

Recently, null controllability results have also been obtained for uniformly parabolic
operators with discontinuous (see, e.g. [69, 26, 27, 133]) or singular ([139] and [72])
coefficients.

It is then natural to wonder whether null controllability also holds for degenerate
parabolic equations such as (278) (see the Introduction to Part II for application
fields of this kind of equations). Let us compare the known results for the heat
equation with the results proved in this chapter. The first difference concerns the
geometry of Ω: a more restrictive configuration is assumed in Theorem 4.2 than
in Theorem 4.7. The second difference concerns the structure of the controllability
results. Indeed, while the heat equation is null controllable in arbitrarily small
time, the same result holds for the Grushin equation only when degeneracy is not
too strong (i.e. γ ∈ (0, 1)). On the contrary, when degeneracy is too strong (i.e.
γ > 1), null controllability does not hold any more. Of special interest is the
transition regime (γ = 1), where the ‘classical’ Grushin operator appears: here,
both behaviours live together, and a positive minimal time is required for the null
controllability, a feature more suited for hyperbolic equations. To our knowledge,
the existence of a minimal time for the null controllability of the Grushin equation
is a novelty for parabolic operators.
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Boundary-degenerate parabolic equations The null controllability of parabolic equa-
tions degenerating on the boundary of the domain in one space dimension is well-
understood, much less so in higher dimension.
Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂tu− ∂x(x
2γ∂xu) = f(x, t)1(a,b)(x) , (x, t) ∈ (0, 1) × (0,∞) ,

with suitable boundary conditions. Then, it can be proved that null controllability
holds if and only if γ ∈ (0, 1) (see [44, 45]), while, for γ ≥ 1, the best result one
can show is “regional null controllability”(see [43]), which consists in controlling
the solution within the domain of influence of the control. Several extensions of
the above results are available in one space dimension, see [3, 123] for equations in
divergence form, [48, 47] for nondivergence form operators, and [41, 88] for cascade
systems. Fewer results are available for multidimensional problems, mainly in the
case of two dimensional parabolic operators which simply degenerate in the normal
direction to the boundary of the space domain, see [46]. Note that, similarly to the
above references, also for the Grushin equation null controllability holds if and only
if the degeneracy is not too strong.

Parabolic equations degenerating inside the domain In [124] the authors study a
linearized Crocco type equation





∂tu + ∂xu− ∂vvu = f(x, v, t)1ω(x, v) (x, v, t) ∈ (0, L) × (0, 1) × (0, T ) ,
u(x, 0, t) = u(x, 1, t) = 0 (x, t) ∈ (0, L) × (0, T ) ,
u(0, v, t) = u(L, v, t) (v, t) ∈ (0, 1) × (0, T ) .

For a given open subset ω of (0, L) × (0, 1), they prove regional null controllabil-
ity. Notice that, in the above equation, diffusion (in v) and transport (in x) are
decoupled.

In [24], the authors study the Kolmogorov equation

∂tu + v∂xu− ∂vvu = f(x, v, t)1ω(x, v) , (x, v) ∈ (0, 1)2 , (283)

with periodic-type boundary conditions. They prove null controllability in arbitrar-
ily small time, when the control region ω is a strip, parallel to the x-axis. We note
that the above Kolmogorov equation degenerates on the whole space domain, un-
like Grushin’s equation. However, differently from the linearized Crocco equation,
transport (in x at speed v) and diffusion (in v) are coupled. For this reason, the
null controllability results differ strongly for these two equations.

Unique continuation and approximate controllability It is well-known that, for evolu-
tion equations, approximate controllability can be equivalently formulated as unique
continuation for the adjoint system (see [141]). The unique continuation problem
for the elliptic Grushin-type operator

A = ∂2
x + |x|2γ∂2

y
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has been widely investigated. In particular, in [91] (see also references therein)
unique continuation is proved for every γ > 0 and every open set ω. For the
generalized parabolic Grushin operator studied in this chapter, unique continuation
holds for every γ > 0, T > 0, and any open set ω ⊂ Ω (see Proposition 4.13).

Null controllability and hypoellipticity We find interesting to analyze the null con-
trollability problem for the generalized Grushin operator in order to investigate the
connections between null controllability of an evolution equation and hypoellipticity
of its principal operator.

For a given distribution u in Ω ⊂ Rd, the smallest set K for which u is smooth on
Rd \K is the singular support of u, denoted by sing suppu. We recall that a linear
differential operator P with C∞ coefficients in an open set Ω is called hypoelliptic
if, for every distribution u in Ω, we have

sing suppu = sing suppPu ,

that is, u must be a C∞ function in every open set where so is Pu. The following
sufficient condition (which is also essentially necessary) for hypoellipticity is due to
Hörmander (see [95]).

Theorem 4.8. Let P be a second order differential operator of the form

P =

r∑

j=1

X2
j + X0 + c ,

where X0, ..., Xr denote first order homogeneous differential operators in an open set
Ω ⊂ Rd with C∞ coefficients, and c ∈ C∞(Ω). Assume that there exists d operators
among

Xj1 , [Xj1 , Xj2 ] , [Xj1 , [Xj2 , Xj3 ]] , . . . , [Xj1 , [Xj2 , [Xj3 , [..., Xjk ]...]]] ,

where ji ∈ {0, 1, ..., r}, which are linearly independent at any given point in Ω.
Then, P is hypoelliptic.

Hörmander’s condition is satisfied by the Grushin operator A = ∂2
x + |x|2γ∂2

y for
every γ ∈ N∗ (for other values of γ, the coefficients are not C∞). Indeed, set

X1(x, y) :=

(
1
0

)
, X2(x, y) :=

(
0
xγ

)
.

Then,

[X1, X2](x, y) =

(
0

γxγ−1

)
, [X1, [X1, X2]](x, y) =

(
0

γ(γ − 1)xγ−2

)
, . . .
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Thus, if γ = 1, Hörmander’s condition is satisfied with X1 and [X1, X2]. In general,
if γ ≥ 1, γ iterated Lie brackets are required to span R2, precisely X1 and the γ−th
Lie bracket.

Theorem 4.2 emphasizes that hypoellipticity is not sufficient for null control-
lability: Grushin’s operator is hypoelliptic for all γ ∈ N∗, but null controllability
holds only when γ = 1.

The situation is similar for the Kolmogorov equation (283), where

X0(x, v) :=

(
v
0

)
, X1(x, v) :=

(
0
1

)
, [X1, X2](x, v) =

(
1
0

)
.

Here again, null controllability holds and the first iterated Lie bracket is sufficient
to satisfy Hörmander’s condition.

Therefore, the null controllability may be related to the number of iterated Lie
bracket necessary to satisfy Hörmander’s condition. Indeed, the Grushin equation
is null controllable when γ = 1, i.e. when the first Lie bracket is sufficient to achieve
Hörmander’s condition, but it is not null controllable when γ > 1, i.e. when Lie
brackets of order 0 and γ are required, with a gap in between.

A general result which relates null controllability to the number of iterated Lie
brackets that are necessary to satisfy Hörmander’s condition would be very inter-
esting, but remains—for the time being—a challenging open problem.
An intermediate step in this direction would be to characterize Hörmander’s condi-
tion as necessary and sufficient (with further hypotheses) condition for approximate
controllability.

Sensitivity to singular lower order terms In [33] the authors study the Laplace-
Beltrami operator on a two dimensional compact manifold endowed with a 2D
almost Riemannian structure. Under very general assumptions, they prove that
this operator is essentially selfadjoint. In the particular case of the Grushin metric,
their result implies that any solution of

∂tu− ∂2
xu− x2∂2

yu− 1

x
∂xu = 0, x ∈ R, y ∈ T (284)

such that u(·, ·, 0) is supported in R∗
+ × T stays supported in this set. As a conse-

quence, with a distributed control as a source term in the right hand side, supported
in R∗

+×T, this system is not null controllable. This example shows that the control
result studied in this chapter is sensitive to the addition of singular lower order
terms. See also Chapter 5 for a first glance into controllability properties of equa-
tion (284).

4.1.3 – Structure of the chapter

Section 4.2 is devoted to general results about Grushin’s equation (278): well
posedness in Section 4.2.1, Fourier decomposition of solutions and unique continu-
ation in Section 4.2.2, dissipation rate of the Fourier components in Section 4.2.3.
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Section 4.3 presents the proof of the negative statements of Theorem 4.5, (and,
equivalently, of Theorem 4.2), when γ > 1 or γ = 1 and T is small. In Section 4.3.1
we explain the strategy for the proof, which relies on uniform observability estimates
with respect to Fourier frequencies. Then, we show the negative statements of
Theorem 4.5, thanks to appropriate test functions to falsify uniform observability,
in Section 4.3.2 for γ > 1 and in Section 4.3.3 for γ = 1.

In Section 4.4 we perform the proof of the positive statements of Theorem 4.2,
(and equivalently of Theorem 4.5) when γ ∈ (0, 1) or γ = 1 and T is large. In
Section 4.4.1 we prove a useful Carleman inequality for 1D heat equations with
parameters. In Section 4.4.2, we obtain observability for such equations, uniformly
with respect to the parameter. In Section 4.4.3, we prove Theorem 4.5 when γ < 1.
Then, in Section 4.4.4, we conclude the proof of Theorem 4.5.

Finally, in Section 4.5, we shortly outline some open problems related to the
problem studied in this chapter. Appendix 4.6 completes the analysis in the case
of {x = 0} ⊂ ω.

4.2 – Well-posedness and Fourier decomposition

4.2.1 – Well-posedness of the Cauchy problem

Let H := L2(Ω), and denote by 〈·, ·〉 and | · |H , respectively, the scalar product
and norm in H. Define the product

(u, v) :=

∫

Ω

(
uxvx + |x|2γuyvy

)
dxdy (285)

for every u, v in C∞
0 (Ω), and set V = C∞

0 (Ω)
| · |V

, where |u|V := (u, u)1/2.
Observe that H1

0 (Ω) ⊂ V ⊂ H, thus V is dense in H. Consider the bilinear form
a on V defined by

a(u, v) = −(u, v) ∀u, v ∈ V . (286)

Moreover, set

D(A) = {u ∈ V : ∃ c > 0 such that |a(u, h)| ≤ c‖h‖H ∀h ∈ V } , (287)

〈Au, h〉 = a(u, h) ∀h ∈ V . (288)

Then, we can apply a result by Lions [115] (see also Theorem 1.18 in [141]) to
conclude that (A,D(A)) generates an analytic semigroup S(t) of contractions on
H. Note that A is selfadjoint on H, and (288) implies that

Au = ∂2
xu + |x|2γ∂2

yu a.e. in Ω .
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So, system (279) can be recast in the form
{
u′(t) = Au(t) + f(t) t ∈ [0, T ] ,

u(0) = u0 ,
(289)

where T > 0, f ∈ L2(0, T ;H) and u0 ∈ H.
Let us now recall the definition of weak solutions to (289).

Definition 4.9 (Weak solution). Let T > 0, f ∈ L2(0, T ;H) and u0 ∈ H. A
function u ∈ C([0, T ];H) ∩ L2(0, T ;V ) is a weak solution of (289) if for every h ∈
D(A) the function 〈u(t), h〉 is absolutely continuous on [0, T ] and for a.e. t ∈ [0, T ]

d

dt
〈u(t), h〉 = 〈u(t), Ah〉 + 〈f(t), h〉 . (290)

Note that, as showed in [114], condition (290) is equivalent to the definition of
solution by transposition, that is,

∫

Ω

[u(x, y, t∗)ϕ(x, y, t∗) − u0(x, y)ϕ(x, y, 0)]dxdy

=

t∗∫

0

∫

Ω

{
u
(
∂2
xϕ + |x|2γ∂2

yϕ
)

+ fϕ
}
dxdydt

for every ϕ ∈ C2(Ω × [0, T ]) and t∗ ∈ (0, T ).
Let us recall that, for every T > 0 and f ∈ L2(0, T ;H), the mild solution of

(289) is defined as

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds , t ∈ [0, T ] . (291)

From [18], we have that the mild solution to (289) is also the unique weak solution
in the sense of Definition 4.9. The following existence and uniqueness result follows.

Proposition 4.10. For every u0 ∈ H, T > 0 and f ∈ L2(0, T ;H), there exists
a unique weak solution of the Cauchy problem (289). This solution satisfies

|u(t)|H � |u0|H +
√
T‖f‖L2(0,T ;H) ∀t ∈ [0, T ] . (292)

Moreover, f(t) ∈ D(A) and f ′(t) ∈ H for a.e. t ∈ (0, T ).

Proof. Relation (292) follows from (291). Moreover, since S(·) is analytic,
the application t �→ S(t)f0 belongs to C1((0, T ];H) ∩ C0((0, T ];D(A)), and t �→∫ t

0
S(t−s)u(s)ds belongs to H1(0, T ;H)∩L2(0, T ;D(A)). In particular f(t) ∈ D(A)

and f ′(t) ∈ H for a.e. t ∈ (0, T ) (see, e.g., [29]). �



[89] Stabilization and control of partial differential equations of evolution 171

4.2.2 – Fourier decomposition and unique continuation

Let us consider the solution of (281) in the sense of Definition 4.9, that is, the
solution of system (289) with u0 = g0 and f = 0. Since g belongs to C([0, T ];L2(Ω)),
the function y �→ g(x, y, t) belongs to L2(0, 1) for a.e. (x, t) ∈ (−1, 1) × (0, T ), thus
it can be developed in Fourier series with respect to y as follows

g(x, y, t) =
∑

n∈N∗

gn(x, t)ϕn(y) , (293)

where

ϕn(y) :=
√

2 sin(nπy) ∀n ∈ N∗

and

gn(x, t) :=

∫ 1

0

g(x, y, t)ϕn(y)dy ∀n ∈ N∗ . (294)

Proposition 4.11. For every n ≥ 1, gn is the unique weak solution of





∂tgn − ∂2
xgn + (nπ)2|x|2γgn = 0 (x, t) ∈ (−1, 1) × (0, T ) ,

gn(±1, t) = 0 t ∈ (0, T ) ,
gn(x, 0) = g0,n(x) x ∈ (−1, 1) ,

(295)

where g0,n ∈ L2(−1, 1) is given by g0,n(x) :=

∫ 1

0

g0(x, y)ϕn(y)dy.

For the proof we need the following characterization of the elements of V . We
denote by L2

γ(Ω) the space of all square-integrable functions with respect to the
measure dµ = |x|2γdxdy.

Lemma 4.12. For every g ∈ V there exist ∂xg ∈ L2(Ω), ∂yg ∈ L2
γ(Ω) such that

∫

Ω

(
g(x, y)∂xφ(x, y) + |x|2γg(x, y)∂yφ(x, y)

)
dxdy

= −
∫

Ω

(
∂xg(x, y) + |x|2γ∂yg(x, y)

)
φ(x, y)dxdy

(296)

for every φ ∈ C∞
0 (Ω).

Proof. Let g ∈ V , and consider a sequence (gn)n≥1 in C∞
0 (Ω) such that

gn → g in V , that is

∫

Ω

[
(gn − g)2x + |x|2γ(gn − g)2y

]
dxdy → 0 as n → +∞ .
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Thus, (∂xg
n)n≥1 is a Cauchy sequence in L2(Ω) and (∂yg

n)n≥1 is a Cauchy sequence
in L2

γ(Ω). So, there exist h ∈ L2(Ω) and k ∈ L2
γ(Ω) such that ∂xg

n → h in L2(Ω)
and ∂yg

n → k in L2
γ(Ω). Hence,

∫

Ω

(
gn∂xφ + |x|2γgn∂yφ

)
dxdy = −

∫

Ω

(
∂xg

nφ + |x|2γ∂ygnφ
)
dxdy

�
�∫

Ω

(
g∂xφ + |x|2γg∂yφ

)
dxdy = −

∫

Ω

(
hφ + |x|2γkφ

)
dxdy

as n → +∞. This yields the conclusion with ∂xg = h and ∂yg = k. �

For any n ≥ 1, system (295) is a first order Cauchy problem, that admits the
unique weak solution

g̃n ∈ C0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H1
0 (−1, 1))

which satisfies

d

dt

(∫ 1

−1

g̃n(x, t)ψ(x)dx

)

+

∫ 1

−1

[
g̃n,x(x, t)ψx(x) + (nπ)2|x|2γ g̃n(x, t)ψ(x)

]
dx = 0

(297)

for every ψ ∈ H1
0 (−1, 1).

Proof of Proposition 4.11. In order to verify that the nth Fourier coefficient
of g, defined by (294), satisfies system (295), observe that

gn(·, 0) = g0,n(·) , gn(±1, t) = 0 ∀t ∈ (0, T )

and

gn ∈ C0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H1
0 (−1, 1)) .

Thus, it is sufficient to prove that gn fulfills condition (297). Indeed, using the
identity (294), for all ψ ∈ H1

0 (−1, 1) we obtain, for a.e. t ∈ [0, T ],

d

dt

(∫ 1

−1

gnψdx

)
+

∫ 1

−1

(
gn,xψx + (nπ)2|x|2γgnψ

)
dx

=

∫ 1

−1

∫ 1

0

{
gtϕnψ + gxϕnψx + (nπ)2|x|2γgϕnψ

}
dydx .

(298)
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Observe that Proposition 4.10 ensures gt(·, t) ∈ L2(Ω) and g(·, t) ∈ D(A) for a.e.
t ∈ (0, T ). So, multiplying gt−Ag = 0 by h(x, y) = ψ(x)ϕn(y) ∈ V and integrating
over Ω we obtain, for a.e. t ∈ (0, T ),

0 =

∫ 1

0

∫ 1

−1

(gt −Ag)ψϕndxdy

=

∫ 1

0

∫ 1

−1

gtψϕndxdy +

∫ 1

0

∫ 1

−1

(
gxψxϕn + |x|2γgyψϕn,y

)
dxdy

=

∫ 1

0

∫ 1

−1

gtψϕndxdy +

∫ 1

0

∫ 1

−1

(
gxψxϕn + (nπ)2|x|2γgψϕn

)
dxdy ,

(299)

where (in the last identity) we have used Lemma 4.12. Combining (298) and (299)
completes the proof. �

Proposition 4.13. Let T > 0, γ > 0, let ω be a bounded open subset of (0, 1)×
(0, 1), and let g ∈ C([0, T ];H) ∩ L2(0, T ;V ) be a weak solution of (280). If g ≡ 0
on ω × (0, T ), then g ≡ 0 on Ω × (0, T ).

Proof. Let ε > 0 be such that ω ⊂ (ε, 1) × (0, 1). By unique continuation for
uniformly parabolic 2D equation, we deduce that g ≡ 0 on (ε, 1) × (0, 1) × (0, T ).
Thus, gn ≡ 0 on (ε, 1) × (0, T ) for every n ∈ N∗. Then, by unique continuation for
the uniformly parabolic 1D equation (295), we deduce that gn ≡ 0 on (−1, 1)×(0, T )
for every n ∈ N∗, thus g ≡ 0 on Ω × (0, T ) thanks to equation (293). �

4.2.3 – Dissipation speed

Let us introduce, for every n ∈ N∗, γ > 0, the operator An,γ defined on L2(−1, 1)
by

D(An,γ) := H2 ∩H1
0 (−1, 1) , An,γϕ := −ϕ′′ + (nπ)2|x|2γϕ . (300)

The least eigenvalue of An,γ is given by

λn,γ = min

{∫ 1

−1

[
v′(x)2 + (nπ)2|x|2γv(x)2

]
dx

∫ 1

−1
v(x)2dx

; v ∈ H1
0 (−1, 1), v �= 0

}
. (301)

We are interested in the asymptotic behavior (as n → +∞) of λn,γ , which quantifies
the dissipation speed of the solution of (295).

Lemma 4.14. Problem
{

−v′′n,γ(x) + (nπ)2|x|2γvn,γ(x) = λn,γvn,γ(x) x ∈ (−1, 1) ,
vn,γ(±1) = 0 ,

(302)

admits a unique positive solution with L2(−1, 1)-norm one. Moreover, vn,γ is even.
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Proof. Since equation (302) is a Sturm-Liouville problem, it is well-known that
its first eigenvalue is simple, and the associated eigenfunction has no zeros. Thus,
we can choose vn,γ to be strictly positive everywhere. Moreover, by normalization,
we can find a unique positive solution satisfying the condition ‖vn,γ‖L2(−1,1) = 1.
Finally, vn,γ is even. Indeed, if not so, let us consider the function w(x) = vn,γ(|x|).
Then, w still belongs to H1

0 (−1, 1), it is a weak solution of (302) and it does not
increase the functional in (301), i.e.

∫ 1

−1

[
w′(x)2 + (nπ)2|x|2γw(x)2

]
dx

∫ 1

−1
w(x)2dx

≤
∫ 1

−1

[
v′n,γ(x)2 + (nπ)2|x|2γvn,γ(x)2

]
dx

∫ 1

−1
vn,γ(x)2dx

.

The coefficients of the equation in (302) being regular, we deduce that w is a classical
solution of (302). Since λn,γ is simple, it follows vn,γ(x) = vn,γ(|x|). �

The following result turns out to be a key point of the proof of Theorem 4.2.

Proposition 4.15. For every γ > 0, there are constants c∗ = c∗(γ), c∗ =
c∗(γ) > 0 such that

c∗n
2

1+γ � λn,γ � c∗n
2

1+γ ∀n ∈ N∗ .

Proof. First, we prove the lower bound. Let τn := n
1

1+γ . With the change of
variable φ(x) =

√
τnϕ(τnx), we get

λn,γ =inf

{∫ 1

−1

(
φ′(x)2 + (nπ)2|x|2γφ(x)2

)
dx ; φ ∈ C∞

c (−1, 1), ‖φ‖L2(−1,1) = 1

}

=τ2n inf

{∫ τn

−τn

(
ϕ′(y)2 + π2|y|2γϕ(y)2

)
dy ; ϕ∈C∞

c (−τn, τn), ‖ϕ‖L2(−τn,τn)=1

}

�c∗τ
2
n

where

c∗ := inf

{∫

R

(
ϕ′(y)2 + π2|y|2γϕ(y)2

)
dy ; ϕ ∈ C∞

c (R), ‖ϕ‖L2(R) = 1

}
(303)

is positive (see [132] for the case of γ = 1).
Now, we prove the upper bound in Proposition 4.15. For every k > 1 let us

consider the function ϕk(x) := (1 − k|x|)+, that belongs to H1
0 (−1, 1). Easy com-

putations show that

∫ 1

−1

ϕk(x)2dx =
2

3k
,

∫ 1

−1

ϕ′
k(x)2dx = 2k ,

∫ 1

−1

|x|2γϕk(x)2dx = 2c(γ)k−1−2γ ,
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where

c(γ) :=

(
1

2γ + 1
− 1

γ + 1
+

1

2γ + 3

)
.

Thus, λn,γ � fn,γ(k) := 3[k2 + (πn)2c(γ)k−2γ ] for all k > 1. Since fn,γ attains its

minimum at k̄ = c̃(γ)n
1

γ+1 , we have λn,γ � fn,γ(k̄) = C(γ)n
2

γ+1 . �

4.3 – Proof of the negative statements of Theorem 4.5

Let a := inf{x ∈ (0, 1) : (x, y) ∈ ω} > 0, so that ω ⊂ (a, 1)× (0, 1). The goal of this
section is the proof of the following results:

– if γ = 1 and T < a2

2 , then system (281) is not observable in ω in time T ,
– if γ > 1 and T > 0, then system (281) is not observable in ω in time T .

Without loos of generality, one may assume that ω = (a, b) × (0, 1) with 0 < a <
b < 1.

4.3.1 – Strategy for the proof

Let g be the solution of (281). Then, g can be represented as in (293), and we
emphasize that, for a.e. t ∈ (0, T ) and every −1 � a1 < b1 � 1,

∫

(a1,b1)×(0,1)

|g(x, y, t)|2dxdy =

∞∑

n=1

∫ b1

a1

|gn(x, t)|2dx

(Bessel-Parseval identity). Thus, in order to prove Theorem 4.5, it is sufficient to
study the observability of system (295) uniformly with respect to n ∈ N∗.

Definition 4.16 (Uniform observability). Let 0 < a < b � 1 and T > 0. System
(295) is observable in (a, b) in time T uniformly with respect to n ∈ N∗ if there exists
C > 0 such that, for every n ∈ N∗, g0,n ∈ L2(−1, 1), the solution gn of (295) satisfies

∫ 1

−1

|gn(x, T )|2dx � C

∫ T

0

∫ b

a

|gn(x, t)|2dx .

System (295) is observable in (a, b) uniformly with respect to n ∈ N∗ if there exists
T > 0 such that it is observable in (a, b) in time T uniformly with respect to n ∈ N∗.

The negative parts of the conclusion of Theorem 4.5 follow from the result below.

Theorem 4.17. Let 0 < a < b � 1.

1. If γ = 1 and T < a2

2 , then system (295) is not observable in (a, b) in time T
uniformly with respect to n ∈ N∗.
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2. If γ > 1, then system (295) is not observable in (a, b) uniformly with respect
to n ∈ N∗.

The proof of Theorem 4.17 relies on the use of appropriate test functions that falsify
uniform observability. This is proved thanks to a well adapted maximum principle
(see Lemma 4.18) and explicit supersolutions (see (307)) for γ > 1, and thanks to
direct computations for γ = 1.

4.3.2 – Proof of Theorem 4.17 for γ > 1

Let γ ∈ [1,+∞) be fixed and T > 0. For every n ∈ N∗, we denote by λn (instead
of λn,γ) the first eigenvalue of the operator An,γ defined in Section 4.2.3, and by vn
the associated positive eigenvector of norm one, which satisfies





−v′′n(x) + [(nπ)2|x|2γ − λn]vn(x) = 0 , x ∈ (−1, 1) , n ∈ N∗ ,
vn(±1) = 0 , vn ≥ 0 ,
‖vn‖L2(−1,1) = 1 .

Then, for every n ≥ 1, the function

gn(x, t) := vn(x)e−λnt ∀(x, t) ∈ (−1, 1) × R ,

solves the adjoint system (295). Let us note that

∫ 1

−1

gn(x, T )2dx = e−2λnT ,

∫ T

0

∫ b

a

gn(x, t)2dxdt =
1 − e−2λnT

2λn

∫ b

a

vn(x)2dx .

So, in order to prove that uniform observability fails, it suffices to show that

e2λnT

λn

∫ b

a

vn(x)2dx → 0 when n → +∞ . (304)

The above convergence will be obtained comparing vn with an explicit supersolution
of the problem on a suitable subinterval of [−1, 1].

Lemma 4.18. Let 0 < a < b < 1. For every n ∈ N∗, set

xn :=

(
λn

(nπ)2

) 1
2γ

(305)

and let Wn ∈ C2([xn, 1],R) be a solution of




−W ′′
n (x) + [(nπ)2x2γ − λn]Wn(x) � 0 , x ∈ (xn, 1) ,

Wn(1) � 0 ,
W ′

n(xn) < −√
xnλn .

(306)
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Then there exists n∗ ∈ N∗ such that, for every n � n∗,

∫ b

a

vn(x)2dx �
∫ b

a

Wn(x)2dx .

Proof. First, observe that, thanks to Proposition 4.15, xn → 0 as n → +∞.
In particular, there exists n∗ � 1 such that xn � a for every n � n∗. Now, let
us prove that |v′n(xn)| � √

xnλn for all n � n∗. Indeed, by Lemma 4.14, we have
vn(x) = vn(−x), thus v′n(0) = 0. Hence, thanks to the Cauchy-Schwarz inequality
and the relation ‖vn‖L2(−1,1) = 1,

|v′n(xn)| =
∣∣∣
∫ xn

0

v′′n(s)ds
∣∣∣ =

∣∣∣
∫ xn

0

[(nπ)2|s|2γ − λn]vn(s)ds
∣∣∣

�
(∫ xn

0

[(nπ)2|s|2γ − λn]2ds

)1/2 (∫ xn

0

vn(s)2ds

)1/2

� √
xnλn .

Furthermore, we claim that vn(x) � Wn(x) for every x ∈ [xn, 1], n � n∗. Indeed, if
not, there would exist x∗ ∈ [xn, 1] such that

(Wn − vn)(x∗) = min{(Wn − vn)(x);x ∈ [xn, 1]} < 0 .

Since (Wn − vn)(1) � 0 and (Wn − vn)′(xn) < 0, we have x∗ ∈ (xn, 1). Moreover,
the function Wn − vn has a minimum at x∗, thus (Wn − vn)′(x∗) = 0 and (Wn −
vn)′′(x∗) � 0. Therefore,

−(Wn − vn)′′(x∗) + [(nπ)2|x∗|2γ − λn](Wn − vn)(x∗) < 0 ,

which is a contradiction. Our claim follows and the proof is complete. �
In order to apply Lemma 4.18, we need an explicit supersolution Wn of (306) of

the form
Wn(x) = Cne

−µnx
γ+1

, (307)

where Cn, µn > 0. Notice that, in particular, Wn(1) � 0.

First step: let us prove that, for an appropriate choice of µn, the first inequality of
(306) holds. Since

W ′
n(x) = −µn(γ + 1)xγWn(x) ,

W ′′
n (x) = [−µnγ(γ + 1)xγ−1 + µ2

n(γ + 1)2x2γ ]Wn(x) ,

the first inequality of (306) holds if and only if, for every x ∈ (xn, 1),

[(nπ)2 − µ2
n(γ + 1)2]x2γ + µnγ(γ + 1)xγ−1 � λn . (308)
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In particular, it holds when

µn � nπ

γ + 1
(309)

and

[(nπ)2 − µ2
n(γ + 1)2]x2γ

n + µnγ(γ + 1)xγ−1
n � λn . (310)

Indeed, in this case, the left hand side of (308) is an increasing function of x. In
view of (305), and after several simplifications, inequality (310) can be recast as

µn � γ

γ + 1

(
(nπ)2

λn

) 1
2+

1
2γ

.

So, recalling (309), in order to satisfy the first inequality of (306) we can take

µn := min

{
nπ

γ + 1
;

γ

γ + 1

(
(nπ)2

λn

) 1
2+

1
2γ

}
. (311)

For the following computations, it is important to notice that, thanks to (311) and
Proposition 4.15, for n large enough µn is of the form

µn = C1(γ)n . (312)

Second step: let us prove that, for an appropriate choice of Cn, the third inequality
of (306) holds. Since

W ′
n(xn) = −Cnµn(γ + 1)xγ

ne
−µnx

γ+1
n ,

the third inequality of (306) is equivalent to

Cn >
λne

µnx
γ+1
n

(γ + 1)µnx
γ− 1

2
n

.

Therefore, it is sufficient to choose

Cn :=
2λne

µnx
γ+1
n

(γ + 1)µnx
γ− 1

2
n

. (313)
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Third step: let us prove condition (304). Thanks to Lemma 4.18 and conditions
(307), (312) and (313), for every n � n∗,

e2λnT

λn

∫ b

a

vn(x)2dx � e2λnT

λn

∫ b

a

Wn(x)2dx � e2λnT

λn
Wn(a)2

� e2λnT

λn
C2

ne
−2µna

1+γ � e2λnT

λn

4λ2
ne

2µnx
γ+1
n

(γ + 1)2µ2
nx

2γ−1
n

e−2µna
1+γ

.

By identities (305), (312) and Proposition 4.15, we have

µnx
γ+1
n � C2(γ) ∀n ∈ N∗ ,

thus
e2λnT

λn

∫ b

a

vn(x)2dx � e2n(
λn
n T−C1(γ)a

1+γ) 4λne
2C2(γ)

(γ + 1)2µ2
nx

2γ−1
n

. (314)

Since γ > 1, we deduce from Proposition 4.15 that

λn

n
→ 0 as n → +∞ .

So, for every T > 0, there exists n� � n∗ such that, for every n � n�,

λn

n
T − C1(γ)a1+γ < −1

2
C1(γ)a1+γ . (315)

Then, inequality (314) yields condition (304) (since the term that multiplies the
exponential behaves like a rational fraction of n).

4.3.3 – Proof of Theorem 4.17 for γ = 1

In this section, we take γ = 1 and keep the abbreviated forms λn , vn for
λn,γ , vn,γ introduced in Section 4.2.3. Moreover, given two real sequences αn � 0
and βn > 0, we write αn ∼ βn to mean that limn αn/βn = 1.

With the above notation in mind, we have the following result.

Lemma 4.19. Let a and b be real numbers such that 0 < a < b � 1. Then

λn ∼ nπ (316)

and ∫ b

a

vn(x)2dx ∼ e−a2nπ

2aπ
√
n

(317)

as n → +∞.
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When T < a2

2 , we can easily deduce from the above lemma that (304) holds;
thus, system (295) is not observable in (a, b) uniformly with respect to n ∈ N∗.

Proof of Lemma 4.19. The proof relies on the explicit expression

G(x) :=
e−

x2

2

4
√
π

of the first eigenvector of the harmonic oscillator on the whole line, i.e.,





−G′′(x) + x2G(x) = G(x) x ∈ R∫

R
G(x)2dx = 1.

First step: Let us construct an explicit approximation kn of vn. Fix ε > 0 with

1 + (1 − ε)2 > 2a2 , (318)

and let θ ∈ C∞(R) be such that

θ(±1) = 1 and supp(θ) ⊂ (−1 − ε,−1 + ε) ∪ (1 − ε, 1 + ε) . (319)

Define

kn(x) =
4
√
nπG(

√
nπx) − 4

√
ne−

nπ
2 θ(x)

Cn
, x ∈ [−1, 1] ,

where Cn > 0 is such that ‖kn‖L2(−1,1) = 1. Note that C2
n = Cn,1 + Cn,2 + Cn,3

where

Cn,1 =
√
n

∫ 1

−1

e−nπx2dx = 1 + O

(
e−nπ

√
n

)
,

Cn,2 =
√
ne−nπ

∫ 1

−1

θ(x)2dx

Cn,3 = −2
√
ne−

nπ
2

∫ 1

−1

e−
nπx2

2 θ(x)dx = O(
√
ne−

nπ
2 (1+(1−ε)2)).

Thus,

Cn = 1 + O(
√
ne−

nπ
2 [1+(1−ε)2]). (320)

We have

{
−k′′n(x) + (nπx)2kn(x) = nπkn(x) + En(x) , x ∈ (−1, 1) ,
kn(±1) = 0,
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where

En(x) :=
4
√
ne−

nπ
2

Cn

[
θ′′(x) − (nπx)2θ(x) + nπθ(x)

]
.

Second step: Let us prove (316). As in the proof of Proposition 4.15, we have
λn � nπ. Moreover,

λn �
∫ 1

−1

[
k′n(x)2 + (nπx)2kn(x)2

]
dx = nπ +

∫ 1

−1

kn(x)En(x)dx

� nπ + O(n
9
4 e−

nπ
2 ) ,

which proves (316).

Third step: Let us prove that

∫ b

a

kn(x)2dx ∼ e−a2nπ

2aπ
√
n
. (321)

Indeed, the left-hand side of (321) is the sum of three terms (Ij)1�j�3, that satisfy,
thanks to (320)

I1 :=
1√
πC2

n

∫ b
√
nπ

a
√
nπ

e−y2

dy =
e−a2nπ

2aπ
√
n

+ O

(
e−a2nπ

n
3
2

)
,

I2 :=

√
ne−nπ

C2
n

∫ b

a

θ(x)2dx = O(
√
ne−nπ),

I3 := −2
√
ne−

nπ
2

C2
n

∫ b

a

e−nπx2

θ(x)dx = O(
√
ne−

nπ
2 [1+(1−ε)2]).

So, (321) follows thanks to (318).

Fourth step: Let us prove that

‖vn − kn‖2L2(−1,1) = O(n
9
2 e−nπ), (322)

which ends the proof of (317). Let An be the operator defined by

D(An) = H2 ∩H1
0 (−1, 1) , Anϕ(x) =: −ϕ′′(x) + (nπx)2ϕ(x) ,

let (λj
n)j∈N∗ be its eigenvalues, with associated eigenvectors (vjn)j∈N∗ , so Anv

j
n =

λj
nv

j
n. We have kn =

∑∞
j=1 zjv

j
n where zj = 〈En, v

j
n〉/(λj

n −nπ) for all j � 2. Thus,

∞∑

j=2

z2j � C‖En‖2L2(−1,1) = O(n
9
2 e−nπ)
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and

z1 =

√√√√1 −
∞∑

j=2

z2j = 1 + O(n
9
2 e−nπ) .

We can then recover (322) since ‖vn − kn‖2L2(−1,1) = (1 − z1)
2 +

∑∞
j=2 z

2
j . �

4.4 – Proof of the positive statements of Theorem 4.2

The goal of this section is the proof of the following results:

– if γ ∈ (0, 1), then system (278) is null controllable in any time T > 0,
– if γ = 1 and ω = (a, b) × (0, 1), with 0 < a < b � 1, then there exists T1 > 0

such that system (278) is null controllable in any time T > T1 or, equivalently,
system (280) is observable in ω in any time T > T1.

The proof of these results relies on a new global Carleman estimate for solutions of
equation (295), stated and proved in the next section.

4.4.1 – A global Carleman estimate

Let n ∈ N∗, and introduce the operator

Png :=
∂g

∂t
− ∂2g

∂x2
+ (nπ)2|x|2γg.

Proposition 4.20. Let γ ∈ (0, 1] and let a, b ∈ R be such that 0 < a <
b � 1. Then there exist a weight function β ∈ C1([−1, 1];R∗

+) and positive con-
stants C1, C2 such that for every n ∈ N∗, T > 0, and g ∈ C0([0, T ];L2(−1, 1)) ∩
L2(0, T ;H1

0 (−1, 1)) the following inequality holds

C1
∫ T

0

∫ 1

−1

(
M

t(T − t)

∣∣∂g
∂x

(x, t)
∣∣2 +

M3

(t(T − t))3
∣∣g(x, t)

∣∣2
)
e−

Mβ(x)
t(T−t) dxdt

�
∫ T

0

∫ 1

−1

|Png|2e−
Mβ(x)
t(T−t) dxdt +

∫ T

0

∫ b

a

M3

(t(T − t))3
|g(x, t)|2e−

Mβ(x)
t(T−t) dxdt

(323)

where M := C2 max{T + T 2;nT 2}.

Remark 4.21. In the case of γ ∈ [1/2, 1], our weight β will be the classical
one (see (325), (326), (327) and (328)). On the other hand, for γ ∈ (0, 1/2) we
will follow the strategy of [3, 48, 123], adapting the weight β to the nonsmooth
coefficient |x|2γ (see (325), (326), (327), (356) and (357)).
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Proof of Proposition 4.20. Without loss of generality, we may assume that
b < 1. Let a′, b′ be such that a < a′ < b′ < b. All the computations of the proof will
be made assuming, first, g ∈ H1(0, T ;L2(−1, 1))∩L2(0, T ;H2 ∩H1

0 (−1, 1)). Then,
the conclusion of Proposition 4.20 will follow by a density argument.

First case : γ ∈ [1/2, 1] Consider the weight function

α(x, t) :=
Mβ(x)

t(T − t)
, (x, t) ∈ [−1, 1] × (0, T ) , (324)

where β ∈ C2([−1, 1]) satisfies

β � 1 on (−1, 1) , (325)

|β′| > 0 on [−1, a′] ∪ [b′, 1] , (326)

β′(1) > 0 , β′(−1) < 0 , (327)

β′′ < 0 on [−1, a′] ∪ [b′, 1] (328)

and M = M(T, n, β) > 0 will be chosen later on. We also introduce the function

z(x, t) := g(x, t)e−α(x,t) , (329)

that satisfies

e−αPng = P1z + P2z + P3z , (330)

where

P1z := − ∂2z
∂x2 + (αt − α2

x)z + (nπ)2|x|2γz , P2z := ∂z
∂t − 2αx

∂z
∂x ,

P3z := −αxxz .
(331)

We develop the classical proof (see [90]), taking the L2(Q)-norm in the identity
(330), then developing the double product, which leads to

∫

Q

(
P1zP2z −

1

2
|P3z|2

)
dxdt �

∫

Q

|e−αPng|2dxdt , (332)

where Q := (−1, 1) × (0, T ) and we compute precisely each term, paying attention
to the behaviour of the different constants with respect to n and T .

Terms concerning −∂2
xz Integrating by parts, we get

−
∫

Q

∂2z

∂x2

∂z

∂t
dxdt =

∫

Q

∂z

∂x

∂2z

∂t∂x
dxdt =

∫ T

0

1

2

d

dt

∫ 1

−1

∣∣∣∂z
∂x

∣∣∣
2

dxdt = 0 , (333)
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because ∂tz(t,±1) = 0 and z(0) ≡ z(T ) ≡ 0, which is a consequence of assumptions
(329), (324) and (325). Moreover,

∫

Q

∂2z

∂x2
2αx

∂z

∂x
dxdt = −

∫

Q

∣∣∣∂z
∂x

∣∣∣
2

αxxdxdt

+

∫ T

0

(
αx(t, 1)

∣∣∣∂z
∂x

(t, 1)
∣∣∣
2

− αx(t,−1)
∣∣∣∂z
∂x

(t,−1)
∣∣∣
2
)
dt .

(334)

Terms concerning (αt − α2
x)z Again integrating by parts, we have

∫

Q

(αt − α2
x)z

∂z

∂t
dxdt = −1

2

∫

Q

(αt − α2
x)t|z|2dxdt . (335)

Indeed, the boundary terms at t = 0 and t = T vanish because, thanks to (329),
(324), (325),

|(αt − α2
x)|z|2| �

1

[t(T − t)]2
e

−M
t(T−t) |M(T − 2t)β + (Mβ′)2| · |g|2

tends to zero when t → 0 and t → T , for every x ∈ [−1, 1]. Moreover,

− 2

∫

Q

(αt − α2
x)zαx

∂z

∂x
dxdt =

∫

Q

[(αt − α2
x)αx]x|z|2dxdt , (336)

thanks to an integration by parts in the space variable.

Terms concerning (nπ)2|x|2γz First, since z(0) ≡ z(T ) ≡ 0,

∫

Q

(nπ)2|x|2γz ∂z
∂t

dxdt =
1

2

∫ T

0

d

dt

∫ 1

−1

(nπ)2|x|2γ |z|2dxdt = 0 . (337)

Furthermore, thanks to an integration by parts in the space variable,

− 2

∫

Q

(nπ)2|x|2γzαx
∂z

∂x
dxdt =

∫

Q

[n2π2|x|2γαx]xz
2dxdt . (338)

Combining (332), (333), (334), (335), (336), (337) and (338), we conclude that

∫

Q

|z|2
{
− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x + n2π2[|x|2γαx]x − 1

2
α2
xx

}
dxdt

+

∫ T

0

(
αx(t, 1)

∣∣∣∂z
∂x

(t, 1)
∣∣∣
2

− αx(t,−1)
∣∣∣∂z
∂x

(t,−1)
∣∣∣
2
)
dt

−
∫

Q

∣∣∣∂z
∂x

∣∣∣
2

αxxdxdt �
∫

Q

|e−αPng|2dxdt .

(339)
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In view of (327), we have αx(t, 1) � 0 and αx(t,−1) � 0, thus (339) yields
∫

Q

|z|2
{
− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x − 1

2
α2
xx + n2π2[|x|2γαx]x

}
dxdt

−
∫

Q

∣∣∣∂z
∂x

∣∣∣
2

αxxdxdt �
∫

Q

|e−αPng|2dxdt .
(340)

Now, in the left hand side of (340) we separate the terms on (a′, b′) × (0, T ) and
those on [(−1, a′) ∪ (b′, 1)] × (0, T ). One has

−αxx(x, t) �
C1M

t(T − t)
∀x ∈ [−1, a′] ∪ [b′, 1] , t ∈ (0, T ) ,

|αxx(x, t)| �
C2M

t(T − t)
∀x ∈ [a′, b′] , t ∈ (0, T ) ,

(341)

where C1 = C1(β) := min{−β′′(x);x ∈ [−1, a′] ∪ [b′, 1]} is positive thanks to the
assumption (328) and C2 = C2(β) := sup{|β′′(x)|;x ∈ [a′, b′]}. Moreover,

−1

2
(αt − α2

x)t + [(αt − α2
x)αx]x − 1

2
α2
xx =

1

(t(T − t))3

{
Mβ(3Tt− T 2 − 3t2)

+M2
[
(2t− T )(β′′β + 2β′2) − t(T − t)β′′2

2

]
− 3M3β′′β′2

}
.

Hence, owing to hypotheses (326) and (328), there exist m1 = m1(β) > 0, C3 =
C3(β) > 0 and C4 = C4(β) > 0 such that, for every M � M1 and t ∈ (0, T ),

−1

2
(αt − α2

x)t+[(αt − α2
x)αx]x−

1

2
α2
xx�

C3M
3

[t(T − t)]3
∀x∈ [−1, a′] ∪ [b′, 1] ,

∣∣∣− 1

2
(αt − α2

x)t+[(αt − α2
x)αx]x−

1

2
α2
xx

∣∣∣ � C4M
3

[t(T − t)]3
∀x ∈ [a′, b′] .

(342)

where
M1 = M1(T, β) := m1(β)(T + T 2). (343)

Using estimates (340), (341) and (342), we deduce that, for every M � M1,
∫ T

0

∫

(−1,a′)∪(b′,1)

C1M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

dxdt

+

∫ T

0

∫

(−1,a′)∪(b′,1)

[
C3M

3

(t(T − t))3
|z|2 + (nπ)2[|x|2γαx]x|z|2

]
dxdt

�
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C4M

3

(t(T − t))3
|z|2 − (nπ)2[|x|2γαx]x|z|2

]
dxdt

+

∫

Q

|e−αPng|2dxdt .

(344)
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Moreover, for every x ∈ (−1, 1), we have

|(nπ)2[|x|2γαx]x| =
M(nπ)2

t(T − t)

∣∣∣2γsign(x)|x|2γ−1β′(x) + |x|2γβ′′(x)
∣∣∣ � C5n

2M

t(T − t)
,

where C5 = C5(β) := π2 max{2γ|x|2γ−1|β′(x)| + |x|2γ |β′′(x)|;x ∈ [−1, 1]} is finite
because 2γ − 1 � 0. Let M2 = M2(T, n, β) be defined by

M2 = M2(T, n, β) :=

√
2C5

C3
n

(
T

2

)2

. (345)

From now on, we take

M = M(T, n, β) := C2 max{T + T 2;nT 2} (346)

where

C2 = C2(β) := max

{
m1;

√
C5

8C3

}
,

so that M � M1 and M2 (see (343) and (345)). From M � M2, we deduce that

|(nπ)2[|x|2γαx]x| �
C3M

3

2[t(T − t)]3
∀(x, t) ∈ Q .

We have

∫ T

0

∫

(−1,a′)∪(b′,1)

(
C1M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C3M

3

2(t(T − t))3
|z|2

)
dxdt

�
∫ T

0

∫ b′

a′

(
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C6M

3

(t(T − t))3
|z|2

)
dxdt +

∫

Q

|e−αPng|2dxdt ,

(347)

where C6 = C6(β) := C4 + C3/2. Since for every ε > 0

C1M

t(T − t)

∣∣∣∂g
∂x

− αxg
∣∣∣
2

+
C3M

3

2(t(T − t))3
|g|2

�
(

1 − 1

1 + ε

)
C1M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

+
M3

(t(T − t))3

(
C3

2
− εC1(β

′)2
)
|g|2 .

(348)

Hence, choosing

ε = ε(β) :=
C3

4C1‖β′‖2∞
,
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from relations (347), (348) and identity (329) we deduce that
∫ T

0

∫

(−1,a′)∪(b′,1)

(
C7M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

+
C3M

3|g|2
4(t(T − t))3

)
e−2αdxdt

�
∫ T

0

∫ b′

a′

(
C9M

3|g|2
(t(T − t))3

+
C8M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2
)
e−2αdxdt +

∫

Q

|e−αPng|2dxdt ,

(349)

where C7 = C7(β) := [1 − 1/(1 + ε)]C1, C8 = C8(β) := 2C2 and C9 = C9(β) :=
C6 + 2C2 sup{β′(x)2 : x ∈ [a′, b′]}. So, adding the same quantity to both sides,

∫

Q

(
C7M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

+
C3M

3|g|2
4(t(T − t))3

)
e−2αdxdt �

∫

Q

|e−αPng|2dxdt

+

∫ T

0

∫ b′

a′

(
C11M

3|g|2
(t(T − t))3

+
C10M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2
)
e−2αdxdt ,

(350)

where C10 = C10(β) := C8 + C7 and C11 = C11(β) := C9 + C3/4. Let us prove
that the third term of the right hand side may be dominated by terms similar to
the other two. We consider ρ ∈ C∞(R;R+) such that 0 ≤ ρ ≤ 1 and

ρ ≡ 1 on (a′, b′) , (351)

ρ ≡ 0 on (−1, a) ∪ (b, 1) . (352)

We have
∫

Q

(Png)
gρe−2α

t(T − t)
dxdt =

∫ T

0

∫ 1

−1

[
∂g

∂t
− ∂2g

∂x2
+ (nπ)2|x|2γg

]
gρe−2α

t(T − t)
dxdt.

Integrating by parts with respect to time and space, we obtain
∫

Q

1

2

∂(g2)

∂t

ρe−2α

t(T − t)
dxdt =

∫

Q

1

2
|g|2ρ

(
2αt

t(T − t)
+

T − 2t

(t(T − t))2

)
e−2αdxdt

and

−
∫

Q

∂2g

∂x2

gρe−2α

t(T − t)
dxdt =

∫

Q

ρe−2α

t(T − t)

∣∣∣∣
∂g

∂x

∣∣∣∣
2

dxdt

−
∫

Q

|g|2e−2α

2t(T − t)

(
ρ′′ − 4ρ′αx + ρ(4α2

x − 2αxx)
)
dxdt .

(353)

Thus,
∫

Q

Png
gρe−2α

t(T − t)
dxdt �

∫

Q

ρe−2α

t(T − t)

∣∣∣∣
∂g

∂x

∣∣∣∣
2

dxdt

−
∫

Q

|g|2e−2α

2t(T − t)

(
ρ′′ − 4ρ′αx + ρ

(
4α2

x − 2αxx − 2αt −
T − 2t

t(T − t)

))
dxdt .

(354)
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Therefore,

∫ T

0

∫ b′

a′

C10M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

e−2αdxdt

�
∫

Q

C10Mρ

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

e−2αdxdt �
∫

Q

Png
C10Mgρe−2α

t(T − t)
dxdt

+

∫

Q

C10M |g|2e−2α

2t(T − t)

(
ρ′′ − 4ρ′αx + ρ

(
4α2

x − 2αxx − 2αt −
T − 2t

t(T − t)

))
dxdt

�
∫

Q

|Png|2e−2αdxdt +

∫ T

0

∫ b

a

C12M
3|g|2e−2α

(t(T − t))3
dxdt

for some constant C12 = C12(β, ρ) > 0. Combining (350) with the previous inequal-
ity, we get

∫

Q

(
C7M

t(T − t)

∣∣∣∂g
∂x

∣∣∣
2

+
C3M

3|g|2
4(t(T − t))3

)
e−2αdxdt

�
∫

Q

2|e−αPng|2dxdt +

∫ T

0

∫ b

a

C13M
3|g|2

(t(T − t))3
e−2αdxdt ,

(355)

where C13 = C13(β, ρ) := C11 + C12. Then, the global Carleman estimates (323)
holds with

C1 = C1(β) :=
min{C7;C3/4}
max{2;C13}

.

Second case: γ ∈ (0, 1/2) The previous strategy does not apply to γ ∈ (0, 1/2)
because the term (nπ)2[|x|2γαx]x (that diverges at x = 0) in (344) can no longer

be bounded by C3M
3

(t(T−t))3 (which is bounded at x = 0). Note that both terms are of

the same order as M3, because of the dependence of M with respect to n in (346).
In order to deal with this difficulty, we adapt the choice of the weight β and the
dependence of M with respect to the parameter n.

Let β ∈ C1([−1, 1]) ∩ C2([−1, 0) ∪ (0, 1]) be such that

β′′ < 0 on [−1, 0) ∪ (0, a′] ∪ [b′, 1] (356)

and β has the following form on a neighborhood (−ε, ε) of 0

β(x) = C0 −
∫ x

0

√
sign(s)|s|2γ + C1ds ∀x ∈ (−ε, ε) , (357)

where C0, C1 are large enough to ensure that β(x) � 1, and sign(s)|s|2γ + C1 ≥ 0 on
(−ε, ε). Notice that

β′(x) = −
√

sign(x)|x|2γ + C1 ∀x ∈ (−ε, ε) , (358)
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thus β′′ diverges at x = 0. Performing the same computations as in the previous
case, we get to inequality (340). Notice that one obtains (338) even if γ ∈ (0, 1/2):
the boundary terms vanish and x �→ |x|2γ−1 is integrable at x = 0. Then, owing to
(326) and (356), there exist m1 = m1(β) > 0, C3 = 1/2 and C4 = C4(β) > 0 such
that, for every M � M1 and t ∈ (0, T ),

− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x − 1

2
α2
xx

� C3M
3

[t(T − t)]3
|β′′(x)|β′(x)2 ∀x ∈ [−1, 0) ∪ (0, a′] ∪ [b′, 1] ,

and

∣∣∣− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x − 1

2
α2
xx

∣∣∣ � C4M
3

[t(T − t)]3
∀x ∈ [a′, b′] ,

where M1 = M1(T, β) is defined by (343). In view of (340) and (356), for every
M � M1,

∫ T

0

∫

(−1,a′)∪(b′,1)

[
C3M

3

(t(T − t))3
|β′′(x)|β′(x)2 |z|2 + (nπ)2(|x|2γαx)x|z|2

]
dxdt

�
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C4M

3

(t(T − t))3
|z|2

]
dxdt

− (nπ)2
∫ T

0

∫ b′

a′
(|x|2γαx)x|z|2 dxdt .

(359)

Moreover,

|(nπ)2(|x|2γαx)x| = (nπ)2
M

t(T − t)

∣∣∣2γ sign(x)|x|2γ−1β′(x) + |x|2γβ′′(x)
∣∣∣

� C5n
2M

t(T − t)

(
|x|2γ−1|β′(x)| + |x|2γ |β′′(x)|

)
∀x ∈ (−1, 0) ∪ (0, 1) ,

where C5 = π2(2γ + 1). From now on, we take

M = M(T, n, β) := C2 max{T + T 2;nT 2} , (360)

where

C2 = C2(β) := max

{
m1,

1

λ

}
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and λ = λ(β) is a (small enough) constant, that will be chosen later on. From
M � nT 2/λ, we deduce that, for every x ∈ (−1, 0) ∪ (0, 1),

|(nπ)2(|x|2γαx)x| �
C6λ

2M3

(t(T − t))3

(
|x|2γ−1|β′(x)| + |x|2γ |β′′(x)|

)
,

where C6 = C6(γ) > 0. Let us verify that, for λ = λ(β) > 0 small enough and for
every x ∈ (−1, 0) ∪ (0, a′) ∪ (b′, 1), we have

C6λ
2M3

(t(T − t))3
|x|2γ−1|β′(x)| � C3M

3

4(t(T − t))3
|β′′(x)|β′(x)2 ,

C6λ
2M3

(t(T − t))3
|x|2γ |β′′(x)| � C3M

3

4(t(T − t))3
|β′′(x)|β′(x)2 ,

or, equivalently, for every x ∈ (−1, 0) ∪ (0, a′) ∪ (b′, 1),

C6λ
2|x|2γ−1 � C3

4
|β′′(x)| · |β′(x)| ,

C6λ
2|x|2γ � C3

4
β′(x)2 .

(361)

The second inequality is easy to satisfy for λ = λ(β) small enough, because |β′| > 0
on [−1, a′] ∪ [b′, 1]. Thanks to (358), for every x ∈ (−ε, ε),

β′(x)2 = sign(x)|x|2γ + C1 ,

so

β′′(x)β′(x) = γ|x|2γ−1 .

Therefore, for every x ∈ (−ε, ε) \ {0}, the first inequality in (361) is equivalent to

C6λ
2 � C3

4
γ ,

which is trivially satisfied when λ = λ(β) is small enough. Moreover, the first
inequality of (361) holds for every x ∈ [−1,−ε] ∪ [ε, a′] ∪ [b′, 1] when λ = λ(β) is
small enough, since |β′′β′| > 0 on this compact set. Finally, we have

∫ T

0

∫

(−1,a′)∪(b′,1)

C3M
3

2(t(T − t))3
|β′′(x)|β′(x)2 |z|2dxdt

�
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C5M

3

(t(T − t))3
|z|2

]
dxdt ,

(362)



[109] Stabilization and control of partial differential equations of evolution 191

where C5 = C5(β) > 0. Since the function |β′′|(β′)2 is bounded from below by some
positive constant on [−1, a′] ∪ [b′, 1], we also have

∫ T

0

∫

(−1,a′)∪(b′,1)

C6M
3

2(t(T − t))3
|z|2dxdt

�
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣
2

+
C5M

3

(t(T − t))3
|z|2

]
dxdt ,

(363)

where C6 = C6(β) > 0. The rest of the proof goes as for γ ∈ [1/2, 1]. �

4.4.2 – Uniform observability

The Carleman estimate of Proposition 4.20 allows to prove the following uniform
observability result.

Proposition 4.22. Let γ ∈ (0, 1) and let a, b ∈ R be such that 0 < a < b < 1.
Then there exists C > 0 such that for every T > 0, n ∈ N∗, and g0,n ∈ L2(−1, 1)
the solution of (295) satisfies

∫ 1

−1

gn(x, T )2dx � T 2e
C

(
1+T

− 1+γ
1−γ

) ∫ T

0

∫ b

a

gn(x, t)2dxdt.

Let us recall that explicit bounds on the observability constant of the heat equation
with a potential are already known.

Theorem 4.23. Let −1 < a < b < 1. There exists c > 0 such that, for every
T > 0, α, β ∈ L∞((−1, 1) × (0, T )), g0 ∈ L2(−1, 1), the solution of





∂tg − ∂2
xg + β∂xg + αg = 0 (x, t) ∈ (−1, 1) × [0, T ] ,

g(±1, t) = 0 t ∈ [0, T ] ,
g(x, 0) = g0(x) x ∈ (−1, 1) ,

satisfies ∫ 1

−1

|g(x, T )|2dx � ecH(T,‖α‖∞,‖β‖∞)

∫ T

0

∫ b

a

|g(x, t)|2dxdt ,

where H(T,A,B) := 1 + 1
T + TA + A2/3 + (1 + T )B2.

For the proof of the above result we refer to [85, Theorem 1.3] in the case of β ≡ 0,
and to [68, Theorem 2.3] for β �≡ 0. The optimality of the power 2/3 of A in
H(T,A,B) has been proved in [70].

Proposition 4.22 may be seen as an improvement of the above estimate (relatively
to the asymptotic behavior as n → +∞), in the special case of (295).
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Proof of Proposition 4.22. We derive an explicit observability constant from
the Carleman estimate of Proposition 4.20. For t ∈ (T/3, 2T/3), we have

4

T 2
� 1

t(T − t)
� 9

2T 2

and ∫ 1

−1

g(x, T )2dx � e−
2
3λnT

∫ 1

−1

g(x, t)2dx .

Thus,

C1
64M3

T 6
e−

9Mβ∗
2T2

T

3
e

2
3λnT

∫ 1

−1

g(x, T )2dx � C3
∫ T

0

∫ b

a

g(x, t)2dxdt

where β∗ := max{β(x) : x ∈ [−1, 1]}, β∗ := min{β(x) : x ∈ [−1, 1]} and C3 :=
max{x3e−β∗x}. Using the inequality M � C2[T + T 2] and Proposition 4.15, we get

∫ 1

−1

g(x, T )2dx � C4T 2ec1
M
T2 −c2n

2
1+γ T

∫ T

0

∫ b

a

g(x, t)2dxdt (364)

for some constants c1, c2, C4 > 0 (independent of n, T and g).

First case: n < 1 + 1
T . Then, M = C2(T + T 2) thus

∫ 1

−1

g(x, T )2dx � C4T 2ec1C2(1+ 1
T )

∫ T

0

∫ b

a

g(x, t)2dxdt.

Second case: n � 1 + 1
T . Then, M = C2nT 2. The maximum value of the function

x �→ c1C2x− c2x
2

1+γ T on (0,+∞) is of the form c3T
− 1+γ

1−γ for some constant c3 > 0
(independent of T ). Thus,

∫ 1

−1

g(x, T )2dx � C4T 2ec3T
− 1+γ

1−γ

∫ T

0

∫ b

a

g(x, t)2dxdt.

This gives the conclusion. �
In the case of γ = 1, we also have the following result.

Proposition 4.24. Assume γ = 1. Let a, b ∈ R be such that 0 < a < b < 1.
Then there exists T1 > 0 such that, for every T > T1, system (295) is observable in
(a, b) in time T uniformly with respect to n ∈ N∗.

Proof. One can follow the lines of the previous proof until (364). Then, for
n � 1 + 1

T , we have M = C2nT 2. Thus,
∫ 1

−1

g(x, T )2dx � C4T 2e[c1C2−c2T ]n

∫ T

0

∫ b

a

g(x, t)2dxdt.

This proves Proposition 4.24 with T1 := c1C2/c2. �
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4.4.3 – Construction of the control function for γ ∈ (0, 1)

The goal of this section is the proof of null controllability in any time T > 0 for
γ ∈ (0, 1). Our construction of the control steering the initial state to zero is the
one of [27], which is in turn inspired by [112] (see also [113]).

For n ∈ N∗, we define ϕn(y) :=
√

2 sin(nπy) and Hn := L2(−1, 1) ⊗ ϕn, which
is a closed subspace of L2(Ω). For j ∈ N, we define Ej := ⊕n�2jHn and denote by
ΠEj

the orthogonal projection onto Ej .

Proposition 4.25. Let γ ∈ (0, 1), and let a, b, c, d ∈ R be such that 0 < a <
b < 1 and 0 < c < d < 1. Then there exists a constant C > 0 such that for every
T > 0, every j ∈ N∗, and every g0 ∈ Ej the solution of (281) satisfies

∫

Ω

g(x, y, T )2dxdy � T 2e
C

(
2j+T

− 1+γ
1−γ

) ∫ T

0

∫

ω

g(x, y, t)2dxdydt

where ω := (a, b) × (c, d).

For the proof of Proposition 4.25 we shall need the following inequality obtained
in [112] (see also [113]).

Proposition 4.26. Let c, d ∈ R be such that c < d. There exists C > 0 such
that, for every L ∈ N∗ and (bk)1�k�L ∈ RL,

L∑

k=1

|bk|2 � eCL

∫ d

c

∣∣∣∣∣
L∑

k=1

bkϕk(y)

∣∣∣∣∣

2

dy.

Proof of Proposition 4.25. Let (g0,n)1�n�2j ∈ L2(−1, 1)2
j

be such that

g0(x, y) =

2j∑

n=1

g0,n(x)ϕn(y) .

Then the solution of (281) is given by

g(x, y, t) =

2j∑

n=1

gn(x, t)ϕn(y)

where, for every n ∈ N∗, gn is the solution of (295). Applying Propositions 4.22
and 4.26, and recalling that (ϕn)n∈N∗ is an orthonormal sequence of L2(0, 1), we
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deduce

∫

Ω

g(x, y, T )2dxdy =

2j∑

n=1

∫ 1

−1

gn(x, T )2dx

� T 2e
C

(
1+T

− 1+γ
1−γ

)
2j∑

n=1

∫ T

0

∫ b

a

gn(x, t)2dxdt

� T 2e
C

(
2j+T

− 1+γ
1−γ

) ∫ T

0

∫ b

a

∫ d

c

∣∣∣∣∣∣

2j∑

n=1

gn(x, t)ϕn(y)

∣∣∣∣∣∣

2

dydxdt

= T 2e
C

(
2j+T

− 1+γ
1−γ

) ∫ T

0

∫

ω

g(x, y, t)2dxdydt ,

where the constant C may change from line to line. �
Let T > 0 and u0 ∈ L2(Ω). We now proceed to construct a control f ∈

L2(0, T ;L2(Ω)) such that the solution of (279) satisfies u(·, T ) ≡ 0. Fix ρ ∈ R
with

0 < ρ <
1 − γ

1 + γ
(365)

and let K = K(ρ) > 0 be such that K
∑∞

j=1 2−jρ = T . Let (aj)j∈N be defined by

{
a0 = 0

aj+1 = aj + 2Tj , j � 0 ,

where Tj := K2−jρ for every j ∈ N. We now define the control f in the following
way. On [aj , aj + Tj ], we apply a control f such that ΠEj

u(·, aj + Tj) = 0 and

‖f‖L2(aj ,aj+Tj ;L2(Ω)) � Cj‖u(·, aj)‖L2(Ω)

where, in view of Proposition 4.25,

Cj := eC
(
2j+T

− 1+γ
1−γ

j

)
.

Observe that, in light of (292),

‖u(·, aj + Tj)‖L2(Ω) � (1 +
√
TjCj)‖u(·, aj)‖L2(Ω).

Then, on the interval [aj +Tj , aj+1] we apply no control in order to take advantage
of the natural exponential decay of the solution, thus obtaining

‖u(·, aj+1)‖L2(Ω) � e−λ2jTj‖u(·, aj + Tj)‖L2(Ω) ,
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where λn is defined in (301). Combining the above inequalities, we conclude that

‖u(·, aj+1)‖L2(Ω) � exp
( 2j∑

k=1

[
ln(1 +

√
TkCk) − C(2k)

2
1+γ Tk

])
‖u0‖L2(Ω) .

The choice of ρ ensures that the sum in the exponential diverges to −∞ as j → +∞,
forcing u(·, T ) ≡ 0. The fact that f ∈ L2(0, T ;L2(Ω)) can be checked by similar
arguments. �

4.4.4 – End of the proof of Theorems 4.2 and 4.5

Let ω be an open subset of (0, 1) × (0, 1). There exists a, b, c, d ∈ R with 0 <
a < b < 1, 0 < c < d < 1 such that (a, b) × (c, d) ⊂ ω.

The first (resp. third) statement of Theorem 4.5 has been proved in Section 4.4.3
(resp. Section 4.3); let us prove the second one.

Let us consider γ = 1 and ω = (a, b)× (0, 1). From Proposition 4.24, we deduce
that system (280) is observable in ω in any time T > T1. From Theorem 4.17, we

deduce that for any time T < a2

2 , system (280) is not observable in ω in time T .
Thus, the quantity

T ∗ := inf{T > 0 ; system (280) is observable in ω in time T }

is well defined and belongs to [a
2

2 ,+∞). Clearly, observability in some time T�

implies observability in any time T > T�, so

– for every T > T ∗, (281) is observable in ω in time T ,
– for every T < T ∗, (281) is not observable in ω in time T .

Moreover, Miller [128] has recently proved the equality T ∗ = a2

2 .

4.5 – Conclusion and open problems

In this chapter we have studied the null controllability of the generalized Grushin
equation (278), in the rectangle Ω = (−1, 1) × (0, 1), with a distributed control
localized on an open subset ω of (0, 1)× (0, 1). We have proved that null controlla-
bility:

– holds in any positive time, when degeneracy is not too strong, i.e. γ ∈ (0, 1),
– holds only in large time, when γ = 1 and ω is a strip parallel to the y-axis,
– does not hold when degeneracy is too strong, i.e. γ > 1.
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Null controllability when γ = 1, T is large enough, and the control region ω is more
general is an open problem.

The technique of this chapter should possibly extend to higher dimensional cylin-
drical domains of the form (−1, 1) × (0, 1)m. However, the generalization of this
result to other muldimensional configurations (including x ∈ (−1, 1)n, y ∈ (0, 1)m

with m,n � 1) or boundary controls, is widely open.

4.6 – Appendix: the case when {x = 0} ⊂ ω

In this appendix we briefly explain why null controllability holds when degeneracy
occurs inside the control region. Consider the control system





∂tu− ∂2
xu− |x|2γ∂2

yu = f(x, y, t)1ω(x, y) (x, y, t) ∈ Ω × (0, T )

u(x, y, t) = 0 (x, y, t) ∈ ∂Ω × (0, T )

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω

(366)

with ω = (−a, a) × (0, 1) , 0 < a ≤ 1. Fix b ∈ (0, a) and choose cut-off functions
ξi ∈ C∞(R) , i = 0, 1, 2, such that 0 ≤ ξi ≤ 1 and





ξ0 + ξ1 + ξ2 ≡ 1

ξ0(x) = 1 if |x| ≤ b , ξ0(x) = 0 if |x| ≥ a

ξ1(x) = 0 if x ≤ b , ξ0(x) = 1 if x ≥ a

ξ2(x) = 1 if x ≤ −a , ξ2(x) = 0 if x ≥ −b

(367)

Let ω1 = (b, a) × (0, 1) and let Ω1 = (b, 1) × (0, 1). There exists a control f1 ∈
L2((0, T ) × Ω1) such that the solution u1 of





∂tu− ∂2
xu− |x|2γ∂2

yu = f1(x, y, t)1ω1(x, y) (x, y, t) ∈ Ω1 × (0, T )

u(x, y, t) = 0 (x, y, t) ∈ ∂Ω1 × (0, T )

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω1

satisfies u1(T, ·) ≡ 0 on Ω1. Similarly, let ω2 = (−a,−b) × (0, 1) and let f2 ∈
L2((0, T ) × Ω2), where Ω2 = (−1,−b) × (0, 1), be such that the solution u2 of





∂tu− ∂2
xu− |x|2γ∂2

yu = f2(x, y, t)1ω2(x, y) (x, y) ∈ Ω2 × (0, T )

u(x, y, t) = 0 (x, y, t) ∈ ∂Ω2 × (0, T )

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω2

satisfies u2(T, ·) ≡ 0 on Ω2. Finally, let Ω0 = (−a, a) × (0, 1) and let u3 be the
solution of 




∂tu− ∂2
xu− |x|2γ∂2

yu = 0 (t, x, y) ∈ Ω0 × (0, T )

u(x, y, t) = 0 (x, y, t) ∈ ∂Ω0 × (0, T )

u(x, y, 0) = ξ0(x)u0(x, y) (x, y) ∈ Ω0 .
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Then

u(x, y, t) := ξ1(x)u1(x, y, t) + ξ2(x)u2(x, y, t) +
T − t

T
u3(x, y, t)

satisfies (366) for a suitable control f , as well as u(·, T ) ≡ 0 on Ω.

5 – The Grushin operator with singular potential

The present chapter is part of the article Null controllability in large times for the parabolic

Grushin equation with singular potential, in G. Stefani, U. Boscain, J.-P. Gauthier, A.

Sarychev, M. Sigalotti(eds.): Geometric Control Theory and sub-Riemannian Geometry,

Springer INdAM Series 5, 87-102, 2013, in collaboration with Piermarco Cannarsa [42].

5.1 – Introduction

In Chapter 4 we have provided a complete range of controllability properties (with
respect to the values of γ > 0 and T > 0) for the generalized Grushin equation





∂tu− ∂2
xu− |x|2γ∂2

yu = f(x, y, t)1ω(x, y) (x, y, t) ∈ D × (0, T ) ,

u(x, y, t) = 0 (x, y, t) ∈ ∂D × (0, T ) ,

u(x, y, 0) = u0(x, y) ∈ L2(D) ,

(368)

where D := (−1, 1) × (0, 1) and ω ⊂ (0, 1) × (0, 1). We can summarize the control-
lability result in Chapter 4 as follows:

1. If γ ∈ (0, 1), then system (368) is null controllable in any time T > 0.
2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b � 1, then

– for every T > a2

2 system (368) is null controllable in time T ,

– for every T < a2

2 system (368) is not null controllable in time T .

3. If γ > 1, then (368) is not null controllable.

On the other hand, the controllability property for the operator in system (368)
is in general sensitive to lower order perturbations. Indeed, a result in [33] shows
that, for all γ ≥ 1, the dynamics ruled by the operator

Lu = ∂2
xu + |x|2γ∂2

yu− γ

2

(γ
2

+ 1
) 1

x2
u (369)

separates the two connected component of D \ {0} × [0, 1], where {0} × [0, 1] is the
singular set for the γ-Grushin metric generated by the vector fields

X1 =

(
1

0

)
, X2 =

(
0

|x|γ
)
, γ ≥ 1 .



198 ROBERTO GUGLIELMI [116]

Thus, there is no transmission of information across the singular set. In turn,
it implies that in the case γ ≥ 1 no controllability results can be sought for the
equation {

∂tu− Lu = f(x, y, t)1ω(x, y) in D × (0,∞) ,

u(x, y, t) = 0 on ∂D × (0,∞) ,
(370)

when ω lies in only one connected component of D \ {0}× [0, 1], the case accounted
in Chapter 4.

Thus, we are naturally led to face the following question: which controllability
properties do hold for the operator L?

In this chapter we establish a partial (positive) answer to the above question.
Indeed, we show a null controllability result for all sufficiently large times, in the
case γ = 1, restricting the domain to one side only of the singular set. More
precisely, posed Ω := (0, 1) × (0, 1), we address the null controllability problem for
the equation





∂tu− ∂2
xu− |x|2∂2

yu− λ
x2u = f(x, y, t)1ω(x, y) in Ω × (0, T ) ,

u(x, y, t) = 0 on ∂Ω × (0, T ) ,

u(x, y, 0) = u0(x, y) ∈ L2(Ω) ,

(371)

where T > 0, λ ∈ R and ω is an open subset of Ω. The following result holds.

Theorem 5.1. Let ω = (a, b)×(0, 1) for some 0 < a < b � 1 and λ < 1/4. Then
there exists T ∗ > 0 such that for every T > T ∗ system (371) is null controllable in
time T .

Thus, also for the Grushin operator with singular potential, the case γ = 1 turns
out to be a transition regime, needing a minimum time for the null controllability,
as in the case addressed in Chapter 4.

By a standard duality argument, Theorem 5.1 is equivalent to the observability
in large times from ω for the adjoint system





∂tg − ∂2
xg − |x|2∂2

yg − λ
x2 g = 0 in Ω × (0, T ) ,

g(x, y, t) = 0 on ∂Ω × (0, T ) ,

g(x, y, 0) = g0(x, y) ∈ L2(Ω) .

(372)

Thanks to a suitable Carleman estimate (see Proposition 5.10), we will prove the
following result.

Theorem 5.2. Let ω = (a, b) × (0, 1) for some 0 < a < b � 1 and λ < 1/4.
Then there exists T ∗ > 0 such that for every T > T ∗ system (372) is observable in
ω in time T .
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As a consequence, we deduce null controllability in large times also for equation
(370), with a control region located on both sides of the degeneracy, of the type
w = (a1, b1) ∪ (a2, b2) × (0, 1), with −1 ≤ a1 < b1 < 0 < a2 < b2 ≤ 1.

For the time being, the Carleman estimate that we implement allows to reach
the observability only in the case γ = 1, though we expect a similar result (with-
out minimum time) also in the case 0 < γ < 1, just like in Chapter 4 (see also
Remark 5.12).

For future reference, in Section 5.2 and 5.3 we will treat the general case of an
operator Lu = ∂2

xu+ |x|2γ∂2
yu+ λ

x2u, with γ > 0. From Section 5.4 on we will focus
on the case γ = 1.

5.2 – Well-posedness and Fourier decomposition

5.2.1 – Well-posedness of the Cauchy-problem

Let H := L2(Ω), and denote by 〈·, ·〉 and | · |H , respectively, the scalar product
and norm in H. We recall the well-known Hardy’s inequality [63]

∫ 1

0

z2

x2
dx ≤ 4

∫ 1

0

z2xdx ∀z ∈ H1
0 (0, 1) . (373)

Thanks to (373), the scalar product

(u, v) :=

∫

Ω

(
uxvx + |x|2γuyvy −

λ

x2
uv

)
dxdy ∀u, v ∈ C∞

0 (Ω) (374)

is positive for every λ < 1/4 (as we will assume from now on). Set W := C∞
0 (Ω)

| · |W
,

where |u|W := (u, u)1/2, and observe that H1
0 (Ω) ⊂ W ⊂ H, thus W is dense in H.

Introduce the space V := C∞
0 (Ω)

| · |V
as in Chapter 4, where |u|V := ((u, u))1/2 and

((u, v)) :=

∫

Ω

(
uxvx + |x|2γuyvy

)
dxdy ∀u, v ∈ C∞

0 (Ω) .

Hardy’s inequality (373) ensures that, for all z ∈ C∞
0 (Ω), holds (z, z) ≥ Cλ((z, z)),

with Cλ := 1 − 4λ > 0. Thus W ⊂ V , and from Lemma 4.12 we deduce that for
every g in W there exist ∂xg ∈ L2(Ω), ∂yg ∈ L2

γ(Ω) such that for every φ ∈ C∞
0 (Ω)

∫

Ω

(
g(x, y)∂xφ(x, y) + |x|2γg(x, y)∂yφ(x, y)

)
dxdy

= −
∫

Ω

(
∂xg(x, y) + |x|2γ∂yg(x, y)

)
φ(x, y)dxdy .

(375)



200 ROBERTO GUGLIELMI [118]

Define now

D(A) = {u ∈ W : ∃ c > 0 such that |(u, h)| ≤ c|h|H ∀h ∈ W} , (376)

〈Au, h〉 := −(u, h) ∀h ∈ W . (377)

Then (see [141], Theorem 1.18), the operator (A,D(A)) generates an analytic semi-
group S(t) of contractions on H. Note that A is selfadjoint on H, and (377) implies
that

Au = ∂2
xu + |x|2γ∂2

yu +
λ

x2
u a.e. in Ω .

So, system (371) can be recast in the form
{
u′(t) = Au(t) + f(t) t ∈ [0, T ] ,

u(0) = u0 ,
(378)

where T > 0, f ∈ L2(0, T ;H) and u0 ∈ H.

Definition 5.3 (Weak solution). A function u ∈ C([0, T ];H) ∩ L2(0, T ;W ) is
a weak solution of system (378) if for every h ∈ D(A) the function 〈u(t), h〉 is
absolutely continuous on [0, T ] and for a.e. t ∈ [0, T ]

d

dt
〈u(t), h〉 = 〈u(t), Ah〉 + 〈f(t), h〉 . (379)

In [114] it is shown the equivalence between condition (379) and the definition of
solution by transposition, that is,

∫

Ω

[u(x, y, t∗)ϕ(x, y, t∗) − u0(x, y)ϕ(x, y, 0)]dxdy

=

∫ t∗

0

∫

Ω

{
u

(
∂2
xϕ + |x|2γ∂2

yϕ +
λ

x2
ϕ

)
+ fϕ

}
dxdydt

for every ϕ ∈ C2([0, T ] × Ω) and t∗ ∈ (0, T ).
Moreover, the unique weak solution of (378) in the sense of Definition 5.3 is

given by the variations-of-constants formula (see [18])

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds , t ∈ [0, T ] . (380)

The following existence and uniqueness result follows.

Proposition 5.4. For every u0 ∈ H, T > 0 and f ∈ L2(0, T ;H), there exists a
unique weak solution of the Cauchy problem (378). This solution satisfies

|u(t)|H � |u0|H +
√
T‖f‖L2(0,T ;H) ∀t ∈ [0, T ] . (381)

Moreover, u(t) ∈ D(A) and u′(t) ∈ H for a.e. t ∈ (0, T ).
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5.2.2 – Fourier decomposition of the solution

Let g ∈ C([0, T ];H)∩L2(0, T ;W ) be the solution of equation (372) in the sense
of Definition 5.3. Thus, the function y �→ g(x, y, t) belongs to L2(0, 1) for a.e.
(x, t) ∈ (0, 1) × (0, T ), and we can develop g in Fourier series with respect to y

g(x, y, t) =
∑

n∈N∗

gn(x, t)ϕn(y) , (382)

where for all n ∈ N∗ we set ϕn(y) :=
√

2 sin(nπy) and

gn(x, t) :=

∫ 1

0

g(x, y, t)ϕn(y)dy . (383)

Proposition 5.5. For every n ≥ 1, gn is the unique weak solution of





∂tgn − ∂2
xgn +

[
(nπ)2|x|2γ − λ

x2

]
gn = 0 (x, t) ∈ (0, 1) × (0, T ) ,

gn(0, t) = gn(1, t) = 0 t ∈ (0, T ) ,
gn(x, 0) = g0,n(x) x ∈ (0, 1) ,

(384)

where g0,n ∈ L2(0, 1) is given by g0,n(x) :=

∫ 1

0

g0(x, y)ϕn(y)dy.

Proof. First, observe that, for any n ≥ 1, system (384) is a first order Cauchy
problem, that admits the unique weak solution

g̃n ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1))

which satisfies

d

dt

(∫ 1

0

g̃n(x, t)ψ(x)dx

)

+

∫ 1

0

[
g̃n,x(x, t)ψx(x) +

(
(nπ)2|x|2γ − λ

x2

)
g̃n(x, t)ψ(x)

]
dx = 0

(385)

for every ψ ∈ H1
0 (0, 1).

In order to verify that the nth Fourier coefficient of g, defined by (383), satisfies
system (384), observe that

gn(·, 0) =

∫ 1

0

g0(y, ·)dy = gn,0(·) , gn(0, t) = gn(1, t) = 0 ∀t ∈ (0, T )

and
gn ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

0 (0, 1)) .
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Thus, it is sufficient to prove that gn fulfills condition (385). Indeed, using the
identity (383), for all ψ ∈ H1

0 (0, 1) we obtain, for a.e. t ∈ [0, T ],

d

dt

(∫ 1

0

gnψdx

)
+

∫ 1

0

(
gn,xψx +

[
(nπ)2|x|2γ − λ

x2

]
gnψ

)
dx

=

∫ 1

0

∫ 1

0

{
gtϕnψ + gxϕnψx +

[
(nπ)2|x|2γ − λ

x2

]
gϕnψ

}
dydx .

(386)

Observe that Proposition 5.4 ensures gt(·, t) ∈ L2(Ω) and g(·, t) ∈ D(A) for a.e.
t ∈ (0, T ). So, multiply gt = Ag by h(x, y) = ψ(x)ϕn(y) ∈ W and integrate over Ω,
in order to obtain, for a.e. t ∈ (0, T ),

∫ 1

0

∫ 1

0

gtψϕndxdy=

∫ 1

0

∫ 1

0

Agψϕndxdy

=−
∫ 1

0

∫ 1

0

(
gxψxϕn + |x|2γgyψϕn,y −

λ

x2
gψϕn

)
dxdy

=−
∫ 1

0

∫ 1

0

(
gxψxϕn + (nπ)2|x|2γgψϕn − λ

x2
gψϕn

)
dxdy ,

(387)

where (in the last identity) we have used relation (375). Combining identities (386)
and (387) completes the proof. �

The unique continuation result for the adjoint system (372) can be readily de-
rived.

Proposition 5.6. Let T > 0, γ > 0, λ < 1/4, ω an open subset of (0, 1)×(0, 1),
and let g ∈ C([0, T ];H) ∩ L2(0, T ;W ) be a weak solution of system (372). If g ≡ 0
on ω × (0, T ), then g ≡ 0 on Ω × (0, T ).

Proof. Let ε > 0 be such that ω ⊂ (ε, 1) × (0, 1). In the rectangle (ε, 1) ×
(0, 1), equation (372) has none degenerate coefficients neither singular potential,
so we are in the position to apply the unique continuation for uniformly parabolic
2−D equation. Thus, the hypothesis g ≡ 0 on ω × (0, T ) implies that g ≡ 0 on
(ε, 1) × (0, 1) × (0, T ). Then, relation (383) ensures that gn ≡ 0 on (ε, 1) × (0, T )
for every n ∈ N∗. Moreover, since gn ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

0 (0, 1)), in
particular, for a.e. t ∈ (0, T ), we have gn(·, t) ∈ H1

0 (0, 1) ⊂ C([0, 1]). Thus, by
continuity, we conclude that gn ≡ 0 on (0, 1) × (0, T ) for every n ∈ N∗ (compare
also with the observability inequality in [139, Lemma 3.2(ii)]). Therefore, back to
equation (382), we conclude that g ≡ 0 on Ω × (0, T ). �
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Remark 5.7. Thanks to Proposition 5.6, we derive that the Grushin operator
with singular potential (371) is approximate controllable by a locally distributed
control in an arbitrary open subset ω of Ω, for every T > 0, γ > 0 and λ < 1/4. In
particular, the condition λ < 1/4 embraces the case of the operator (369) accounted
in [33], whose potential coefficient −γ/2(γ/2 + 1) is smaller than 1/4 for every
γ �= −1.

5.3 – Spectral analysis for the 1−D problem

In the prospective of proving null controllability for equation (371), we now focus
on the asymptotic behaviour (with respect to n) of the one dimensional eigenvalue
problem. For this reason, let us introduce, for every n ∈ N∗, γ > 0 and λ < 1/4,
the operator An,γ,λ on L2(0, 1) by

D(An,γ,λ) :=
{
ϕ ∈ H1

0 (0, 1) : ϕ′ ∈ AC((0, 1]) and

−ϕ′′ +
[
(nπ)2|x|2γ − λ

x2

]
ϕ ∈ L2(0, 1)

}
,

An,γ,λϕ := −ϕ′′ +
[
(nπ)2|x|2γ − λ

x2

]
ϕ ∈ L2(0, 1) .

(388)

The smallest eigenvalue of An,γ,λ is given by

µn,γ,λ = min
v∈H1

0(0,1)

v �=0

{∫ 1

0

{
v′(x)2 +

[
(nπ)2|x|2γ − λ

x2

]
v(x)2

}
dx

∫ 1

0
v(x)2dx

}
. (389)

For simplicity, from now on we will refer to An,γ,λ and µn,γ,λ just as An and µn. We
mention that the case n = 0 has been investigated in [140], where well-posedness
and observability are proven for the operator A0. Here we would achieve a similar
observability result for the general operator An, uniformly in n (and in γ and λ as
well). We start by characterizing the behaviour of µn as n → +∞, that quantifies
the dissipation speed of the solution of (384).

Lemma 5.8. Problem
{
−v′′n,γ,λ(x) +

[
(nπ)2|x|2γ − λ

x2

]
vn,γ,λ(x) = µnvn,γ,λ(x)

vn,γ,λ(0) = vn,γ,λ(1) = 0 ,
(390)

admits a unique positive solution with L2(0, 1)-norm one.

Proof. Observe that the domain D(An) of An is compactly embedded in
L2(0, 1), thus the resolvent operator of An is a compact operator. Then, there
exists an orthonormal basis of L2(0, 1) consisting of eigenvectors of An, and the
first eigenvalue is simple. Moreover, the associated eigenfunction v is positive.
Indeed, if not so, let us consider the function w(x) = |v(x)|. Then, w still belongs
to H1

0 (0, 1), it is a weak solution of (390) and it does not increase the functional
in (389). �
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We next provide a precise growth condition for the eigenvalue µn, with respect to
n ∈ N∗.

Proposition 5.9. For every γ > 0 and λ < 1/4, there exist two constants
C∗ = C∗(γ, λ), C∗ = C∗(γ) > 0 such that

C∗n
2

1+γ � µn � C∗n
2

1+γ ∀n ∈ N∗ .

Proof. We prove first the lower bound. Let τn := n
1

1+γ . With the change of
variable φ(x) =

√
τnϕ(τnx), we get

µn = inf
φ∈C∞

c (0,1)

{∫ 1

0

(
φ′(x)2 +

[
(nπ)2|x|2γ − λ

x2

]
φ(x)2

)
dx : ‖φ‖L2(0,1) = 1

}

= τ2n inf
ϕ∈C∞

c (0,τn)

{∫ τn

0

(
ϕ′(y)2 +

[
π2|y|2γ − λ

y2

]
ϕ(y)2

)
dy : ‖ϕ‖L2(0,τn) = 1

}

� C∗τ
2
n

where

C∗ := inf
ϕ∈C∞

c (0,+∞)

{∫ +∞

0

(
ϕ′(y)2 +

[
π2|y|2γ − λ

y2

]
ϕ(y)2

)
dy : ‖ϕ‖L2(0,+∞) = 1

}

is positive since, owing to the Hardy’s inequality, it is greater than (1−4λ)c∗, where
c∗ is the positive constant in (303). Moreover, C∗ goes to 0 as λ → 1/4.

Now we prove the upper bound for µn. For every k > 1 we define the function
ϕk ∈ H1

0 (0, 1) by

ϕk(x) =





kx for x ∈ [0, 1/k) ,

2 − kx for x ∈ [1/k, 2/k) ,

0 for x ∈ [2/k, 1] .

(391)

Straightforward computations show that

∫ 1

0

ϕk(x)2dx =
2

3k
,

∫ 1

0

|x|2γϕk(x)2dx = c(γ)k−1−2γ ,

∫ 1

0

ϕ′
k(x)2dx = 2k ,

∫ 1

0

1

x2
ϕk(x)2dx = 4(1 − ln 2)k ,

where

c(γ) :=
22γ+3

2γ + 3
+ 4

22γ+1 − 1

2γ + 1
− 2

22γ+2 − 1

γ + 1
.
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Thus, µn � fn,γ,λ(k) := 3k2 + 3/2(πn)2c(γ)k−2γ − 6λ(1 − ln 2)k2 for all k > 1.

Since fn,γ,λ attains its minimum at k̄ = c̃(γ, λ)n
1

γ+1 , we have that

µn � fn,γ,λ(k̄) = C(γ, λ)n
2

γ+1 .

Moreover, since

C(γ, λ) = 3

(
π2γc(γ)

2

)1/(γ+1)
γ + 1

γ
[1 − 2λ(1 − ln 2)]

γ/(γ+1)
,

the constant C∗ can be chosen independent from λ; indeed, 1− 2λ(1− ln 2) > 0 for
every λ < 1/4, and the exponent γ/(γ + 1) of the rightmost term is smaller than
one. �

5.4 – A global Carleman inequality

We want to prove that, if γ = 1 and ω = (a, b) × (0, 1) with 0 < a < b ≤ 1, then
there exists a positive time T ∗ > 0 such that system (371) is null controllable in
any time T > T ∗, or, equivalently, system (372) is observable in any time T > T ∗.
For this purpose, we will implement a global Carleman inequality for solutions of
(384).

For every n ∈ N∗, we introduce the operator

Png = gt − gxx +

[
(nπ)2x2 − λ

x2

]
g

and the functions θ(t) = [t(T − t)]−k, t ∈ (0, T ), for some k > 2, and

β(x) :=
2 − x2

4
, x ∈ [0, 1] . (392)

We then consider the weight function

p(x, t) = Mθ(t)β(x) , (x, t) ∈ Q := (0, 1) × (0, T ) (393)

for a sufficiently large constant M .

Proposition 5.10. There exist positive constant C1 and C2 and η ∈ (0, 2) such
that for every n ∈ N∗, T > 0 and g ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

0 (0, 1)) we
have

C1

∫

Q

[
Mθ(g2x − λ

x2
g2) + M3θ3x2g2 + Mθ

g2

xη

]
e−2pdQ

≤
∫

Q

|Png|2e−2pdQ +

∫ T

0

Mθ(g2xe
−2p)|x=1dt ,

(394)

where M := C2 max(T k/2 + T 2k, T 2kn).
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Remark 5.11. In the following proof, in order to ensure the regularity of func-
tion g needed for all integrations by parts, namely, that g ∈ H2(0, 1) ∩ H1

0 (0, 1),
we will regularize the operator Pn with the relaxed operator Pn,δ with potential

λ
(x+δ)2 g, and then pass to the limit as δ → 0. For simplicity, we will perform

computations directly on Pn.

Proof. Let g ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)), and define

z(x, t) := g(x, t)e−p(x,t) , (395)

with weight function p(x, t) defined as in (393). First, note that

{
z(0, t) = z(1, t) = zt(0, t) = zt(1, t) = 0 for all t ∈ (0, T ) ,

θ2z, θtz and zx → 0 as t → 0+ or t → T− .
(396)

Moreover, one verifies that

e−pPng = P+
n z + P−

n z ,

where P+
n z = (pt − p2x)z − zxx +

[
(nπ)2x2 − λ

x2

]
z and P−

n z = zt − 2pxzx − pxxz.
Thus, we have

〈P−
n z, P+

n z〉 ≤ 1

2

∫

Q

e−2p|Png|2dQ (397)

and 〈P−
n z, P+

n z〉 = D + B, where (after several integration by parts we have that)
the distributed part D is given by

D = −2

∫

Q

pxxz
2
xdQ−

∫

Q

pxxxzzxdQ−
∫

Q

1

2
(ptt − 2pxpxt)z

2dQ

+

∫

Q

(pt − p2x)xpxz
2dQ +

∫

Q

[
(nπ)2x2 − λ

x2

]

x

pxz
2dQ

(398)

and the boundary terms are

B =

[∫ 1

0

1

2

(
pt − p2x + (nπ)2x2 − λ

x2

)
z2dx

]T

0

+

[∫ T

0

(
pxz

2
x + pxxzzx − [pt − p2x + (nπ)2x2 − λ

x2
]pxz

2

)
dt

]1

0

.

(399)
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Observe that, thanks to hypotheses (396), the boundary contribution reduces to

B =

[∫ T

0

pxz
2
xdt

]1

0

.

In order to cope with the singular potential, we shall adapt the choice of the spatial
weight β. As proposed in [45] and later in [139], we choose β(x) := (2 − x2)/4, as
in (392). Recalling that p(x, t) = Mθ(t)β(x), the distributed part becomes

D =

∫

Q

Mθz2xdQ +

∫

Q

M3

4
x2θ3z2dQ

+

∫

Q

[
M2

2
x2θθt −

M

8
(2 − x2)θtt − (nπ)2Mθx2 −Mθ

λ

x2

]
z2dQ ,

(400)

and

B =

∫ T

0

−1

2
Mθz2x(1)dt . (401)

We now estimate by below the distributed component D, taking advantage of the
two coercive terms on the first line in equation (400). To this aim, we need an im-
proved version of the Hardy’s inequality, the so-called Hardy-Poincaré’s inequality:
for all m > 0 and η < 2 there exists a positive constant C0 = C0(η,m) such that

∫ 1

0

(
z2x − 1

4

z2

x2

)
dx ≥ m

∫ 1

0

z2

xη
dx− C0

∫ 1

0

z2dx . (402)

Since λ < 1/4, applying the Hardy-Poincaré’s inequality with m = 2, we deduce
that

D ≥ M

2

∫

Q

θ

(
z2x − λ

x2
z2
)
dQ +

M3

4

∫

Q

x2θ3z2dQ +

∫

Q

Mθ
z2

xη
dQ

− C0

2

∫

Q

Mθz2dQ +

∫

Q

[
−M

8
(2 − x2)θtt +

M2

2
x2θθt − (nπ)2x2Mθ

]
z2dQ ,

where the three terms on the first line are positive, whereas the integrals in the
second line need to be evaluated. Observe that

|θt(t)| ≤ c1(T )θ1+1/k and |θtt(t)| ≤ c2(T )θ1+2/k ∀t ∈ (0, T ) , (403)
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where c1(T ) = kT and c2(T ) = k(k + 1)T + k/2T 2. Moreover,

|θ2+1/k| ≤ c3(T )θ3

with c3(T ) = cT 2(k−1), where here and in the following c stands for a generic
constant independent from n and T . Thus,

∣∣∣∣
∫

Q

M2

2
x2θθtz

2dQ

∣∣∣∣ ≤
c1c3
2

∫

Q

M2x2θ3z2dQ .

So, for M ≥ C1(T ) = cT 2k−1, we deduce that

D ≥ M

2

∫

Q

θ

(
z2x − λ

x2
z2
)
dQ +

M3

8

∫

Q

x2θ3z2dQ +

∫

Q

Mθ
z2

xη
dQ

− C0

2

∫

Q

Mθz2dQ +

∫

Q

[
−M

8
(2 − x2)θtt − (nπ)2x2Mθ

]
z2dQ .

On the other hand, fix k = 1 + 2/η and choose q = k and q′ = k/(k − 1) conjugate
exponents. Then, posed c4(T ) = c(T + T 4), for every ε > 0,

∣∣∣∣
∫

Q

[
−C0

2
Mθ − M

8
(2 − x2)θtt

]
z2dQ

∣∣∣∣ ≤ c4M

∫

Q

θ1+2/kz2dQ

= c4M

∫

Q

(
1

ε
θ1+2/k−1/q′xη/q′z2/q

)
(εθ1/q

′
x−η/q′z2/q

′
)dQ

≤ cc4M

εq

∫

Q

θq(1+2/k−1/q′)xηq/q′z2dQ + εq
′
c4M

∫

Q

θ
z2

xη
dQ

=
cc4M

εq

∫

Q

θq(1+2/k−1/q′)xηq/q′z2dQ + εq
′
c4M

∫

Q

θ
z2

xη
dQ .

Note that

q(1 + 2/k − 1/q′) = 3 and ηq/q′ = 2 .

Thus,

∣∣∣∣
∫

Q

[
−C0

2
Mθ − M

8
(2 − x2)θtt

]
z2dQ

∣∣∣∣ ≤
c4M

εq

∫

Q

θ3x2z2dQ + εq
′
c4M

∫

Q

θ
z2

xη
dQ .
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Now, choose ε > 0 such that 1 − εq
′
c4 = 1/2. So, for all M ≥ c(T k/2 + T 2k), we

have that

D ≥ M

2

∫

Q

θ

(
z2x − λ

x2
z2
)
dQ +

M3

16

∫

Q

x2θ3z2dQ +
1

2

∫

Q

Mθ
z2

xη
dQ

−
∫

Q

(nπ)2x2Mθz2dQ .

Finally, we estimate the last integral, whose coefficient depends from n. Since
θ ≤ c5θ

3, with c5(T ) = cT 4k,

∣∣∣∣
∫

Q

(nπ)2x2Mθz2dQ

∣∣∣∣ ≤ c5n
2M

∫

Q

x2θ3z2dQ , (404)

so, for every M ≥ cmax(T k/2 + T 2k, T 2kn), we conclude that

D ≥ M

2

∫

Q

θ

(
z2x − λ

x2
z2
)
dQ +

M3

32

∫

Q

x2θ3z2dQ +
1

2

∫

Q

Mθ
z2

xη
dQ . (405)

Thanks to relation (395) and estimates (397)–(401)–(405), we complete the proof
of (394). �

Remark 5.12. We explicitly note that the Carleman estimate with spatial
weight (392) does not apply to the case 0 < γ < 1, since the term in the left-

hand side of equation (404) would be
∣∣∣
∫
Q

(nπ)2x2γMθz2dQ
∣∣∣, that would not be

controlled by the coercive contributions of the distributed part D, that is, the three
positive terms in the right-hand side of equation (405).

5.5 – Uniform observability

Thanks to the Carleman estimate of Proposition 5.10, we can prove an uniform
observability result for the adjoint system (384).

Proposition 5.13. Let a, b ∈ R be such that 0 < a < b ≤ 1. Then there exist
C > 0, k > 2 and T ∗ > 0 such that for every T > T ∗, n ∈ N∗ and g0,n ∈ L2(0, 1)
the solution of (384) for γ = 1 satisfies

∫ 1

0

gn(x, T )2dx � T 2k−1eC(1+T−3k/2)
∫ T

0

∫ b

a

gn(x, t)2dxdt . (406)

Proof. Let (a′, b′) ⊂⊂ (a, b), 0 ≤ χ ≤ 1 such that χ(x) ≡ 1 on (0, a′) and
χ(x) ≡ 0 on (b′, 1), and define

w(x, t) := χ(x)g(x, t) ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)) .
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Observe that supp(χxx) ⊂ supp(χx) ⊂ (a′, b′), and Pnw = χxxg + 2χxgx. By
definition of w we deduce that

∫ T

0

∫ a

0

θg2e−2pdxdt ≤
∫

Q

θw2e−2pdQ . (407)

Moreover, since wx(1) = 0, the Carleman estimate in Proposition 5.10 ensures that
for every n ∈ N∗, T > 0 and for some η ∈ (0, 2) we have

M

∫

Q

θw2e−2pdQ ≤ M

∫

Q

θ
w2

xη
e−2pdQ

≤ c

∫

Q

|Pnw|2e−2pdQ ≤ c

∫ T

0

∫ b′

a′
(g2 + g2x)e

−2pdxdt ,

where M := C2 max(T k/2+T 2k, T 2kn). Thanks to the Caccioppoli’s inequality (see
[45])

∫ T

0

∫ b′

a′
g2xe

−2pdxdt ≤ c

∫ T

0

∫ b

a

g2dxdt ,

so

M

∫

Q

θw2e−2pdQ ≤ c

∫ T

0

∫ b

a

g2dxdt . (408)

Combining equations (407)–(408), we have that

M

∫ T

0

∫ a

0

θg2e−2pdxdt ≤ c

∫ T

0

∫ b

a

g2dxdt . (409)

By the same argument, choosing a cut-off function that vanishes in a neighbourhood
of 0 and is 1 near the point x = 1, we deduce a similar inequality and conclude that

M

∫ T

0

∫ 1

0

θg2e−2pdxdt ≤ c

∫ T

0

∫ b

a

g2dxdt . (410)

Note that, for every t ∈ (T/3, 2T/3),

(
4

T 2

)k

� θ(t) �
(

9

2T 2

)k

and ∫ 1

0

g2(x, T )dx � e−
2
3µnT

∫ 1

0

g2(x, t)dx .
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Integrating over (T/3, 2T/3), we deduce that

T

3

∫ 1

0

g2(x, T )dx ≤ e−
2
3µnT

∫ 2T/3

T/3

∫ 1

0

g2(x, t)dxdt

≤ e−
2
3µnT

(
T 2

4

)k

e(
9
2 )

k M

T2k

∫ 2T/3

T/3

∫ 1

0

θg2(x, t)e−2pdxdt .

Thanks to relation (410) and Proposition 5.9, we conclude that

∫ 1

0

g2(x, T )dx ≤ c1
T

(
T 2

4

)k

e−c2nT+( 9
2 )

k M

T2k

∫ T

0

∫ b

a

g2dxdt , (411)

for some constants c1, c2 > 0 (independent of n, T and g).
Recalling that M := C2 max(T k/2 + T 2k, T 2kn), we consider two different cases.

First case: n < 1 + 1
T 3k/2 . Then M = C2(T

k/2 + T 2k), thus

∫ 1

0

g2(x, T )dx � cT 2k−1e
c1

(
1+ 1

T3k/2

) ∫ T

0

∫ b

a

g2(x, t)dxdt .

Second case: n � 1 + 1
T 3k/2 . Then M = C2nT 2k, and

∫ 1

0

g2(x, T )dx � cT 2k−1e(
9
2 )

k
n− 2

3 cnT

∫ T

0

∫ b

a

g2(x, t)dxdt .

Finally, observe that
(
9
2

)k
n− 2

3cnT < 0 as soon as T ≥ T ∗ :=
(
9
2

)k 3
2c , completing

the proof of (406). �

5.6 – Open problems and prospectives

In this chapter we have shown a first positive controllability result for the Grushin
operator with a singular (and critical) potential in the square Ω = (0, 1) × (0, 1):
approximate controllability holds for every γ > 0 and every λ < 1/4; moreover,
exploiting the spectral analysis provided in Section 5.3, we have proven null con-
trollability in large time in the case γ = 1 and λ < 1/4. By analogy with the
theory in [25], it should be possible to obtain a negative controllability results, if T
is too small, as well as positive and negative results depending on the value of the
parameter γ. Indeed, for subcritical values of the coefficient of the inverse square
potential (λ < 1/4), we expect a behaviour similar to the case of the generalized
Grushin operator without singular potential studied in [25]: null controllability
should hold in every time for γ ∈ (0, 1), whereas it should fail for γ > 1. Widely
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open is the case of a potential term with the critical coefficient λ = 1/4. In this
case, one has to adapt the functional setting in order to supply for the lack of coer-
civity of the associated bilinear form (see [140]). Furthermore, completely open is
the controllability problem for the Grushin operator with singular potential in the
domain D = (−1, 1)× (0, 1), that is, with degeneracy of the diffusion coefficient and
singularity of the potential occurring at the interior of the domain.
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locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2)
(2012), 548–582.
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Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, second
edition, 2007.

[30] A. Beyrath: Stabilisation indirecte interne par un feedback localement dis-
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non linéaire, 19 (5) (2002), 543–580.
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