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On the abstract Bogomolov-Tian-Todorov Theorem

Donatella Iacono

Abstract. We describe an abstract version of the Theorem of Bogomolov-Tian-Todorov, whose

underlying idea is already contained in various papers by Bandiera, Fiorenza, Iacono, Manetti.

More explicitly, we prove an algebraic criterion for a differential graded Lie algebra to be homo-

topy abelian. Then, we collect together many examples and applications in deformation theory

and other settings.

1 Introduction

Let X be a compact Kähler manifold. If X has trivial canonical bundle, then, the
so called Bogomolov-Tian-Todorov (BTT) Theorem states that the deformations of
X are unobstructed. In [5], Bogolomov proved it in the particular case of complex
hamiltonian manifolds; later, Tian [38] and Todorov [39] proved independently
the theorem for compact Kähler manifolds with trivial canonical bundle. More
algebraic proofs of BTT theorem, based on T 1-lifting Theorem and degeneration
of the Hodge spectral sequence, were given in [35] for K = C and in [25, 9] for any
K as above.

For compact Kähler manifolds with torsion canonical bundle, the theorem
follows from the more general fact that the derived infinitesimal deformations are
unobstructed. The guiding principle is that in characteristic zero any deformation
problem is controlled by a differential graded Lie algebra (DG-Lie algebra), with
quasi-isomorphic DG-Lie algebras control the same deformation problem [15, 19].
More precisely, the deformation functor associated with the geometric problem is
isomorphic to the deformation functor DefL associated with a DG-Lie algebra L
via Maurer-Cartan equation up to gauge equivalence.

Therefore, it is worth to have an explicit description of a DG-Lie algebra
associated with the problem. It turns out that the obstructions to the smoothness
of the functor DefL are contained in the cohomology vector space H2(L). However,
if L is an abelian DG-Lie algebra then, even if H2(L) is not zero, the functor DefL
is smooth, i.e., it has no obtructions. In particular, it is actually enough to prove
that the DG-Lie algebra is homotopy abelian, i.e., quasi-isomorphic to an abelian
DG-Lie algebra, to assure that the associated deformation functor is smooth.

For a compact complex manifold X, the infinitesiaml deformation are con-
trolled by the Kodaira-Spencer DG-Lie algebras KSX (Example 2.4). If X is a
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compact Kähler manifold with trivial or torsion canonical bundle, then the Lie
version of BTT theorem asserts that KSX is homotopy abelian (Section 4.1). For
K = C, this was first proved in the seminal paper by W.M. Goldman and J.J.
Millson [16], see also [27]. For any algebraically closed field K of characteristic 0,
this was proved in a completely algebraic way in [22], using the degeneration of
the Hodge-to-de Rham spectral sequence and the notion of Cartan homotopy.

In [22], the proof involves L∞-algebras and L∞-morphisms and it is based on
a series of algebraic results that were also applied in other context [23, 21, 4, 13].
In this paper, we review some of these ideas of independent interest to establish
the following criterion, that we call Abstract Bomolov-Tian-Todorov Theorem, for
homotopy abelianity of a DG-Lie algebra (Theorem 3.3).

Theorem 1.1 (Abstract BTT Theorem). Let L and M be DG-Lie algebras over
a field K of characteristic 0 and H ⊆M a DG-Lie subalgebra. Assume that there
exists a linear map

i ∈ Hom−1K (L,M), a 7→ ia,

of degree −1 such that:

1. [ia, ib] = 0 and i[a,b] = [ia, dib] for every a, b ∈ L;

2. dia + ida ∈ H for every a ∈ L;

3. the inclusion H ↪→M is injective in cohomology;

4. the induced morphism of complexes i : L→ (M/H)[−1] is injective in coho-
mology.

Then, the DG-Lie algebra L is homotopy abelian.

According to [11, 22], every linear map i : L→ M of degree −1 that satisfies
the previous condition (1) is called Cartan homotopy (Section 3). According to
[13], any pair (i, H) satisfying the above conditions (1) and (2) is called Cartan
calculus.

The previous theorem is already implicitly proved in [10, 22], using L∞-
algebras and L∞-morphisms. Here, we show an alternative self contained proof
based on the same ideas but involving only DG-Lie algebras. The main motivation
of this paper is to gather together various ideas in one place and to provide an eas-
ier and more accessible proof (only DG-Lie algebras). Moreover, we collect many
examples and applications of the Abstract BTT Theorem in deformation theory
and in other derived settings (Section 4 and Section 5). Among the others, we
include the classical BTT Theorem for Calabi-Yau manifolds of [22], the logarith-
mic version for log Calaby-Yau pairs (X,D) of [21], the DG-Lie algebra associated
with a Batalin-Vilkovisky algebra with the degeneration property [12, 21], and the
DG-Lie algebra whose associated coderivation DG-Lie algebra has the splitting
principle [4, 2].
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The notion of homotopy abelianity is closely related to the notion of formality.
A DG-Lie algebra is formal if it is quasi-isomorphic to its cohomology and so a DG-
Lie algebra is homotopy abelian if and only if it is formal and H∗(L) is abelian.
Then, homotopy abelianity condition is stronger than formality and this could
explain why it is easier to provide a criterion for it. Indeed, there are not so many
analog of the previous theorem that guarantees the formality of a DG-Lie algebra.
We refer to [17, 26, 12, 31, 2] and reference therein for formality criterion.

From the geometric point of view, homotopy abelianity assures the smoothness
of the associated moduli problem while formality only implies that the singularity
are not too bad (see [15, 33, 31, 32] for more details). If we are only interested
in the smoothness of the problem, then instead of Hypothesis (4) it is enough to
require that only H2(i) is injective (Remark 3.4).

The paper goes as follows: Section 2 is included for the non expert readers and
it contains the relevant definitions and properties about DG-Lie algebras. Section
3 is devoted to the proof of the Abstract BTT Theorem. Some applications and
examples are collected in Section 4, while Section 5 contains some generalizations
and further applications.

Throughout the paper, we work over an algebraically closed field K of char-
acteristic 0, if it is not differently specified.

2 Background on DG-Lie algebras

A differential graded Lie algebra (DG-Lie algebra) is the data of a triple (L, d, [ , ]),
where (L, d) is a differential graded vector space (DG-vector space) and [ , ] : L×
L → L is a bilinear map of degree 0 (called bracket), such that the following
conditions are satisfied:

1. (graded skewsymmetry) [x, y] = −(−1)ij [y, x] ∈ Li+j , for every x ∈ Li and
y ∈ Lj ;

2. (graded Jacobi identity) [x, [y, z]] = [[x, y], z] + (−1)ij [y, [x, z]], for every
x ∈ Li, y ∈ Lj and z ∈ L;

3. (graded Leibniz rule) d[x, y] = [dx, y] + (−1)i[x, dy], for every x ∈ Li and
y ∈ L.

In particular, the Leibniz rule implies that the bracket of a DG-Lie algebra L
induces a structure of graded Lie algebra on its cohomology H∗(L) =

⊕
iH

i(L).
A DG-Lie algebra is called contractible if H∗(L) = 0. A DG-Lie algebra is called
abelian if its bracket is trivial.

Example 2.1. If L =
⊕

i L
i is a DG-Lie algebra, then L0 is a Lie algebra in

the usual sense; vice-versa, every Lie algebra is a differential graded Lie algebra
concentrated in degree 0.
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Example 2.2. Let (V, dV ) be a differential graded vector space over K and
Homi

K (V, V ) the space of the linear map V → V of degree i. Then, Hom∗K (V, V ) =⊕
i Homi

K (V, V ) is a DG-Lie algebra with bracket

[f, g] = fg − (−1)deg(f) deg(g)gf,

and differential d given by

d(f) = [dV , f ] = dV f − (−1)deg(f)fdV .

For later use, we point out that by Künneth formula, there exists a natural iso-
morphism

H∗(Hom∗K (V, V ))
'−−→ Hom∗K (H∗(V ), H∗(V )).

Example 2.3. Let M be a DG-Lie algebra and K [t, dt] the differential graded al-
gebra of polynomial differential forms over the affine line. More precisely, K [t, dt] =
K [t] ⊕ K [t]dt, where t has degree 0 and dt has degree 1. Then, M [t, dt] =
M ⊗ K [t, dt] is a DG-Lie algebra. As vector space M [t, dt] is generated by el-
ements of the form mp(t) + nq(t)dt, with m,n ∈ M and p(t), q(t) ∈ K [t]. The
differential and the bracket on M [t, dt] are defined as follows:

d(mp(t) + nq(t)dt) = (dm)p(t) + (−1)deg(m)mp′(t)dt+ (dn)q(t)dt,

[mp(t), nq(t)] = [m,n]p(t)q(t), [mp(t), nq(t)dt] = [m,n]p(t)q(t)dt.

Note that [mdt, ndt] = 0, for every m,n ∈M .

Example 2.4. Let ΘX be the holomorphic tangent bundle of a complex manifold
X. The Kodaira-Spencer DG-Lie algebra of X is

KSX = (
⊕
i

Γ(X,A0,i
X (ΘX)) =

⊕
i

A0,i
X (ΘX), d, [ , ]),

where KSiX = A0,i
X (ΘX) is the vector space of the global sections of the sheaf of

germs of the differential (0, i)-forms with coefficients in ΘX , d is the opposite of
Dolbeault’s differential and the bracket is the extension of the usual bracket of
vector fields. Explicitly, if z1, . . . , zn are local holomorphic coordinates on X, we
have

d

(
fdzI

∂

∂zi

)
= −∂(f) ∧ dzI

∂

∂zi
,[

f
∂

∂zi
dzI , g

∂

∂zj
dzJ

]
=

(
f
∂g

∂zi

∂

∂zj
− g ∂f

∂zj

∂

∂zi

)
dzI ∧ dzJ , ∀ f, g ∈ A0,0

X .

Example 2.5. Let D be a submanifold of a complex manifold X of codimension
1. We denote by ΘX(− logD) the sheaf of germs of the tangent vectors to X which
are tangent to D [36, Section 3.4.4]. Denoting by I ⊂ OX the ideal sheaf of D in
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X, then ΘX(− logD) is the subsheaf of the derivations of the sheaf OX preserving
the ideal sheaf I of D. Moreover, we have the following short exact sequence

0→ ΘX(− logD)→ ΘX → ND/X → 0.

Since we are in codimension 1, the sheaf ΘX(− logD) is dual to the sheaf Ω1
X(logD)

of logarithmic differentials, so it is in particular locally free, see for instance [7, p.
72], [8, Chapter 2] or [40, Chapter 8].

Then, we can define the DG-Lie algebra of the pair (X,D)

KS(X,D) = (
⊕
i

Γ(X,A0,i
X (ΘX(− logD))), d, [ , ]).

Note that KS(X,D) is a DG-Lie subalgebra of KSX .

2.1 Morphisms of DG-Lie algebras

A morphism of DG-Lie algebras is a linear map ϕ : L→M that preserves degrees
and commutes with brackets and differentials. A quasi-isomorphism of DG-Lie
algebras is a morphism that induces an isomorphism in cohomology.

Two DG-Lie algebras L and M are said to be quasi-isomorphic if they are
equivalent under the equivalence relation generated by quasi-isomorphisms.

Example 2.6. Let M be a DG-Lie algebra and M [t, dt] the DG-Lie algebra in-
troduced in Example 2.3. Then, for every a ∈ K , we can define the evaluation
morphism

ea : M [t, dt]→M,

ea(
∑

mit
i + nit

idt) =
∑

mia
i.

Note that, every ea is a morphism of DG-Lie algebras which is a left inverse of the
inclusion i : M → M [t, dt], i.e., ea ◦ i = IdM . In particular, ea is also a surjective
quasi-isomorphism. We often use the short notation m(a) = ea(m(t, dt)), for every
m(t, dt) ∈M [t, dt].

For every two morphisms of DG-Lie algebras f : L→ N and g : M → N , we
can consider the pull-back:

L×N M
f ′ //

g′

��

M

g

��
L

f
// N.

Note that if g (or f) is a surjective quasi-isomorphism then g′ (or f ′) is also a
surjective quasi-isomorphism.
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Lemma 2.7. (Factorisation Lemma) Let f : L → M be a morphism of DG-Lie
algebras, then there exists a DG-Lie algebra P and a factorisation

L
f //

i ��

M

P,

g

>>

such that g : P → M is a surjective morphism and i : L → P is an injective
quasi-isomorphism (which is a right inverse of a surjective quasi-isomorphism).

Proof. An explicit factorisation can be defined as follow. Let Pf be the DG-Lie
algebra

Pf = {(x,m(t, dt)) ∈ L×M [t, dt] | m(1) = f(x)};
note that Pf is given by the pull back diagram

Pf //

p

��

M [t, dt]

e1

��
L

f
// M,

where p is the projection on the first factor. In particular, since e1 is a surjective
quasi-isomorphism, p is also a surjective quasi-isomorphism. Next, define

i : L→ Pf i(x) = (x, f(x)), ∀ x ∈ L;

and
g : Pf →M g(x,m(t, dt)) = m(0), ∀ (x,m(t, dt)) ∈ Pf .

The morphism g is surjective: for any m ∈M , there exists (0, (1− t)m) ∈ Pf such
that g(0, (1 − t)m) = e0((1 − t)m) = m. As regard the morphism i, it is a right
inverse of p, i.e., pi = IdL and so it is an injective quasi-isomorphism. Finally, we
have

(g ◦ i)(x) = g(x, f(x)) = f(x), ∀ x ∈ L.

Corollary 2.8. Let L and M be DG-Lie algebras. Then, L and M are quasi-
isomorphic if and only if there exist a DG-Lie algebra P and two surjective quasi-
isomorphisms p : P → L and q : P →M .

Proof. The DG-Lie algebras L and M are quasi-isomorphic if and only if there
exists a sequence of quasi-isomorphisms

K1

!!��

K2

  }}

Kn

!!yy
L H1 H2 · · · Hn−1 M.
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By Factorisation Lemma 2.7, we can assume that all the quasi-isomoprhisms in
the sequence are surjective. Indeed, consider the following diagram

K

t

  

f

��
L N

and apply Factorisation Lemma 2.7 to the morphism (f, t) : K → L×N in order
to obtain a diagram of quasi-isomorphisms

K

t

  

f

�� ��
L Poo // N,

where the two horizontal arrows are surjective. Finally, any sequence of surjective
quasi-isomorphisms can be replaced by two surjective quasi-isomorphisms using
fibre product and the fact that surjective quasi-isomorphisms are stable under
pull backs

K1 ×H1
K2

%%yy
K1

%%~~

K2

!!yy
L H1 M.

Definition 2.9. A DG-Lie algebra L is called formal if it quasi-isomorphic to
H∗(L) (intended as a DG-Lie algebra with trivial differential).

A DG-Lie algebra L is called homotopy abelian if it is quasi-isomorphic to an
abelian DG-Lie algebra.

Example 2.10. Any DG-vector space is formal (and abelian as DG-Lie algebra).
Let (V, dV ) be a DG-vector space, then the DG-Lie algebra Hom∗K (V, V ) is formal.

Lemma 2.11. (Transfer Lemma) Let f : L → M be a morphism of DG-Lie
algebras and denote by H∗(f) : H∗(L) → H∗(M) the induced morphism in coho-
mology.

1. If M is homotopy abelian and H∗(f) is injective, then L is also homotopy
abelian.
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2. If L is homotopy abelian and H∗(f) is surjective, then M is also homotopy
abelian.

Proof. There are various proofs of this fact, see for instance [18, Proposition 4.11],
[22, Lemma 1.10]. We follow the proof given in [13, Lemma 2.7]. As regard (1),
since M is homotopy abelian, Corollary 2.8 implies the existence of an abelian
DG-Lie algebra A and two surjective quasi-isomorphisms

K

a

  

m

~~
M A.

Applying the pull back we obtain the diagram

L×M K

m′

{{

f ′ // K

a

��

m

{{
L

f // M A,

where m,m′ and a are surjective quasi-isomorphisms and the morphisms f and f ′

induce injective morphisms in cohomology.

To conclude the proof it is enough to consider a graded vector space E with
a projection e : A→ E, such that eaf ′ is a quasi-isomorphism:

L×M K

m′

{{

f ′ // K
a

��
L A

e // E.

As regard (2), since L is homotopy abelian, Corollary 2.8 implies the existence
of an abelian DG-Lie algebra A with trivial differential and two surjective quasi-
isomorphisms

K

l

  

a

~~
A L.

Then, we can choose a graded Lie algebra H together with a morphism h : H → A
such that the composition

H
h−→ A

H∗(a)−1

−−−−−→ H∗(K)
H∗(l)−−−→ H∗(L)

H∗(f)−−−−→ H∗(M),
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is an isomorphism. Finally, taking the fibre product of h and a, we obtain a
commutative diagram

H ×A ×K
a′

zz

h′ // K

l

��

a

zz
H

h // A L
f // M,

where a, a′ and flh′ are quasi-isomorphisms.

Remark 2.12. From the point of view of deformation theory, we could be only
interested in analysing the obstruction problem. We already noticed that the
obstructions of the deformation functor DefL associated with a DG-Lie algebra
L are contained in the vector space H2(L). Moreover, any morphism of DG-Lie
algebras f : L → M induces a morphism f : DefL → DefM of the associated
deformation functors, that behaves well with respect to the obstructions. If M
is homotopy abelian, then DefM is smooth. Therefore, it is enough that the
morphism H2(f) : H2(L)→ H2(M) is injective for the smoothness of the functor
DefL.

Definition 2.13. Let f : L → M be a morphism of DG-Lie algebras, the homo-
topy fibre of f is defined as the DG-Lie algebra

TW (f) = {(x,m(t, dt)) ∈ L×M [t, dt] | m(0) = 0, m(1) = f(x)}.

Note that the projection TW (f)→ L is a morphism of DG-Lie algebras.

Remark 2.14. Let f : L→M be a morphism of DG-Lie algebras and L
i→ Pf

g→
M the explicit factorisation, given in the proof of Factorisation Lemma 2.7. Then,

TW (f) = ker g. It can be proved that for any other factorisation L
i′→ P ′

g′→ M ,
the kernel ker g′ is quasi-isomorphic to TW (f) [32, Section 6.1]. Moreover, every
commutative diagram of morphisms of DG-Lie algebras:

L

��

f // M

��
L′

f ′ // M ′,

induces a morphism of the homotopy fibres TW (f)→ TW (f ′).

Remark 2.15. If f : L → M is an injective morphism of DG-Lie algebras, then
its cokernel M/f(L) is a DG vector space and the map

TW (f)→M/f(L)[−1]
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(x, p(t)m0 + q(t)dtm1) 7→
(∫ 1

0

q(t)dt

)
m1 (mod f(L)),

is a surjective quasi-isomorphism.

Lemma 2.16. (Homotopy fibre) Let f : L → M be a morphism of DG-Lie alge-
bras.

1. If the induced morphism H∗(f) : H∗(L) → H∗(M) is injective, then the
TW (f) is homotopy abelian.

2. If the induced morphism H1(f) : H1(L)→ H1(M) is injective, then DefTW (f)

is unobstructed.

Proof. [22, Proposition 3.4] , [23, Lemma 2.1] or [13, Corollary 2.8]. As regard
(1), consider the DG vector space M [−1] as an abelian DG-Lie algebra and the
morphism of DG-Lie algebras

ρ : M [−1]→ TW (f) ∀ m ∈M ρ(m) = (0, dtm).

According to (2) of Lemma 2.11, it is enough to show that ρ induces a surjective
map in cohomology but this follows from the exact sequence

· · · → Hi−1(M)→ Hi(TW (f))→ Hi(L)
Hi(f)−−−−→ Hi(M)→ · · · ,

since the morphisms Hi(f) are all injective by hypothesis.
As regard (2), the morphism of DG-Lie algebras ρ : M [−1]→ TW (f) induces

a morphism of deformation functors ρ : DefM [−1] → DefTW (f), with DefM [−1] a
smooth functor. Then, by the Standard Smoothness Criterion [9], [30, Theorem
4.11], since ρ is injective on obstructions, if H1(ρ) is surjective then DefTW (f) is
smooth. By the above exact sequence, if H1(f) : H1(L)→ H1(M) injective then
H1(ρ) is surjective.

Example 2.17. Let W be a differential graded vector space U ⊂ W be a DG
subspace. If the induced morphism in cohomology H∗(U) → H∗(W ) is injective,
then the inclusion of DG-Lie algebras

f : {f ∈ Hom∗K (W,W ) | f(U) ⊂ U} → Hom∗K (W,W )

satisfies the hypothesis of Lemma 2.16 and so the DG-Lie algebra TW (f) is ho-
motopy abelian [22, Example 3.5] and [13, Proposition 5.10].

The deformation functor associated with the DG-Lie algebra TW (f) has a
natural interpretation as the local structure of the derived Grassmannian of W at
the point U . Therefore, the derived Grassmannian of W is smooth at the points
corresponding to subspaces U such that H∗(U)→ H∗(W ) is injective [13].
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3 Cartan homotopies and Main Theorem

Let L and M be two DG-Lie algebras. A Cartan homotopy is a linear map of
degree −1

i : L→M

such that, for every a, b ∈ L, we have:

i[a,b] = [ia, dM ib] and [ia, ib] = 0.

For every Cartan homotopy i, it is defined the Lie derivative map

l : L→M, la = dM ia + idLa.

It follows from the definition of i that l is a morphism of DG-Lie algebras and we
can write the conditions of being a Cartan homotopy as

i[a,b] = [ia, lb] and [ia, ib] = 0.

Note that, as a morphism of complexes, l is homotopic to 0 (with homotopy i).

Example 3.1. Let X be a smooth variety. Denote by ΘX the tangent sheaf and
by (Ω∗X , d) the algebraic de Rham complex. Then, for every open subset U ⊂ X,
the contraction of a vector with a differential form

ΘX(U)⊗ ΩkX(U)
y−−−−→ Ωk−1X (U)

induces a linear map of degree −1

i : ΘX(U)→ Hom∗(Ω∗X(U),Ω∗X(U)), iξ(ω) = ξyω

that is a Cartan homotopy. Indeed, the above conditions coincide with the classical
Cartan’s homotopy formulas.

Example 3.2. Let D be a smooth subvariety of codimension 1 of a smooth variety
X. Let (Ω∗X(logD), d) be the logarithmic differential complex and ΘX(− logD)
the logarithmic tangent sheaf. It is easy to prove explicitly that for every open
subset U ⊂ X, we have

( ΘX(− logD)(U) y ΩkX(logD)(U) ) ⊂ Ωk−1X (logD)(U).

Then, as above, the induced linear map of degree −1

i : ΘX(− logD)(U)→ Hom∗(Ω∗X(logD)(U),Ω∗X(logD)(U)), iξ(ω) = ξyω

is a Cartan homotopy.

We are now ready to prove the main theorem.
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Theorem 3.3. (Abstract BTT Theorem) Let L and M be DG-Lie algebras over
a field K of characteristic 0 and H ⊆M a DG-Lie subalgebra. Assume that there
exists a linear map

i ∈ Hom−1K (L,M), a 7→ ia,

of degree −1 such that:

1. [ia, ib] = 0 and i[a,b] = [ia, dib] for every a, b ∈ L;

2. dia + ida ∈ H for every a ∈ L;

3. the inclusion H ↪→M is injective in cohomology;

4. the induced morphism of complexes i : L→ (M/H)[−1] is injective in coho-
mology.

Then, the DG-Lie algebra L is homotopy abelian.

Proof. Let s be a formal variable of degree −1 and consider the commutative
DG-algebra K [s]; note that s2 = 0 and the differential d on K [s] is defined as

d : K s→ K , d(s) = 1.

In particular, K [s] is a contractible DG algebra and the inclusion K ↪→ K [s] is a
morphism of DG algebras.

Next, we consider the DG-Lie algebra K [s]⊗ L. For all s⊗ a ∈ K [s]⊗ L, we
have deg(s⊗ a) = deg(a)− 1 and

d(s⊗ a) = 1⊗ a− s⊗ da.

Then, we can define a morphism of DG-Lie algebras by

ϕ : K [s]⊗ L→M, ϕ(s⊗ a) = ia;

in particular, ϕ(1⊗a) = ϕ(d(s⊗a) + s⊗ da) = d(ϕ(s⊗a)) + ida = dia + ida = la,
for any a ∈ L,and it is contained in H by Hypothesis (2).

Thus, we can construct a commutative diagram of morphisms of DG-Lie al-
gebras

L

α

��

ψ // H� _

χ

��
K [s]⊗ L

ϕ // M,

where α(a) = 1⊗ a and ψ(a) = la, for any a ∈ L.
According to Remark 2.14, this diagram induces a morphisms of DG-Lie al-

gebras
φ : TW (α)→ TW (χ).
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Hypothesis (3) and Lemma 2.16 applied to the inclusion χ : H →M imply that the
DG-Lie algebra TW (χ) is homotopy abelian. Moreover, according to Remark 2.15,
TW (χ) is quasi-isomorphic as a DG vector spaces to (M/H)[−1]. Since K [s]⊗ L
is contractible, then TW (α)→ L is a quasi-isomorphism. Finally, Hypothesis (4)
implies that φ is injective in cohomology and so Lemma 2.16 implies that TW (α)
is homotopy abelian. It follows that L is also homotopy abelian.

Remark 3.4. In the above notation and using the first three hypothesis, we have
constructed a diagram:

TW (α)

��

φ // TW (χ)

L,

where the vertical map is a quasi-isomorphism. Then, Hypothesis (4) implies that
the horizontal map is injective in cohomology. If we are only interested in the
analysis of the obstruction of DefL, then Hypothesis (3) can be relaxed to the
condition that only H1(χ) is injective and Hypothesis (4) can be relaxed to the
condition that only H2(i) is injective. Indeed, DefTW (χ) is unobstructed, and so
for the vanishing of the obstructions of DefL it is enough that H2(φ) is injective
(see Section 5 for further generalizations).

4 Examples and Applications

In this section, we collect some applications of the main Theorem 3.3.

4.1 Deformations of compact manifolds

Let X be a holomorphic compact manifold and denote by ΘX its holomorphic
tangent bundle. We introduced the Kodaira Spencer DG-Lie algebra KSX in
Example 2.4. Let (A∗X , d) = (

⊕
p,q Γ(X,Ap,qX ), d = ∂+∂) be the De Rham complex

of X, where Ap,qX denotes the sheaf of (p, q)-differential forms on X and consider
the DG-Lie Algebra M = Hom∗C(A∗X , A

∗
X).

Corollary 4.1. Let X be a compact manifold with torsion canonical bundle such
that the Hodge-de Rham spectral sequence degenerates at E1-level. Then, KSX is
homotopy abelian.

Proof. [35, Corollary 2], [28, Corollary B], [22, Corally 6.5]. Let us first consider
the case in which the canonical bundle is trivial. The contraction of vector fields
and differential forms together with the cup product defines a Cartan homotopy
[30, Section 6]

i : KSX →M = Hom∗(A∗X , A
∗
X), iη(ω) = ηyω, ∀ η ∈ KSX , ∀ ω ∈ AX .
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Moreover, for any η ∈ KSX , lη ∈ H = {ϕ ∈ M | ϕ(An,∗X ) ⊂ An,∗X }, where
n is the dimension of X. By the degeneration property the inclusion H ↪→ M is
injective in cohomology. The canonical bundle is trivial and so the cup product
with a non trivial section of it, gives the isomorphisms Hi(ΘX) ∼= Hi(Ωn−1X ), where
Ωn−1X denotes the sheaf of holomorphic differential n−1 forms. Then, H∗(KSX)→
Hom∗(H0(ΩnX), H∗(Ωn−1X )) is injective and this implies that KSX → M/H[−1]
is also injective in cohomology. Therefore, the hypothesis of Theorem 3.3 are
satisfied.

In the case of torsion canonical bundle, there exists m > 0 such that Km
X =

OX , where KX denote the canonical bundle. Next, consider the unramified m-
cyclic cover, defined by KX , i.e., π : Y = Spec(

⊕m−1
i=0 L−i) → X (see [34] for

full details on abelian covers). Then, π : Y → X is a finite flat map of degree m
and Y is a compact manifold with trivial canonical bundle, since KY

∼= π∗KX
∼=

OY . Therefore, KSY is homotopy abelian. Finally, it is enough to consider the
morphism of DG-Lie algebras KSX → KSY induced by pull back. This morphism
is injective in cohomology and so (1) of Lemma 2.11 implies that KSX is also
homotopy abelian.

Remark 4.2. The degeneration hypothesis is satisfied if the ∂∂-Lemma holds, for
instance for Kähler manifolds.

Remark 4.3. It is well known that the Kodaira Spencer DG-Lie algebra KSX
controls the infinitesimal deformations of X. Then, the infinitesimal deformations
of a compact Kähler manifold with torsion canonical bundle X are unobstructed.
This is the classical Bogomolov-Tian-Todorov Theorem.

Remark 4.4. Let X be a smooth projective variety over an algebraically closed
field K of characteristic 0. Then, the analogous of Corollary 4.1 holds.

In this case, we can replace the Kodaira-Spencer DG-Lie algebra with the
DG-Lie algebra Tot(ΘX(U)), obtained applying the Thom-Withney totalization
to the semicosimplicial DG-Lie algebras ΘX(U), for any affine open cover U of X
[22, Theorem 5.3]. Also in this case, if the canonical bundle of X is torsion, then
Tot(ΘX(U)) is homotopy-abelian and so X has unobstructed deformations [22,
Theorem 6.2 and Corollary 6.5].

4.2 Deformations of pairs (divisor, manifold)

Let D be a smooth divisor in a compact manifold X. We introduced the Kodaira
Spencer DG-Lie algebra of the pair KS(X,D) in Example 2.5. Then, considering
ΘX(− logD) instead of ΘX , we can proceed as in the case of KSX of Corollary
4.1.

Corollary 4.5. Let D be a smooth divisor in a compact manifold X, such that
the logarithmic canonical bundle ΩnX(logD) is trivial and the logarithmic Hodge-
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de Rham spectral sequence degenerates at E1-level. Then, KS(X,D) is homotopy
abelian.

Proof. [21, Theorem 5.1 and Corollary 5.4]. The proof is analogous to the one of
Corollary 4.1. Here, the Cartan homotopy is given by the contraction of logarith-
mic tangent vector and logarithmic differentials:

i : KS(X,D) →M = Hom∗C(A∗,∗X (logD),A∗,∗X (logD)).

Then, for any η ∈ KS(X,D), lη ∈ H = {ϕ ∈ M | ϕ(An,∗X (logD)) ⊂
An,∗X (logD)}, where n is the dimension of X.

Next, the degeneration property implies that the inclusion H ↪→M is injective
in cohomology. Since the logarithmic canonical bundle ΩnX(logD) is trivial, the cup
product with a non trivial section of it, gives the isomorphisms Hi(ΘX(logD)) ∼=
Hi(Ωn−1X (logD)).

This implies that H∗(KS(X,D)) → Hom∗(H0(ΩnX(logD)), H∗(Ωn−1X (logD)))
is injective and so KS(X,D) →M/H[−1] is also injective in cohomology. Therefore,
the hypothesis of Theorem 3.3 are satisfied.

Remark 4.6. The degeneration hypothesis is satisfied for any globally normal
crossing divisor D in a compact Kähler manifold [40, Theorem 8.35].

Remark 4.7. It can be also proved that KS(X,D) is homotopy abelian for a
smooth divisor D in a Calabi-Yau manifold X [21, Theorem 4.7]. In this case, the
relevant spectral sequence is the one associated with the Hodge filtration

Ep,q1 = Hq(X,ΩpX(logD)⊗OX(−D)) =⇒ Hp+q(X,Ω∗X(logD)⊗OX(−D))

and it degenerates at the E1-level [14, Section 4.3].

Remark 4.8. It is well known that the Kodaira Spencer DG-Lie algebra KS(X,D)

controls the infinitesimal deformations of the (X,D). Then, the infinitesimal de-
formations of the pair (X,D) are unobstructed when D is a smooth divisor in a
compact Kähler manifold X such that ΩnX(logD) is trivial [21, Corollary 4.5] and
when D is a smooth divisor in a compact Calabi-Yau manifold X [21, Corollary
4.8].

Remark 4.9. In general, if the ground field is an algebraically closed field of char-
acteristic 0, we can replace the DG-Lie algebra KS(X,D) with the DG-Lie algebra
TW (ΘX(− logD)(U)) obtained applying the Thom-Withney realisation to the
semicosimplicial DG-Lie algebras ΘX(− logD)(U), for any affine open cover U of
X [21, Theorem 4.3]. Also in this case, TW (ΘX(− logD)(U)) is homotopy abelian,
for a smooth divisor D in a smooth projective variety X such that ΩnX(logD) is
trivial and when D is a smooth divisor in a smooth projective Calabi-Yau variety.

If D is not smooth but only a simple normal crossing divisor, then KS(X,D)

(or TW (ΘX(− logD)(U))) controls the locally trivial infinitesimal deformations
of the pair (X,D). Then, the computations above shows that the locally trivial
infinitesimal deformations are unobstructed.
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4.3 Differential Batalin-Vilkovisky algebras

The main references for this example are [37, 18] and [21, Section 7].

Definition 4.10. Let k be a fixed odd integer. A differential Batalin-Vilkovisky
algebra (dBV for short) of degree k over K is the data (A, d,∆), where (A, d) is a
differential Z-graded commutative algebra with unit 1 ∈ A, and ∆ is an operator
of degree −k, such that ∆2 = 0, ∆(1) = 0 and

∆(abc) + ∆(a)bc+ (−1)a b∆(b)ac+ (−1)c(a+b)∆(c)ab =

= ∆(ab)c+ (−1)a(b+c)∆(bc)a+ (−1)bc∆(ac)b.

For any graded dBV algebra (A, d,∆) of degree k, it is canonically defined a
DG-Lie algebra (L, d, [−,−]), where: L = A[k], dL = −dA and,

[a, b] = (−1)p(∆(ab)−∆(a)b)− a∆(b), ∀ a ∈ Ap.

Definition 4.11. A dBV algebra (A, d,∆) of degree k has the degeneration prop-
erty if for every a0 ∈ A, such that da0 = 0, there exists a sequence ai, i ≥ 0, with
deg(ai) = deg(ai−1)− k − 1 and such that

∆ai = dai+1, i ≥ 0.

Example 4.12. Let (V, d,∆) be a (1, k)-bicomplex, where k is an odd integer,
i.e., (V, d) is a DG vector space and ∆ ∈ Homk

K (V, V ) such that

∆2 = 0 [d,∆] = d∆ + ∆d = 0.

If the d∆-lemma holds, i.e.,

ker d ∩∆(V ) = ker ∆ ∩ d(V ) = d∆(V ),

then (V, d,∆) has the degeneration property. Indeed, if da0 = 0 we have ∆a0 ∈
d∆(V ) and then there exists b ∈ V such that d∆(b) = ∆a0. It is sufficient to
take a1 = ∆(b) and ai = 0 for every i ≥ 2. Note that the converse is not true
in general. For instance, if d = ∆, then (V, d,∆) has the degeneration property,
while ker ∆ ∩ d(V ) = d∆(V ) if and only if d = ∆ = 0.

Example 4.13. Let (V, d,∆) be a (1, k)-bicomplex as in Example 4.12 and sup-
pose the existence of an operator f ∈ Homk−1

K (V, V ) such that

∆ = [d, f ], [f,∆] = 0.

Then (V, d,∆) has the degeneration property. Indeed, consider a formal parameter
t and the associative graded algebra Hom∗K (V, V )[[t]]. Then, we have

etfde−tf = e[tf,−]d = d+ t[f, d] = d− t∆
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and therefore
t∆etf = −etfd+ detf = [d, etf ].

Let a ∈ V be such that da = 0 and define the sequence ai by the rule∑
i≥0

ait
i = etf (a).

It implies a0 = a and∑
i≥0

ti+1∆ai = t∆etfa = detfa =
∑
i≥0

tidai

and then dai+1 = ∆ai for every i.

Theorem 4.14. Let (A, d,∆) be a dBV algebra with the degeneration property.
Then, the associated DG-Lie algebra L = A[k] is homotopy abelian.

Proof. Here we only give a sketch of the proof. The original proof can be found in
[37, Theorem 1] or [18, Theorem 4.14] for k = 1 and in [21, Theorem 7.6] for any
odd k.

Given a dBV algebra (A, d,∆) and t a formal central variable of (even) degree
1 + k, we can define the graded vector space A[[t]] of formal power series with
coefficients in A and the graded vector space A((t)) =

⋃
p∈Z t

pA[[t]] of formal
Laurent power series. Note that d(t) = ∆(t) = 0 and d − t∆ is a well-defined
differential on A((t)).

Let F • be the filtration on the complex (A((t)), d − t∆) defined by F p =
tpA[[t]], for every p ∈ Z. Note that A((t)) =

⋃
p∈Z F

p and F 0 = A[[t]] and the

map a 7→ a

t
induces an isomorphism of DG-vector spaces A→ F−1/F 0.

The degeneration property implies that the inclusion F p → A((t)) is injective
in cohomology, for every p, and, in particular, F 0 = A[[t]]→ A((t)) is injective in
cohomology.

Consider M = Hom∗K (A((t)), A((t))) and H = {ϕ ∈ M | ϕ(A[[t]]) ⊂ A[[t]]};
then, the degeneration property implies that H ↪→ M is injective in cohomology
(Hypotheis (3) of Theorem 3.3).

A tedious but straightforward computation shows that the map

i : L→M = Hom∗K (A((t)), A((t))), a 7−→ ia(b) =
1

t
ab

is a Cartan homotopy [21, Lemma 7.2] and, for any a ∈ L, la ∈ H, i.e., Hy-
potheis (1) and (2) of Theorem 3.3 are satisfied. Therefore, we only need to show
that the morphism of DG-vector spaces i : L → M/H[−1] is injective in coho-
mology and this follows again by degeneration property. Indeed, M/H[−1] =

Hom∗K

(
A[[t]], A((t))

A[[t]]

)
[−1] and so we need to prove that:

i : A→ Hom∗K

(
A[[t]],

A((t))

A[[t]]

)
[−k − 1]
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is injective in cohomology. It suffices to show the injectivity for the composition
with the evaluation at 1 ∈ A[[t]], i.e., the injectivity in cohomology of the morphism

A→ A((t))

A[[t]]
, a 7→ a

t
,

or equivalently of the morphism

β :
F−1

F 0
→ A((t))

F 0
.

Consider the diagram

0 // F 0 // F−1

α

��

// F
−1

F 0

β

��

// 0

0 // F 0 // A((t)) // A((t))

F 0
// 0;

the degeneration property implies that α is injective in cohomology and so β is
also injective in cohomology.

Remark 4.15. In [1], the author uses similar techniques to extend this result to
the context of commutative BV∞-algebras. In this case, the degeneration property
implies that the associated L∞[1]-algebras is homotopy abelian [1, Theorem 6.16],
see also [6].

Example 4.16. [12, Section 5] and [4, Section 6]. Let X be a complex manifold
and ΘX it tangent bundle. An holomorphic Poisson bi-vector on X is an element
π ∈ H0(X,∧2ΘX), such that [π, π]SN = 0, where [ , ]SN denotes the Schouten-
Nijenhuis bracket of polyvectorfields [32]. In this case, we say that the pair (X,π)
is a holomorphic Poisson manifold. Then, let (A∗X , d) be the de Rham complex,
where AiX =

⊕
p+q=iA

p,q
X and consider the map

iπ ∈ Hom−2(A∗X , A
∗
X) iπ(α) = πyα.

Note that [iπ, iπ] = 0 and, setting ∆ = [d, iπ], we have

[iπ,∆] = [iπ, [d, iπ]] = i[π,π]SN
= 0.

According to Example 4.13, (A∗X , d,∆) has the degeneration property and so The-
orem 4.14 implies that the associated DG-Lie algebra (A∗X [1],−d, [, ]π) is homotopy
abelian (see [12, Theorem 5.3] and [4, Section 6]).
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4.4 The splitting property

Let (L, d, [ , ]) be a DG-Lie algebra. Denote by L[1] the shifted graded vector space:
L[1]i = Li+1 and by L[1]�n its n-th symmetric power. Note that 1 ∈ L[1]�0 = K .
Then, we can consider the associated differential graded cocommutative coalgebra

(SL[1],∆, Q), where SL[1] =
⊕
n≥0

L[1]�n, ∆ is the usual coproduct and Q the

coderivation associated with d and [ , ].
More explicitly, let q1(x) = −d(x) and q2(x � y) = −(−1)i[x, y] for any x ∈

L[1]i and y ∈ L[1], then

Q(v1� . . .� vn) =

2∑
k=1

∑
σ∈S(k,n−k)

ε(σ)qk(vσ(1)� . . .� vσ(k))� vσ(k+1)� . . .� vσ(n),

where S(p, q) denotes the set of unshuffles of type (p, q) and ε(σ) is the Koszul
sign. It turns out that Q2 = 0.

Note that, any morphism F : SL[1] → SL[1] is uniquely determined by the
corestriction pF = (f0, f1, f2, . . .) : SL[1] → SL[1] → L[1], where p : SL[1] →
L[1]�1 = L[1] is the natural projection and fi : L[1]�i → L[1] are the components
of pF .

Next, denote by (Coder∗(SL[1]), [Q, ], [ , ]) the DG-Lie algebra of coderivation
of SL[1] and consider the surjective morphism of DG-vector spaces

Coder∗(SL[1])
b→ L[1], b(α) = pα(1), ∀α.

Corollary 4.17 ([3]). In the above assumption, if b : Coder∗(SL[1]) → L[1] in-
duces a surjective morphism in cohomology, then L is homotopy abelian.

Proof. Here we only give a sketch of the proof as a consequence of the abstract
BTT theorem, while the original proof contained in [3] uses the theory of derived
brackets. Let M = Coder∗(SL[1]) and H = ker b ⊂ M . The hypothesis implies
that the inclusion H ↪→ M is injective in cohomology, i.e., Hypothesis (3) of
Theorem 3.3 is satisfied. The map

i : L→ Coder∗(SL[1]), a 7−→ ia(w) = x� w

is a properly defined Cartan homotopy. Moreover, for any a ∈ L, la ∈ H, and so
Hypothesis (1) and (2) are fulfilled. This also implies that it is well defined the
morphism of DG vector spaces i : L→ (M/H)[−1], that is injective in cohomology.
Therefore, by Theorem 3.3, L is homotopy abelian.

Remark 4.18. According to [3], we say that L has the splitting property if it
satisfies the hypothesis of the previous theorem. We refer to [3, Proposition 2.2]
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for equivalent conditions. In this paper, the author proves this result for L∞[1]-
algebras, analysing the spectral sequence computing the Chevalley-Eilenberg co-
homology and showing the equivalence between the degeneration of the spectral
sequence at the first page and the homotopy abelianity property. In [31], the
author also analyses the spectral sequence computing the Chevalley-Eilenberg co-
homology of a DG-Lie algebra. In particular, he proved the equivalence between
degeneration of the spectral sequence at the second page and formality property.

Remark 4.19. It can be also proved that the splitting property implies that a
DG-Lie algebra L is homotopy abelian if the adjoint morphism

ad : L→ Der∗K (L,L), adx(y) = [x, y],

is trivial in cohomology: a detailed proof will appear in the forthcoming paper
[24].

4.5 Derived brackets of Lie type

Here we follow [32, Section 5.6]. Let (M, [, ], d) be a DG-Lie algebra, such that
there exist a DG-Lie subalgebra L and a graded vector space A satisfying the
following conditions:

(i) M = L⊕A as graded vector space;

(ii) [a, b] = 0 for every a, b ∈ A;

(iii) [da, b] ∈ A, for every a, b ∈ A.

Consider the projection p : M → A and the operators:

δ : Ai → Ai+1, δa = −pda,

{− , −} : Ai−1 ×Aj−1 → Ai+j−1, {a, b} := −(−1)i[da, b].

A straightforward computation shows that (A[−1], δ, {− , −}) is a DG-Lie algebra
[32, Proposition 5.6.6].

Corollary 4.20. If L → M is injective in cohomology, then the DG-Lie algebra
A[−1] = (A[−1], δ, {− , −}) is homotopy abelian.

Proof. The linear map:

i : A[−1]→M ia = i(a) = a

is a Cartan homotopy. Indeed, for every a, b ∈ A[−1], we have [ia, ib] = [a, b] = 0,
by Condition (ii) above. Moreover, for every a ∈ A[−1]i and b ∈ A[−1], we have
0 = d([a, b]) = [da, b] + (−1)i−1[a, db] and so

i{a,b} = {a, b} = −(−1)i[da, b] = [a, db] = [ia, dib].
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Note that, for every a ∈ A[−1], we have

p(la) = p(dia + iδa) = p(da− pda) = 0

and so for every a ∈ A[−1], we have la ∈ L, i.e., Hypothesis (2) of Theorem 3.3
is satisfied. The last two hypotheses of Theorem 3.3 are satisfied by assumption,
and so we conclude that A[−1] = (A[−1], δ, {− , −}) is homotopy abelian.

Example 4.21. [32, Section 5.6]. Let V and W be two graded vector spaces over
K and π ∈ Hom1

K (W,V ), such that 0 = dHomπ = dWπ+πdV . In [32, Section 5.6],
the author introduced the notion of the derived bracket of π on Hom∗K (V,W )[−1]
defined as:

[− ,− ]π : (Hom∗K (V,W )[−1])i × (Hom∗K (V,W )[−1])j → (Hom∗K (V,W )[−1])i+j

[f, g]π = fπg − (−1)ijgπf.

On the graded vector space Hom∗K (V,W )[−1], it is also defined a differential δ as:

δ(f) = −dW f − (−1)ifdV , ∀ f ∈ (Hom∗K (V,W )[−1])i.

Then, A[−1] = (Hom∗K (V,W )[−1], [− ,− ]π, δ) is a DG-Lie algebra. To view
this example in the above setting, it is enough to consider the DG-Lie algebra
M = Hom∗K (V ⊕W,V ⊕W ) with differential given by [D, −] where

D =

(
dV −π
0 dW

)
: V ⊕W → V ⊕W.

It turns out that {− , −} = [− ,− ]π; indeed, for every a ∈ A[−1]i and b ∈ A[−1]j ,
we have

{a, b} = −(−1)i[Da, b] = −(−1)i[[D, a], b].

By definition,

[[D, a], b] = [Da− (−1)i−1aD, b]

= Dab− (−1)i−1aDb− (−1)i(j−1)(bDa− (−1)i−1baD)

= Dab− (−1)i−1aDb− (−1)i(j−1)bDa− (−1)ijbaD.

Viewing a and b as

a =

(
0 0
a 0

)
, b =

(
0 0
b 0

)
: V ⊕W → V ⊕W,

we have

Da =

(
−πa 0
dWa 0

)
;
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thus Dab = abD = 0, and

bDa =

(
0 0
b 0

)
·
(
−πa 0
dwa 0

)
=

(
0 0
−bπa 0

)
, aDb =

(
0 0
−aπb 0

)
.

Therefore,

{a, b} = −(−1)i[Da, b] = −aDb+ (−1)ijbDa = aπb− (−1)ijbπa = [a, b]π.

Finally, if the inclusion L → M is injective in cohomology, then the DG-Lie
algebra A[−1] = (Hom∗K (V,W )[−1], [− ,− ]π, δ) is homotopy abelian.

5 Further applications

According to Remark 3.4, if L, M and H ⊆ M are DG-Lie algebras, such that
χ : H ↪→ M is injective in cohomology and la ∈ H for every a ∈ L, we have a
diagram:

TW (α)

p

��

φ // TW (χ)

L,

where TW (χ) is an homotopy abelian DG-Lie algebras and the vertical arrow is
a quasi isomorphism. In particular, we have a morphism:

s : H2(L)
H2(p)−1

−−−−−→ H2(TW (α))
H2(φ)−−−−→ H2(TW (χ))

Since DefTW (χ) is smooth, s annihilates all the obstructions of DefL. This idea
has been applied in various deformation cases. For instance, in [11, Proposition
4.6], the authors consider the deformations of compact Kähler manifolds and they
prove the Kodaira’s principle, ambient cohomology annihilates obstructions. A
semiregularity map annihilating all the obstructions to the infinitesimal deforma-
tions of holomorphic maps of compact Kähler manifolds with fixed codomain were
analysed in [20, Corollary 4.14]. In [23, Theorem 11.1], it is proved that the Bloch’s
semiregularity map annihilates all the obstructions to embedded deformations of
a local complete intersection, extending the proof given in [29, Theorem 9.1] for
the embedded deformations of a smooth submanifold.
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