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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Normal bicanonical and tricanonical threefolds

Ezio Stagnaro

Abstract. The first author to construct a non-normal bicanonical threefold in P4 was L.

Godeaux in 1936 [5]. This threefold has degree 8. In the first part of the present paper, starting

from a normal threefold of general type where q1 = q2 = pg = 0, P2 = P3 = 5, of degree 6 (cf.

[11]), we construct Godeaux’s example and two examples of tricanonical threefolds in P4. One

of the tricanonical threefolds is normal. In the second part of the paper, we construct (starting

from the beginning) a normal bicanonical threefold of degree 8 that has the birational invariants

given by q1 = q2 = pg = 0 and P2 = 5. No other examples of bicanonical and tricanonical

threefolds in P4 are known.

Sunto. Il primo autore che ha costruito un’ipersuperficie bicanonica non normale in P4 è stato

L. Godeaux nel 1936 [5]. Tale ipersuperficie ha ordine 8. Nella prima parte del presente lavoro,

partendo da una varietà tridimensionale, normale e di tipo generale avente q1 = q2 = pg =

0, P2 = P3 = 5, di ordine 6 (cfr. [11]), si costruisce l’esempio di Godeaux e due esempi di iper-

superficie tridimensionali tricanoniche in P4. Una delle ipersuperficie tricanoniche è normale.

Nella seconda parte del lavoro si costruisce, partendo dall’inizio, una varietà tridimensionale,

normale e bicanonica, di ordine 8 avente gli invarianti birazionali q1 = q2 = pg = 0 e P2 = 5.

Non si conoscono altri esempi di ipersuperficie bicanoniche e tricanoniche in P4.

1 Introduction

In a previous work [12], we constructed normal canonical hypersurfaces in the pro-
jective space Pd for any d ≥ 4, following an introduction with a concise historical
note on canonical surfaces in P3. This historical note began with some consider-
ations on Chapter VIII of Enriques’s book “Le superficie algebriche” (cf. [3] and
also [4, Ch. V]); the English translation of the chapters title is: Regular canonical
and pluricanonical surfaces.

While there is an abundance of literature on canonical surfaces in P3, we have
found few works on pluricanonical (bicanonical and tricanonical) surfaces in P3.
In truth, numerous publications concern studies on either the birationality or the
non-birationality of the bicanonical (or tricanonical) transformation (improperly
called a map) of a surface of general type, whereas bicanonical (or tricanonical)
surfaces in P3 require not only that the bicanonical (or tricanonical) transformation
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be birational, but also that the bigenus P2 = 4 (or the trigenus P3 = 4) (see the
properties due to the definition that we have adopted in Section 2 below).

In his book, Ch. VIII, Sections 14 - 21, Enriques provides the first published
explanation for the theory of bicanonical and tricanonical surfaces as images of
the bicanonical and tricanonical transformations. He also provides a detailed
account of how to construct the first tricanonical surface in P3 starting from a
double plane with a branch curve of degree 10 having five [3,3] points and one
ordinary 4-ple point that are not on a conic. Unfortunately, Enriques considers
the Campedelli construction, which is incorrect (cf. [1, 2]). So, although we can-
not accept Enriques’s statement proving that the tricanonical transformation of a
desingularization of the Campedelli double plane is birational having as its image
a tricanonical surface in P3 (cf. [3, pp. 308-309]), it is important to bear in mind
that - after Campedelli - many curves of degree 10 were constructed with five [3,3]
points and one ordinary 4-ple point, that are not on a conic (cf. [2, 8, 10, 13]). The
double planes, having the above curves of degree 10 as a branch locus, are called
numerical Godeaux surfaces. We now know that any numerical Godeaux surface
has P3 = 4 and a birational tricanonical transformation (cf. [7]). In short, we
consider Enriques’s “justifications of the claim” (in his own words: “giustificazioni
dell’asserto”) as the first incredible intuition of the result, even though they were
not correct.

Concerning surfaces, it has to be said that m-canonical surfaces in P3 do not
exist for m > 3. This follows from the m-genus of a minimal model surface of

general type: Pm = m(m−1)
2 (K2) + 1− q+ pg, where q ≤ pg (cf. [1, 2]). We do not

know whether m-canonical hypersurfaces in Pd, d ≥ 4, exist for m > 3.

We note explicitly that the canonical (or bicanonical, or tricanonical) trans-
formations that Enriques considers can be generically n : 1; if they are birational,
i.e. generically 1 : 1, and Enriques uses the adjective ”simple” [Italian: semplice]
to describe this situation, calling each of the above surfaces ”simple canonical (or
simple bicanonical, or simple tricanonical)” surfaces. In the present paper we omit
this adjective, however.

We do not know of any bicanonical (or tricanonical) surfaces in P3 that are
normal, i.e. nonsingular in codimension 1. This naturally prompts us to seek
any bicanonical, or tricanonical hypersurfaces that are normal in Pd for d ≥ 4,
as we did in the case of normal canonical hypersurfaces in Pd, d ≥ 4 [12]. A
good tool for this investigation is the theory of pluricanonical adjoints to normal
hypersurfaces, which allows us to compute the pluricanonical transformations of
their desingularizations without further ado. Said theory is revisited and developed
in [11], based on the assumption of normality for the hypersurfaces in Pd, and also
assuming that the singularities are locally given by straight lines and planes.

As a first approach to the problem, we consider threefolds, i.e. d = 4, because
we know of examples that attract our attention as the most natural examples
of bicanonical and tricanonical threefolds in P4, even if they were constructed
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in a different context. In addition, there is Godeaux’s example of a bicanonical
threefold and we find the same equation of that threefold. It is worth adding that
Godeaux’s paper [5] is quite difficult to find: it never seems to be quoted, and we
initially only chanced upon a review of it in Zentralblatt.

The equations of these threefolds V ⊂ P4 are given by a large number of
monomials and we have to write them all because, for our purposes, we need to
kill five coefficients (Cf. Remark 4.1, Section 4 and Remark 6.1, Section 6). The
equations of the linear systems given by bicanonical and tricanonical adjoints to V
are very straightforward, however. Since the rational transformations associated
with these linear systems can be identified with the bicanonical and tricanonical
transformations ϕ|2KX | and ϕ|3KX | of a desingularization X → V , we have very
simple equations of the bicanonical and tricanonical images of X and we can easily
check whether they are normal or not. The search for the normal images is the
main purpose of the present paper.

In the first part of the paper we present bicanonical and tricanonical threefolds
in P4. One of the tricanonical threefolds is normal. All these facts are deduced
from previous papers, one by the present author [11], and one by M.C. Ronconi
[9].

In the second part of the paper (Section 7), we construct a normal bicanonical
threefold V ⊂ P4 of degree 8, starting right from the beginning.

The irregularities qi(X) = dimkH
i(X,OX), for i = 1, 2, of a desingularization

X → V are also taken into consideration, and we show that X is totally regular,
i.e. qi(X) = 0 for i = 1, 2.

These threefolds have no analogous surfaces.

We tried without success to generalize the constructions of the above-mentioned
threefolds in a higher dimension. This is probably due to the many ad hoc prop-
erties of threefolds that other varieties of different dimensions do not have. The
fact that we find the same equation as Godeaux’s threefold also confirms these ad
hoc properties.

The varieties that we present are defined over the ground field k, which is an
algebraically closed field of characteristic zero, that we can assume to be the field
of complex numbers.

2 m-canonical hypersurfaces in Pd

Here, we report the definition of an m-canonical hypersurface V in the projective
space Pd, according to the definition used nowadays.

A degree n ≥ d+2 algebraic hypersurface V ⊂ Pd, d ≥ 2, is called m-canonical
if the linear system of the m-canonical adjoints in Pd to V (cf., for example, [11])
is given by degree m(n − (d + 1)) hypersurfaces of the type Φ + H, where Φ is a
fixed hypersurface of degree m(n− (d+ 1))− 1 in Pd and H is the complete linear



202 E. Stagnaro

system of the hyperplanes in Pd.
1-canonical = canonical; 2-canonical = bicanonical; 3-canonical = tricanonical.

The above definition can be reformulated as follows (loc. cit.). Let σ : X → V
be a sequence of blow-ups resolving the singularities of V ⊂ Pd. The hypersurface
V ⊂ Pd is called m-canonical if the (complete) m-canonical system |mKX | on X is
given by |mKX | = |M |+ F , where |M | is the moving part of |mKX |, F the fixed
part of |mKX |, and the moving part |M | of |mKX | is cut out by the pull-back,
with respect to σ, of the linear system of the hyperplane sections on V .

Based on this definition, from the normality of the hypersurfaces, the m-genus
of X is consequently Pm(X) = Pm = d + 1 and the m-canonical transformation
ϕ|mKX | : X 99K PPm−1 = Pd is birational (to its image). In particular, X is a
(d− 1)-dimensional variety of general type.

In the case where V is a (hyper)surface in P3, cf. [3, Ch. VIII] and also [4,
Ch. V].

One way to construct m-canonical hypersurfaces in Pd indirectly is to consider
a nonsingular variety Y of dimension d−1 such that the m-genus of Y is Pm = d+1
and the canonical transformation ϕ|mKY | : Y 99K PPm−1 = Pd is birational (to
its image). The image ϕ|mKY |(Y ) of Y under ϕ|mKY | is thus an m-canonical

hypersurface in Pd.

The normality and non-normality of m-canonical hypersurfaces in Pd are taken
into special consideration, bearing in mind that the normality is not a birational
invariant. (Cf. [11] for historical notes on the normality of m-canonical surfaces.)

3 A construction of a bicanonical threefold in P4, which co-
incides with Godeaux threefold

In [11], we constructed the following threefold V1 in P4, of homogeneous coordi-
nates X0, X1, X2, X3, X4. The equation of V1 is given by

V1 : X3
0 (a33000X3

1 + a32100X2
1X2 + a31200X1X2

2 + a30300X3
2 )+

X3
1 ( a23010X2

0X3 + a13020X0X2
3 + a03030X3

3 )+

X3
2 ( a20301X2

0X4 + a10302X0X2
4 + a00303X3

4 )+

X3
3 ( a02031X2

1X4 + a01032X1X2
4 + a00033X3

4 )+

X3
4 ( a00213X2

2X3 + a00123X2X2
3 )+

a22200X2
0X

2
1X

2
2 + a22110X2

0X
2
1X2X3 + a22101X2

0X
2
1X2X4+

a22020X2
0X

2
1X

2
3 + a22011X2

0X
2
1X3X4 + a21210X2

0X1X2
2X3+

a21201X2
0X1X2

2X4 + a21111X2
0X1X2X3X4 + a20211X2

0X
2
2X3X4+

a20202X2
0X

2
2X

2
4 + a12120X0X2

1X2X2
3 + a12111X0X2

1X2X3X4+

a12021X0X2
1X

2
3X4 + a11211X0X1X2

2X3X4 + a11202X0X1X2
2X

2
4+

a11121X0X1X2X2
3X4 + a11112X0X1X2X3X2

4 + a11022X0X1X2
3X

2
4+

a10212X0X2
2X3X2

4 + a10122X0X2X2
3X

2
4 + a02121X2

1X2X2
3X4+
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a02022X2
1X

2
3X

2
4 + a01212X1X2

2X3X2
4 + a01122X1X2X2

3X
2
4+

a00222X2
2X

2
3X

2
4 = 0, aijklm ∈ k.

Our threefold V1 is the generic element of the above linear system of threefolds.
The singularities of V1 are given by five triple points having an infinitely near triple
curve, locally isomorphic to a straight line, and other negligible singularities, i.e.
singularities that do not affect the birational invariants. In particular, V1 is normal.

If ϕ : X → V1 denotes a resolution of the singularities of V1, then the birational
invariants of X are given by q1 = q2 = 0, i.e. the two irregularities of X vanish;
the first three plurigenera are given by: pg = 0 and P2 = P3 = 5.

More precisely, the linear system of bicanonical adjoints to V1 is given by:

Φ2 : a11000X0X1 + a10100X0X2 + a01010X1X3 + a00101X2X4 + a00011X3X4 = 0,

This linear system defines the rational transformation τ1 : P4 99K P4 with its
inverse.

τ1 :


Y0 = ρX0X1

Y1 = ρX0X2

Y2 = ρX1X3

Y3 = ρX2X4

Y4 = ρX3X4

, ρ ∈ k, ρ 6= 0; τ−11 :


X0 = ρ∗Y0Y1Y4
X1 = ρ∗Y0Y2Y3
X2 = ρ∗Y1Y2Y3
X3 = ρ∗Y1Y2Y4
X4 = ρ∗Y0Y3Y4

, ρ∗ ∈ k, ρ∗ 6= 0.

In particular, we make the restriction τ1|V1
of τ1 to V1 birational. There is a

Zariski’s open set U ⊂ X and a Zariski’s open set U1 ⊂ V1, that are isomorphic. By
identifying U and U1, we enable τ1|V1

and the bicanonical transformation ϕ|2KX | :

X 99K P4 to be identified (as rational transformations). These results essentially
follow from the commutativity of the following triangle

ϕ|2KX |
X P4 = PP2−1-

Z
Z
Z
Z
Z
ZZ~

ϕ

6

τ1|V1

V1

All the above facts are contained in [11], to which the interested reader may refer.

Using the terminology introduced in the present paper, identifying ϕ|2KX | with
τ1|V1

, we can say that the image of V1 under τ1 is a bicanonical threefold in

P4. τ1 is birational on P4, so it is easy to find the equation of τ1(V1) by substi-
tuting X0 = ρ∗Y0Y1Y4; X1 = ρ∗Y0Y2Y3; X2 = ρ∗Y1Y2Y3; X3 = ρ∗Y1Y2Y4; X4 =
ρ∗Y0Y3Y4 in the equation of V1.
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We obtain

τ1(V1) :

a33000Y 4
0 Y1Y2Y3Y4 + a32100Y 3

0 Y
2
1 Y2Y3Y4 + a31200Y 2

0 Y
3
1 Y2Y3Y4 + a30300Y0Y 4

1 Y2Y3Y4 +

a23010Y 3
0 Y1Y

2
2 Y3Y4 + a13020Y 2

0 Y1Y
3
2 Y3Y4 + a03030Y0Y1Y 4

2 Y3Y4 + a20301Y0Y 3
1 Y2Y

2
3 Y4 +

a10302Y0Y 2
1 Y2Y

3
3 Y4 + a00303Y0Y1Y2Y 4

3 Y4 + a02031Y0Y1Y 3
2 Y3Y

2
4 + a01032Y0Y1Y 2

2 Y3Y
3
4 +

a00033Y0Y1Y2Y3Y 4
4 + a00213Y0Y1Y2Y 3

3 Y
2
4 + a00123Y0Y1Y2Y 2

3 Y
3
4 + a22200Y 2

0 Y
2
1 Y

2
2 Y

2
3 +

a22110Y 2
0 Y

2
1 Y

2
2 Y3Y4 + a22101Y 3

0 Y1Y2Y
2
3 Y4 + a22020Y 2

0 Y
2
1 Y

2
2 Y

2
4 + a22011Y 3

0 Y1Y2Y3Y
2
4 +

a21210Y0Y 3
1 Y

2
2 Y3Y4 + a21201Y 2

0 Y
2
1 Y2Y

2
3 Y4 + a21111Y 2

0 Y
2
1 Y2Y3Y

2
4 + a20211Y0Y 3

1 Y2Y3Y
2
4 +

a20202Y 2
0 Y

2
1 Y

2
3 Y

2
4 + a12120Y0Y 2

1 Y
3
2 Y3Y4 + a12111Y 2

0 Y1Y
2
2 Y

2
3 Y4 + a12021Y 2

0 Y1Y
2
2 Y3Y

2
4 +

a11211Y0Y 2
1 Y

2
2 Y

2
3 Y4 + a11202Y 2

0 Y1Y2Y
3
3 Y4 + a11121Y0Y 2

1 Y
2
2 Y3Y

2
4 + a11112Y 2

0 Y1Y2Y
2
3 Y

2
4 +

a11022Y 2
0 Y1Y2Y3Y

3
4 + a10212Y0Y 2

1 Y2Y
2
3 Y

2
4 + a10122Y0Y 2

1 Y2Y3Y
3
4 + a02121Y0Y1Y 3

2 Y
2
3 Y4 +

a02022Y 2
0 Y

2
2 Y

2
3 Y

2
4 + a01212Y0Y1Y 2

2 Y
3
3 Y4 + a01122Y0Y1Y 2

2 Y
2
3 Y

2
4 + a00222Y 2

1 Y
2
2 Y

2
3 Y

2
4 = 0.

The threefold τ1(V1) has degree 8 and its desingularization has the same bira-
tional invariants q1 = q2 = pg = 0, P2 = P3 = 5 as a desingularization of V1. We

note that τ1(V1) is not normal because it has the coordinate planes

{
Yi = 0
Yj = 0

of

the fundamental pentahedron as singular planes of multiplicity 2. It also has the

coordinate edges

 Yi = 0
Yj = 0
Yk = 0

of the fundamental pentahedron as singular lines of

multiplicity 3, and it has the vertices of the fundamental pentahedron as singular
points of multiplicity 4.

Remark 3.1. The equation given by Godeaux can be written in another way

f2(x1x2x3x4, x2x3x4x0, x3x4x0x1, x4x0x1x2, x0x1x2x3)+

+x0x1x2x3x4ϕ3(x0, x1, x2, x3, x4) = 0,

where f2 and ϕ3 are algebraic forms in five variables.

Although this goes beyond the scope of our bicanonical and tricanonical three-
folds, it is worth noting that, as well as being a desingularization of τ1(V1), a
desingularization of Godeauxs threefold has q1 = q2 = pg = 0, P2 = P3 = 5. So
Godeaux was also the first to find a regular nonsingular threefold with pg = 0 and
P2 6= 0; cf. Introduction in [9], which contains a brief bibliography on this subject.

Since τ1 is defined by the linear system of bicanonical adjoints to V1, we know
that the linear system of the bicanonical adjoints to τ1(V1) is given by a fixed part,
multiplied by a moving part given by a11000Y0 + a10100Y1 + a01010Y2 + a00101Y3 +
a00011Y4 = 0.

More precisely, the fixed part is given by Y0Y1Y2Y3Y4 = 0, and the linear
system of bicanonical adjoints to τ1(V1) is given by:

Y0Y1Y2Y3Y4(a11000Y0 + a10100Y1 + a01010Y2 + a00101Y3 + a00011Y4) = 0.
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In fact, they have degree 6 and Y0Y1Y2Y3Y4 = 0 passes through the double singular
coordinate planes on τ1(V1) with the correct multiplicity ≥ 2. These bicanonical
adjoints also pass through the coordinate edges and through the vertices of the
fundamental pentahedron with the correct multiplicities.

All the above facts concerning τ1(V1) follow from [11] and from the normality
of V1, even though τ1(V1) is not normal.

Note that, if F is any hypersurface in P4 and we do not remove any fixed
components potentially appearing in τ1(F ), then we define a new rational trans-
formation, that we denote τ∗1 : P4 99K P4. If we call the image τ∗1 (F ) a total
transform, then the total transform τ∗1 (Φ2) is just the linear system of bicanoni-
cal adjoints to τ1(V1), i.e. τ∗1 (Φ2) : Y0Y1Y2Y3Y4(a11000Y0 + a10100Y1 + a01010Y2 +
a00101Y3 + a00011Y4) = 0.

Moreover, the total transform τ∗1 (V1) is given by Y 2
0 Y

2
1 Y

2
2 Y

2
3 Y

2
4 τ1(V1).

τ1(V1) can also be found in [9], § 9, which states that, with a birational trans-
formation, our V1 is obtained from τ1(V1). If we replace X0 with X5 and X1 with
X3, then the birational transformation given in [9] is τ−11 .

4 A second construction of the above bicanonical threefold
in P4

In [9, § 3], Ronconi presented a threefold in P4 denoted by V ′, that we call V2
here, the desingularization of which has the birational invariants q1 = q2 = pg = 0
and P2 = P3 = 5: it is a degree seven hypersurface in P4 having triple lines at
each of the edges of the fundamental pentahedron.

The linear system of all the hypersurfaces of this type depends on 35 param-
eters and the equation of V2 is

V2 : a31111X3
0X1X2X3X4 + a13111X0X3

1X2X3X4 + a11311X0X1X3
2X3X4+

a11131X0X1X2X3
3X4 + a11113X0X1X2X3X3

4 + a22210X2
0X

2
1X

2
2X3 + a22201X2

0X
2
1X

2
2X4+

a22120X2
0X

2
1X2X2

3 + a22111X2
0X

2
1X2X3X4 + a22102X2

0X
2
1X2X2

4 + a22021X2
0X

2
1X

2
3X4+

a22012X2
0X

2
1X3X2

4 + a21220X2
0X1X2

2X
2
3 + a21211X2

0X1X2
2X3X4 + a21202X2

0X1X2
2X

2
4+

a21121X2
0X1X2X2

3X4 + a21112X2
0X1X2X3X2

4 + a21022X2
0X1X2

3X
2
4 + a20221X2

0X
2
2X

2
3X4+

a20212X2
0X

2
2X3X2

4 + a20122X2
0X2X2

3X
2
4 + a12220X0X2

1X
2
2X

2
3 + a12211X0X2

1X
2
2X3X4+

a12202X0X2
1X

2
2X

2
4 + a12121X0X2

1X2X2
3X4 + a12112X0X2

1X2X3X2
4 + a12022X0X2

1X
2
3X

2
4+

a11221X0X1X2
2X

2
3X4 + a11212X0X1X2

2X3X2
4 + a11122X0X1X2X2

3X
2
4+

a10222X0X2
2X

2
3X

2
4 + a02221X2

1X
2
2X

2
3X4 + a02212X2

1X
2
2X3X2

4 + a02122X2
1X2X2

3X
2
4+

a01222X1X2
2X

2
3X

2
4 = 0, aijklm ∈ k.

To tell the truth, Ronconi wrote the equation with only 25 parameters, elim-
inating 10 monomials that were not essential for her purposes.

As shown in [9] the actual singularities on V2 are only given by the coordinate
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edges

 Xi = 0
Xj = 0
Xk = 0

of the fundamental pentahedron, so V2 is normal; there are

other singularities infinitely near them on V2, but they are negligible.

The linear system of bicanonical adjoints to V2 is given by (loc. cit.)

b0X1X2X3X4 + b1X0X2X3X4 + b2X0X1X3X4 + b3X0X1X2X4 + b4X0X1X2X3 = 0, bi ∈ k.

The rational transformation associated with the linear system of bicanonical ad-
joints can be identified with the bicanonical transformation ϕ|2KX | : X 99K P4,
where X is a desingularization of V2. At the same time, this linear system defines
the standard birational transformation σ : P4 99K P4, that can also be expressed
by

Yi =
ρ

Xi
, i = 0, 1, 2, 3, 4, ρ ∈ k.

So, ϕ|2KX | is birational. As before, ϕ|2KX |(X) can be identified with σ(V2).
Therefore, σ(V2) is a bicanonical threefold in P4.

Remark 4.1. The surprising fact is that the linear system defining σ(V2)
is contained in the linear system defining τ1(V1). More precisely, if we kill
the 5 parameters a33000, a30300, a03030, a00303, a00033 in the equation of V1, then
we obtain a threefold V ′1 and τ1(V ′1) = σ(V2); in other words, the bicanonical
threefold in P4 defined by V′1 coincides with the bicanonical threefold in
P4 defined by V2 (i.e. they have the same equation). In particular, V ′1 and V2
are birational to each other; and the birational transformation is σ−1 ◦ τ1.

5 A first construction of a tricanonical threefold in P4

Let us return to the threefolds V1 in Section 3, where we said that a desingulariza-
tion of V1 has P2 = P3 = 5. Here we consider the trigenus P3. The linear system
of tricanonical adjoints to V1 is given by (cf. [11])

b11100X0X1X2 + b11010X0X1X3 + b10101X0X2X4 + b01011X1X3X4 +
b00111X2X3X4 = 0.

This linear system defines the rational transformation τ2 : P4 99K P4 with its
inverse.

τ2 :


Y0 = ρX2X3X4

Y1 = ρX1X3X4

Y2 = ρX0X2X4

Y3 = ρX0X1X3

Y4 = ρX0X1X2

, ρ ∈ k, ρ 6= 0; τ−12 :


X0 = ρ∗Y2Y3
X1 = ρ∗Y1Y4
X2 = ρ∗Y0Y4
X3 = ρ∗Y0Y3
X4 = ρ∗Y1Y2

, ρ∗ ∈ k, ρ∗ 6= 0.
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With the same arguments as we used in Section 3, we can identify ϕ|3KX | with
τ2|V1

. We can say that the image of V1 under τ2 is a tricanonical threefold in

P4 and, as in Section 3, we obtain

τ2(V1) :

a33000Y 3
1 Y

3
2 Y

3
3 Y

3
4 + a32100Y0Y 2

1 Y
3
2 Y

3
3 Y

3
4 + a31200Y 2

0 Y1Y
3
2 Y

3
3 Y

3
4 + a30300Y 3

0 Y
3
2 Y

3
3 Y

3
4 +

a23010Y0Y 3
1 Y

2
2 Y

3
3 Y

3
4 + a13020Y 2

0 Y
3
1 Y2Y

3
3 Y

3
4 + a03030Y 3

0 Y
3
1 Y

3
3 Y

3
4 + a20301Y 3

0 Y1Y
3
2 Y

2
3 Y

3
4 +

a10302Y 3
0 Y

2
1 Y

3
2 Y3Y

3
4 + a00303Y 3

0 Y
3
1 Y

3
2 Y

3
4 + a02031Y 3

0 Y
3
1 Y2Y

3
3 Y

2
4 + a01032Y 3

0 Y
3
1 Y

2
2 Y

3
3 Y4 +

a00033Y 3
0 Y

3
1 Y

3
2 Y

3
3 + a00213Y 3

0 Y
3
1 Y

3
2 Y3Y

2
4 + a00123Y 3

0 Y
3
1 Y

3
2 Y

2
3 Y4 + a22200Y 2

0 Y
2
1 Y

2
2 Y

2
3 Y

4
4 +

a22110Y 2
0 Y

2
1 Y

2
2 Y

3
3 Y

3
4 + a22101Y0Y 3

1 Y
3
2 Y

2
3 Y

3
4 + a22020Y 2

0 Y
2
1 Y

2
2 Y

4
3 Y

2
4 + a22011Y0Y 3

1 Y
3
2 Y

3
3 Y

2
4 +

a21210Y 3
0 Y1Y

2
2 Y

3
3 Y

3
4 + a21201Y 2

0 Y
2
1 Y

3
2 Y

2
3 Y

3
4 + a21111Y 2

0 Y
2
1 Y

3
2 Y

3
3 Y

2
4 + a20211Y 3

0 Y1Y
3
2 Y

3
3 Y

2
4 +

a20202Y 2
0 Y

2
1 Y

4
2 Y

2
3 Y

2
4 + a12120Y 3

0 Y
2
1 Y2Y

3
3 Y

3
4 + a12111Y 2

0 Y
3
1 Y

2
2 Y

2
3 Y

3
4 + a12021Y 2

0 Y
3
1 Y

2
2 Y

3
3 Y

2
4 +

a11211Y 3
0 Y

2
1 Y

2
2 Y

2
3 Y

3
4 + a11202Y 2

0 Y
3
1 Y

3
2 Y3Y

3
4 + a11121Y 3

0 Y
2
1 Y

2
2 Y

3
3 Y

2
4 + a11112Y 2

0 Y
3
1 Y

3
2 Y

2
3 Y

2
4 +

a11022Y 2
0 Y

3
1 Y

3
2 Y

3
3 Y4 + a10212Y 3

0 Y
2
1 Y

3
2 Y

2
3 Y

2
4 + a10122Y 3

0 Y
2
1 Y

3
2 Y

3
3 Y4 + a02121Y 3

0 Y
3
1 Y2Y

2
3 Y

3
4 +

a02022Y 2
0 Y

4
1 Y

2
2 Y

2
3 Y

2
4 +a01212Y 3

0 Y
3
1 Y

2
2 Y3Y

3
4 +a01122Y 3

0 Y
3
1 Y

2
2 Y

2
3 Y

2
4 +a00222Y 4

0 Y
2
1 Y

2
2 Y

2
3 Y

2
4 = 0.

The threefold τ2(V1) has degree 12. It is not normal, because it has the co-

ordinate planes

{
Yi = 0
Yj = 0

of the fundamental pentahedron as singular planes of

multiplicity 3. τ2(V1) has the coordinate edges

 Yi = 0
Yj = 0
Yk = 0

of the fundamental

pentahedron as singular lines of multiplicity 6 and it has the vertices of the fun-
damental pentahedron as singular points of multiplicity 8.

Godeaux also considers a degree 12 equation

ϕ3(x1x2x3x4, x2x3x4x0, x3x4x0x1, x4x0x1x2, x0x1x2x3)+
+(x0x1x2x3x4)2f2(x0, x1, x2, x3, x4) = 0,

but he says nothing about tricanonical threefolds; he uses this equation to obtain
a degree 18 canonical surface.

Using a procedure similar to the one described in Section 3, and taking the
singularities given by the edges into consideration first, the linear system of tri-
canonical adjoints to τ2(V1) is given by:

Y 4
0 Y

4
1 Y

4
2 Y

4
3 Y

4
4 (b00111Y0 + b01011Y1 + b10101Y2 + b11010Y3 + b11100Y4) = 0.

In fact, they have degree 21 and Y 4
0 Y

4
1 Y

4
2 Y

4
3 Y

4
4 = 0 passes through the coordinate

edges on τ2(V1) with the correct multiplicity ≥ 12 (cf. [11]). Note, however, that

the tricanonical adjoints pass through the coordinate planes

{
Yi = 0
Yj = 0

with the

correct multiplicity. More precisely, they pass through the coordinate planes with
multiplicity ≥ 8, when the multiplicity required on the coordinate planes of the
degree 21 hypersurfaces for them to be tricanonical adjoints to τ2(V1) is ≥ 6 (loc.
cit.). These tricanonical adjoints pass through the vertices of the fundamental
pentahedron with the correct multiplicity as well.
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Remark 5.1. Starting from V1 in P4, a desingularization of which has P2 = P3 =
5, we constructed two threefolds τ1(V1) and τ2(V1) in P4, again having a desingu-
larization with P2 = P3 = 5. We can thus consider the tricanonical threefold in P4

defined by τ1(V1) and the bicanonical threefold in P4 defined by τ2(V1). We can
see that this approach does not give us new bicanonical or tricanonical threefolds
in P4: the linear system of the tricanonical adjoints to τ1(V1) defines the standard
birational transformation σ : P4 99K P4. It is easy to check that σ ◦ τ1 = τ2.
The tricanonical threefold in P4 defined by τ1(V1) therefore coincides with τ2(V1).
Similarly, the linear system of the bicanonical adjoints to τ2(V1) defines the stan-
dard birational transformation σ. Since σ = σ−1, the bicanonical threefold in P4

defined by τ2(V1) coincides with τ1(V1).

6 A normal tricanonical threefold in P4

Remark 6.1. The equation of τ2(V1) (Section 5) has degree 12, but if we consider
V ′1 instead of V1, as in Remark 4.1, Section 4, i.e. if we kill a33000, a30300, a03030,
a00303, a00033, then we can divide the equation of τ2(V ′1) by Y0Y1Y2Y3Y4 and obtain
a degree 7 equation that is the equation of V2, which is Ronconi’s threefold. In
fact, the following equalities hold: σ ◦ τ1 = τ2 (cf. Remark 5.1) and σ−1 = σ.

According to Ronconi [9], who wrote the 5 forms defining the vector space of
the tricanonical adjoints, the linear system of tricanonical adjoints to V2 is given
by

X0X1X2X3X4(c0X0 + c1X1 + c2X2 + c3X3 + c4X4) = 0, ci ∈ k.

This proves, without any calculations, that V2 is itself a tricanonical
threefold in P4 and that it is also normal (Section 4).

7 A normal bicanonical threefold in P4

Unlike the previous examples obtained starting from other works, here we con-
struct a normal bicanonical threefolds starting from the beginning.

7.1 The construction of the threefold

We construct the threefold by imposing the triple line r1 : X2 = X3 = X4 = 0 on
a generic degree 8 hypersurface

F8 :
∑

0≤i0i1i2i3i4≤4 ai0i1i2i3i4X
i0
0 X

i1
1 X

i2
2 X

i3
3 X

i4
4 = 0, i0 + i1 + i2 + i3 + i4 = 8,

in P4 of homogeneous coordinates (X0, X1, X2, X3, X4). To do so, we consider the
affine set U0 of affine coordinates x = X1/X0, y = X2/X0, z = X3/X0, t = X4/X0

and we impose the triple line r1∩U0 : y = z = t = 0 on F8∩U0. Let F8(x, y, z, t) =
0 be the equation of F8 ∩ U0.
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To impose the triple line r1∩U0, we consider the blow-up of this line. Locally,
the blow-up of r1 ∩ U0 is given by

By1 :


x = x1
y = y1
z = y1z1
t = y1t1

; Bz2 :


x = x2
y = y2z2
z = z2
t = z2t2

; Bt3 :


x = x3
y = y3t3
z = z3t3
t = t3

.

It is convenient to consider Bt3 . Substituting in F8(x, y, z, t), dividing by t33
and imposing that 1

t33
F8(x3, y3t3, z3t3, t3) be a polynomial, we obtain conditions

on the coefficients ai0i3i2i3i4 of F8.
Let us call Ft3(x3, y3, z3, t3) the polynomial 1

t33
F8(x3, y3t3, z3t3, t3), so that the

hypersurface Ft3(x3, y3, z3, t3) = 0 has the triple line y3 = z3 = t3 = 0.
Next, we want to impose the double plane π : y3 = t3 = 0 infinitely near on

the triple line y3 = z3 = t3 = 0.
Locally, the blow-up of π : y3 = t3 = 0 is given by

By31
:


x3 = x31
y3 = y31
z3 = z31
t3 = y31t31

; Bt32 :


x3 = x32
y3 = y32t32
z3 = z32
t3 = t32

.

We consider Bt32 and we substitute in Ft3(x3, y3, z3, t3). By imposing that
1
t232
Ft3(x32, y32t32, z32, t32) be a polynomial, we obtain conditions on the coefficients

ai1i2i3i4 , and the hypersurface of equation 1
t232
Ft3(x32, y32t32, z32, t32) = 0 has the

double plane we wanted.

After completing these calculations, we return to the above homogeneous co-
ordinates (X0, X1, X2, X3, X4) and impose another 4 triple lines on F8 with the
infinitely near double surfaces, using the following rotations of indices (and vari-
ables).

Rotations of indices (and variables)

X0 7→ X1 7→ X2 7→ X3 7→ X4 7→ X0

i0i1i2i3i4 7→ i4i0i1i2i3 7→ i3i4i0i1i2 7→ i2i3i4i0i1 7→ i1i2i3i4i0 7→ i0i1i2i3i4.

Above, we impose the triple line X2 = X3 = X4 = 0 on F8 with the double
surface infinitely near, obtaining conditions on the coefficients ai0i1i2i3i4 of F8.
Essentially, these conditions impose which coefficients are to be killed. If the
following coefficient ai0i1i2i3i4 must vanish, i.e. ai0i1i2i3i4 = 0, then the following
coefficients must vanish too:

ai4i0i1i2i3 = 0, ai3i4i0i1i2 = 0, a12i3i4i0i1 = 0, ai1i2i3i4i0 = 0.
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Therefore, thanks to this rotation, F8 has the following five triple lines X2 = 0
X3 = 0
X4 = 0

,

 X0 = 0
X3 = 0
X4 = 0

,

 X0 = 0
X1 = 0
X4 = 0

,

 X0 = 0
X1 = 0
X4 = 0

,

 X1 = 0
X2 = 0
X3 = 0

.

and there is a double surface infinitely near each of them that is locally a double
plane.

The final threefold has equation

F8 : F8(X0, X1, X2, X3, X4) =

a41210X4
0X1X2

2X3 + a04121X4
1X2X2

3X4 + a10412X0X4
2X3X2

4 + a21041X2
0X1X4

3X4+

a12104X0X2
1X2X4

4+

a32210X3
0X

2
1X

2
2X3 + a03221X3

1X
2
2X

2
3X4 + a10322X0X3

2X
2
3X

2
4 + a21032X2

0X1X3
3X

2
4+

a22103X2
0X

2
1X2X3

4+

a31211X3
0X1X2

2X3X4 + a13121X0X3
1X2X2

3X4 + a11312X0X1X3
2X3X2

4+

a21131X2
0X1X2X3

3X4 + a12113X0X2
1X2X3X3

4+

a31121X3
0X1X2X2

3X4 + a13112X0X3
1X2X3X2

4 + a21311X2
0X1X3

2X3X4+

a12131X0X2
1X2X3

3X4 + a11213X0X1X2
2X3X3

4+

a22211X2
0X

2
1X

2
2X3X4 + a12221X0X2

1X
2
2X

2
3X4 + a11222X0X1X2

2X
2
3X

2
4+

a21122X2
0X1X2X2

3X
2
4 + a22112X2

0X
2
1X2X3X2

4 + a22121X2
0X

2
1X2X2

3X4+

a12212X0X2
1X

2
2X3X2

4 + a21221X2
0X1X2

2X
2
3X4 + a12122X0X2

1X2X2
3X

2
4+

a21212X2
0X1X2

2X3X2
4 = 0.

The above F8 is a linear system of hypersurfaces of degree 8, which is in-
variant with respect to the rotation of indices (and variables). From here on, we
consider the generic element of this linear system, calling it simply F8 (omitting
the term “generic”). We can apply Bertini’s theorem to F8, according to which:
the singularities of F8 belong to the base points locus of the linear system.

7.2 Normality of F8

From Bertini’s theorem, F8 has no singularities in codimension 1, i.e. it is nor-
mal. In fact, the unique subvarieties of codimension 1 on F8 belonging to the base
points of F8 are given by the 10 planes Xi = Xj = 0 of the fundamental penta-
hedron. They do not vanish the partial derivatives, i.e. they are simple planes of
multiplicity 1 on F8. For example, the plane X0 = X1 = 0 is simple because it
belongs to the base point locus of F8 and we have( ∂F8

∂X0

)
X0=X1=0

= a10412X
4
2X3X

2
4 + a10322X

3
2X

2
3X

2
4 6= 0.

To be precise, the lines X0 = X1 = Xi = 0 vanish the partial derivatives because
they are singular on F8 (cf. Section 7.1).
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7.3 Desingularization of F8

As well as the imposed singularities - five triple straight lines (cf. Section 7.2),
each of them having a double surface infinitely near - there are also unimposed
singularities. As usual, we call a singularity S on F8 an actual singularity in order
to distinguish S from those infinitely near it.

The actual unimposed singularities are given by the other five straight lines of
the fundamental pentahedron, which are distinct from those given in Section 7.1.

The infinitely near unimposed singularities are given by a finite number of
double curves. These double curves are locally given by straight lines. Finally,
there are either double points or simple points infinitely near the double curves.

We shall see all these singularities in detail during the resolution of the singu-
larities of F8.

We recall that double curves and double points are negligible singularities, i.e.
singularities that do not give the hypersurfaces conditions such that make them
canonical adjoints to F8. In other words, these singularities do not give conditions
of a desingularization of F8 to the birational invariants (cf. [11, pp. 151-152]).

The equation of F8 is invariant with a rotation of the indices (and variables)
(Section 7.1), so in the desingularization of F8 we can limit ourselves to solving
the singularities on the open set U0 = {X0 6= 0}, where we place the affine coor-
dinates x = X1/X0, y = X2/X0, z = X3/X0, t = X4/X0 (cf. Section 7.1). The
desingularization on the other sets Ui = {Xi 6= 0} is a consequence of the rotation
of the indices.

We only consider the desingularization of F8 locally, leaving the pasting of the
local parts to the general theory of the resolution of singularities (cf. e.g. [6]).

If we consider F8 ∩ U0, we see that there are two imposed actual triple lines
r1 ∩ U0 : y = z = t = 0, r2 ∩ U0 : x = y = z = 0, and two unimposed actual
double lines s1 ∩ U0 : x = z = t = 0, s2 ∩ U0 : x = y = t = 0. We blow up these
singularities and those infinitely near, starting from r1 ∩ U0.

Blow-up of the triple line r1 ∩ U0

We consider the local blow-ups By1 , Bz2 and Bt3 that we wrote in Section 7.1. If
F8(x, y, z, t) = 0 is the equation of F8 ∩ U0, then the strict (or proper) transform
Fy1

of F8 ∩ U0 with respect to By1
is given by

Fy1
: 1
y3
1
F8(x1, y1, y1z1, y1t1) = a41210x1z1 + a22103x

2
1y1t

3
1 + a10412y

4
1z1t

2
1 + · · · = 0.

Fy1 has the double line x1 = y1 = z1 = 0 on the exceptional divisor y1 = 0,
and outside the exceptional divisor it has the double line x1 = z1 = t1 = 0. This
last double line is the image of s1.

The strict (or proper) transform Fz2 of F8∩U0 with respect to Bz2 is given by

Fz2 : 1
z3
2
F8(x2, y2, y2z2, z2, z2t2) = a41210x2y

2
2 + a21041x2z

2
2t2 + a10322y

3
2z

4
2t

2
2 + · · ·

= 0.
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Fz2 has the double plane y2 = z2 = 0 on the exceptional divisor z2 = 0, and
outside the exceptional divisor it has the double line x2 = y2 = t2 = 0. This
double line is the image of s2.

The strict transform Ft3 of F8∩U0 with respect to Bt3 is given (cf. Section 7.1)
by

Ft3 : 1
t33
F8(x3, y3t3, z3t3, t3) = a41210x3y

2
3 + a22103x

2
3y3t3 + a21041x3z

4
3t

2
3+

a10412y
4
3z3t

4
3 + · · · = 0.

Ft3 has the double plane y3 = t3 = 0 on the exceptional divisor t3 = 0 (cf.
Section 7.1), and outside the exceptional divisor it has the triple line x3 = y3 =
z3 = 0. This triple line is the image of r2.

Blow-up of the double plane y2 = z2 = 0 on Fz2

Locally, the blow-up of y2 = z2 = 0 is given by

By21 :


x2 = x21
y2 = y21
z2 = y21z21
t2 = t21

; Bz22 :


x2 = x22
y2 = y22z22
z2 = z22
t2 = t22

.

The strict transform Fy21
of Fz2 : Fz2(x2, y2, z2, t2) = 0 with respect to the

local blow-up By21
is given by

Fy21
: 1
y2
21
Fz2(x21, y21, y21z21, t21) = a41210x21 + · · · = 0.

Fy21
is nonsingular by Bertini’s theorem.

The strict transform Fz22 of Fz2 : Fz2(x2, y2, z2, t2) = 0 with respect to the
local blow-up Bz22 is given by

Fz22 : 1
z2
22
Fz2(x22, y22z22, z22, t22) = a41210x22y22 + a21041x22t22 + · · · = 0.

Fz22 is nonsingular on the exceptional divisor z22 = 0 and, outside the excep-
tional divisor, Fz22 has the double line x22 = y22 = t22 = 0. This line is the image
of s2 and one point of this line is on the exceptional divisor, but we consider Fz22

nonsingular on the exceptional divisor.

Blow-up of the double plane y3 = t3 = 0 on Ft3

Locally, the blow-up of y3 = t3 = 0 is given by By31
and Bt32 (cf. Section 7.1).

The strict transform Fy31
of Ft3 : Ft3(x3, y3, z3, t3) = 0 with respect to the

local blow-up By31
is given by

Fy31 : 1
y2
31
Ft3(x31, y31, z31, y31t31) = a41210x31z31 + a22103x

2
31t31 + a10412y

6
31z31t

4
31

+ · · · = 0.
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There is the line x31 = y31 = z31 = 0 on the exceptional divisor y31 = 0 and,
outside the exceptional divisor, there is the line x31 = z31 = t31 = 0, which is the
image of s1.

The strict transform Ft32 of Ft3 : Ft3(x3, y3, z3, t3) = 0 with respect to the
local blow-up Bt32 is given by

Ft32 : 1
t232
Fz2(x32, y32t32, z32, t32) = a41210x32y

2
32z32 + a22103x

2
32y32 + a21041x32z

4
32

+a10412y
4
32z32t

6
32 + · · · = 0.

There is the double line x32 = z32 = t32 = 0 on the exceptional divisor t32 = 0
and, outside the exceptional divisor, there is the triple line x32 = y32 = z32 = 0,
which is the image of r2.

Blow-up of the triple line x32 = y32 = z32 = 0 on Ft32

Locally, the blow-up of x32 = y32 = z32 = 0 is given by

Bx321
:


x32 = x321
y32 = x321y321
z32 = x321z321
t32 = t321

; By322
:


x32 = x322y322
y32 = y322
z32 = y322z322
t32 = t322

;

Bz323 :


x32 = x323z323
y32 = y323z323
z32 = z323
t32 = t323

.

The strict transform Fx321
of Ft32 with respect to Bx321

is given by

Fx321
: a22103y321 + · · · = 0 and it is nonsingular.

The strict transform Fy322 of Ft32 is given by

Fy322
: a41210x322y322z322 + a22103x

2
322 + a10412y

2
322z322t

5
322 + · · · = 0.

Fy322
has the double plane x322 = y322 = 0 on the exceptional divisor and the

double line x322 = z322 = t322 = 0 outside.

The strict transform Fz323 of Ft32 is given by

Fz323 : a41210x323y
2
323z323 + a22103x

2
323y323 + a21032x323z323 + a10412y

4
323z

2
323t

6
323+

· · · = 0.

Fz323 has the double plane x323 = z323 = 0 on the exceptional divisor and,
outside, Fz323 is nonsingular.

Blow-up of the double plane x322 = y322 = 0 on Fy322

Locally, the blow-up of x322 = y322 = 0 is given by
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BX1 :


x322 = X1

y322 = X1Y1
z322 = Z1

t322 = T1

; BY1 :


x322 = X2Y2
y322 = Y2
z322 = Z2

t322 = T2

.

The strict transform FX1
of Fy322

with respect to the local blow-up BX1
is

given by

FX1 : a22103 + · · · = 0 and it is nonsingular.

The strict transform FY2
of Fy322

with respect to the local blow-up BY2
is given

by

FY2
: a41210X2Z2 + a22103X

2
2 + a21032X2Z

3
2 + a10412Z2T

6
2 + · · · = 0.

FY2 is nonsingular on the exceptional divisor Y2 = 0 and, outside the excep-
tional divisor FY2 , has the double line X2 = Z2 = T2 = 0.

Blow-up of the double plane x323 = z323 = 0 on Fz323

Locally, the blow-up of x323 = z323 = 0 is given by

BX3 :


x323 = X3

y323 = X3

z323 = X3Z3

t323 = T3

; BZ4
:


x323 = X4Z4

y323 = Y4
z323 = Z4

t323 = T4

.

The strict transform FX3
with respect to the local blow-up BX3

is given by

FX3
: a21032Z3 + · · · = 0 and it is nonsingular.

The strict transform FZ4
with respect to the local blow-up BZ4

is given by

Ft32 : a21032X4 + · · · = 0 and it is nonsingular.

Now we have to blow up the double lines. They are negligible singularities.
There is a finite number of double lines and after them there is an isolated double
point or no other singularities.

All the blow-ups of these double lines are similar and the one that follows is a
significant example.

Blow-up of the double line x31 = y31 = z31 = 0 on Fy31

Locally, the blow-up of x31 = y31 = z31 = 0 is given by

Bx311
:


x31 = x311
y31 = x311y311
z31 = x311z311
t31 = t311

; By312
:


x31 = x312y312
y31 = y312
z31 = y312z312
t31 = t312

;
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Bz313 :


x31 = x313z313
y31 = y313z313
z31 = z313
t31 = t313

.

The strict transform Fx311
with respect to Bx311

is given by

Fx311
: a41210x311 + · · · = 0 and it is nonsingular.

The strict transform Fz313 with respect to Bz313 is given by

Fz313 : a41210z313 + · · · = 0 and it is nonsingular.

Now we need to consider the strict transform Fy312 with respect to By312 , that
is given by

Fy312
: a41210x312z312 + a22103x

2
312t312 + a10412y

5
312z312t

4
312 + · · · = 0.

There is the double line x312 = y312 = z312 = 0 on the exceptional divisor
y312 = 0 and, outside the exceptional divisor, there is the double line x312 =
z312 = t312 = 0.

We note that the exponent of y31 was 6 on Fy31
and became 5 for y312 on

Fy312
, whereas the exponent of x31, z31 and t31 remains fixed. From this remark,

if we consider 5 blow-ups of x∗ = y∗ = z∗ = 0, then the strict transforms with
respect to x∗ and to z∗ are nonsingular and the strict transform with respect to
y∗ is given by
Fy∗ : a41210x∗z∗ + a22103x

2
∗t∗ + a10412z∗t

4
∗ + · · · = 0.

On Fy∗ there is the double line x∗ = z∗ = t∗ = 0. With one blow-up the
exponent of t∗ decreases by 1, and with 4 blow-ups of x∗ = z∗ = t∗ = 0 the 3 strict
transforms are nonsingular.

At this point, we consider the desingularization of F8 ∩ U0 complete and, by
rotating the indices, the desingularization of F8 is completed too.

Canonical and bicanonical adjoints to F8 ←→ pg and P2 of a desingular-
ization X → F8 of F8

Proposition 7.1. The geometric genus of a desingularization of F8 is pg = 0.

Proof. The linear system of canonical adjoints to F8 is given by the cubic forms
F3 passing through the triple line and through the infinitely near double surfaces.
The computations here are similar to those of Section 7.1 for the construction of
F8. In fact, we can write F3 in non-homogeneous coordinates (x, y, z, t) and in
detail

F3 : a30000 +a21000x+a20100y+a2001z+a20001t+a12000x
2 +a11100xy+a11010xz+

a11001xt+a10200y
2+a10110yz+a10101yt+a10020z

2+a10011zt+a10002z
2+a03000x

3+
a02100x

2y + · · · = 0.
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We make the line r1 ∩ U0 : y = z = t = 0 be simple on F3 ∩ U0, considering
the partial blow-up (cf. Section 7.1)

Bt3 :


x = x3
y = y3t3
z = z3t3
t = t3

.

Substituting in the equation F3(x, y, z, t) = 0, we obtain F3(x3, y3t3, z3t3, t3) = 0.
Dividing by t3 and imposing that 1

t3
F3(x3, y3t3, z3t3, t3) be a polynomial, we obtain

the following conditions on the coefficients ai0i1i2i3i4 of F3.

a30000 = a21000 = a12000 = a03000 = 0.

Let us call Ft3(x3, y3, z3, t3) the polynomial 1
t3
F3(x3, y3t3, z3t3, t3), so that the

hypersurface Ft3(x3, y3, z3, t3) = 0 passes through the line y3 = z3 = t3 = 0 with
multiplicity 1.

Next, we want to impose the simple plane π : y3 = t3 = 0 infinitely near on
the simple line y3 = z3 = t3 = 0. We consider (cf. Section 7.1)

Bt32 :


x3 = x32
y3 = y32t32
z3 = z32
t3 = t32

and we substitute in Ft3(x3, y3, z3, t3) = 0. Imposing that 1
t32
Ft3(x32, y32t32, z32, t32)

be a polynomial, we have the following conditions on the coefficients ai1i2i3i4

a20010 = a20001 = a11010 = a11001 = a02010 = a02001 = 0.

The hypersurface 1
t32
Ft1(x32, y32t32, z32, t32) = 0 has the plane of multiplicity

1 that we wanted.
Next, using the rotation of the indices (cf. Section 7.1)

i0i1i2i3i4 7→ i4i0i1i2i3 7→ i3i4i0i1i2 7→ i2i3i4i0i1 7→ i1i2i3i4i0 7→ i0i1i2i3i4,

we make all the coefficients of F3 equate to zero, i.e. there are no canonical adjoints
to F8.

From [11], we therefore have pg = 0.
We remember that we can apply the results of [11] because F8 is normal and

the singular curves and surfaces are locally given by straight lines and planes.

Proposition 7.2. The bigenus of a desingularization of F8 is P2 = 5.

Proof. If we repeat for degree 6 forms what we did for canonical adjoints, but
divide by t23, and then by t232, we obtain the linear system of bicanonical adjoints
to F8 given by
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Φ6 : X0X1X2X3X4(a0X0 + a1X1 + a2X2 + a3X3 + a4X4) = 0, ai ∈ k.

From [11], we obtain P2 = 5.

Corollary 7.3. F8 is a normal bicanonical threefold in P4.

Proof. If X → F8 is a desingularization of F8, then the linear system of bicanonical
adjoints defines the birational transformation τ|F8

: F8 99K P4 that can be identify

with the bicanonical transformation ϕ|2KX | : X 99K P4 (cf. Section 3). This proves
that F8 is a bicanonical threefold in P4. From Section 7.2, we know that F8 is
normal.

7.4 The regularity of a desingularization X → F8

There remains for us to prove that qi(X) = dimkH
i(X,OX) = 0, for i = 1, 2.

Theorem 7.4. X is totally regular, i.e. qi(X) = 0 for i = 1, 2.

Proof. We calculate q2(X) = dimkH
2(X,OX) using the formula (36), Section 4

in [11], which states that:

q2(X) = pg(X) + pg(S)− dimk(W4),

where pg(X) denotes the geometric genus of X, and pg(S) denotes the geometric
genus of a desingularization S of a generic hyperplane section of F8, where W4

is the vector space of the degree 4 forms defining global adjoints Φ4 to F8, i.e.
defining hypersurfaces Φ4 of degree 4 passing through the triple lines and through
the infinitely near double surfaces, with the same multiplicity as the canonical
adjoints to F8.

We note that S ⊂ X is the strict transform, with respect to a desingulariza-
tion σ : X → F8, of a generic hyperplane section of F8 performed by a generic
hyperplane H ⊂ Pd. Since the hyperplane H is generic, the variety S can be
considered nonsingular.

We remember that q1(X) = dimkH
1(X,OX) = q1(S) = dimkH

1(S,OS),
where S is defined above (cf. [11], page 174).

We compute q1(S) by applying the formula (36) (loc. cit.) to S:

q1(S) = pg(S) + pg(S′)− dimk(W5),

where W5 is the vector space of the degree 5 forms defining global adjoints Φ5 ⊂ H
to F8 ∩H, and where S′ ⊂ S is the nonsingular strict transform, with respect to
σ of a generic hyperplane section of F8 ∩ H, performed by a generic hyperplane
H ′ ⊂ H.

The singularities of F8 ∩ H are given by isolated triple points that have an
infinitely near double line and negligible double points. The triple points are given
by the intersection of the actual triple lines on F8 with the hyperplane H. To see
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that F8∩H has these singularities, it is convenient to assume, with a linear change
of coordinates, that H is a coordinate hyperplane, e.g. H = {X0 = 0}. F8 ∩ H
thus has homogeneous coordinates (X1, X2, X3, X4), and the lines on F8 given by
Xi1 = Xi2 = Xi3 = 0, ij > 0 become points, while the planes Xi1 = Xi2 = 0,
ij > 0 become lines.

Lemma 7.5. q1(X) = q1(S) = 0.

Proof. We have to calculate pg(S), which appears in the above formula for cal-
culating q1(S). The geometric genus pg(S) of S is given by the dimension of the
vector space of the forms defining canonical adjoints to F8 ∩H in the hyperplane
H. These canonical adjoints are hypersurfaces of degree 4 in H passing through
the triple points and through the infinitely near double lines.

To ascertain the canonical adjoints to F8∩H of degree 4 in H, it is coveninient
(as before) to consider a linear change of coordinates that change H into a coordi-
nate hyperplane, e.g. H = {X0 = 0}, so that F8∩H has homogeneous coordinates
(X1, X2, X3, X4).

Let us consider the triple line X1 = X2 = X3 = 0 on F8. The intersection of
this line with X0 = 0 is given by the point X0 = X1 = X2 = X3 = X4 = 0.

We can assume that in X0 = 0 the forms of degree 4 are given by

{F4(X0, X1, X2, X3, X4)} ∩ {X0 = 0} = F4(0, X1, X2, X3, X4),

where F4(X0, X1, X2, X3, X4) = 0 is a threefold in P4. This enables us to apply
the rotation of the indices to the coefficients of F4(0, X1, X2, X3, X4), which are
given by a0,i1,i2,i3,i4 . In detail, the equation is given by
F4 ∩ {X0 = 0} : a04000X

4
1 + a03100X

3
1X2 + a03010X

3
1X3 + · · · + a01003X1X

3
4 +

a00103X2X
3
4 + a00013X3X

3
4 + a00004X

4
4 = 0.

Let us consider the affine coordinates x = X1/X4, y = X2/X4, z = X3/X4.
The affine equation of F4 ∩ {X0 = 0} is given by
F4∩{X0 = 0}: a04000x4+a03100x

3y+a03010x
3z+ · · ·+a01003x+a00103y+a00013z+

a00004 = 0.

As in the case of the canonical adjoint to F8, here we blow up the origin
x = y = z = 0 and the infinitely near double line with

Bt1 :

 x = x1
y = x1y1
z = x1z1

and

Bt11 :

 x1 = x11
y1 = x11y11
z1 = z11

.

By imposing that 1
x1

(F4 ∩ {X0 = 0})(x1, x1y1, x1z1) be a polynomial, we obtain
a00004 = 0.
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By imposing that 1
x11

(F4 ∩ {X0 = 0})(x11, x11y11, z11) be a polynomial, we
obtain a01003 = a00013 = 0. In conclusion, we kill 3 coefficients of F4.

Applying the rotation of the indices, we want to prove that 15 coefficients of
F4 remain killed. In fact, if we consider a01003 = a00013 = a00004 = 0 and apply
the rotation of the indices, it is easy to see that we obtain 15 distinct coefficients
to be killed.

After killing the 15 coefficients, 35− 15 = 20 distint coefficients remain in F4,
i.e. pg(S) = 20.

We remember that, here again, we can conditions on the forms of degree 4,
either by starting to pass through the actual triple lines and the infinitely near
double surfaces (cf. Section 7.1), or by following the desingularization of F8 (cf.
Section 7.3). The end result remains the same.

In the formula q1(X) = q1(S) = pg(S) + pg(S′)− dimk(W5), we still need to
compute dimk(W5) and pg(S′). Using the same procedure as we used to compute
pg(S), for W5 we obtain dimk(W5) = 56− 15 = 41. In other words, for a degree 5
form in W5, we have
F5∩{X0 = 0} : a05000x

5+a04100x
4y+a04010x

4z+· · ·+a01004x+a00104y+a00014z+
a00005 = 0
and similarly we obtain a01004 = a00014 = a00005 = 0.

Finally, the intersection of F8 with H ′ is a nonsingular plane curve of degree
8, threfore pg(S′) = 21 and

q1(X) = q1(S) = pg(S) + pg(S′)− dimk(W5) = q1(X) = 20 + 21− 41 = 0.

Lemma 7.6. q2(X) = 0.

Proof. In the proof of Lemma 7.5, we computed pg(S) = 20. In Section 7.3, we
computed pg = pg(X) = 0.

In the proof of Proposition 7.1, we showed that a cubic form passes through
a triple line on F8, and through the infinitely near double surface if 10 coefficients
equate to zero. When we repeat the same procedure for the form F4 of degree 4,
we find that 13 coefficients equate to zero. Let us find these 13 coefficients.

The equation of the degree 4 hypersurface in affine coordinates (x, y, z, t) is

F4 : a40000 +a31000x+a30100y+a30010z+a30001t+a22000x
2 +a21100xy+a21010xz+

a21001xt+a20200y
2+a20110yz+a20101yt+a20020z

2+a20011zt+a20002z
2+a13000x

3+
a12100x

2y + · · · = 0.

Proceeding as in the proof of Proposition 7.1, here we find that the 13 coffi-
cients to be killed are given by

a40000 = a31000 = a30010 = a30001 = a22000 = a21010 = a13001 = a21001 = a12010 =
a12001 = a04000 = a03010 = a03001 = 0.
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Now, we apply the rotation of the indices. Unlike the case of the proof of
Lemma 7.5, here we find that 15 coefficients are repeated. We note that this
happened in the case of the cubic forms too (cf. the proof that pg = 0 in Propo-
sition 7.1.

The remaining distinct coefficients in F4 are 70 − 13 · 5 + 15 = 20. We have
thus proved that dimk(W4) = 20 and

q2(X) = pg(X) + pg(S)− dimk(W4) = 0 + 20− 20 = 0.

This proves Lemma 7.6 and the Theorem 7.4.

References

[1] E. Bombieri: Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1973),
171-219.

[2] I. Dolgachev: Algebraic surfaces with q = pg = 0, Algebraic Surfaces, C.I.M.E., Cortona-
Varenna 1977, Liguori ed., Napoli (1981), 97-215.

[3] F. Enriques: Le Superficie Algebriche, Bologna, N. Zanichelli (1949).
[4] F. Enriques - L. Campedelli: Lezioni sulla teoria delle superficie algebriche, Cedam, Padova

(1932).
[5] L. Godeaux: Sur une variété algébrique à trois dimensions à sections hyperplanes bicanon-
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Stradella S. Nicola, 3, 36100 Vicenza - Italy.

ezio.stagnaro@unipd.it


	Introduction
	m-canonical hypersurfaces in Pd
	A construction of a bicanonical threefold in P4, which coincides with Godeaux threefold
	A second construction of the above bicanonical threefold in P4
	A first construction of a tricanonical threefold in P4
	A normal tricanonical threefold in P4
	A normal bicanonical threefold in P4
	The construction of the threefold
	Normality of F8
	Desingularization of F8
	The regularity of a desingularization X F8


