Normal bicanonical and tricanonical threefolds

Ezio Stagnaro

Abstract

The first author to construct a non-normal bicanonical threefold in \mathbb{P}^{4} was L. Godeaux in 1936 [5]. This threefold has degree 8. In the first part of the present paper, starting from a normal threefold of general type where $q_{1}=q_{2}=p_{g}=0, P_{2}=P_{3}=5$, of degree 6 (cf. [11]), we construct Godeaux's example and two examples of tricanonical threefolds in \mathbb{P}^{4}. One of the tricanonical threefolds is normal. In the second part of the paper, we construct (starting from the beginning) a normal bicanonical threefold of degree 8 that has the birational invariants given by $q_{1}=q_{2}=p_{g}=0$ and $P_{2}=5$. No other examples of bicanonical and tricanonical threefolds in \mathbb{P}^{4} are known.

Sunto. Il primo autore che ha costruito un'ipersuperficie bicanonica non normale in \mathbb{P}^{4} è stato L. Godeaux nel 1936 [5]. Tale ipersuperficie ha ordine 8. Nella prima parte del presente lavoro, partendo da una varietà tridimensionale, normale e di tipo generale avente $q_{1}=q_{2}=p_{g}=$ $0, P_{2}=P_{3}=5$, di ordine 6 (cfr. [11]), si costruisce l'esempio di Godeaux e due esempi di ipersuperficie tridimensionali tricanoniche in \mathbb{P}^{4}. Una delle ipersuperficie tricanoniche è normale. Nella seconda parte del lavoro si costruisce, partendo dall'inizio, una varietà tridimensionale, normale e bicanonica, di ordine 8 avente gli invarianti birazionali $q_{1}=q_{2}=p_{g}=0$ e $P_{2}=5$. Non si conoscono altri esempi di ipersuperficie bicanoniche e tricanoniche in \mathbb{P}^{4}.

1 Introduction

In a previous work [12], we constructed normal canonical hypersurfaces in the projective space \mathbb{P}^{d} for any $d \geq 4$, following an introduction with a concise historical note on canonical surfaces in \mathbb{P}^{3}. This historical note began with some considerations on Chapter VIII of Enriques's book "Le superficie algebriche" (cf. [3] and also [4, Ch. V]); the English translation of the chapters title is: Regular canonical and pluricanonical surfaces.

While there is an abundance of literature on canonical surfaces in \mathbb{P}^{3}, we have found few works on pluricanonical (bicanonical and tricanonical) surfaces in \mathbb{P}^{3}. In truth, numerous publications concern studies on either the birationality or the non-birationality of the bicanonical (or tricanonical) transformation (improperly called a map) of a surface of general type, whereas bicanonical (or tricanonical) surfaces in \mathbb{P}^{3} require not only that the bicanonical (or tricanonical) transformation

[^0]be birational, but also that the bigenus $P_{2}=4$ (or the trigenus $P_{3}=4$) (see the properties due to the definition that we have adopted in Section 2 below).

In his book, Ch. VIII, Sections 14-21, Enriques provides the first published explanation for the theory of bicanonical and tricanonical surfaces as images of the bicanonical and tricanonical transformations. He also provides a detailed account of how to construct the first tricanonical surface in \mathbb{P}^{3} starting from a double plane with a branch curve of degree 10 having five [3,3] points and one ordinary 4-ple point that are not on a conic. Unfortunately, Enriques considers the Campedelli construction, which is incorrect (cf. [1, 2]). So, although we cannot accept Enriques's statement proving that the tricanonical transformation of a desingularization of the Campedelli double plane is birational having as its image a tricanonical surface in \mathbb{P}^{3} (cf. [3, pp. 308-309]), it is important to bear in mind that - after Campedelli - many curves of degree 10 were constructed with five [3,3] points and one ordinary 4 -ple point, that are not on a conic (cf. [2, 8, 10, 13]). The double planes, having the above curves of degree 10 as a branch locus, are called numerical Godeaux surfaces. We now know that any numerical Godeaux surface has $P_{3}=4$ and a birational tricanonical transformation (cf. [7]). In short, we consider Enriques's "justifications of the claim" (in his own words: "giustificazioni dell'asserto") as the first incredible intuition of the result, even though they were not correct.

Concerning surfaces, it has to be said that m-canonical surfaces in \mathbb{P}^{3} do not exist for $m>3$. This follows from the m-genus of a minimal model surface of general type: $P_{m}=\frac{m(m-1)}{2}\left(K^{2}\right)+1-q+p_{g}$, where $q \leq p_{g}$ (cf. [1, 2]). We do not know whether m-canonical hypersurfaces in $\mathbb{P}^{d}, d \geq 4$, exist for $m>3$.

We note explicitly that the canonical (or bicanonical, or tricanonical) transformations that Enriques considers can be generically $n: 1$; if they are birational, i.e. generically $1: 1$, and Enriques uses the adjective "simple" [Italian: semplice] to describe this situation, calling each of the above surfaces "simple canonical (or simple bicanonical, or simple tricanonical)" surfaces. In the present paper we omit this adjective, however.

We do not know of any bicanonical (or tricanonical) surfaces in \mathbb{P}^{3} that are normal, i.e. nonsingular in codimension 1 . This naturally prompts us to seek any bicanonical, or tricanonical hypersurfaces that are normal in \mathbb{P}^{d} for $d \geq 4$, as we did in the case of normal canonical hypersurfaces in $\mathbb{P}^{d}, d \geq 4$ [12]. A good tool for this investigation is the theory of pluricanonical adjoints to normal hypersurfaces, which allows us to compute the pluricanonical transformations of their desingularizations without further ado. Said theory is revisited and developed in [11], based on the assumption of normality for the hypersurfaces in \mathbb{P}^{d}, and also assuming that the singularities are locally given by straight lines and planes.

As a first approach to the problem, we consider threefolds, i.e. $d=4$, because we know of examples that attract our attention as the most natural examples of bicanonical and tricanonical threefolds in \mathbb{P}^{4}, even if they were constructed
in a different context. In addition, there is Godeaux's example of a bicanonical threefold and we find the same equation of that threefold. It is worth adding that Godeaux's paper [5] is quite difficult to find: it never seems to be quoted, and we initially only chanced upon a review of it in Zentralblatt.

The equations of these threefolds $V \subset \mathbb{P}^{4}$ are given by a large number of monomials and we have to write them all because, for our purposes, we need to kill five coefficients (Cf. Remark 4.1, Section 4 and Remark 6.1, Section 6). The equations of the linear systems given by bicanonical and tricanonical adjoints to V are very straightforward, however. Since the rational transformations associated with these linear systems can be identified with the bicanonical and tricanonical transformations $\varphi_{\left|2 K_{X}\right|}$ and $\varphi_{\left|3 K_{X}\right|}$ of a desingularization $X \rightarrow V$, we have very simple equations of the bicanonical and tricanonical images of X and we can easily check whether they are normal or not. The search for the normal images is the main purpose of the present paper.

In the first part of the paper we present bicanonical and tricanonical threefolds in \mathbb{P}^{4}. One of the tricanonical threefolds is normal. All these facts are deduced from previous papers, one by the present author [11], and one by M.C. Ronconi [9].

In the second part of the paper (Section 7), we construct a normal bicanonical threefold $V \subset \mathbb{P}^{4}$ of degree 8 , starting right from the beginning.

The irregularities $q_{i}(X)=\operatorname{dim}_{\mathbf{k}} H^{i}\left(X, \mathcal{O}_{X}\right)$, for $i=1,2$, of a desingularization $X \rightarrow V$ are also taken into consideration, and we show that X is totally regular, i.e. $q_{i}(X)=0$ for $i=1,2$.

These threefolds have no analogous surfaces.
We tried without success to generalize the constructions of the above-mentioned threefolds in a higher dimension. This is probably due to the many ad hoc properties of threefolds that other varieties of different dimensions do not have. The fact that we find the same equation as Godeaux's threefold also confirms these ad hoc properties.

The varieties that we present are defined over the ground field \mathbf{k}, which is an algebraically closed field of characteristic zero, that we can assume to be the field of complex numbers.

2 -canonical hypersurfaces in \mathbb{P}^{d}

Here, we report the definition of an m-canonical hypersurface V in the projective space \mathbb{P}^{d}, according to the definition used nowadays.

A degree $n \geq d+2$ algebraic hypersurface $V \subset \mathbb{P}^{d}, d \geq 2$, is called m-canonical if the linear system of the m-canonical adjoints in \mathbb{P}^{d} to V (cf., for example, [11]) is given by degree $m(n-(d+1)$) hypersurfaces of the type $\bar{\Phi}+H$, where $\bar{\Phi}$ is a fixed hypersurface of degree $m(n-(d+1))-1$ in \mathbb{P}^{d} and H is the complete linear
system of the hyperplanes in \mathbb{P}^{d}.
1 -canonical $=$ canonical; 2 -canonical $=$ bicanonical; 3 -canonical $=$ tricanonical.
The above definition can be reformulated as follows (loc. cit.). Let $\sigma: X \rightarrow V$ be a sequence of blow-ups resolving the singularities of $V \subset \mathbb{P}^{d}$. The hypersurface $V \subset \mathbb{P}^{d}$ is called m-canonical if the (complete) m-canonical system $\left|m K_{X}\right|$ on X is given by $\left|m K_{X}\right|=|M|+F$, where $|M|$ is the moving part of $\left|m K_{X}\right|, F$ the fixed part of $\left|m K_{X}\right|$, and the moving part $|M|$ of $\left|m K_{X}\right|$ is cut out by the pull-back, with respect to σ, of the linear system of the hyperplane sections on V.

Based on this definition, from the normality of the hypersurfaces, the m-genus of X is consequently $P_{m}(X)=P_{m}=d+1$ and the m-canonical transformation $\varphi_{\left|m K_{X}\right|}: X \xrightarrow{ } \mathbb{P}^{P_{m}-1}=\mathbb{P}^{d}$ is birational (to its image). In particular, X is a ($d-1$)-dimensional variety of general type.

In the case where V is a (hyper)surface in \mathbb{P}^{3}, cf. [3, Ch. VIII] and also [4, Ch. V].

One way to construct m-canonical hypersurfaces in \mathbb{P}^{d} indirectly is to consider a nonsingular variety Y of dimension $d-1$ such that the m-genus of Y is $P_{m}=d+1$ and the canonical transformation $\varphi_{\left|m K_{Y}\right|}: Y \rightarrow \mathbb{P}^{P_{m}-1}=\mathbb{P}^{d}$ is birational (to its image). The image $\varphi_{\left|m K_{Y}\right|}(Y)$ of Y under $\varphi_{\left|m K_{Y}\right|}$ is thus an m-canonical hypersurface in \mathbb{P}^{d}.

The normality and non-normality of m-canonical hypersurfaces in \mathbb{P}^{d} are taken into special consideration, bearing in mind that the normality is not a birational invariant. (Cf. [11] for historical notes on the normality of m-canonical surfaces.)

3 A construction of a bicanonical threefold in \mathbb{P}^{4}, which coincides with Godeaux threefold

In [11], we constructed the following threefold V_{1} in \mathbb{P}^{4}, of homogeneous coordinates $X_{0}, X_{1}, X_{2}, X_{3}, X_{4}$. The equation of V_{1} is given by

```
\(V_{1}: X_{0}^{3}\left(a_{33000} X_{1}^{3}+a_{32100} X_{1}^{2} X_{2}+a_{31200} X_{1} X_{2}^{2}+a_{30300} X_{2}^{3}\right)+\)
\(X_{1}^{3}\left(\quad a_{23010} X_{0}^{2} X_{3}+a_{13020} X_{0} X_{3}^{2}+a_{03030} X_{3}^{3}\right)+\)
\(X_{2}^{3}\left(\quad a_{20301} X_{0}^{2} X_{4}+a_{10302} X_{0} X_{4}^{2}+a_{00303} X_{4}^{3}\right)+\)
\(X_{3}^{3}\left(\quad a_{02031} X_{1}^{2} X_{4}+a_{01032} X_{1} X_{4}^{2}+a_{00033} X_{4}^{3}\right)+\)
\(X_{4}^{3}\left(\quad a_{00213} X_{2}^{2} X_{3}+a_{00123} X_{2} X_{3}^{2}\right)+\)
\(a_{22200} X_{0}^{2} X_{1}^{2} X_{2}^{2}+a_{22110} X_{0}^{2} X_{1}^{2} X_{2} X_{3}+a_{22101} X_{0}^{2} X_{1}^{2} X_{2} X_{4}+\)
\(a_{22020} X_{0}^{2} X_{1}^{2} X_{3}^{2}+a_{22011} X_{0}^{2} X_{1}^{2} X_{3} X_{4}+a_{21210} X_{0}^{2} X_{1} X_{2}^{2} X_{3}+\)
\(a_{21201} X_{0}^{2} X_{1} X_{2}^{2} X_{4}+a_{21111} X_{0}^{2} X_{1} X_{2} X_{3} X_{4}+a_{20211} X_{0}^{2} X_{2}^{2} X_{3} X_{4}+\)
\(a_{20202} X_{0}^{2} X_{2}^{2} X_{4}^{2}+a_{12120} X_{0} X_{1}^{2} X_{2} X_{3}^{2}+a_{12111} X_{0} X_{1}^{2} X_{2} X_{3} X_{4}+\)
\(a_{12021} X_{0} X_{1}^{2} X_{3}^{2} X_{4}+a_{11211} X_{0} X_{1} X_{2}^{2} X_{3} X_{4}+a_{11202} X_{0} X_{1} X_{2}^{2} X_{4}^{2}+\)
\(a_{11121} X_{0} X_{1} X_{2} X_{3}^{2} X_{4}+a_{11112} X_{0} X_{1} X_{2} X_{3} X_{4}^{2}+a_{11022} X_{0} X_{1} X_{3}^{2} X_{4}^{2}+\)
\(a_{10212} X_{0} X_{2}^{2} X_{3} X_{4}^{2}+a_{10122} X_{0} X_{2} X_{3}^{2} X_{4}^{2}+a_{02121} X_{1}^{2} X_{2} X_{3}^{2} X_{4}+\)
```

$$
\begin{aligned}
& a_{02022} X_{1}^{2} X_{3}^{2} X_{4}^{2}+a_{01212} X_{1} X_{2}^{2} X_{3} X_{4}^{2}+a_{01122} X_{1} X_{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{00222} X_{2}^{2} X_{3}^{2} X_{4}^{2}=0, \quad a_{i j k l m} \in \mathbf{k}
\end{aligned}
$$

Our threefold V_{1} is the generic element of the above linear system of threefolds. The singularities of V_{1} are given by five triple points having an infinitely near triple curve, locally isomorphic to a straight line, and other negligible singularities, i.e. singularities that do not affect the birational invariants. In particular, V_{1} is normal.

If $\varphi: X \rightarrow V_{1}$ denotes a resolution of the singularities of V_{1}, then the birational invariants of X are given by $q_{1}=q_{2}=0$, i.e. the two irregularities of X vanish; the first three plurigenera are given by: $p_{g}=0$ and $P_{2}=P_{3}=5$.

More precisely, the linear system of bicanonical adjoints to V_{1} is given by:

$$
\Phi_{2}: a_{11000} X_{0} X_{1}+a_{10100} X_{0} X_{2}+a_{01010} X_{1} X_{3}+a_{00101} X_{2} X_{4}+a_{00011} X_{3} X_{4}=0
$$

This linear system defines the rational transformation $\tau_{1}: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$ with its inverse.

$$
\tau_{1}:\left\{\begin{array}{l}
Y_{0}=\rho X_{0} X_{1} \\
Y_{1}=\rho X_{0} X_{2} \\
Y_{2}=\rho X_{1} X_{3} \\
Y_{3}=\rho X_{2} X_{4} \\
Y_{4}=\rho X_{3} X_{4}
\end{array}, \rho \in \mathbf{k}, \rho \neq 0 ; \tau_{1}^{-1}:\left\{\begin{array}{l}
X_{0}=\rho^{*} Y_{0} Y_{1} Y_{4} \\
X_{1}=\rho^{*} Y_{0} Y_{2} Y_{3} \\
X_{2}=\rho^{*} Y_{1} Y_{2} Y_{3} \\
X_{3}=\rho^{*} Y_{1} Y_{2} Y_{4} \\
X_{4}=\rho^{*} Y_{0} Y_{3} Y_{4}
\end{array}, \rho^{*} \in \mathbf{k}, \rho^{*} \neq 0\right.\right.
$$

In particular, we make the restriction $\tau_{\left.1\right|_{V_{1}}}$ of τ_{1} to V_{1} birational. There is a Zariski's open set $U \subset X$ and a Zariski's open set $U_{1} \subset V_{1}$, that are isomorphic. By identifying U and U_{1}, we enable $\tau_{\left.1\right|_{V_{1}}}$ and the bicanonical transformation $\varphi_{\left|2 K_{X}\right|}$: $X \rightarrow \mathbb{P}^{4}$ to be identified (as rational transformations). These results essentially follow from the commutativity of the following triangle

All the above facts are contained in [11], to which the interested reader may refer.
Using the terminology introduced in the present paper, identifying $\varphi_{\left|2 K_{X}\right|}$ with $\tau_{\left.1\right|_{V_{1}}}$, we can say that the image of V_{1} under τ_{1} is a bicanonical threefold in $\mathbb{P}^{4} . \tau_{1}$ is birational on \mathbb{P}^{4}, so it is easy to find the equation of $\tau_{1}\left(V_{1}\right)$ by substituting $X_{0}=\rho^{*} Y_{0} Y_{1} Y_{4} ; X_{1}=\rho^{*} Y_{0} Y_{2} Y_{3} ; X_{2}=\rho^{*} Y_{1} Y_{2} Y_{3} ; X_{3}=\rho^{*} Y_{1} Y_{2} Y_{4} ; X_{4}=$ $\rho^{*} Y_{0} Y_{3} Y_{4}$ in the equation of V_{1}.

We obtain
$\tau_{1}\left(V_{1}\right):$
$a_{33000} Y_{0}^{4} Y_{1} Y_{2} Y_{3} Y_{4}+a_{32100} Y_{0}^{3} Y_{1}^{2} Y_{2} Y_{3} Y_{4}+a_{31200} Y_{0}^{2} Y_{1}^{3} Y_{2} Y_{3} Y_{4}+a_{30300} Y_{0} Y_{1}^{4} Y_{2} Y_{3} Y_{4}+$ $a_{23010} Y_{0}^{3} Y_{1} Y_{2}^{2} Y_{3} Y_{4}+a_{13020} Y_{0}^{2} Y_{1} Y_{2}^{3} Y_{3} Y_{4}+a_{03030} Y_{0} Y_{1} Y_{2}^{4} Y_{3} Y_{4}+a_{20301} Y_{0} Y_{1}^{3} Y_{2} Y_{3}^{2} Y_{4}+$ $a_{10302} Y_{0} Y_{1}^{2} Y_{2} Y_{3}^{3} Y_{4}+a_{00303} Y_{0} Y_{1} Y_{2} Y_{3}^{4} Y_{4}+a_{02031} Y_{0} Y_{1} Y_{2}^{3} Y_{3} Y_{4}^{2}+a_{01032} Y_{0} Y_{1} Y_{2}^{2} Y_{3} Y_{4}^{3}+$ $a_{00033} Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}^{4}+a_{00213} Y_{0} Y_{1} Y_{2} Y_{3}^{3} Y_{4}^{2}+a_{00123} Y_{0} Y_{1} Y_{2} Y_{3}^{2} Y_{4}^{3}+a_{22200} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2}+$ $a_{22110} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3} Y_{4}+a_{22101} Y_{0}^{3} Y_{1} Y_{2} Y_{3}^{2} Y_{4}+a_{22020} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{4}^{2}+a_{22011} Y_{0}^{3} Y_{1} Y_{2} Y_{3} Y_{4}^{2}+$ $a_{21210} Y_{0} Y_{1}^{3} Y_{2}^{2} Y_{3} Y_{4}+a_{21201} Y_{0}^{2} Y_{1}^{2} Y_{2} Y_{3}^{2} Y_{4}+a_{21111} Y_{0}^{2} Y_{1}^{2} Y_{2} Y_{3} Y_{4}^{2}+a_{20211} Y_{0} Y_{1}^{3} Y_{2} Y_{3} Y_{4}^{2}+$ $a_{20202} Y_{0}^{2} Y_{1}^{2} Y_{3}^{2} Y_{4}^{2}+a_{12120} Y_{0} Y_{1}^{2} Y_{2}^{3} Y_{3} Y_{4}+a_{12111} Y_{0}^{2} Y_{1} Y_{2}^{2} Y_{3}^{2} Y_{4}+a_{12021} Y_{0}^{2} Y_{1} Y_{2}^{2} Y_{3} Y_{4}^{2}+$ $a_{11211} Y_{0} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}+a_{11202} Y_{0}^{2} Y_{1} Y_{2} Y_{3}^{3} Y_{4}+a_{11121} Y_{0} Y_{1}^{2} Y_{2}^{2} Y_{3} Y_{4}^{2}+a_{11112} Y_{0}^{2} Y_{1} Y_{2} Y_{3}^{2} Y_{4}^{2}+$ $a_{11022} Y_{0}^{2} Y_{1} Y_{2} Y_{3} Y_{4}^{3}+a_{10212} Y_{0} Y_{1}^{2} Y_{2} Y_{3}^{2} Y_{4}^{2}+a_{10122} Y_{0} Y_{1}^{2} Y_{2} Y_{3} Y_{4}^{3}+a_{02121} Y_{0} Y_{1} Y_{2}^{3} Y_{3}^{2} Y_{4}+$ $a_{02022} Y_{0}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}+a_{01212} Y_{0} Y_{1} Y_{2}^{2} Y_{3}^{3} Y_{4}+a_{01122} Y_{0} Y_{1} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}+a_{00222} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}=0$.

The threefold $\tau_{1}\left(V_{1}\right)$ has degree 8 and its desingularization has the same birational invariants $q_{1}=q_{2}=p_{g}=0, P_{2}=P_{3}=5$ as a desingularization of V_{1}. We note that $\tau_{1}\left(V_{1}\right)$ is not normal because it has the coordinate planes $\left\{\begin{array}{l}Y_{i}=0 \\ Y_{j}=0\end{array}\right.$ of the fundamental pentahedron as singular planes of multiplicity 2 . It also has the coordinate edges $\left\{\begin{array}{l}Y_{i}=0 \\ Y_{j}=0 \\ Y_{k}=0\end{array}\right.$ of the fundamental pentahedron as singular lines of multiplicity 3 , and it has the vertices of the fundamental pentahedron as singular points of multiplicity 4 .

Remark 3.1. The equation given by Godeaux can be written in another way

$$
\begin{gathered}
f_{2}\left(x_{1} x_{2} x_{3} x_{4}, x_{2} x_{3} x_{4} x_{0}, x_{3} x_{4} x_{0} x_{1}, x_{4} x_{0} x_{1} x_{2}, x_{0} x_{1} x_{2} x_{3}\right)+ \\
\quad+x_{0} x_{1} x_{2} x_{3} x_{4} \varphi_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
\end{gathered}
$$

where f_{2} and φ_{3} are algebraic forms in five variables.
Although this goes beyond the scope of our bicanonical and tricanonical threefolds, it is worth noting that, as well as being a desingularization of $\tau_{1}\left(V_{1}\right)$, a desingularization of Godeauxs threefold has $q_{1}=q_{2}=p_{g}=0, P_{2}=P_{3}=5$. So Godeaux was also the first to find a regular nonsingular threefold with $p_{g}=0$ and $P_{2} \neq 0$; cf. Introduction in [9], which contains a brief bibliography on this subject.

Since τ_{1} is defined by the linear system of bicanonical adjoints to V_{1}, we know that the linear system of the bicanonical adjoints to $\tau_{1}\left(V_{1}\right)$ is given by a fixed part, multiplied by a moving part given by $a_{11000} Y_{0}+a_{10100} Y_{1}+a_{01010} Y_{2}+a_{00101} Y_{3}+$ $a_{00011} Y_{4}=0$.

More precisely, the fixed part is given by $Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}=0$, and the linear system of bicanonical adjoints to $\tau_{1}\left(V_{1}\right)$ is given by:

$$
Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}\left(a_{11000} Y_{0}+a_{10100} Y_{1}+a_{01010} Y_{2}+a_{00101} Y_{3}+a_{00011} Y_{4}\right)=0
$$

In fact, they have degree 6 and $Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}=0$ passes through the double singular coordinate planes on $\tau_{1}\left(V_{1}\right)$ with the correct multiplicity ≥ 2. These bicanonical adjoints also pass through the coordinate edges and through the vertices of the fundamental pentahedron with the correct multiplicities.

All the above facts concerning $\tau_{1}\left(V_{1}\right)$ follow from [11] and from the normality of V_{1}, even though $\tau_{1}\left(V_{1}\right)$ is not normal.

Note that, if F is any hypersurface in \mathbb{P}^{4} and we do not remove any fixed components potentially appearing in $\tau_{1}(F)$, then we define a new rational transformation, that we denote $\tau_{1}^{*}: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$. If we call the image $\tau_{1}^{*}(F)$ a total transform, then the total transform $\tau_{1}^{*}\left(\Phi_{2}\right)$ is just the linear system of bicanonical adjoints to $\tau_{1}\left(V_{1}\right)$, i.e. $\tau_{1}^{*}\left(\Phi_{2}\right): Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}\left(a_{11000} Y_{0}+a_{10100} Y_{1}+a_{01010} Y_{2}+\right.$ $\left.a_{00101} Y_{3}+a_{00011} Y_{4}\right)=0$.

Moreover, the total transform $\tau_{1}^{*}\left(V_{1}\right)$ is given by $Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2} \tau_{1}\left(V_{1}\right)$.
$\tau_{1}\left(V_{1}\right)$ can also be found in [9], $\S 9$, which states that, with a birational transformation, our V_{1} is obtained from $\tau_{1}\left(V_{1}\right)$. If we replace X_{0} with X_{5} and X_{1} with X_{3}, then the birational transformation given in [9] is τ_{1}^{-1}.

4 A second construction of the above bicanonical threefold in \mathbb{P}^{4}

In $[9, \S 3]$, Ronconi presented a threefold in \mathbb{P}^{4} denoted by V^{\prime}, that we call V_{2} here, the desingularization of which has the birational invariants $q_{1}=q_{2}=p_{g}=0$ and $P_{2}=P_{3}=5$: it is a degree seven hypersurface in \mathbb{P}^{4} having triple lines at each of the edges of the fundamental pentahedron.

The linear system of all the hypersurfaces of this type depends on 35 parameters and the equation of V_{2} is

$$
\begin{aligned}
V_{2}: & a_{31111} X_{0}^{3} X_{1} X_{2} X_{3} X_{4}+a_{13111} X_{0} X_{1}^{3} X_{2} X_{3} X_{4}+a_{11311} X_{0} X_{1} X_{2}^{3} X_{3} X_{4}+ \\
& a_{11131} X_{0} X_{1} X_{2} X_{3}^{3} X_{4}+a_{11113} X_{0} X_{1} X_{2} X_{3} X_{4}^{3}+a_{22210} X_{0}^{2} X_{1}^{2} X_{2}^{2} X_{3}+a_{22201} X_{0}^{2} X_{1}^{2} X_{2}^{2} X_{4}+ \\
& a_{22120} X_{0}^{2} X_{1}^{2} X_{2} X_{3}^{2}+a_{22111} X_{0}^{2} X_{1}^{2} X_{2} X_{3} X_{4}+a_{22102} X_{0}^{2} X_{1}^{2} X_{2} X_{4}^{2}+a_{22021} X_{0}^{2} X_{1}^{2} X_{3}^{2} X_{4}+ \\
& a_{22012} X_{0}^{2} X_{1}^{2} X_{3} X_{4}^{2}+a_{21220} X_{0}^{2} X_{1} X_{2}^{2} X_{3}^{2}+a_{21211}^{2} X_{0}^{2} X_{2}^{2} X_{3} X_{4}+a_{21202} X_{0}^{2} X_{1} X_{2}^{2} X_{4}^{2}+ \\
& a_{21121} X_{0}^{2} X_{1} X_{2} X_{3}^{2} X_{4}+a_{21112} X_{0}^{2} X_{1} X_{2} X_{3} X_{4}^{2}+a_{21022} X_{0}^{2} X_{1} X_{3}^{2} X_{4}^{2}+a_{20221} X_{0}^{2} X_{2}^{2} X_{3}^{2} X_{4}+ \\
& a_{20212} X_{0}^{2} X_{2}^{2} X_{3} X_{4}^{2}+a_{20122} X_{0}^{2} X_{2} X_{3}^{2} X_{4}^{2}+a_{12220} X_{0} X_{1}^{2} X_{2}^{2} X_{3}^{2}+a_{12211} X_{0} X_{1}^{2} X_{2}^{2} X_{3} X_{4}+ \\
& a_{12202} X_{0} X_{1}^{2} X_{2}^{2} X_{4}^{2}+a_{12121} X_{0} X_{1}^{2} X_{2} X_{3}^{2} X_{4}+a_{12112} X_{0} X_{1}^{2} X_{2} X_{3} X_{4}^{2}+a_{12022} X_{0} X_{1}^{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{11221} X_{0} X_{1} X_{2}^{2} X_{3}^{2} X_{4}+a_{11212} X_{0} X_{1} X_{2}^{2} X_{3} X_{4}^{2}+a_{11122} X_{0} X_{1} X_{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{10222} X_{0} X_{2}^{2} X_{3}^{2} X_{4}^{2}+a_{0221} X_{1}^{2} X_{2}^{2} X_{3}^{2} X_{4}+a_{02212} X_{1}^{2} X_{2}^{2} X_{3} X_{4}^{2}+a_{02122} X_{1}^{2} X_{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{01222} X_{1} X_{2}^{2} X_{3}^{2} X_{4}^{2}=0, \quad a_{i j k l m} \in \mathbf{k} .
\end{aligned}
$$

To tell the truth, Ronconi wrote the equation with only 25 parameters, eliminating 10 monomials that were not essential for her purposes.

As shown in [9] the actual singularities on V_{2} are only given by the coordinate
edges $\left\{\begin{array}{l}X_{i}=0 \\ X_{j}=0 \\ X_{k}=0\end{array}\right.$ of the fundamental pentahedron, so V_{2} is normal; there are other singularities infinitely near them on V_{2}, but they are negligible.

The linear system of bicanonical adjoints to V_{2} is given by (loc. cit.)

$$
b_{0} X_{1} X_{2} X_{3} X_{4}+b_{1} X_{0} X_{2} X_{3} X_{4}+b_{2} X_{0} X_{1} X_{3} X_{4}+b_{3} X_{0} X_{1} X_{2} X_{4}+b_{4} X_{0} X_{1} X_{2} X_{3}=0, b_{i} \in \mathbf{k} .
$$

The rational transformation associated with the linear system of bicanonical adjoints can be identified with the bicanonical transformation $\varphi_{\left|2 K_{X}\right|}: X \rightarrow \mathbb{P}^{4}$, where X is a desingularization of V_{2}. At the same time, this linear system defines the standard birational transformation $\sigma: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$, that can also be expressed by

$$
Y_{i}=\frac{\rho}{X_{i}}, \quad i=0,1,2,3,4, \rho \in \mathbf{k} .
$$

So, $\varphi_{\left|2 K_{X}\right|}$ is birational. As before, $\varphi_{\left|2 K_{X}\right|}(X)$ can be identified with $\sigma\left(V_{2}\right)$. Therefore, $\sigma\left(V_{2}\right)$ is a bicanonical threefold in \mathbb{P}^{4}.

Remark 4.1. The surprising fact is that the linear system defining $\sigma\left(\mathbf{V}_{\mathbf{2}}\right)$ is contained in the linear system defining $\tau_{\mathbf{1}}\left(\mathbf{V}_{\mathbf{1}}\right)$. More precisely, if we kill the 5 parameters $a_{33000}, a_{30300}, a_{03030}, a_{00303}, a_{00033}$ in the equation of V_{1}, then we obtain a threefold V_{1}^{\prime} and $\tau_{1}\left(V_{1}^{\prime}\right)=\sigma\left(V_{2}\right)$; in other words, the bicanonical threefold in \mathbb{P}^{4} defined by V_{1}^{\prime} coincides with the bicanonical threefold in \mathbb{P}^{4} defined by V_{2} (i.e. they have the same equation). In particular, V_{1}^{\prime} and V_{2} are birational to each other; and the birational transformation is $\sigma^{-1} \circ \tau_{1}$.

5 A first construction of a tricanonical threefold in \mathbb{P}^{4}

Let us return to the threefolds V_{1} in Section 3, where we said that a desingularization of V_{1} has $P_{2}=P_{3}=5$. Here we consider the trigenus P_{3}. The linear system of tricanonical adjoints to V_{1} is given by (cf. [11])

$$
\begin{gathered}
b_{11100} X_{0} X_{1} X_{2}+b_{11010} X_{0} X_{1} X_{3}+b_{10101} X_{0} X_{2} X_{4}+b_{01011} X_{1} X_{3} X_{4}+ \\
b_{00111} X_{2} X_{3} X_{4}=0 .
\end{gathered}
$$

This linear system defines the rational transformation $\tau_{2}: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$ with its inverse.

$$
\tau_{2}:\left\{\begin{array}{l}
Y_{0}=\rho X_{2} X_{3} X_{4} \\
Y_{1}=\rho X_{1} X_{3} X_{4} \\
Y_{2}=\rho X_{0} X_{2} X_{4} \\
Y_{3}=\rho X_{0} X_{1} X_{3} \\
Y_{4}=\rho X_{0} X_{1} X_{2}
\end{array} \quad \rho \in \mathbf{k}, \rho \neq 0 ; \tau_{2}^{-1}:\left\{\begin{array}{l}
X_{0}=\rho^{*} Y_{2} Y_{3} \\
X_{1}=\rho^{*} Y_{1} Y_{4} \\
X_{2}=\rho^{*} Y_{0} Y_{4} \\
X_{3}=\rho^{*} Y_{0} Y_{3} \\
X_{4}=\rho^{*} Y_{1} Y_{2}
\end{array}, \rho^{*} \in \mathbf{k}, \rho^{*} \neq 0 .\right.\right.
$$

With the same arguments as we used in Section 3, we can identify $\varphi_{\left|3 K_{X}\right|}$ with $\tau_{\left.2\right|_{V_{1}}}$. We can say that the image of V_{1} under τ_{2} is a tricanonical threefold in \mathbb{P}^{4} and, as in Section 3, we obtain
$\tau_{2}\left(V_{1}\right):$
$a_{33000} Y_{1}^{3} Y_{2}^{3} Y_{3}^{3} Y_{4}^{3}+a_{32100} Y_{0} Y_{1}^{2} Y_{2}^{3} Y_{3}^{3} Y_{4}^{3}+a_{31200} Y_{0}^{2} Y_{1} Y_{2}^{3} Y_{3}^{3} Y_{4}^{3}+a_{30300} Y_{0}^{3} Y_{2}^{3} Y_{3}^{3} Y_{4}^{3}+$ $a_{23010} Y_{0} Y_{1}^{3} Y_{2}^{2} Y_{3}^{3} Y_{4}^{3}+a_{13020} Y_{0}^{2} Y_{1}^{3} Y_{2} Y_{3}^{3} Y_{4}^{3}+a_{03030} Y_{0}^{3} Y_{1}^{3} Y_{3}^{3} Y_{4}^{3}+a_{20301} Y_{0}^{3} Y_{1} Y_{2}^{3} Y_{3}^{2} Y_{4}^{3}+$ $a_{10302} Y_{0}^{3} Y_{1}^{2} Y_{2}^{3} Y_{3} Y_{4}^{3}+a_{00303} Y_{0}^{3} Y_{1}^{3} Y_{2}^{3} Y_{4}^{3}+a_{02031} Y_{0}^{3} Y_{1}^{3} Y_{2} Y_{3}^{3} Y_{4}^{2}+a_{01032} Y_{0}^{3} Y_{1}^{3} Y_{2}^{2} Y_{3}^{3} Y_{4}+$ $a_{00033} Y_{0}^{3} Y_{1}^{3} Y_{2}^{3} Y_{3}^{3}+a_{00213} Y_{0}^{3} Y_{1}^{3} Y_{2}^{3} Y_{3} Y_{4}^{2}+a_{00123} Y_{0}^{3} Y_{1}^{3} Y_{2}^{3} Y_{3}^{2} Y_{4}+a_{22200} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{4}+$ $a_{22110} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3}^{3} Y_{4}^{3}+a_{22101} Y_{0} Y_{1}^{3} Y_{2}^{3} Y_{3}^{2} Y_{4}^{3}+a_{22020} Y_{0}^{2} Y_{1}^{2} Y_{2}^{2} Y_{3}^{4} Y_{4}^{2}+a_{22011} Y_{0} Y_{1}^{3} Y_{2}^{3} Y_{3}^{3} Y_{4}^{2}+$ $a_{21210} Y_{0}^{3} Y_{1} Y_{2}^{2} Y_{3}^{3} Y_{4}^{3}+a_{21201} Y_{0}^{2} Y_{1}^{2} Y_{2}^{3} Y_{3}^{2} Y_{4}^{3}+a_{21111} Y_{0}^{2} Y_{1}^{2} Y_{2}^{3} Y_{3}^{3} Y_{4}^{2}+a_{20211} Y_{0}^{3} Y_{1} Y_{2}^{3} Y_{3}^{3} Y_{4}^{2}+$ $a_{20202} Y_{0}^{2} Y_{1}^{2} Y_{2}^{4} Y_{3}^{2} Y_{4}^{2}+a_{12120} Y_{0}^{3} Y_{1}^{2} Y_{2} Y_{3}^{3} Y_{4}^{3}+a_{12111} Y_{0}^{2} Y_{1}^{3} Y_{2}^{2} Y_{3}^{2} Y_{4}^{3}+a_{12021} Y_{0}^{2} Y_{1}^{3} Y_{2}^{2} Y_{3}^{3} Y_{4}^{2}+$ $a_{11211} Y_{0}^{3} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{3}+a_{11202} Y_{0}^{2} Y_{1}^{3} Y_{2}^{3} Y_{3} Y_{4}^{3}+a_{11121} Y_{0}^{3} Y_{1}^{2} Y_{2}^{2} Y_{3}^{3} Y_{4}^{2}+a_{11112} Y_{0}^{2} Y_{1}^{3} Y_{2}^{3} Y_{3}^{2} Y_{4}^{2}+$ $a_{11022} Y_{0}^{2} Y_{1}^{3} Y_{2}^{3} Y_{3}^{3} Y_{4}+a_{10212} Y_{0}^{3} Y_{1}^{2} Y_{2}^{3} Y_{3}^{2} Y_{4}^{2}+a_{10122} Y_{0}^{3} Y_{1}^{2} Y_{2}^{3} Y_{3}^{3} Y_{4}+a_{02121} Y_{0}^{3} Y_{1}^{3} Y_{2} Y_{3}^{2} Y_{4}^{3}+$ $a_{02022} Y_{0}^{2} Y_{1}^{4} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}+a_{01212} Y_{0}^{3} Y_{1}^{3} Y_{2}^{2} Y_{3} Y_{4}^{3}+a_{01122} Y_{0}^{3} Y_{1}^{3} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}+a_{00222} Y_{0}^{4} Y_{1}^{2} Y_{2}^{2} Y_{3}^{2} Y_{4}^{2}=0$.

The threefold $\tau_{2}\left(V_{1}\right)$ has degree 12. It is not normal, because it has the coordinate planes $\left\{\begin{array}{l}Y_{i}=0 \\ Y_{j}=0\end{array}\right.$ of the fundamental pentahedron as singular planes of multiplicity 3. $\tau_{2}\left(V_{1}\right)$ has the coordinate edges $\left\{\begin{array}{l}Y_{i}=0 \\ Y_{j}=0 \\ Y_{k}=0\end{array}\right.$ of the fundamental pentahedron as singular lines of multiplicity 6 and it has the vertices of the fundamental pentahedron as singular points of multiplicity 8 .

Godeaux also considers a degree 12 equation

$$
\begin{gathered}
\varphi_{3}\left(x_{1} x_{2} x_{3} x_{4}, x_{2} x_{3} x_{4} x_{0}, x_{3} x_{4} x_{0} x_{1}, x_{4} x_{0} x_{1} x_{2}, x_{0} x_{1} x_{2} x_{3}\right)+ \\
+\left(x_{0} x_{1} x_{2} x_{3} x_{4}\right)^{2} f_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
\end{gathered}
$$

but he says nothing about tricanonical threefolds; he uses this equation to obtain a degree 18 canonical surface.

Using a procedure similar to the one described in Section 3, and taking the singularities given by the edges into consideration first, the linear system of tricanonical adjoints to $\tau_{2}\left(V_{1}\right)$ is given by:

$$
Y_{0}^{4} Y_{1}^{4} Y_{2}^{4} Y_{3}^{4} Y_{4}^{4}\left(b_{00111} Y_{0}+b_{01011} Y_{1}+b_{10101} Y_{2}+b_{11010} Y_{3}+b_{11100} Y_{4}\right)=0
$$

In fact, they have degree 21 and $Y_{0}^{4} Y_{1}^{4} Y_{2}^{4} Y_{3}^{4} Y_{4}^{4}=0$ passes through the coordinate edges on $\tau_{2}\left(V_{1}\right)$ with the correct multiplicity ≥ 12 (cf. [11]). Note, however, that the tricanonical adjoints pass through the coordinate planes $\left\{\begin{array}{l}Y_{i}=0 \\ Y_{j}=0\end{array}\right.$ with the correct multiplicity. More precisely, they pass through the coordinate planes with multiplicity ≥ 8, when the multiplicity required on the coordinate planes of the degree 21 hypersurfaces for them to be tricanonical adjoints to $\tau_{2}\left(V_{1}\right)$ is ≥ 6 (loc. cit.). These tricanonical adjoints pass through the vertices of the fundamental pentahedron with the correct multiplicity as well.

Remark 5.1. Starting from V_{1} in \mathbb{P}^{4}, a desingularization of which has $P_{2}=P_{3}=$ 5 , we constructed two threefolds $\tau_{1}\left(V_{1}\right)$ and $\tau_{2}\left(V_{1}\right)$ in \mathbb{P}^{4}, again having a desingularization with $P_{2}=P_{3}=5$. We can thus consider the tricanonical threefold in \mathbb{P}^{4} defined by $\tau_{1}\left(V_{1}\right)$ and the bicanonical threefold in \mathbb{P}^{4} defined by $\tau_{2}\left(V_{1}\right)$. We can see that this approach does not give us new bicanonical or tricanonical threefolds in \mathbb{P}^{4} : the linear system of the tricanonical adjoints to $\tau_{1}\left(V_{1}\right)$ defines the standard birational transformation $\sigma: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$. It is easy to check that $\sigma \circ \tau_{1}=\tau_{2}$. The tricanonical threefold in \mathbb{P}^{4} defined by $\tau_{1}\left(V_{1}\right)$ therefore coincides with $\tau_{2}\left(V_{1}\right)$. Similarly, the linear system of the bicanonical adjoints to $\tau_{2}\left(V_{1}\right)$ defines the standard birational transformation σ. Since $\sigma=\sigma^{-1}$, the bicanonical threefold in \mathbb{P}^{4} defined by $\tau_{2}\left(V_{1}\right)$ coincides with $\tau_{1}\left(V_{1}\right)$.

6 A normal tricanonical threefold in \mathbb{P}^{4}

Remark 6.1. The equation of $\tau_{2}\left(V_{1}\right)$ (Section 5) has degree 12 , but if we consider V_{1}^{\prime} instead of V_{1}, as in Remark 4.1, Section 4, i.e. if we kill $a_{33000}, a_{30300}, a_{03030}$, a_{00303}, a_{00033}, then we can divide the equation of $\tau_{2}\left(V_{1}^{\prime}\right)$ by $Y_{0} Y_{1} Y_{2} Y_{3} Y_{4}$ and obtain a degree 7 equation that is the equation of V_{2}, which is Ronconi's threefold. In fact, the following equalities hold: $\sigma \circ \tau_{1}=\tau_{2}$ (cf. Remark 5.1) and $\sigma^{-1}=\sigma$.

According to Ronconi [9], who wrote the 5 forms defining the vector space of the tricanonical adjoints, the linear system of tricanonical adjoints to V_{2} is given by

$$
X_{0} X_{1} X_{2} X_{3} X_{4}\left(c_{0} X_{0}+c_{1} X_{1}+c_{2} X_{2}+c_{3} X_{3}+c_{4} X_{4}\right)=0, \quad c_{i} \in \mathbf{k}
$$

This proves, without any calculations, that V_{2} is itself a tricanonical threefold in \mathbb{P}^{4} and that it is also normal (Section 4).

7 A normal bicanonical threefold in \mathbb{P}^{4}

Unlike the previous examples obtained starting from other works, here we construct a normal bicanonical threefolds starting from the beginning.

7.1 The construction of the threefold

We construct the threefold by imposing the triple line $r_{1}: X_{2}=X_{3}=X_{4}=0$ on a generic degree 8 hypersurface

$$
F_{8}: \sum_{0 \leq i_{0} i_{1} i_{2} i_{3} i_{4} \leq 4} a_{i_{0} i_{1} i_{2} i_{3} i_{4}} X_{0}^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}} X_{3}^{i_{3}} X_{4}^{i_{4}}=0, i_{0}+i_{1}+i_{2}+i_{3}+i_{4}=8
$$

in \mathbb{P}^{4} of homogeneous coordinates $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$. To do so, we consider the affine set U_{0} of affine coordinates $x=X_{1} / X_{0}, y=X_{2} / X_{0}, z=X_{3} / X_{0}, t=X_{4} / X_{0}$ and we impose the triple line $r_{1} \cap U_{0}: y=z=t=0$ on $F_{8} \cap U_{0}$. Let $F_{8}(x, y, z, t)=$ 0 be the equation of $F_{8} \cap U_{0}$.

To impose the triple line $r_{1} \cap U_{0}$, we consider the blow-up of this line. Locally, the blow-up of $r_{1} \cap U_{0}$ is given by

$$
\mathcal{B}_{y_{1}}:\left\{\begin{array}{l}
x=x_{1} \\
y=y_{1} \\
z=y_{1} z_{1} \\
t=y_{1} t_{1}
\end{array} \quad ; \mathcal{B}_{z_{2}}:\left\{\begin{array}{l}
x=x_{2} \\
y=y_{2} z_{2} \\
z=z_{2} \\
t=z_{2} t_{2}
\end{array} ; \mathcal{B}_{t_{3}}:\left\{\begin{array}{l}
x=x_{3} \\
y=y_{3} t_{3} \\
z=z_{3} t_{3} \\
t=t_{3}
\end{array}\right.\right.\right.
$$

It is convenient to consider $\mathcal{B}_{t_{3}}$. Substituting in $F_{8}(x, y, z, t)$, dividing by t_{3}^{3} and imposing that $\frac{1}{t_{3}^{3}} F_{8}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)$ be a polynomial, we obtain conditions on the coefficients $a_{i_{0} i_{3} i_{2} i_{3} i_{4}}$ of F_{8}.

Let us call $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)$ the polynomial $\frac{1}{t_{3}^{3}} F_{8}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)$, so that the hypersurface $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)=0$ has the triple line $y_{3}=z_{3}=t_{3}=0$.

Next, we want to impose the double plane $\pi: y_{3}=t_{3}=0$ infinitely near on the triple line $y_{3}=z_{3}=t_{3}=0$.

Locally, the blow-up of $\pi: y_{3}=t_{3}=0$ is given by

$$
\mathcal{B}_{y_{31}}:\left\{\begin{array}{l}
x_{3}=x_{31} \\
y_{3}=y_{31} \\
z_{3}=z_{31} \\
t_{3}=y_{31} t_{31}
\end{array} \quad ; \quad \mathcal{B}_{t_{32}}:\left\{\begin{array}{l}
x_{3}=x_{32} \\
y_{3}=y_{32} t_{32} \\
z_{3}=z_{32} \\
t_{3}=t_{32}
\end{array} .\right.\right.
$$

We consider $\mathcal{B}_{t_{32}}$ and we substitute in $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)$. By imposing that $\frac{1}{t_{32}^{2}} F_{t_{3}}\left(x_{32}, y_{32} t_{32}, z_{32}, t_{32}\right)$ be a polynomial, we obtain conditions on the coefficients $a_{i_{1} i_{2} i_{3} i_{4}}$, and the hypersurface of equation $\frac{1}{t_{32}^{2}} F_{t_{3}}\left(x_{32}, y_{32} t_{32}, z_{32}, t_{32}\right)=0$ has the double plane we wanted.

After completing these calculations, we return to the above homogeneous coordinates $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$ and impose another 4 triple lines on F_{8} with the infinitely near double surfaces, using the following rotations of indices (and variables).

Rotations of indices (and variables)

$$
\begin{aligned}
X_{0} & \mapsto X_{1} \mapsto X_{2}
\end{aligned} X_{3} \mapsto X_{4} \mapsto X_{0}, ~=i_{3} i_{4} i_{0} i_{1} i_{2} \mapsto i_{2} i_{3} i_{4} i_{0} i_{1} \mapsto i_{1} i_{2} i_{3} i_{4} i_{0} \mapsto i_{0} i_{1} i_{2} i_{3} i_{4} .
$$

Above, we impose the triple line $X_{2}=X_{3}=X_{4}=0$ on F_{8} with the double surface infinitely near, obtaining conditions on the coefficients $a_{i_{0} i_{1} i_{2} i_{3} i_{4}}$ of F_{8}. Essentially, these conditions impose which coefficients are to be killed. If the following coefficient $a_{i_{0} i_{1} i_{2} i_{3} i_{4}}$ must vanish, i.e. $a_{i_{0} i_{1} i_{2} i_{3} i_{4}}=0$, then the following coefficients must vanish too:

$$
a_{i_{4} i_{0} i_{1} i_{2} i_{3}}=0, a_{i_{3} i_{4} i_{0} i_{1} i_{2}}=0, a_{1_{2} i_{3} i_{4} i_{0} i_{1}}=0, a_{i_{1} i_{2} i_{3} i_{4} i_{0}}=0
$$

Therefore, thanks to this rotation, F_{8} has the following five triple lines

$$
\left\{\begin{array}{l}
X_{2}=0 \\
X_{3}=0 \\
X_{4}=0
\end{array},\left\{\begin{array}{l}
X_{0}=0 \\
X_{3}=0 \\
X_{4}=0
\end{array},\left\{\begin{array}{l}
X_{0}=0 \\
X_{1}=0 \\
X_{4}=0
\end{array},\left\{\begin{array}{l}
X_{0}=0 \\
X_{1}=0 \\
X_{4}=0
\end{array},\left\{\begin{array}{l}
X_{1}=0 \\
X_{2}=0 \\
X_{3}=0
\end{array}\right.\right.\right.\right.\right.
$$

and there is a double surface infinitely near each of them that is locally a double plane.

The final threefold has equation

$$
\begin{aligned}
& F_{8}: F_{8}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)= \\
& a_{41210} X_{0}^{4} X_{1} X_{2}^{2} X_{3}+a_{04121} X_{1}^{4} X_{2} X_{3}^{2} X_{4}+a_{10412} X_{0} X_{2}^{4} X_{3} X_{4}^{2}+a_{21041} X_{0}^{2} X_{1} X_{3}^{4} X_{4}+ \\
& a_{12104} X_{0} X_{1}^{2} X_{2} X_{4}^{4}+ \\
& a_{32210} X_{0}^{3} X_{1}^{2} X_{2}^{2} X_{3}+a_{03221} X_{1}^{3} X_{2}^{2} X_{3}^{2} X_{4}+a_{10322} X_{0} X_{2}^{3} X_{3}^{2} X_{4}^{2}+a_{21032} X_{0}^{2} X_{1} X_{3}^{3} X_{4}^{2}+ \\
& a_{22103} X_{0}^{2} X_{1}^{2} X_{2} X_{4}^{3}+ \\
& a_{31211} X_{0}^{3} X_{1} X_{2}^{2} X_{3} X_{4}+a_{13121} X_{0} X_{1}^{3} X_{2} X_{3}^{2} X_{4}+a_{11312} X_{0} X_{1} X_{2}^{3} X_{3} X_{4}^{2}+ \\
& a_{21131} X_{0}^{2} X_{1} X_{2} X_{3}^{3} X_{4}+a_{12113} X_{0} X_{1}^{2} X_{2} X_{3} X_{4}^{3}+ \\
& a_{31121} X_{0}^{3} X_{1} X_{2} X_{3}^{2} X_{4}+a_{13112} X_{0} X_{1}^{3} X_{2} X_{3} X_{4}^{2}+a_{21311} X_{0}^{2} X_{1} X_{2}^{3} X_{3} X_{4}+ \\
& a_{12131} X_{0} X_{1}^{2} X_{2} X_{3}^{3} X_{4}+a_{11213} X_{0} X_{1} X_{2}^{2} X_{3} X_{4}^{3}+ \\
& a_{22211} X_{0}^{2} X_{1}^{2} X_{2}^{2} X_{3} X_{4}+a_{12221} X_{0} X_{1}^{2} X_{2}^{2} X_{3}^{2} X_{4}+a_{11222} X_{0} X_{1} X_{2}^{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{21122} X_{0}^{2} X_{1} X_{2} X_{3}^{2} X_{4}^{2}+a_{22112} X_{0}^{2} X_{1}^{2} X_{2} X_{3} X_{4}^{2}+a_{22121} X_{0}^{2} X_{1}^{2} X_{2} X_{3}^{2} X_{4}+ \\
& a_{12212} X_{0} X_{1}^{2} X_{2}^{2} X_{3} X_{4}^{2}+a_{21221} X_{0}^{2} X_{1} X_{2}^{2} X_{3}^{2} X_{4}+a_{12122} X_{0} X_{1}^{2} X_{2} X_{3}^{2} X_{4}^{2}+ \\
& a_{21212} X_{0}^{2} X_{1} X_{2}^{2} X_{3} X_{4}^{2}=0 .
\end{aligned}
$$

The above F_{8} is a linear system of hypersurfaces of degree 8 , which is invariant with respect to the rotation of indices (and variables). From here on, we consider the generic element of this linear system, calling it simply F_{8} (omitting the term "generic"). We can apply Bertini's theorem to F_{8}, according to which: the singularities of F_{8} belong to the base points locus of the linear system.

7.2 Normality of F_{8}

From Bertini's theorem, F_{8} has no singularities in codimension 1, i.e. it is normal. In fact, the unique subvarieties of codimension 1 on F_{8} belonging to the base points of F_{8} are given by the 10 planes $X_{i}=X_{j}=0$ of the fundamental pentahedron. They do not vanish the partial derivatives, i.e. they are simple planes of multiplicity 1 on F_{8}. For example, the plane $X_{0}=X_{1}=0$ is simple because it belongs to the base point locus of F_{8} and we have

$$
\left(\frac{\partial F_{8}}{\partial X_{0}}\right)_{X_{0}=X_{1}=0}=a_{10412} X_{2}^{4} X_{3} X_{4}^{2}+a_{10322} X_{2}^{3} X_{3}^{2} X_{4}^{2} \neq 0
$$

To be precise, the lines $X_{0}=X_{1}=X_{i}=0$ vanish the partial derivatives because they are singular on F_{8} (cf. Section 7.1).

7.3 Desingularization of F_{8}

As well as the imposed singularities - five triple straight lines (cf. Section 7.2), each of them having a double surface infinitely near - there are also unimposed singularities. As usual, we call a singularity S on F_{8} an actual singularity in order to distinguish S from those infinitely near it.

The actual unimposed singularities are given by the other five straight lines of the fundamental pentahedron, which are distinct from those given in Section 7.1.

The infinitely near unimposed singularities are given by a finite number of double curves. These double curves are locally given by straight lines. Finally, there are either double points or simple points infinitely near the double curves.

We shall see all these singularities in detail during the resolution of the singularities of F_{8}.

We recall that double curves and double points are negligible singularities, i.e. singularities that do not give the hypersurfaces conditions such that make them canonical adjoints to F_{8}. In other words, these singularities do not give conditions of a desingularization of F_{8} to the birational invariants (cf. [11, pp. 151-152]).

The equation of F_{8} is invariant with a rotation of the indices (and variables) (Section 7.1), so in the desingularization of F_{8} we can limit ourselves to solving the singularities on the open set $U_{0}=\left\{X_{0} \neq 0\right\}$, where we place the affine coordinates $x=X_{1} / X_{0}, y=X_{2} / X_{0}, z=X_{3} / X_{0}, t=X_{4} / X_{0}$ (cf. Section 7.1). The desingularization on the other sets $U_{i}=\left\{X_{i} \neq 0\right\}$ is a consequence of the rotation of the indices.

We only consider the desingularization of F_{8} locally, leaving the pasting of the local parts to the general theory of the resolution of singularities (cf. e.g. [6]).

If we consider $F_{8} \cap U_{0}$, we see that there are two imposed actual triple lines $r_{1} \cap U_{0}: y=z=t=0, r_{2} \cap U_{0}: x=y=z=0$, and two unimposed actual double lines $s_{1} \cap U_{0}: x=z=t=0, s_{2} \cap U_{0}: x=y=t=0$. We blow up these singularities and those infinitely near, starting from $r_{1} \cap U_{0}$.

Blow-up of the triple line $r_{1} \cap U_{0}$

We consider the local blow-ups $\mathcal{B}_{y_{1}}, \mathcal{B}_{z_{2}}$ and $\mathcal{B}_{t_{3}}$ that we wrote in Section 7.1. If $F_{8}(x, y, z, t)=0$ is the equation of $F_{8} \cap U_{0}$, then the strict (or proper) transform $F_{y_{1}}$ of $F_{8} \cap U_{0}$ with respect to $\mathcal{B}_{y_{1}}$ is given by
$F_{y_{1}}: \frac{1}{y_{1}^{3}} F_{8}\left(x_{1}, y_{1}, y_{1} z_{1}, y_{1} t_{1}\right)=a_{41210} x_{1} z_{1}+a_{22103} x_{1}^{2} y_{1} t_{1}^{3}+a_{10412} y_{1}^{4} z_{1} t_{1}^{2}+\cdots=0$.
$F_{y_{1}}$ has the double line $x_{1}=y_{1}=z_{1}=0$ on the exceptional divisor $y_{1}=0$, and outside the exceptional divisor it has the double line $x_{1}=z_{1}=t_{1}=0$. This last double line is the image of s_{1}.

The strict (or proper) transform $F_{z_{2}}$ of $F_{8} \cap U_{0}$ with respect to $\mathcal{B}_{z_{2}}$ is given by

$$
\begin{aligned}
& F_{z_{2}}: \frac{1}{z_{2}^{3}} F_{8}\left(x_{2}, y_{2}, y_{2} z_{2}, z_{2}, z_{2} t_{2}\right)=a_{41210} x_{2} y_{2}^{2}+a_{21041} x_{2} z_{2}^{2} t_{2}+a_{10322} y_{2}^{3} z_{2}^{4} t_{2}^{2}+\cdots \\
& \quad=0
\end{aligned}
$$

$F_{z_{2}}$ has the double plane $y_{2}=z_{2}=0$ on the exceptional divisor $z_{2}=0$, and outside the exceptional divisor it has the double line $x_{2}=y_{2}=t_{2}=0$. This double line is the image of s_{2}.

The strict transform $F_{t_{3}}$ of $F_{8} \cap U_{0}$ with respect to $\mathcal{B}_{t_{3}}$ is given (cf. Section 7.1) by

$$
\begin{aligned}
F_{t_{3}}: & \frac{1}{t_{3}^{3}} F_{8}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)=a_{41210} x_{3} y_{3}^{2}+a_{22103} x_{3}^{2} y_{3} t_{3}+a_{21041} x_{3} z_{3}^{4} t_{3}^{2}+ \\
& a_{10412} y_{3}^{4} z_{3} t_{3}^{4}+\cdots=0 .
\end{aligned}
$$

$F_{t_{3}}$ has the double plane $y_{3}=t_{3}=0$ on the exceptional divisor $t_{3}=0$ (cf. Section 7.1), and outside the exceptional divisor it has the triple line $x_{3}=y_{3}=$ $z_{3}=0$. This triple line is the image of r_{2}.

Blow-up of the double plane $y_{2}=z_{2}=0$ on $F_{z_{2}}$
Locally, the blow-up of $y_{2}=z_{2}=0$ is given by

$$
\mathcal{B}_{y_{21}}:\left\{\begin{array}{l}
x_{2}=x_{21} \\
y_{2}=y_{21} \\
z_{2}=y_{21} z_{21} \\
t_{2}=t_{21}
\end{array} \quad ; \quad \mathcal{B}_{z_{22}}:\left\{\begin{array}{l}
x_{2}=x_{22} \\
y_{2}=y_{22} z_{22} \\
z_{2}=z_{22} \\
t_{2}=t_{22}
\end{array} .\right.\right.
$$

The strict transform $F_{y_{21}}$ of $F_{z_{2}}: F_{z_{2}}\left(x_{2}, y_{2}, z_{2}, t_{2}\right)=0$ with respect to the local blow-up $\mathcal{B}_{y_{21}}$ is given by

$$
F_{y_{21}}: \frac{1}{y_{21}^{2}} F_{z_{2}}\left(x_{21}, y_{21}, y_{21} z_{21}, t_{21}\right)=a_{41210} x_{21}+\cdots=0 .
$$

$F_{y_{21}}$ is nonsingular by Bertini's theorem.
The strict transform $F_{z_{22}}$ of $F_{z_{2}}: F_{z_{2}}\left(x_{2}, y_{2}, z_{2}, t_{2}\right)=0$ with respect to the local blow-up $\mathcal{B}_{z_{22}}$ is given by
$F_{z_{22}}: \frac{1}{z_{22}^{2}} F_{z_{2}}\left(x_{22}, y_{22} z_{22}, z_{22}, t_{22}\right)=a_{41210} x_{22} y_{22}+a_{21041} x_{22} t_{22}+\cdots=0$.
$F_{z_{22}}$ is nonsingular on the exceptional divisor $z_{22}=0$ and, outside the exceptional divisor, $F_{z_{22}}$ has the double line $x_{22}=y_{22}=t_{22}=0$. This line is the image of s_{2} and one point of this line is on the exceptional divisor, but we consider $F_{z_{22}}$ nonsingular on the exceptional divisor.

Blow-up of the double plane $y_{3}=t_{3}=0$ on $F_{t_{3}}$
Locally, the blow-up of $y_{3}=t_{3}=0$ is given by $\mathcal{B}_{y_{31}}$ and $\mathcal{B}_{t_{32}}$ (cf. Section 7.1).
The strict transform $F_{y_{31}}$ of $F_{t_{3}}: F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)=0$ with respect to the local blow-up $\mathcal{B}_{y_{31}}$ is given by

$$
\begin{aligned}
& F_{y_{31}}: \frac{1}{y_{31}^{2}} F_{t_{3}}\left(x_{31}, y_{31}, z_{31}, y_{31} t_{31}\right)=a_{41210} x_{31} z_{31}+a_{22103} x_{31}^{2} t_{31}+a_{10412} y_{31}^{6} z_{31} t_{31}^{4} \\
& \quad+\cdots=0 .
\end{aligned}
$$

There is the line $x_{31}=y_{31}=z_{31}=0$ on the exceptional divisor $y_{31}=0$ and, outside the exceptional divisor, there is the line $x_{31}=z_{31}=t_{31}=0$, which is the image of s_{1}.

The strict transform $F_{t_{32}}$ of $F_{t_{3}}: F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)=0$ with respect to the local blow-up $\mathcal{B}_{t_{32}}$ is given by

$$
\begin{aligned}
F_{t_{32}}: & \frac{1}{t_{32}^{2}} F_{z_{2}}\left(x_{32}, y_{32} t_{32}, z_{32}, t_{32}\right)=a_{41210} x_{32} y_{32}^{2} z_{32}+a_{22103} x_{32}^{2} y_{32}+a_{21041} x_{32} z_{32}^{4} \\
& \quad+a_{10412} y_{32}^{4} z_{32} t_{32}^{6}+\cdots=0 .
\end{aligned}
$$

There is the double line $x_{32}=z_{32}=t_{32}=0$ on the exceptional divisor $t_{32}=0$ and, outside the exceptional divisor, there is the triple line $x_{32}=y_{32}=z_{32}=0$, which is the image of r_{2}.

Blow-up of the triple line $x_{32}=y_{32}=z_{32}=0$ on $F_{t_{32}}$
Locally, the blow-up of $x_{32}=y_{32}=z_{32}=0$ is given by

$$
\begin{gathered}
\mathcal{B}_{x_{321}}:\left\{\begin{array}{l}
x_{32}=x_{321} \\
y_{32}=x_{321} y_{321} \\
z_{32}=x_{321} z_{321} \\
t_{32}=t_{321}
\end{array} ; \quad \mathcal{B}_{y_{322}}:\left\{\begin{array}{l}
x_{32}=x_{322} y_{322} \\
y_{32}=y_{322} \\
z_{32}=y_{322} z_{322} \\
t_{32}=t_{322}
\end{array} ;\right.\right. \\
\mathcal{B}_{z_{323}}:\left\{\begin{array}{l}
x_{32}=x_{323} z_{323} \\
y_{32}=y_{323} z_{323} \\
z_{32}=z_{323} \\
t_{32}=t_{323}
\end{array} .\right.
\end{gathered}
$$

The strict transform $F_{x_{321}}$ of $F_{t_{32}}$ with respect to $\mathcal{B}_{x_{321}}$ is given by $F_{x_{321}}: a_{22103} y_{321}+\cdots=0$ and it is nonsingular.

The strict transform $F_{y_{322}}$ of $F_{t_{32}}$ is given by $F_{y_{322}}: a_{41210} x_{322} y_{322} z_{322}+a_{22103} x_{322}^{2}+a_{10412} y_{322}^{2} z_{322} t_{322}^{5}+\cdots=0$.
$F_{y_{322}}$ has the double plane $x_{322}=y_{322}=0$ on the exceptional divisor and the double line $x_{322}=z_{322}=t_{322}=0$ outside.

The strict transform $F_{z_{323}}$ of $F_{t_{32}}$ is given by $F_{z_{323}}: a_{41210} x_{323} y_{323}^{2} z_{323}+a_{22103} x_{323}^{2} y_{323}+a_{21032} x_{323} z_{323}+a_{10412} y_{323}^{4} z_{323}^{2} t_{323}^{6}+$ $\cdots=0$.
$F_{z_{323}}$ has the double plane $x_{323}=z_{323}=0$ on the exceptional divisor and, outside, $F_{z_{323}}$ is nonsingular.

Blow-up of the double plane $x_{322}=y_{322}=0$ on $F_{y_{322}}$
Locally, the blow-up of $x_{322}=y_{322}=0$ is given by

$$
\mathcal{B}_{X_{1}}:\left\{\begin{array}{l}
x_{322}=X_{1} \\
y_{322}=X_{1} Y_{1} \\
z_{322}=Z_{1} \\
t_{322}=T_{1}
\end{array} ; \quad \mathcal{B}_{Y_{1}}:\left\{\begin{array}{l}
x_{322}=X_{2} Y_{2} \\
y_{322}=Y_{2} \\
z_{322}=Z_{2} \\
t_{322}=T_{2}
\end{array}\right.\right.
$$

The strict transform $F_{X_{1}}$ of $F_{y_{322}}$ with respect to the local blow-up $\mathcal{B}_{X_{1}}$ is given by
$F_{X_{1}}: a_{22103}+\cdots=0$ and it is nonsingular.
The strict transform $F_{Y_{2}}$ of $F_{y_{322}}$ with respect to the local blow-up $\mathcal{B}_{Y_{2}}$ is given by
$F_{Y_{2}}: a_{41210} X_{2} Z_{2}+a_{22103} X_{2}^{2}+a_{21032} X_{2} Z_{2}^{3}+a_{10412} Z_{2} T_{2}^{6}+\cdots=0$.
$F_{Y_{2}}$ is nonsingular on the exceptional divisor $Y_{2}=0$ and, outside the exceptional divisor $F_{Y_{2}}$, has the double line $X_{2}=Z_{2}=T_{2}=0$.

Blow-up of the double plane $x_{323}=z_{323}=0$ on $F_{z_{323}}$
Locally, the blow-up of $x_{323}=z_{323}=0$ is given by

$$
\mathcal{B}_{X_{3}}:\left\{\begin{array}{l}
x_{323}=X_{3} \\
y_{323}=X_{3} \\
z_{323}=X_{3} Z_{3} \\
t_{323}=T_{3}
\end{array} ; \quad \mathcal{B}_{Z_{4}}:\left\{\begin{array}{l}
x_{323}=X_{4} Z_{4} \\
y_{323}=Y_{4} \\
z_{323}=Z_{4} \\
t_{323}=T_{4}
\end{array} .\right.\right.
$$

The strict transform $F_{X_{3}}$ with respect to the local blow-up $\mathcal{B}_{X_{3}}$ is given by $F_{X_{3}}: a_{21032} Z_{3}+\cdots=0$ and it is nonsingular.

The strict transform $F_{Z_{4}}$ with respect to the local blow-up $\mathcal{B}_{Z_{4}}$ is given by $F_{t_{32}}: a_{21032} X_{4}+\cdots=0$ and it is nonsingular.

Now we have to blow up the double lines. They are negligible singularities. There is a finite number of double lines and after them there is an isolated double point or no other singularities.

All the blow-ups of these double lines are similar and the one that follows is a significant example.

Blow-up of the double line $x_{31}=y_{31}=z_{31}=0$ on $F_{y_{31}}$

Locally, the blow-up of $x_{31}=y_{31}=z_{31}=0$ is given by

$$
\mathcal{B}_{x_{311}}:\left\{\begin{array}{l}
x_{31}=x_{311} \\
y_{31}=x_{311} y_{311} \\
z_{31}=x_{311} z_{311} \\
t_{31}=t_{311}
\end{array} ; \quad \mathcal{B}_{y_{312}}:\left\{\begin{array}{l}
x_{31}=x_{312} y_{312} \\
y_{31}=y_{312} \\
z_{31}=y_{312} z_{312} \\
t_{31}=t_{312}
\end{array}\right.\right.
$$

$$
\mathcal{B}_{z_{313}}:\left\{\begin{array}{l}
x_{31}=x_{313} z_{313} \\
y_{31}=y_{313} z_{313} \\
z_{31}=z_{313} \\
t_{31}=t_{313}
\end{array} .\right.
$$

The strict transform $F_{x_{311}}$ with respect to $\mathcal{B}_{x_{311}}$ is given by $F_{x_{311}}: a_{41210} x_{311}+\cdots=0$ and it is nonsingular.

The strict transform $F_{z_{313}}$ with respect to $\mathcal{B}_{z_{313}}$ is given by $F_{z_{313}}: a_{41210} z_{313}+\cdots=0$ and it is nonsingular.

Now we need to consider the strict transform $F_{y_{312}}$ with respect to $\mathcal{B}_{y_{312}}$, that is given by
$F_{y_{312}}: a_{41210} x_{312} z_{312}+a_{22103} x_{312}^{2} t_{312}+a_{10412} y_{312}^{5} z_{312} t_{312}^{4}+\cdots=0$.
There is the double line $x_{312}=y_{312}=z_{312}=0$ on the exceptional divisor $y_{312}=0$ and, outside the exceptional divisor, there is the double line $x_{312}=$ $z_{312}=t_{312}=0$.

We note that the exponent of y_{31} was 6 on $F_{y_{31}}$ and became 5 for y_{312} on $F_{y_{312}}$, whereas the exponent of x_{31}, z_{31} and t_{31} remains fixed. From this remark, if we consider 5 blow-ups of $x_{*}=y_{*}=z_{*}=0$, then the strict transforms with respect to x_{*} and to z_{*} are nonsingular and the strict transform with respect to y_{*} is given by
$F_{y_{*}}: a_{41210} x_{*} z_{*}+a_{22103} x_{*}^{2} t_{*}+a_{10412} z_{*} t_{*}^{4}+\cdots=0$.
On $F_{y_{*}}$ there is the double line $x_{*}=z_{*}=t_{*}=0$. With one blow-up the exponent of t_{*} decreases by 1 , and with 4 blow-ups of $x_{*}=z_{*}=t_{*}=0$ the 3 strict transforms are nonsingular.

At this point, we consider the desingularization of $F_{8} \cap U_{0}$ complete and, by rotating the indices, the desingularization of F_{8} is completed too.

Canonical and bicanonical adjoints to $F_{8} \longleftrightarrow p_{g}$ and P_{2} of a desingularization $X \rightarrow F_{8}$ of F_{8}

Proposition 7.1. The geometric genus of a desingularization of F_{8} is $p_{g}=0$.
Proof. The linear system of canonical adjoints to F_{8} is given by the cubic forms F_{3} passing through the triple line and through the infinitely near double surfaces. The computations here are similar to those of Section 7.1 for the construction of F_{8}. In fact, we can write F_{3} in non-homogeneous coordinates (x, y, z, t) and in detail
$F_{3}: a_{30000}+a_{21000} x+a_{20100} y+a_{2001} z+a_{20001} t+a_{12000} x^{2}+a_{11100} x y+a_{11010} x z+$ $a_{11001} x t+a_{10200} y^{2}+a_{10110} y z+a_{10101} y t+a_{10020} z^{2}+a_{10011} z t+a_{10002} z^{2}+a_{03000} x^{3}+$ $a_{02100} x^{2} y+\cdots=0$.

We make the line $r_{1} \cap U_{0}: y=z=t=0$ be simple on $F_{3} \cap U_{0}$, considering the partial blow-up (cf. Section 7.1)

$$
\mathcal{B}_{t_{3}}:\left\{\begin{array}{l}
x=x_{3} \\
y=y_{3} t_{3} \\
z=z_{3} t_{3} \\
t=t_{3}
\end{array} .\right.
$$

Substituting in the equation $F_{3}(x, y, z, t)=0$, we obtain $F_{3}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)=0$. Dividing by t_{3} and imposing that $\frac{1}{t_{3}} F_{3}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)$ be a polynomial, we obtain the following conditions on the coefficients $a_{i_{0} i_{1} i_{2} i_{3} i_{4}}$ of F_{3}.

$$
a_{30000}=a_{21000}=a_{12000}=a_{03000}=0
$$

Let us call $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)$ the polynomial $\frac{1}{t_{3}} F_{3}\left(x_{3}, y_{3} t_{3}, z_{3} t_{3}, t_{3}\right)$, so that the hypersurface $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)=0$ passes through the line $y_{3}=z_{3}=t_{3}=0$ with multiplicity 1 .

Next, we want to impose the simple plane $\pi: y_{3}=t_{3}=0$ infinitely near on the simple line $y_{3}=z_{3}=t_{3}=0$. We consider (cf. Section 7.1)

$$
\mathcal{B}_{t_{32}}:\left\{\begin{array}{l}
x_{3}=x_{32} \\
y_{3}=y_{32} t_{32} \\
z_{3}=z_{32} \\
t_{3}=t_{32}
\end{array}\right.
$$

and we substitute in $F_{t_{3}}\left(x_{3}, y_{3}, z_{3}, t_{3}\right)=0$. Imposing that $\frac{1}{t_{32}} F_{t_{3}}\left(x_{32}, y_{32} t_{32}, z_{32}, t_{32}\right)$ be a polynomial, we have the following conditions on the coefficients $a_{i_{1} i_{2} i_{3} i_{4}}$

$$
a_{20010}=a_{20001}=a_{11010}=a_{11001}=a_{02010}=a_{02001}=0
$$

The hypersurface $\frac{1}{t_{32}} F_{t_{1}}\left(x_{32}, y_{32} t_{32}, z_{32}, t_{32}\right)=0$ has the plane of multiplicity 1 that we wanted.

Next, using the rotation of the indices (cf. Section 7.1)

$$
i_{0} i_{1} i_{2} i_{3} i_{4} \mapsto i_{4} i_{0} i_{1} i_{2} i_{3} \mapsto i_{3} i_{4} i_{0} i_{1} i_{2} \mapsto i_{2} i_{3} i_{4} i_{0} i_{1} \mapsto i_{1} i_{2} i_{3} i_{4} i_{0} \mapsto i_{0} i_{1} i_{2} i_{3} i_{4}
$$

we make all the coefficients of F_{3} equate to zero, i.e. there are no canonical adjoints to F_{8}.

From [11], we therefore have $p_{g}=0$.
We remember that we can apply the results of [11] because F_{8} is normal and the singular curves and surfaces are locally given by straight lines and planes.

Proposition 7.2. The bigenus of a desingularization of F_{8} is $P_{2}=5$.
Proof. If we repeat for degree 6 forms what we did for canonical adjoints, but divide by t_{3}^{2}, and then by t_{32}^{2}, we obtain the linear system of bicanonical adjoints to F_{8} given by

$$
\Phi_{6}: X_{0} X_{1} X_{2} X_{3} X_{4}\left(a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}\right)=0, a_{i} \in \mathbf{k}
$$

From [11], we obtain $P_{2}=5$.
Corollary 7.3. F_{8} is a normal bicanonical threefold in \mathbb{P}^{4}.
Proof. If $X \rightarrow F_{8}$ is a desingularization of F_{8}, then the linear system of bicanonical adjoints defines the birational transformation $\tau_{\left.\right|_{8}}: F_{8 \rightarrow-} \mathbb{P}^{4}$ that can be identify with the bicanonical transformation $\varphi_{\left|2 K_{X}\right|}: X \rightarrow \mathbb{P}^{4}$ (cf. Section 3). This proves that F_{8} is a bicanonical threefold in \mathbb{P}^{4}. From Section 7.2 , we know that F_{8} is normal.

7.4 The regularity of a desingularization $X \rightarrow F_{8}$

There remains for us to prove that $q_{i}(X)=\operatorname{dim}_{\mathbf{k}} H^{i}\left(X, \mathcal{O}_{X}\right)=0$, for $i=1,2$.
Theorem 7.4. X is totally regular, i.e. $q_{i}(X)=0$ for $i=1,2$.
Proof. We calculate $q_{2}(X)=\operatorname{dim}_{\mathbf{k}} H^{2}\left(X, \mathcal{O}_{X}\right)$ using the formula (36), Section 4 in [11], which states that:

$$
q_{2}(X)=p_{g}(X)+p_{g}(S)-\operatorname{dim}_{\mathbf{k}}\left(W_{4}\right)
$$

where $p_{g}(X)$ denotes the geometric genus of X, and $p_{g}(S)$ denotes the geometric genus of a desingularization S of a generic hyperplane section of F_{8}, where W_{4} is the vector space of the degree 4 forms defining global adjoints Φ_{4} to F_{8}, i.e. defining hypersurfaces Φ_{4} of degree 4 passing through the triple lines and through the infinitely near double surfaces, with the same multiplicity as the canonical adjoints to F_{8}

We note that $S \subset X$ is the strict transform, with respect to a desingularization $\sigma: X \rightarrow F_{8}$, of a generic hyperplane section of F_{8} performed by a generic hyperplane $H \subset \mathbb{P}^{d}$. Since the hyperplane H is generic, the variety S can be considered nonsingular.

We remember that $q_{1}(X)=\operatorname{dim}_{\mathbf{k}} H^{1}\left(X, \mathcal{O}_{X}\right)=q_{1}(S)=\operatorname{dim}_{\mathbf{k}} H^{1}\left(S, \mathcal{O}_{S}\right)$, where S is defined above (cf. [11], page 174).

We compute $q_{1}(S)$ by applying the formula (36) (loc. cit.) to S :

$$
q_{1}(S)=p_{g}(S)+p_{g}\left(S^{\prime}\right)-\operatorname{dim}_{\mathbf{k}}\left(W_{5}\right)
$$

where W_{5} is the vector space of the degree 5 forms defining global adjoints $\Phi_{5} \subset H$ to $F_{8} \cap H$, and where $S^{\prime} \subset S$ is the nonsingular strict transform, with respect to σ of a generic hyperplane section of $F_{8} \cap H$, performed by a generic hyperplane $H^{\prime} \subset H$.

The singularities of $F_{8} \cap H$ are given by isolated triple points that have an infinitely near double line and negligible double points. The triple points are given by the intersection of the actual triple lines on F_{8} with the hyperplane H. To see
that $F_{8} \cap H$ has these singularities, it is convenient to assume, with a linear change of coordinates, that H is a coordinate hyperplane, e.g. $H=\left\{X_{0}=0\right\} . F_{8} \cap H$ thus has homogeneous coordinates ($X_{1}, X_{2}, X_{3}, X_{4}$), and the lines on F_{8} given by $X_{i_{1}}=X_{i_{2}}=X_{i_{3}}=0, i_{j}>0$ become points, while the planes $X_{i_{1}}=X_{i_{2}}=0$, $i_{j}>0$ become lines.

Lemma 7.5. $q_{1}(X)=q_{1}(S)=0$.
Proof. We have to calculate $p_{g}(S)$, which appears in the above formula for calculating $q_{1}(S)$. The geometric genus $p_{g}(S)$ of S is given by the dimension of the vector space of the forms defining canonical adjoints to $F_{8} \cap H$ in the hyperplane H. These canonical adjoints are hypersurfaces of degree 4 in H passing through the triple points and through the infinitely near double lines.

To ascertain the canonical adjoints to $F_{8} \cap H$ of degree 4 in H, it is coveninient (as before) to consider a linear change of coordinates that change H into a coordinate hyperplane, e.g. $H=\left\{X_{0}=0\right\}$, so that $F_{8} \cap H$ has homogeneous coordinates $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.

Let us consider the triple line $X_{1}=X_{2}=X_{3}=0$ on F_{8}. The intersection of this line with $X_{0}=0$ is given by the point $X_{0}=X_{1}=X_{2}=X_{3}=X_{4}=0$.

We can assume that in $X_{0}=0$ the forms of degree 4 are given by

$$
\left\{F_{4}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)\right\} \cap\left\{X_{0}=0\right\}=F_{4}\left(0, X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

where $F_{4}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=0$ is a threefold in \mathbb{P}^{4}. This enables us to apply the rotation of the indices to the coefficients of $F_{4}\left(0, X_{1}, X_{2}, X_{3}, X_{4}\right)$, which are given by $a_{0, i_{1}, i_{2}, i_{3}, i_{4}}$. In detail, the equation is given by
$F_{4} \cap\left\{X_{0}=0\right\}: a_{04000} X_{1}^{4}+a_{03100} X_{1}^{3} X_{2}+a_{03010} X_{1}^{3} X_{3}+\cdots+a_{01003} X_{1} X_{4}^{3}+$ $a_{00103} X_{2} X_{4}^{3}+a_{00013} X_{3} X_{4}^{3}+a_{00004} X_{4}^{4}=0$.

Let us consider the affine coordinates $x=X_{1} / X_{4}, y=X_{2} / X_{4}, z=X_{3} / X_{4}$. The affine equation of $F_{4} \cap\left\{X_{0}=0\right\}$ is given by
$F_{4} \cap\left\{X_{0}=0\right\}: a_{04000} x^{4}+a_{03100} x^{3} y+a_{03010} x^{3} z+\cdots+a_{01003} x+a_{00103} y+a_{00013} z+$ $a_{00004}=0$.

As in the case of the canonical adjoint to F_{8}, here we blow up the origin $x=y=z=0$ and the infinitely near double line with

$$
\mathcal{B}_{t_{1}}:\left\{\begin{array}{l}
x=x_{1} \\
y=x_{1} y_{1} \\
z=x_{1} z_{1}
\end{array}\right.
$$

and

$$
\mathcal{B}_{t_{11}}:\left\{\begin{array}{l}
x_{1}=x_{11} \\
y_{1}=x_{11} y_{11} \\
z_{1}=z_{11}
\end{array}\right.
$$

By imposing that $\frac{1}{x_{1}}\left(F_{4} \cap\left\{X_{0}=0\right\}\right)\left(x_{1}, x_{1} y_{1}, x_{1} z_{1}\right)$ be a polynomial, we obtain $a_{00004}=0$.

By imposing that $\frac{1}{x_{11}}\left(F_{4} \cap\left\{X_{0}=0\right\}\right)\left(x_{11}, x_{11} y_{11}, z_{11}\right)$ be a polynomial, we obtain $a_{01003}=a_{00013}=0$. In conclusion, we kill 3 coefficients of F_{4}.

Applying the rotation of the indices, we want to prove that 15 coefficients of F_{4} remain killed. In fact, if we consider $a_{01003}=a_{00013}=a_{00004}=0$ and apply the rotation of the indices, it is easy to see that we obtain 15 distinct coefficients to be killed.

After killing the 15 coefficients, $35-15=20$ distint coefficients remain in F_{4}, i.e. $p_{g}(S)=20$.

We remember that, here again, we can conditions on the forms of degree 4, either by starting to pass through the actual triple lines and the infinitely near double surfaces (cf. Section 7.1), or by following the desingularization of F_{8} (cf. Section 7.3). The end result remains the same.

In the formula $q_{1}(X)=q_{1}(S)=p_{g}(S)+p_{g}\left(S^{\prime}\right)-\operatorname{dim}_{\mathbf{k}}\left(W_{5}\right)$, we still need to compute $\operatorname{dim}_{\mathbf{k}}\left(W_{5}\right)$ and $p_{g}\left(S^{\prime}\right)$. Using the same procedure as we used to compute $p_{g}(S)$, for W_{5} we obtain $\operatorname{dim}_{\mathbf{k}}\left(W_{5}\right)=56-15=41$. In other words, for a degree 5 form in W_{5}, we have
$F_{5} \cap\left\{X_{0}=0\right\}: a_{05000} x^{5}+a_{04100} x^{4} y+a_{04010} x^{4} z+\cdots+a_{01004} x+a_{00104} y+a_{00014} z+$ $a_{00005}=0$
and similarly we obtain $a_{01004}=a_{00014}=a_{00005}=0$.
Finally, the intersection of F_{8} with H^{\prime} is a nonsingular plane curve of degree 8 , threfore $p_{g}\left(S^{\prime}\right)=21$ and

$$
q_{1}(X)=q_{1}(S)=p_{g}(S)+p_{g}\left(S^{\prime}\right)-\operatorname{dim}_{\mathbf{k}}\left(W_{5}\right)=q_{1}(X)=20+21-41=0
$$

Lemma 7.6. $q_{2}(X)=0$.
Proof. In the proof of Lemma 7.5, we computed $p_{g}(S)=20$. In Section 7.3, we computed $p_{g}=p_{g}(X)=0$.

In the proof of Proposition 7.1, we showed that a cubic form passes through a triple line on F_{8}, and through the infinitely near double surface if 10 coefficients equate to zero. When we repeat the same procedure for the form F_{4} of degree 4, we find that 13 coefficients equate to zero. Let us find these 13 coefficients.

The equation of the degree 4 hypersurface in affine coordinates (x, y, z, t) is
$F_{4}: a_{40000}+a_{31000} x+a_{30100} y+a_{30010} z+a_{30001} t+a_{22000} x^{2}+a_{21100} x y+a_{21010} x z+$ $a_{21001} x t+a_{20200} y^{2}+a_{20110} y z+a_{20101} y t+a_{20020} z^{2}+a_{20011} z t+a_{20002} z^{2}+a_{13000} x^{3}+$ $a_{12100} x^{2} y+\cdots=0$.

Proceeding as in the proof of Proposition 7.1, here we find that the 13 cofficients to be killed are given by

$$
\begin{aligned}
& a_{40000}=a_{31000}=a_{30010}=a_{30001}=a_{22000}=a_{21010}=a_{13001}=a_{21001}=a_{12010}= \\
& a_{12001}=a_{04000}=a_{03010}=a_{03001}=0
\end{aligned}
$$

Now, we apply the rotation of the indices. Unlike the case of the proof of Lemma 7.5 , here we find that 15 coefficients are repeated. We note that this happened in the case of the cubic forms too (cf. the proof that $p_{g}=0$ in Proposition 7.1.

The remaining distinct coefficients in F_{4} are $70-13 \cdot 5+15=20$. We have thus proved that $\operatorname{dim}_{\mathbf{k}}\left(W_{4}\right)=20$ and

$$
q_{2}(X)=p_{g}(X)+p_{g}(S)-\operatorname{dim}_{\mathbf{k}}\left(W_{4}\right)=0+20-20=0
$$

This proves Lemma 7.6 and the Theorem 7.4.

References

[1] E. Bombieri: Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1973), 171-219.
[2] I. Dolgachev: Algebraic surfaces with $q=p_{g}=0$, Algebraic Surfaces, C.I.M.E., CortonaVarenna 1977, Liguori ed., Napoli (1981), 97-215.
[3] F. Enriques: Le Superficie Algebriche, Bologna, N. Zanichelli (1949).
[4] F. Enriques - L. Campedelli: Lezioni sulla teoria delle superficie algebriche, Cedam, Padova (1932).
[5] L. Godeaux: Sur une variété algébrique à trois dimensions à sections hyperplanes bicanoniques. Rev. Ci., Lima 38, No.418, 103-108 (1936).
[6] J. Kollar: Lectures on Resolution of Singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton (2007).
[7] Y. Miyaoka: Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976), 99-111.
[8] F. Oort - C. Peters: A Campedelli surface with torsion group $\mathbb{Z} / 2$, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), 399-407.
[9] M.C. Ronconi: Regular threefolds of general type with $p_{g}=0$ and large bigenus, Rend. Circ. Mat. Palermo, 61 (2012), 241-260.
[10] E. Stagnaro: On Campedelli branch loci, Annali Univ. Ferrara - Sez. VII - Sc. Mat., Vol. XLIII (1997), 1-26.
[11] E. Stagnaro: Adjoints and pluricanonical adjoints to an algebraic hypersurface, Annali di Mat. Pura ed Appl., 180 (2001), 147-201.
[12] E. Stagnaro: Normal canonical hypersurfaces, Rend. Circ. Mat. Palermo, 65 (2016), 365385.
[13] C. Werner: Branch curves for Campedelli double planes, Rocky Mt. J. Math. 36, No. 6 (2006), 2057-2073.

Received: 10 February 2017.
Accepted: 29 October 2017.

Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, 36100 Vicenza - Italy.
ezio.stagnaro@unipd.it

[^0]: 2010 Mathematics Subject Classification: 14C20, 14E05, 14J30, 14J70, 14J99, 14M05.
 Keywords: Algebraic projective hypersurfaces, bicanonical and tricanonical threefolds.

