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Landau-Kolmogorov type inequalities
in several variables for the Jacobi measure

LAMIA ABBAS – ANDRÉ DRAUX

Abstract: This paper is devoted to Landau-Kolmogorov type inequalities in several
variables in L2 norm for Jacobi measures. These measures are chosen in such a way that
the partial derivatives of the Jacobi orthogonal polynomials are also orthogonal. These
orthogonal polynomials in several variables are built by tensor product of the orthogonal
polynomials in one variable. These inequalities are obtained by using a variational method
and they involve the square norms of a polynomial p and at most those of the partial
derivatives of order 2 of p.

1 – Introduction

These inequalities appear for the first time in the papers of E. Landau [13] and
A. Kolmogorov [12] who used the maximum norm. The use of L2 norms involves
another form of these inequalities which generally is

k p0 k2(1)6 C1(n) k p k2(0) +C2(n) k p00 k2(2)

for any polynomial p, in one variable, of degree at most n. C1(n) and C2(n) are
two positive constants depending on n. The di↵erent L2 norms k . k(0), k . k(1)
and k . k(2) depend on the used measures (see [3, 4, 6, 7, 16]; see also [14] from
the page 614 for a general presentation of the di↵erent types of inequalities). These
inequalities are called Landau-Kolmogorov type inequalities. More general Landau-
Kolmogorov type inequalities involving more than three L2 norms can be found
in [1].
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The study of such inequalities in several variables is new. The first results are
given for the Hermite and Laguerre-Sonin measures in [2]. This paper is devoted to
Landau-Kolmogorov type inequalities in several variables for Jacobi measures.

We will use the following notations. Let x = (x1, . . . , xs) be a point of Rs,
for s > 2. For any element n = (n1, . . . , ns) of Ns, |n| will denote the sum of its
components.

|n| =
sX

j=1

nj .

Let i = (i1, . . . , is) be an element of Ns. Let L2(⌦;µij ,j), j = 1, . . . , s, be the Hilbert
space of square integrable real functions in the variable xj on the open set ⌦ ⇢ R.
µij ,j is a Jacobi measure supported on ⌦ =]− 1, 1[.

µij ,j = (1− x)↵j+ij (1 + x)βj+ij , j = 1, . . . , s, and 8ij 2 N,
with ↵j > −1 and βj > −1.

We will put ↵ = (↵1, . . . ,↵s) and β = (β1, . . . ,βs).
The inner product on every Hilbert space L2(⌦;µij ,j) is defined by

(f(xj), g(xj))L2(⌦;µij ,j
) =

Z

⌦

f(xj)g(xj)dµij ,j(xj), 8f, g 2 L2(⌦;µij ,j),

and the norm is
kfkL2(⌦;µij ,j

) = ((f, f)L2(⌦;µij ,j
))

1
2 .

From the di↵erent measures µij ,j , we define the measure µi by tensor product

µi =
sY

j=1

µij ,j .

Note that the element (0, . . . , 0) of Ns will simply be denoted by 0. Therefore,
µ0 =

Qs
j=1 µ0,j .

Let r = (r1, . . . , rs) be an element of Ns. Let Qr be the space of real polynomials
in s variables of degree at most rj with respect to the variable xj , j = 1, . . . , s.
Let us define a notation for the partial derivatives. Let p be a polynomial of Qr.
Let ⌫ = (⌫1, . . . , ⌫s) be an element of Ns. @⌫p will denote the following partial
derivative of p:

@⌫p =
@|⌫|p

@x⌫1
1 . . . @x⌫s

s
.

Let ` = (`1, . . . , `s) be an element of Ns. Let P
(↵,β)
` be the monic Jacobi poly-

nomial orthogonal with respect to the measure µ0. Then, P
(↵,β)
` will be equal to
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P
(↵1,β1)
`1

(x1) . . . P
(↵s,βs)
`s

(xs) where P
(↵j ,βj)
`j

(xj) is the monic Jacobi polynomial, of

degre j in one variable xj , orthogonal with respect to µ0,j (see [11]).

Let us denote by k
(⌫j)
`j

the following square norm:

k
(⌫j)
`j

=

 
d⌫j

dx
⌫j

j

P
(↵j ,βj)
`j

(xj),
d⌫j

dx
⌫j

j

P
(↵j ,βj)
`j

(xj)

!

L2(⌦;µ⌫j ,j
)

and by k
(⌫)
` the tensor square norm

k
(⌫)
` =

sY

j=1

k
(⌫j)
`j

.

Of course k
(⌫)
` = 0 if at least one of the `j ’s is such that `j < ⌫j . We recall (see [8])

that d⌫j

dx
⌫j
j

P
(↵j ,βj)
`j

(xj) = (`j − ⌫j + 1)⌫jP
(↵j+⌫j ,βj+⌫j)
`j−⌫j

(xj).

(a)m is the Pochhammer symbol: (a)m = a(a + 1) . . . (a + m − 1). By definition
(a)0 = 1.

For the Jacobi measure we have (see [8, 15])

k
(⌫j)
`j

=
2δ`j ,j (`j)!Γ(↵`j ,j)Γ(β`j ,j)Γ(δ`j ,j − `j + ⌫j)

δ`j ,j(Γ(δ`j ,j))
2

(`j − ⌫j + 1)⌫j

with
↵`j ,j = ↵j + `j + 1,

β`j ,j = βj + `j + 1,

δ`j ,j = ↵`j ,j + β`j ,j − 1.

Γ is the gamma function.
Therefore, all these norms satisfy the following ratio

C
(⌫j)
`j

=
k
(⌫j)
`j

k
(0)
`j

= (`j + ↵j + βj + 1)⌫j
(`j − ⌫j + 1)⌫j

.

It will be convenient to put

C
(⌫)
` =

sY

j=1

C
(⌫j)
`j

=

sY

j=1

k
(⌫j)
`j

k
(0)
`j

=
k
(⌫)
`

k
(0)
`

= (`+ ↵+ β + 1)⌫(`− ⌫ + 1)⌫

where (`+↵+β+1)⌫ =
Qs

j=1(`j+↵j+βj+1)⌫j
and (`−⌫+1)⌫ =

Qs
j=1(`j−⌫j+1)⌫j

.
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Note that, if (`j − ⌫j + 1)⌫j
= 0 (i.e. for ⌫j > 1 and (`j − ⌫j + 1) 6 0), then

(` − ⌫ + 1)⌫ = 0 and C
(⌫)
` too. For the sake of simplicity with the writing of all

the relations, for example like
P

|⌫| C
(⌫)
` for a fixed |⌫|, we will keep all the indexes,

even those for which C
(⌫)
` = 0.

Our study of Landau-Kolmogorov type inequalities for the Jacobi measure will
be limited to the case where the total order of the derivatives |⌫| is at most 2.

Like in the previous papers (see [1, 9, 10]), the best tool for studying such
inequalities is to use a bilinear functional aλ defined for functions belonging to a
Sobolev space. Let H2(⌦s;µ⌫ , |⌫| 6 2) be the Sobolev space defined by

H2(⌦s;µ⌫ , |⌫| 6 2) =
�
f |@⌫f 2 L2(⌦s;µ⌫), 8|⌫| 6 2

 
.

L2(⌦s;µ⌫) = L2(⌦;µ⌫1,1)⇥ . . .⇥ L2(⌦;µ⌫s,s).

The inner product on this space is given by

(f, g)H2(⌦s;µ⌫ ,|⌫|62) =
X

|⌫|62

(@⌫f, @⌫g)L2(⌦s;µ⌫).

The corresponding norm is

kfkH2(⌦s;µ⌫ ,|⌫|62) = ((f, f)H2(⌦s;µ⌫ ,|⌫|62))
1
2 .

The bilinear functional aλ

aλ : H2(⌦s;µ⌫ , |⌫| 6 2)⇥H2(⌦s;µ⌫ , |⌫| 6 2) ! R

is defined by

aλ(f, g) =
2X

m=0

λm

X

|⌫|=m

(@⌫f, @⌫g)L2(⌦s;µ⌫), 8f, g 2 H2(⌦s;µ⌫ , |⌫| 6 2), (1)

λm, m = 0, 1, 2, are three fixed real numbers such that λ0 = 1 and λ2 6= 0. We will
put λ = (λ1,λ2) 2 R2.

Now we define some domains of R2.

Dr =
�
λ 2 R2| aλ(p, p) > 0, 8p 2 Qr − {0}

 
,

D̄r =
�
λ 2 R2| aλ(p, p) > 0, 8p 2 Qr

 
.

If we have to compare two elements u = (u1, . . . , us) and v = (v1, . . . , vs) of Ns or
Rs, we will use the classical inequalities: u < v (resp. u 6 v) , uj < vj (resp.
uj 6 vj), j = 1, . . . , s.

The previous domains can also be obtained from the monic Jacobi polynomials.
Indeed, we have the following obvious property:
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Theorem 1.1.

aλ(p, p) > 0, 8p 2 Qr − {0} () aλ(P
(↵,β)
` (x), P

(↵,β)
` (x)) > 0, 8` 6 r.

Proof.
) Obvious
( If p is written in the basis of the monic Jacobi polynomials P

(↵,β)
` (x)

p(x) =
X

`6r

β`P
(↵,β)
` (x),

then aλ(p, p) =
P

`6r β
2
` aλ(P

(↵,β)
` (x), P

(↵,β)
` (x)) > 0. ⇤

2 – Landau-Kolmogorov type inequalities in ⌦s for Jacobi measures.

We use Theorem 1.1 to define some points belonging to the boundary of D̄r. First,

we give the expression of aλ(P
(↵,β)
` (x), P

(↵,β)
` (x)) when ` 6 r.

aλ(P
(↵,β)
` , P

(↵,β)
` ) =

���P (↵,β)
`

���
2

L2(⌦s;µ0)
+ λ1

X

|⌫|=1

���@⌫P
(↵,β)
`

���
2

L2(⌦s;µ⌫)

+ λ2

X

|⌫|=2

���@⌫P
(↵,β)
`

���
2

L2(⌦s;µ⌫)

= k
(0)
` + λ1

X

|⌫|=1

k
(⌫)
` + λ2

X

|⌫|=2

k
(⌫)
`

= k
(0)
` (1 + λ1

X

|⌫|=1

C
(⌫)
` + λ2

X

|⌫|=2

C
(⌫)
` ).

For the sake of simplicity we will put

'1(`) =
X

|⌫|=1

C
(⌫)
` =

sX

j=1

`j(`j + γj + 1)

'2(`) =
X

|⌫|=2

C
(⌫)
` =

sX

j=1

`j(`j − 1)(`j + γj + 1)(`j + γj + 2)

+
X

16i<j6s

`i`j(`i + γi + 1)(`j + γj + 1)

where γj = ↵j + βj , j = 1, . . . , s.
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aλ(P
(↵,β)
` , P

(↵,β)
` ) = 0 corresponds to a straight line H`.

H` =
�
(λ1,λ2) 2 R2|1 + λ1'1(`) + λ2'2(`) = 0

 
.

aλ(P
(↵,β)
` , P

(↵,β)
` ) > 0 corresponds to a positive open half space O`.

O` =
�
(λ1,λ2) 2 R2|1 + λ1'1(`) + λ2'2(`) > 0

 
.

Therefore, Dr =
T
`6r

O`.

Of course Dr (resp. D̄r) is a convex domain as shown in the following property.

Property 2.1. Dr (resp. D̄r) is a convex domain.

Proof. Let λ and λ⇤ be two points of Dr (resp. D̄r), and aλ and aλ⇤ be the
corresponding bilinear functionals defined by (1).
For any ✓ 2 [0, 1], we have

a✓λ+(1−✓)λ⇤ = ✓aλ + (1− ✓)aλ⇤ .

Therefore, if aλ and aλ⇤ are positive (resp. non negative), then a✓λ+(1−✓)λ⇤ is
positive (resp. non negative). ⇤

The method to give Landau-Kolmogorov type inequalities for Jacobi measures
is di↵erent enough from the method used for Hermite and Laguerre measures in [2].
Indeed, in these two cases all the straight lines H`, for |`| fixed, have a common
point which is very useful to obtain some points in D̄r.

Without loss of generality we can assume that rj > 1, 8j = 1, . . . , s. Indeed, if
one of the rj ’s is equal to 0, the space Rs can be reduced to Rs−1.

Our aim is to prove that a segment on the straight line Hr belongs to the
boundary of D̄r.

Property 2.2. The point A = (− 1
'1(r)

, 0) belongs to the boundary of D̄r.

Proof. A is on Hr. Let us show that A 2 O`, 8` 6 r, ` 6= r. Indeed, we have

1 + λ1(A)'1(`) =
'1(r)− '1(`)

'1(r)

=

sP
j=1

(rj − `j)(rj + `j + γj + 1)

'1(r)
> 0.

Therefore, A belongs to the boundary of D̄r. ⇤
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Let us denote by B` the point of intersection of Hr and H`, 8` 6 r, ` 6= r. The
coordinates of such a point are

λ1(B`) = − '2(r)− '2(`)

'2(r)'1(`)− '2(`)'1(r)
, (2)

λ2(B`) =
'1(r)− '1(`)

'2(r)'1(`)− '2(`)'1(r)
. (3)

Property 2.3. If ` 6 r with ` 6= r,

'1(r)− '1(`) > 0,

'2(r)− '2(`) > 0.

Proof. Property 2.2 already gives us the result '1(r)− '1(`) > 0.

'2(r)− '2(`) =
sX

j=1

(rj(rj − 1)(rj + γj + 1)(rj + γj + 2)

− `j(`j − 1)(`j + γj + 1)(`j + γj + 2))

+
X

16i<j6s

(rirj(ri + γi + 1)(rj + γj + 1)

− `i`j(`i + γi + 1)(`j + γj + 1)).

The result holds by comparing every factor with similar forms in the di↵erent sums
and by using the fact that there exists at least one index such that rj > `j . ⇤

Now, we give another expression of '2(`).

Property 2.4.

'2(`) =
1

2

0
@

sX

j=1

`j(`j + γj + 1)

1
A

2

+
1

2

sX

j=1

`2j (`j + γj + 1)2

−
sX

j=1

(2 + γj)`j(`j + γj + 1).

(4)

Proof.

'2(`) =

sX

j=1

`j(`j + γj + 1)(`j − 1)(`j + γj + 1 + 1)

+
X

16i<j6s

`i`j(`i + γi + 1)(`j + γj + 1)

=
sX

j=1

`2j (`j + γj + 1)2 −
sX

j=1

(2 + γj)`j(`j + γj + 1)

+
X

16i<j6s

`i`j(`i + γi + 1)(`j + γj + 1). (5)



106 LAMIA ABBAS – ANDRÉ DRAUX [8]

Hence

'2(`) +
X

16i<j6s

`i`j(`i + γi + 1)(`j + γj + 1)

=
sX

j=1

`2j (`j + γj + 1)2 + 2
X

16i<j6s

`i`j(`i + γi + 1)(`j + γj + 1)

−
sX

j=1

(2 + γj)`j(`j + γj + 1)

=

0
@

sX

j=1

`j(`j + γj + 1)

1
A

2

−
sX

j=1

(2 + γj)`j(`j + γj + 1). (6)

The result is obtained by addition of (5) and (6). ⇤
We already know that A belongs to the boundary of D̄r. We want to prove that

one of the points B` also belongs to the boundary of D̄r. This point is taken among
the points B` for which ` 6 r with |`| = |r|− 1. We begin to prove that λ1(B`) < 0
and λ2(B`) > 0 for such points.

Theorem 2.5. λ1(B`) < 0 and λ2(B`) > 0 for ` 6 r with |`| = |r|− 1.

Proof. If ` 6 r with |`| = |r| − 1, then there exists an index i, 1 6 i 6 s, for
which `i = ri − 1 and `j = rj , 8j 6= i. '1(`) and '2(`) can be expressed in function
of '1(r) and '2(r)

'1(`) = '1(r)− (2ri + γi),

'2(`) = '2(r)− (2ri + γi)('1(r) + (ri − 2)(ri + γi + 1)).

We put

∆1 = '1(r)− '1(`),

∆2 = '2(r)− '2(`).

From Property 2.3, ∆1 > 0 and ∆2 > 0.
Let us prove that the common denominator of λ1(B`) and λ2(B`) is positive.

'2(r)'1(`)− '2(`)'1(r) = '1(r)∆2 − '2(r)∆1.

∆2 = ∆1('1(r) + (ri − 2)(ri + γi + 1)). (7)
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Thus, by using (4) we have

'1(r)∆2 − '2(r)∆1

= ∆1

0
@'1(r)('1(r) + r2i − ri + riγi − 2γi − 2)− 1

2

sX

j=1

r2j (rj + γj + 1)2

− ('1(r))
2 + 2'1(r) +

sX

j=1

γjrj(rj + γj + 1)

1
A

= ∆1

0
@1

2
('1(r))

2 − 1

2

sX

j=1

r2j (rj + γj + 1)2 + '1(r)(r
2
i − ri + riγi − 2γi)

+
sX

j=1

γjrj(rj + γj + 1)

1
A (8)

= ∆1

sX

j=1

rj(rj + γj + 1)

0
@1

2

sX

m=1,m 6=j

rm(rm + γm + 1)

+(ri − 2)(ri + γi + 1) + 2 + γj

!
. (9)

If ri > 2, then (9) is positive.
If ri = 1, then (8) becomes.

∆1

0
@1

2
('1(r))

2 − 1

2

sX

j=1

r2j (rj + γj + 1)2 +
sX

j=1,j 6=i

(γj − γi)rj(rj + γj + 1)

1
A . (10)

1
2 ('1(r))

2 − 1
2

sP
j=1

r2j (rj + γj + 1)2 can be written as

X

16j<m6s

rj(rj + γj +1)rm(rm + γm +1) = ri(ri + γi +1)

sX

j=1,j 6=i

rj(rj + γj +1)+R

where R is positive. Hence, the new expression of (10)

∆1

0
@R+ (2 + γi)

sX

j=1,j 6=i

rj(rj + γj + 1) +

sX

j=1,j 6=i

(γj − γi)rj(rj + γj + 1)

1
A

= ∆1

0
@R+

sX

j=1,j 6=i

(2 + γj)rj(rj + γj + 1)

1
A > 0.

Hence, the result holds. ⇤
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Now we choose a point B`⇤ among the points B` as follows. We take B`⇤ such
that

λ2(B`⇤) = min
`2L

λ2(B`)

where L = {` | ` 6 r and |`| = |r|− 1 > 1}.
Let us prove that such a point B`⇤ belongs to the boundary of D̄r.

Theorem 2.6. The point B`⇤ belongs to the boundary of D̄r.

Proof. All the slopes −'1(`)
'2(`)

of the straight lines H` are negative. Moreover,

their slopes are smaller than the slope of Hr when ` 6 r with |`| = |r|− 1. We still
have `i = ri − 1 and `j = rj , 8j 6= i. Indeed, by using Theorem 2.5,

−'1(r)

'2(r)
+

'1(`)

'2(`)
=

'2(r)'1(`)− '2(`)'1(r)

'2(r)'2(`)
> 0.

A straight line H` contains the point (− 1
'1(`)

, 0) which is on the left of the point A

on the axis of the λ1’s. Therefore, B`⇤ 2 O`, 8` 6 r with |`| = |r|− 1.
Since

λ2(B`)

=
1

sP
j=1

rj(rj + γj + 1)

✓
1
2

sP
m=1,m 6=j

rm(rm + γm + 1) + 2 + γj

◆
+(ri2)(ri+γi+1)'1(r)

, (11)

to minimize λ2(B`), we have to maximize (ri − 2)(ri + γi + 1)'1(r).
Let us denote by (ri⇤ , γi⇤) a couple which maximizes (ri − 2)(ri + γi + 1).
Let us show that B`⇤ 2 O`, 8` 6 r with |`| = |r|− 2, that is to say,

1 + '1(`)λ1(B`⇤) + '2(`)λ2(B`⇤) > 0. (12)

By using (2) and (3) the left hand side of (12) gives us

('1(r)− '1(`
⇤))('2(`)− '2(r)) + ('2(r)− '2(`

⇤))('1(r)− '1(`)). (13)

'1(r)− '1(`) =
sX

j=1

(rj − `j)(rj + `j + γj + 1).

'2(r)− '2(`) =
1

2
('1(r)− '1(`))('1(r) + '1(`))

+
1

2

sX

j=1

(r2j (rj + γj + 1)2 − `2j (`j + γj + 1)2)

−
sX

j=1

(2 + γj)(rj(rj + γj + 1)− `j(`j + γj + 1)).
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Moreover, by using (7), (13) can be written as

('1(r) '1(`
⇤))

✓
('1(r) '1(`))('1(r) + r2i⇤  ri⇤ + ri⇤γi⇤  2γi⇤  2) ('2(r) '2(`))

◆

= ('1(r) '1(`
⇤))

sX

j=1

(rj(rj + γj + 1) `j(`j + γj + 1))

✓
1

2
('1(r) '1(`)) + r2i⇤  ri⇤

+ ri⇤γi⇤  2γi⇤  2 1

2
(rj(rj + γj + 1) `j(`j + γj + 1)) + 2 + γj

◆

= ('1(r) '1(`
⇤))

sX

j=1

(rj  `j)(rj + `j + γj + 1)

✓
1

2

sX

m=1

(rm  `m)(rm + `m + γm + 1)

+((ri⇤  2)(ri⇤ + γi⇤ + 1) (rj  2)(rj + γj + 1))+
1

2
(rj`j)(rj+`j+γj+1) 2rjγj

◆

= ('1(r) '1(`
⇤))

sX

j=1

(rj  `j)(rj + `j + γj + 1)

✓
1

2

sX

m=1,m 6=j

(rm  `m)(rm + `m + γm + 1)

+((ri⇤  2)(ri⇤ + γi⇤ + 1) (rj  2)(rj + γj + 1))

+(rj  `j)(rj + `j + γj + 1) 2rj  γj

◆
. (14)

All the factors of (14) are positive, except possibly

(rj − `j)(rj + `j + γj + 1)− 2rj − γj . (15)

If rj − `j = 1, then (15) = 0.

If rj = `j + δ with δ > 2, then (15) = (δ − 1)(rj + `j + γj) > 0, since rj > 2.

If rj − `j = 0, then the factor (rj − `j) in the sum
sP

j=1

involves that

(rj − `j)(rj + `j + γj + 1)

✓
1

2

sX

m=1,m 6=j

(rm − `m)(rm + `m + γm + 1)

+
⇣
(ri⇤−2)(ri⇤+ γi⇤+1)−(rj−2)(rj+γj+2)

⌘
+(rj−`j)(rj+`j+γj+1)−2rj−γj

◆
=0.

Therefore, (14) is always positive.

Hence, B`⇤ is on Hr and belongs to all the O`’s for ` 6 r, ` 6= r. Thus, B`⇤ is
on the boundary of D̄r. ⇤
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In the particular case where |r| = 2, the straight lines H`, for |`| = 1 with ` 6 r
are given by the following equations:

λ1 = − 1

'1(`)
= − 1

`j(`j + γj + 1)
= − 1

2 + γj
.

The set of positive half spaces O`, when |`| = 1 with ` 6 r, gives a global positive
half space O`⇤ defined by

λ1 > − 1

2 + max
j

γj
= − 1

2 + γi⇤
.

Thus, λ1(B`⇤) = − 1
2+γi⇤

. λ2(B`⇤)) is given by (11).

Corollary 2.7. Any point M = (1− ✓)A+ ✓B`⇤ , for 0 6 ✓ 6 1 belongs to the
boundary of D̄r.

Proof. A and B`⇤ belong to the boundary of D̄r. D̄r is a convex domain.
Thus, all the points of the interval [B`⇤ , A] belong to D̄r. But they lie on Hr.
Therefore, they belong to the boundary of D̄r. ⇤

For such points M we have Landau-Kolmogorov type inequalities.

Corollary 2.8. For any point M = (1− ✓)A+ ✓B`⇤ , with 0 < ✓ 6 1, we have
the following Landau-Kolmogorov type inequality

X

|⌫|=1

||@⌫p||2L2(⌦s;µ⌫)
6 − 1

λ1(M)
||p||2L2(⌦s;µ0)

− λ2(M)

λ1(M)

X

|⌫|=2

||@⌫p||2L2(⌦s;µ⌫)
, 8p 2 Qr.

(16)

When 0 < ✓ < 1, this inequality is an equality if and only if p = cP
(↵,β)
r with c 2 R.

If ✓ = 1, then this inequality is an equality if and only if p = cP
(↵,β)
r +

P
`2L⇤

c`P
(↵,β)
` .

L⇤ is the subset of L such that for any element of L⇤ we have the maximum of
(ri − 2)(ri + γi + 1). c and the c`’s belong to R.

Proof. λ1(M) < 0 and λ2(M) > 0. Thus (16) holds.
If 0 < ✓ < 1, then M , belonging to Hr, gives us

1 + λ1(M)'1(r) + λ2(M)'2(r) = 0.

Hence (16) is an equality for cP
(↵,β)
r .
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If ✓ = 1, then M belongs to Hr and the di↵erent H` such that ` 2 L⇤. Hence

(16) is an equality for any Jacobi polynomial P
(↵,β)
r and P

(↵,β)
` for ` 2 L⇤. ⇤

Note that if ✓ = 0, we have a Markov-Bernstein inequality

X

|⌫|=1

||@⌫p||2L2(⌦s;µ⌫)
6 − 1

λ1(A)
||p||2L2(⌦s;µ0)

, 8p 2 Qr,

that is to say,

X

|⌫|=1

||@⌫p||2L2(⌦s;µ⌫)
6

sX

j=1

rj(rj + γj + 1)||p||2L2(⌦s;µ0)
, 8p 2 Qr.

This inequality is an equality if and only if p = cP
(↵,β)
r with c 2 R.

To finish, we want to propose an optimal point M on the segment [B`⇤ , A[ which
minimizes the right hand side of the inequality (16) when p is any fixed polynomial
of Qr.

Theorem 2.9. The best point M on the segment [B`⇤ , A[ which minimizes the
right hand side of the inequality (16) for any fixed polynomial p 2 Qr, is B⇤

` .

Proof. M = (1− ✓)A+ ✓B`⇤ for 0 < ✓ 6 1. Thus

λ1(M) = − 1

'1(r)
+ ✓

✓
1

'1(r)
+ λ1(B

⇤
` )

◆
,

λ2(M) = ✓λ2(B
⇤
` ).

Let G(✓) be the right hand side of (16). Its derivative G0(✓) is

G0(✓) =

1

'1(r)
+ λ1(B

⇤
` )

(λ1(M))2
||p||2L2(⌦s;µ0)

+
λ2(B

⇤
` )

'1(r)

1

(λ1(M))2

X

|⌫|=2

||@⌫p||2L2(⌦s;µ⌫)

=
Ĝ

(λ1(M))2
.
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We replace λ1(B
⇤
` ) and λ2(B

⇤
` ) with the relations (2) and (3). We obtain

Ĝ =
'1(`

⇤)− '1(r)

'1(r)('2(r)'1(`⇤)− '2(`⇤)'1(r))

0
@'2(r)||p||2L2(⌦s;µ0)

−
X

|⌫|=2

||@⌫p||2L2(⌦s;µ⌫)

1
A

=
'1(`

⇤)− '1(r)

'1(r)('2(r)'1(`⇤)− '2(`⇤)'1(r))
G⇤.

The factor of G⇤ is negative.

Let p be a polynomial of Qr. Thus, p can be written in the basis of monic Jacobi

polynomials P
(↵,β)
⇢ , 8⇢ 6 r.

p =
X

⇢6r

β⇢P
(↵,β)
⇢ .

We have

||p||2L2(⌦s;µ0)
=
X

⇢6r

β2
⇢k

(0)
⇢ ,

||@⌫p||2L2(⌦s;µ⌫)
=
X

⇢6r

β2
⇢k

(⌫)
⇢ =

X

⇢6r

C(⌫)
⇢ β2

⇢k
(0)
⇢ ,

X

|⌫|=2

||@⌫p||2L2(⌦s;µ⌫)
=
X

|⌫|=2

X

⇢6r

C(⌫)
⇢ β2

⇢k
(0)
⇢

=
X

⇢6r

X

|⌫|=2

C(⌫)
⇢ β2

⇢k
(0)
⇢

=
X

⇢6r

β2
⇢'2(⇢)k

(0)
⇢ .

Thus, G⇤ =
P
⇢6r

k
(0)
⇢ β2

⇢('2(r)− '2(⇢)) > 0, by using Property 2.3.

Therefore, G0 < 0 and G(✓) is a strictly decreasing function with respect to
✓ 2]0, 1]. The minimum is attained for ✓ = 1, that is to say, when M = B`⇤ . ⇤

Remark 2.10. If p is a polynomial in one variable xj , by using µij ,j = (1 −
xj)

↵j+ij (1 + xj)
βj+ij = (1− x2

j )
ijµ0,j , j = 1, . . . , s, we get

(p(⌫j)(xj), p
(⌫j)(xj))L2(⌦;µ⌫j ,j

)=((1−x2
j )

⌫j/2p(⌫j)(xj),(1−x2
j )

⌫j/2p(⌫j)(xj))L2(⌦;µ0,j).
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Therefore,

X

|⌫|=1

||@⌫p||2L2(⌦s;µ⌫)
=

sX

j=1

k (1− x2
j )

1/2@⌫(j)p k2L2(⌦s;µ0)
, (17)

X

|⌫|=2

||@⌫p||2L2(⌦s;µ⌫)
=

sX

j=1

||(1− x2
j )@

⌫̂(j)p||2L2(⌦s;µ0)

+
X

16i<j6s

||((1− x2
i )(1− x2

j ))
1/2@⌫(i,j)p||2L2(⌦s;µ0)

(18)

�a
where ⌫(j) = (⌫1, . . . , ⌫s) 2 Ns. ⌫(j) is such that ⌫j = 1 and ⌫i = 0, 8i 6= j.
⌫̂(j) = (⌫̂1, . . . , ⌫̂s) 2 Ns and ⌫(i, j) = (⌫⇤1 , . . . , ⌫

⇤
s ) 2 Ns. ⌫̂(j) is such that ⌫̂j = 2

and ⌫̂i = 0, 8i 6= j. ⌫(i, j) is such that ⌫⇤i = ⌫⇤j = 1 (i < j) and ⌫⇤m = 0, 8m 6= i, j.
We can use (17-18) in (16) to give new expressions of Landau-Kolmogorov type
inequalities only by using the norm defined on the space L2(⌦s;µ0).
The special forms of these inequalities are similar to those given in [5] (from the
page 614) in the case of polynomials in one variable.
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[5] R. P. Agarwal – G. V. Milovanović: Extremal problems, inequalities, and classical
orthogonal polynomials, Appl. Math. Comp., 128 (2002), 151–166.

[6] E. A. Az-Zo’bi: A new generalization of Bojanov Varma’s inequality, Int. Journal of
Math. Analysis, n. 14 3 (2009), 667–671.

[7] B. D. Bojanov – A. K. Varma: On a polynomial inequality of Kolmogoro↵ ’s type,
Proc. Amer. Math. Soc., 124 (1996), 491–496.

[8] T. S. Chihara: An Introduction to Orthogonal Polynomials, Gordon and Breach, New
York, 1978.

[9] A. Draux – C. El Hami: Hermite-Sobolev and closely connected orthogonal polyno-
mials, J. Comp. Appl. Math., 81 (1997), 165–179.

[10] A. Draux – C. Elhami: On the positivity of some bilinear functionals in Sobolev
spaces, J. Comp. Appl. Math., 106 (1999), 203–243.

[11] C. Dunkl – Y. Xu: Orthogonal polynomials of several variables, Encyclopedia of
Mathematics and its Applications, Vol. 81, Cambridge University Press, 2001.



114 LAMIA ABBAS – ANDRÉ DRAUX [16]
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