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Ekeland sequences compact in L1

LUCIO BOCCARDO

dedié à Ivar Ekeland

Abstract: In this paper we use Ekeland’s "-variational principle and we prove that,
for some integral functionals, there exists a minimizing sequence compact in L1.

1 – Introduction

Let us recall Ekeland’s "-variational principle (see [8, 9]).

Lemma 1.1. Let (V, d) be a complete metric space, and let F : V ! (−1,+1]
be a lower semicontinuous function such that infV F is finite. Let " > 0 and u 2 V
be such that

F(u)  inf
v2V

F(v) + " .

Then there exists v 2 V such that

(i) d(u, v)  p
";

(ii) F(v)  F(u);
(iii) v minimizes the functional G(w) = F(w) +

p
" d(v, w).

Many papers used the above "-variational principle in many di↵erent frameworks:
it is impossible to quote all of them; we only recall [1, 10, 11, 12, 17, 18, 20] (and
the references therein) and the papers referred below.

In this paper we carry on the study of additional properties of the Ekeland
sequences (begun in [5] and developed in [7]), in the case of functionals defined
through multiple integrals.
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In [5], we considered some properties of the minimizing sequences for integral
functionals J . Thanks to the Ekeland Lemma, we proved the existence of a minimiz-
ing sequence compact in Ls(⌦) or in C0,↵ for functionals which do not need to have
a minimum, without using the integral representation of the relaxed functional J⇤.

In [7], we improved the study done in the paper [5], under the assumption that
the functional J has a minimum belonging to L1(⌦). Using again Ekeland’s "-
variational principle, we proved that there exists a minimizing sequence uniformly
converging to a minimum u.

In this paper, we prove similar results if the coefficients satisfy a control assump-
tion (quite natural and introduced in [2]; see (2.3) below).

2 – Setting and statement of the result

Let ⌦ be an open, bounded subset of RN , N ≥ 2, and let p be a real number, with
2  p < N . We will denote by p⇤ the Sobolev exponent of p: p⇤ = Np

N−p .

Let j : ⌦⇥ RN ! R be a Carathéodory function (i.e., measurable with respect
to x for every ⇠ 2 RN , and continuous with respect to ⇠ for almost every x 2 ⌦)
convex with respect to ⇠, and such that

↵ |⇠|p  j(x, ⇠)  β |⇠|p , (2.1)

for almost every x 2 ⌦, for every ⇠ 2 RN , where ↵, β are positive real numbers.
Let J : W 1,p

0 (⌦) ! R be defined by

J(v) =

Z

⌦

j(x,rv) +
1

r

Z

⌦

b(x)|v|r −
Z

⌦

f(x) v, v 2 W 1,p
0 (⌦) ,

where
r > 1, (2.2)

and the coefficient b(x) and the datum f(x), belonging to L1(⌦), satisfy the domi-
nated assumption

there exists Q 2 R+ such that |f(x)|  Qb(x). (2.3)

Note that (2.1) implies

J(v) ≥ ↵

Z

⌦

|rv|p + 1

r

Z

⌦

b(x)|v|r −
Z

⌦

f(x) v(x).

First of all, we point out that the assumptions (2.3) and (2.2) imply

2
664

1

r

Z

⌦

b(x)|v|r −
Z

⌦

f(x) v ≥ 1

r

Z

⌦

b(x)|v|r −
Z

⌦

Qb(x) |v|

=

Z

|v|r−1≥Q

b(x)
⇥
|v|r−1 −Q

⇤
|v|+

Z

|v|r−1<Q

b(x)
⇥
|v|r−1 −Q

⇤
|v|,

(2.4)
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where b(x)
⇥
|v|r−1−Q

⇤
|v| is positive on the set {|v|r−1 ≥ Q} and b(x)

⇥
|v|r−1−Q

⇤
|v|

belongs to L1 on the set {|v|r−1 < Q}.
Thus, under the above assumptions J is well defined on W 1,p

0 (⌦) even though f
is only in L1(⌦); possibly with value +1.

Since J is both weakly lower semicontinuous and coercive on W 1,p
0 (⌦), there

exists a minimum u of J .
Moreover the assumption (2.1) and the inequality (2.4) say that the functional

J is strongly lower semicontinuous in W 1,1
0 (⌦), so that it is possible to apply the

Ekeland Lemma 1.1.
Also we have the following results on the summability of minima of J .

Proposition 2.1. Let u be a minimum of J on W 1,p
0 (⌦). Then

(i) in [19] (see also [14]) is proved that, if b(x) = 0, f 2 Lm(⌦) , m > N
p , then u

belongs to L1(⌦);
(ii) in [4] is proved that, if b(x) = 0, f 2 Lm(⌦) , 1 < m < N

p , then u belongs to

Lσ(⌦), σ = (pm)⇤

p0 ;

(iii) in [2] is proved that, under the assumptions (2.2) and (2.3), u 2 L1(⌦), with
the explicit bound

|u(x)|  Q
1

r−1 . (2.5)

Remark 2.2. Let {ūn} be a minimizing sequence. Recall the definitions (k > 0)

Gk(s) = (|s|− k)+
s

|s| , Tk(s) = s−Gk(s) .

Before proving Theorem 2.3, note that, under the assumptions (2.1), (2.2), (2.3),

since we have estimate (2.5), the sequence {un}, with un = TM (ūn), M = Q
1

r−1 ,
"n ! 0, satisfies

Z

⌦

j(x,rTM (ūn)) +
1

r

Z

⌦

b(x)|TM (ūn)|r −
Z

⌦

f(x)TM (ūn)

 inf
v2W 1,p

0 (⌦)
J(v) + "n +

1

r

Z

⌦

b(x)[|TM (ūn)|r − |ūn|r] +
Z

⌦

f(x)GM (ūn) ,

 inf
v2W 1,p

0 (⌦)
J(v) + "n +

Z

⌦

f(x)GM (ūn) ,

and since

lim
n!+1

Z

⌦

f(x)GM (ūn) =

Z

⌦

f(x)GM (u) = 0 ,

we have that
Z

⌦

j(x,run) +
1

r

Z

⌦

b(x)|un|r −
Z

⌦

f(x)un  inf
v2W 1,p

0 (⌦)
J(v) + "̄n .
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That is, the sequence {un} is a minimizing sequence for J , and it is bounded in
L1(⌦): |un(x)|  M .

We assume that

there exists a(x, ⇠) = j⇠(x, ⇠), which satisfies the Leray-Lions assumptions (2.6)

(see [16]); that is a : ⌦ ⇥ RN ! RN is a Carathéodory function such that the
following holds for almost every x 2 ⌦, for every ⇠ 6= ⌘ 2 RN :

8
><
>:

a(x, ⇠)⇠ ≥ ↵ |⇠|p ,
|a(x, ⇠)|  β|⇠|p−1 ,

[a(x, ⇠)− a(x, ⌘)](⇠ − ⌘) > 0 ,

(2.7)

where ↵, β are positive constants. Then the minimum u 2 W 1,p
0 (⌦) \ L1(⌦) is a

solution of the Euler-Lagrange equation

Z

⌦

a(x,ru)r'+

Z

⌦

b(x)u|u|r−2' =

Z

⌦

f(x)', 8 ' 2 W 1,p
0 (⌦) \ L1(⌦). (2.8)

With respect to the above Remark 2.2, if we assume (2.6), in Theorem 2.3, we
prove more (as in [7], even with di↵erent assumptions): thanks to the "-variational
principle, it is possible to build a minimizing sequence not only bounded in L1(⌦),
but also strongly convergent to u in the same space.

Our main result is the following.

Theorem 2.3. We assume (2.1), (2.2), (2.3). Let u be a minimum of J on
W 1,p

0 (⌦) \ L1(⌦), and let {ūn} be any minimizing sequence for J ,

kūnk  M = Q
1

r−1 , thanks to Remark 2.2. (2.9)

Then the minimizing sequence {un} built after {ūn} using the "-variational principle
satisfies

lim
n!1

kun − uk
W 1,p

0 (⌦)
= 0 , (2.10)

and
the sequence {un} is compact in L1(⌦) . (2.11)

Proof.

Step 1. Let "n be a sequence of positive real numbers, converging to zero, and
let ūn be such that, for every n 2 N,

J(ūn)  inf
v2W 1,p

0 (⌦)
J(v) + "n .
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Let us now consider the complete metric space W 1,1
0 (⌦), endowed with the distance

dn(w, v) =
1p
"n

Z

⌦

|rw −rv| .

Thanks to Fatou lemma, to the fact that j(x, ⇠) ≥ 0 and to (2.4), we have that J
is strongly lower semicontinuous on W 1,1

0 (⌦). Thus, in view of Lemma 1.1, there
exists a sequence {un} in W 1,1

0 (⌦) such that

Z

⌦

|run −rūn| 
p
"n ,

and

J(un)  J(ūn)  inf
v2W 1,p

0 (⌦)
J(v) + "n , (2.12)

J(un)  J(w) +
p
"n

Z

⌦

|run −rw| , 8w 2 W 1,1
0 (⌦) . (2.13)

Using the growth properties of J we now prove that the sequence {un} is bounded
in W 1,p

0 (⌦). By (2.1), we have (recall (2.4))

Z

⌦

j(x,run) +

Z

{|un|r−1<Q}


1

r
b(x)|un|r − f(x)un

�


Z

⌦

j(x,run) +
1

r

Z

⌦

b(x)|un|r −
Z

⌦

f(x)un.

Thus

↵

Z

⌦

|run|p  J(un)  inf
v2W 1,p

0 (⌦)
J(v) + "n +

Z

{|un|r−1<Q}


f(x)un − 1

r
b(x)|un|r

�
.

and

↵

Z

⌦

|run|p  J(un)  inf
v2W 1,p

0 (⌦)
J(v) + "n + CQ,

which implies that the sequence {un} is bounded in W 1,p
0 (⌦). Thus kunk

W 1,p
0 (⌦)


R and, up to subsequences, still denoted by {un}, there exists a function u in
W 1,p

0 (⌦) such that

un ! u weakly in W 1,p
0 (⌦) and almost everywhere in ⌦. (2.14)

By the weak lower semicontinuity of J on W 1,p
0 (⌦), and by (2.12), u is a minimum

of J on this space.
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Now we follow a classic method by I. Ekeland and we use (2.6). Choosing
w = un − t in (2.13), where t is a positive real number and  is a function in
W 1,p

0 (⌦) \ L1(⌦), we obtain

J(un − t )− J(un) +
p
"n t

Z

⌦

|r | ≥ 0 .

Dividing by t, and letting t tend to zero, we get, since J is di↵erentiable,

−hJ 0(un), i+
p
"n

Z

⌦

|r | ≥ 0 ,

so that

hJ 0(un), i 
p
"n

Z

⌦

|r | . (2.15)

Recalling that J 0(u) = 0 since u is a minimum, we have

hJ 0(un)− J 0(u), i  p
"n

Z

⌦

|r | ,

for every  in W 1,p
0 (⌦) \ L1(⌦). Observe that

hJ 0(un), i =
Z

⌦

a(x,run)r −
Z

⌦

f(x) , (2.16)

that is

hJ 0(un)−J 0(u), i =
Z

⌦

[a(x,run)− a(x,ru)]r +
Z

⌦

b(x)(un|un|r−2 − u|u|r−2) .

Choosing  = Tk(un−u), and using the fact that s 7! s|s|r−2 is monotone, we have

2
664

Z

|un−u| k

[a(x,run)− a(x,ru)]r(un − u)

 p
"n

Z

⌦

|rT k(un − u)|  p
"n

Z

⌦

|r(un − u)|  CR
p
"n .

Here we use the Fatou lemma, as k ! 1, and we obtain

Z

⌦

[a(x,run)− a(x,ru)]r(un − u)  CR
p
"n .

A result by J. Leray and J.-L. Lions says that the above limit implies that

run(x) converges a.e. to ru(x). (2.17)
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Then in [6] is proved that, under our assumption on the function a(x, ⇠), this a.e.
convergence implies (2.10).

Step 2. Let 0  ⇣  1 be a smooth function and let 'k(t) = T1[Gk(t)], with

k ≥ M = Q
1

r−1 . Choose  = 'k(un) ⇣
p in (2.15); then we have

2
64

Z

⌦

a(x,run)r['k(un) ⇣
p] +

Z

⌦

b(x)un|un|r−2'k(un) ⇣
p −

Z

⌦

f(x)'k(un) ⇣
p

 p
"n

Z

⌦

|r['k(un) ⇣
p]|

and, recalling (2.3), (2.4), (2.9),

2
666664

Z

⌦

a(x,run)r['k(un) ⇣
p]

 p
"n

Z

⌦

|r['k(un) ⇣
p]|+

Z

{|un|r−1<Q}
b(x)[Q− |un|r−1]|'k(un)| ⇣p

=
p
"n

Z

⌦

|r['k(un) ⇣
p]|,

which implies (with Bn,k = {x 2 ⌦ : k  |un(x)| < k + 1}, An,k = {x 2 ⌦ : k 
|un(x)|}). 2

6666664

↵

Z

Bn,k

|run|p⇣p

 p
"n

Z

Bn,k

|run| |⇣p|+ p

Z

⌦

|r⇣| |'k(un)| ⇣p−1

+pβ

Z

⌦

(|run| ⇣)p−1|r⇣||'k(un)|

and 2
6666666664

↵

1X

k=j

Z

Bn,k

|run|p⇣p

 p
"n

1X

k=j

Z

Bn,k

|run| ⇣p + p
1X

k=j

Z

⌦

|r⇣| |'k(un)| ⇣p−1

+pβ
1X

k=j

Z

⌦

(|run| ⇣)p−1|r⇣||'k(un)| .

Since
+1X

k=j

'k(t) = Gj(t) ,
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we have (note that run Gj(un) = rGj(un)Gj(un) and use the Young inequality
with 0 < B < ↵

2 )

2
666666666666666664

↵

Z

⌦

|rGj(un)|p⇣p

 p
"n

Z

⌦

[|rGj(un)| ⇣]⇣p−1 + p

Z

⌦

|r⇣| |Gj(un)| ⇣p−1

+pβ

Z

⌦

(|rGj(un)| ⇣)p−1|r⇣||Gj(un)| ,

 B

Z

⌦

|rGj(un)|p ⇣p + CB(
p
"n)

p0
Z

An,j

⇣p

+C1

Z

⌦

|r⇣|p|Gj(un)|p + C2

Z

An,j

⇣p

+B

Z

⌦

|rGj(un)|p ⇣p + CB

Z

⌦

|r⇣|p|Gj(un)|p.

Thus we have

(↵−2B)

Z

⌦

|rGj(un)|p⇣p  (C1+CB)

Z

⌦

|r⇣|p|Gj(un)|p+(C2+CB(
p
"n)

p0
)

Z

An,j

⇣p.

This estimate implies (see [13, 15]) that the sequence {un} is bounded in the De
Giorgi class B2(⌦,M); that is the functions un are equi-Hölder continuous in ⌦ and
we proved the statement (2.11). ⇤

Remark 2.4. In [3] we presented a di↵erent method to prove the compactness
in W 1,p

0 (⌦) of minimizing sequences proved in (2.10).
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