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Abstract. Traveling waves are a near-ubiquitous phenomenon in mathematical biology, and

have been studied in the context of embryonic development, cancer growth, wound healing, and

epidemiology. Fisher’s equation is the prototypical example of a problem that admits a traveling

wave solution; it is a partial differential equation that was proposed to describe the spread of

an advantageous gene. Although past investigators formulated and analyzed models for such

translationally invariant systems at a macroscopic scale of interest, recent work has focused

on analyzing and simulating traveling wave behavior in greater detail. This paper reviews the

different scales and approaches by which researchers can model and simulate wave-like behavior,

using the Fisher equation as a pedagogic example. We discuss different algorithms for simulating

traveling waves, from traditional finite difference approaches to more recent hybrid multiscale

algorithms.

1. Introduction

One important class of problems in mathematical biology consists of the identifi-
cation, modeling, and simulation of systems that exhibit wave-like behavior, i.e.
which produce solutions that are invariant with respect to a translation. This type
of behavior has been observed in such diverse biological areas as embryonic de-
velopment [18], neurology [42], population dynamics [74], wound healing [17] and
epidemiology [16]. For example, fertilization of an egg cell by a sperm is known
to trigger a calcium ion wave throughout the zygote [53]; electrical signals that
trigger contractions of the heart can also be modeled as a wave-like phenomenon
[43]. Mathematical insight into the generation and propagation of traveling waves
may therefore help investigators better understand these natural systems.

The archetypal mathematical model that admits a constant profile, constant
speed traveling wave solution is the Fisher Equation, also known as the Fisher-
Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) Equation [25]. It is a partial dif-
ferential equation (PDE) that was originally proposed to model the spread of a
gene within a population, although it may also be used to study how any physical,
chemical, or biological species spreads over time in a domain with finite resources.
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If u(x, t) measures the density or concentration of such a species at location x and
time t, then Fisher’s Equation in one dimensional Cartesian coordinates is

∂u

∂t
= D

∂2u

∂x2
+ ru(1− u

K
). (1.1)

In Equation (1.1) D, r, and K respectively represent the species’ diffusion coeffi-
cient, growth rate, and carrying capacity; this last quantity measures the maximum
density that the domain can support. Fisher’s Equation admits spatially uniform
steady state solutions u = 0 and u = K (subject to boundary conditions). It has
been extensively studied by mathematicians as the prototypical model for a wave-
like system due to both its simplicity and amenity to analysis. It is thus a powerful
paradigm for studying biological systems that admit traveling wave behavior.

Assuming the initial condition u(x, 0) is continuous and has compact support
such that

u(x, 0) = u0(x) ≥ 0, u0(x) =

{
K, if x ≤ x1
0, if x ≥ x2

for some x1 < x2, with boundary conditions

lim
x→−∞

u(x, t) = K and lim
x→∞

u(x, t) = 0,

then it can be shown that the solution will evolve to a traveling wavefront solution
with minimum constant speed c [53]. One can make the change of variables z =
x − ct in Equation (1.1) to search for solutions of the form u(x, t) = U(z). This
reduces Fisher’s Equation to the second-order ordinary differential equation

DU ′′ + cU ′ + rU(1− U

K
) = 0, lim

z→∞
U(z) = 0, lim

z→−∞
U(z) = K. (1.2)

The solutions for U and dU
dz may be visualized in the phase plane, and a linear

stability analysis about the equilibria (U, dUdz ) = {(0, 0), (K, 0)} shows that non-

negative traveling wave solutions are possible if c ≥ 2
√
rD. For a further discussion

of analytical results for Fisher’s Equation, we refer to [24] and [53].
The analysis used to estimate the wave speed for Equation (1.1) is performed

at the leading edge of the wave front, where 0 < u(x, t)� K; the dynamics behind
the wave front (where u(x, t) = K) do not contribute to the estimate of the wave
speed. In this case, one describes the wave as having a “pulled” front [58]. In
contrast, “pushed” fronts occur when dynamics behind the wave front contribute
to its velocity. Pulled fronts can occur in any system that has wave-like behavior,
and are not only found in the one described by Equation (1.1).

Investigating traveling wave solutions with pulled fronts presents a challenge for
researchers for two reasons. Firstly, certain parameter regimes may make the wave
front very steep and thus numerically difficult to simulate. In the case of Equation
(1.1) for example, it has been found that the gradient of the wave front is inversely
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proportional to its speed c [53]. Secondly, in many biological applications the local
dynamics near the wave front may not necessarily be appropriately modeled by a
PDE. Continuous models describe the change in a macroscopic-level quantity that
can be readily observed, for example the density of cells. They can be derived from
discrete agent-based models (ABMs) that describe the quantity’s corresponding
microscopic-level representation (e.g., individual cells) by utilizing a mean-field
approximation. This assumes that on average, within a given region of space,
there is a sufficiently large number of agents such that they can be represented by a
continuous distribution [56]; examples of discrete-to-continuum model derivations
are given in [55, 21]. Although this assumption is generally valid in areas such
as chemical kinetics, where billions of molecules are present, in many biological
applications the number of individuals may be too low to justify a continuum
approximation. In such cases, it may be more appropriate to use ABMs to capture
a wave front that is commensurate with the scale of the problem.

ABMs can provide finer-scale results than PDE models, incorporate stochastic
effects (which can be particularly significant at low densities), be developed from
experimental observation, and do not require the use of a mean-field approxima-
tion [8, 35, 3, 61]. However, ABMs can be costly to simulate: the time it takes
for an algorithm to compute a realization of the model generally increases with
the number of agents [33, 62]. Furthermore, investigators have found that ABM
simulations for the system modeled by Equation (1.1) exhibit wave speeds slower
than that of the mean-field continuum model [62]. Although the average solution
to the ABMs for Fisher’s Equation can be shown to converge to Equation (1.1)
as the number of agents and realizations increase, the rate of this convergence can
be slow [62].

These facts have motivated researchers to develop so-called spatially extended
hybrid algorithms, which aim to reduce the computational cost of ABM simulation
by utilizing equivalent models that differ from each other based on their level of
description [68]. By using fine-level models close to the wave front and coarser
descriptions in the back, where the mean-field model is likely to be valid, it is
possible to accelerate computational speed whilst retaining the fine characteristics
of the wave front.

In this paper we review multiscale approaches to simulate systems with wave-
like behavior, focusing on the paradigm example of Fisher’s Equation. After
comparing several basic methods for simulating Equation (1.1) and its equivalent
ABMs, we present the different modeling scales and classes of multiscale hybrid
algorithms. Finally, we discuss a potential application of these algorithms in the
context of cancer biology. We note that this review is not a comprehensive survey
of every algorithm that can simulate traveling waves; instead it aims to provide
an overview of the different approaches mathematicians can use to investigate
translationally invariant systems with inherent multiscale behavior.
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2. Basic Numerical Methods for Traveling Wave Simulation

A variety of numerical methods have been proposed to generate traveling wave
solutions to PDEs. Table 1 presents representative schematics of basic algorithms
that can simulate (or assist in simulating) Equation (1.1). The figures include a
plot of the analytic solution to Equation (1.1) at some time tn > 0, subject to the
initial and boundary conditions

u(x, 0) = Ke−x ∀ x ∈ [0,∞), u(0, t) = K, lim
x→∞

u(x, t) = 0.

For this set of initial and boundary conditions, the wave front profile asymptoti-
cally approaches u(x, t) = K(1 + ex−ct/c)−1 to leading order [53]. This represen-
tative profile is sketched as a dotted line, while open circles represent the solution
found by each algorithm. Advantages and disadvantages of each numerical method
are outlined in Table 2. In this review, we only consider finite difference methods
and patch dynamics to solve Equation (1.1), however in practice the Finite Vol-
ume Method (FVM) [23], Finite Element Method (FEM) [19], or Method of Lines
(MOL) [65] may also be used. The middle row of Table 1 presents a numerical
method that has been developed to support the FDM/FVM/FEM in computing
solutions to Equation (1.1); it adaptively decomposes the spatial domain to reduce
computational complexity.

2.1. Finite Difference Methods

Perhaps the simplest technique for solving PDEs is the finite difference method
(FDM), which discretizes a space-time domain into a finite set of regularly-spaced
points in order to approximate the continuous PDE (such a set is called a uniform
mesh) [69]. Derivatives are estimated using difference schemes located at mesh
points. The simplest uniform mesh FDM is the forward Euler scheme, which
uses a forward difference for first derivatives and a central difference for second
derivatives [69]. We divide the finite spatial domain [0, L] into M + 1 points xi
where 0 = x0 < x1 = ∆x < ... < xM = M∆x = L. If uni denotes the numerical
solution to Equation (1.1) at mesh point xi and time tn, tn = n∆t, then ∀n the
forward Euler method for Equation (1.1) is given by

un+1
i = uni +

D∆t

∆x2
(uni+1 − 2uni + uni−1) + ∆t · runi (1− uni

K
) , 0 < i < M. (2.1)

The initial condition u0i is found by evaluating the given function u(x, 0) at each
mesh point xi. Equation (2.1) is only valid at internal mesh points; at the bound-
aries, we must determine discrete analogues of whatever boundary conditions are
used to close Equation (1.1). For example, continuous Dirichlet conditions

u(0, t) = u0(t), u(L, t) = uL(t)

are implemented by evaluating u0(t) and uL(t) at each tn. Alternatively, if Neu-
mann boundary conditions are required we can modify Equation (2.1) directly:
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Table 1: Spatial Discretization Methods: Representative Plots at t = tn. For each
algorithm, the black dotted line represents the approximate wave front to Equation (1.1),
while circles represent the numerical solution (initial and boundary conditions are given
in the text). Details of each scheme are presented in Section 2. The online article contains
a colored version of Table 1.

Algorithm

Schematic

Finite
Difference
Method,

with Uniform
Mesh

Finite
Difference
Method,

with Adaptive
Mesh

Patch
Dynamics
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Table 2: Basic Methods: Advantages and Disadvantages
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a central difference approximation at each boundary shows that if we implement
Equation (2.1) at i = 0 and i = M with the respective substitutions

un−1 = un2 , unM−1 = unM+1,

then the flux ∂u/∂x across the boundaries will become equal to 0.
FDMs reduce the continuous problem to a discrete algebraic system that must

be solved at every specified time point. FDMs are simple to implement and also
have well-known stability properties. For example, Equation (2.1) is stable at
internal mesh points provided [69]

D∆t

∆x2
≤ 1

2
.

Other finite difference schemes such as the Crank-Nicolson method [15] or the
backward Euler method [69] have been proven to be unconditionally stable at
internal mesh points if uniform spacing is used.

A further property used to compare FDMs is their order of accuracy, which is
determined by the schemes’ local truncation error. The truncation error, τ , is the
error generated by the difference scheme at each time step. As such, it depends
on both ∆t and ∆x [69]. For example, the truncation error τ of Equation (2.1) at
internal mesh points is given by

τ =
1

2
∆t

∂2u

∂t2
− 1

12
∆x2

∂4u

∂x4
+O(∆t2) +O(∆x4), (2.2)

which may be rewritten using O-notation as O(∆t) +O(∆x2). FDMs with higher
orders of accuracy than Equation (2.1) converge more quickly to the analytic
solution than the forward Euler scheme when the time step and/or mesh spacing
are decreased. The Crank-Nicolson method is an example of one such higher order
scheme; it has a local truncation error of order O(∆t2) +O(∆x2) [15].

Despite these advantages, there are some issues in simulating traveling waves
with FDMs. The numerical solution obtained by a FDM is only known at the
specified mesh points; solution values elsewhere must be estimated via interpola-
tion. For Fisher’s Equation, the fronts of traveling waves can be steep, depending
on the initial conditions and model parameters used [53]. If the spatial distance
∆x between mesh points is too large, then the FDM may fail to capture important
characteristics of the solution. In such cases, refined mesh spacing near the wave
front may be needed to fully resolve the solution. If a uniform mesh is used, how-
ever, mesh refinement will increase the number of equations that must be solved
at each time step; additionally areas both far ahead of and behind the wave front
will be greatly resolved. Since the solution values in these latter regions are slowly
varying, an excessive amount of computational time is expended tracking “unin-
teresting” parts of the solution. For conditionally stable methods, the time step
∆t may also have to be reduced to ensure that the numerical solution converges
to the analytic solution of Equation (1.1) when the mesh is refined.
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2.2. Adaptive Mesh Decomposition Algorithms

The above considerations have motivated the development of adaptive meshes for
solving PDEs, which aim to achieve the high resolution required to resolve a wave
front while limiting computational effort elsewhere [7, 11]. There are two main
classes of adaptive meshes, depending on the manner in which the mesh is updated.
In h-refinement methods, mesh points are added or removed from the grid based
on estimates of the solution error [7]. Although such adaptive algorithms are well-
established in the literature, they can be complex to implement and it can be
difficult to control how many mesh points are added to the domain [11].

By contrast, r -refinement methods do not change the number of grid points in
the mesh; instead they shift their spatial location. Mesh movement is implemented
by mapping a uniformly-spaced mesh to a non-uniform grid in which points are
more dense in regions of interest. Regions of interest are identified via a monitor
function M . The monitor function is designed to equidistribute mesh points; it
can depend on the solution’s properties (such as arc length or curvature) and/or
estimates of the error. For a more extensive discussion of moving mesh algorithms
and their implementation, we refer to the review by Budd et al. [11].

r -refinement algorithms have several limitations, perhaps the most notable be-
ing that the level of solution resolution depends on the number of mesh points.
This issue is less severe than in the case of uniform mesh FDMs, however, as the
adaptive algorithms will distribute more mesh points near the wave front. Some
moving mesh methods ensure the equidistribution of mesh points by introduc-
ing additional PDEs that are derived from necessary conditions on the monitor
function, however they may increase the computational cost of the algorithm [11].
Mesh entanglement, in which two or more mesh points “cross,” may also occur for
some moving mesh algorithms [11]. Finally, great care must be taken if an adaptive
mesh is used with a conditionally stable FDM, as instability may result if the time
step ∆t is not also changed. Interestingly, some FDMs which are unconditionally
stable at internal mesh points for uniform meshes (such as the Crank-Nicolson
method) are only conditionally stable when moving meshes are used [52].

2.3. Patch Dynamics

There may be situations in which an ABM exists for modeling a translationally
invariant phenomenon but a continuum model that describes its macroscale behav-
ior does not exist in closed form (although in principle it does exist). In addition,
it may not be tractable to simulate the ABM over large biologically relevant scales
of space-time: although we may wish to simulate our ABM for some time inter-
val ∆t, it may not be possible to do so over the entire spatial domain for longer
than k short time intervals of duration δt, with kδt � ∆t. In such cases, Patch
Dynamics (PD) may be a useful algorithm [63, 64, 39, 45, 47]. PD accelerates
and coarse-grains simulations of a microscopic-level ABM in order to estimate its
equivalent dynamics on the macroscopic scale. In practice, the ABM is simulated
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only on small patches of space-time, and the solution is interpolated from these
microscopic-level results. The full PD scheme combines three existing algorithms:
(i) a coarse time-stepper [72], (ii) a gap-tooth scheme [45], and (iii) projective
integration [46].

The coarse-time stepper computes a macroscopic-level solution from the results
of a microscopic-level model (this is assumed to be a discrete ABM, but can, in
principle, be continuous) [72]. The coarse time-stepper requires four pieces of
information: (1) macroscopic initial data (which is assumed to be given), (2)
the microscopic model, (3) a “lifting” operator which fine-grains the macroscopic
data to generate consistent microscopic initial conditions for the ABM, and (4) a
“restriction” operator that coarse-grains ABM results to generate equivalent data
on the desired macro-scale. We use the following illustrative example to describe
how the coarse-time stepper works. Suppose we wish to know how average cell
densities evolve under the influence of chemotaxis, but only have data at some
initial time and an ABM that can simulate the movement of individual cells.
Using the lifting operator on the cell density data, we can determine the position,
velocity, orientation, and so on of individual cells. The ABM is then simulated
using these initial data, and at the end of the realization the final states of each
cell are used by the restriction operator to determine the cell density profile at
this later time point. In this manner, the time stepper estimates the macroscopic
behavior of a microscopic ABM.

PD incorporates the coarse time-stepper along with the gap-tooth scheme [45]
in order to reduce the number of agents that must be simulated by the ABM. In the
gap-tooth scheme, the spatial domain is subdivided into a set of non-overlapping
patches, each of size h, whose midpoints lie a distance ∆x apart (this requires
that h ≤ ∆x). In principle the entire domain can be covered by patches, but
typically only a fraction of the domain is used in order to accelerate computations.
The ABM is simulated only within the patches, and the final results are used
by the restriction operator to estimate the macroscopic solution at each patch
midpoint (see the schematic in Figure 1) [45, 64]. Since only a fraction of the
domain is simulated, interpolation between patches is needed to obtain a globally
accurate solution. In practice, this is accomplished by imposing suitable boundary
conditions on each patch, and these are constructed as follows for the case of one
spatial dimension. If uni represents the macroscopic data at patch i and time tn,
then the spatial gradient of the macroscopic solution midway between two patches
is approximated by the following central difference formula:

si+1/2 :=
∂u

∂x
|x=(xi+xi+1)/2 ≈

uni+1 − uni
∆x

. (2.3)

The resulting values si+1/2 are then linearly interpolated to approximate the gra-
dient at each patch boundary. The ABM implements these boundary conditions to
match the prescribed flux between patches (for examples of implementing reactive
boundary conditions for microscopic models, we refer to [32, 22]).

The final algorithm that PD implements is known as projective integration [46],
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which uses the properties of stiff differential equations to accurately accelerate nu-
merical solutions by “skipping” forward in time. Stiff differential equations have
at least one dependent variable that lies along a “slow manifold,” meaning that its
time derivative does not change markedly over long time periods (for instance, over
a time period ∆t). Other dependent variables will lie along a fast manifold, mean-
ing that their values change rapidly over the short time scale δt� ∆t. Projective
integration accelerates numerical computations of stiff equations by exploiting the
slow manifold: after simulating the stiff differential equations for k short time
steps of size δt, the time derivative of the slow variable is estimated and the solu-
tion extrapolated over the time interval ∆t− kδt. One projective algorithm is the
forward Euler projection scheme: assuming u(xi, t) is the macroscopic solution at
location xi and time t, it is given by

u(xi, t+ ∆t) = u(xi, t+ kδt) + (∆t− kδt)∂u
∂t
, (2.4)

∂u

∂t
≈ u(xi, t+ kδt)− u(xi, t+ (k − 1)δt)

δt
. (2.5)

The purpose of running the algorithm for k short time steps is to dampen errors
generated after extrapolation: because solutions will converge to the slow manifold,
running the algorithm for larger values of k improves the estimate in Equation
(2.5). In addition, any errors that result from extrapolation will be small due to
the slow manifold, provided the projective algorithm is numerically stable [46].

Although the projective integration algorithm was originally formulated to
study stiff differential equations, a framework has been developed to simulate
systems with self-similarity and/or constant speed, constant profile traveling wave
solutions [41]. Here the projective step is conducted in a co-evolving frame of
reference. In the case of Equation (1.1), for example, the macroscopic solution at
location xi and time tn would first be shifted by xi − ctn before projection, where
c is the traveling wave speed determined by the parameters of Equation (1.1) (see
Section 1). Since traveling wave solutions to Equation (1.1) are invariant in the
frame x−ct, this ensures that the time derivative of the macroscopic solution does
not change much between successive steps of the algorithm.

For each time step of size ∆t, the full PD algorithm in one spatial dimension
works as follows (see the schematic in Table 1 for a visual representation, and note
that the steps listed below correspond to those indicated on the figure):

0. Calculate Patch Boundary Conditions. Using local macroscopic data,
the spatial gradient at each patch boundary is calculated using Equation
(2.3) and linear interpolation.

1. Lifting/Fine-Graining. Using the macroscopic-level data, a consistent
initial condition is created for the microscopic model.

2. Microscopic Simulation. The boundary conditions identified in step (0)
are applied at patch endpoints. Using an appropriate stochastic simulation
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algorithm [21, 33, 50], the solution is evolved over k time steps of duration
δt (see step (4)).

3. Restriction/Coarse-Graining. Using the microscopic results, macroscopic
solutions are estimated at the kth and (k − 1)th time points.

4. Projective Integration. The time derivative of the macroscopic variable
is approximated using Equation (2.5) and used to extrapolate the solution
at time ∆t� (k + 1)δt.

One advantage of using PD is that it can dramatically accelerate ABM simu-
lations; indeed, in [20] the PD algorithm was 1250-2500 times faster at computing
solutions for a simple chemotaxis model than traditional stochastic simulation al-
gorithms (SSAs). In addition, the PD solution was qualitatively similar to that
found by the ABM. PD represents an efficient and accurate way of simulating the
macroscopic behavior of ABMs over long times and spatial distances. However,
if one has a closed-form macroscopic model that describes the average large-scale
behavior of the ABM, then traditional methods like FDMs are typically much
faster at computing solutions. In addition, stability conditions of FDMs are bet-
ter characterized than those of PD and it is usually clear how to adjust meshes
for FDMs to improve solution accuracy.

The multi-layered nature of PD makes controlling errors a difficult process as
the mesh spacing, SSA, patch boundary conditions, projective integration scheme,
lifting method, and restriction procedure all contribute to the overall error. Atten-
tion must be paid to the stability of the gap-tooth scheme and projective integra-
tion in order to ensure solution convergence; this may have to be evaluated on a
problem-specific basis [45, 46, 20, 41]. In [45], the truncation error of an idealized
PD algorithm was found to be of order O(∆t) + O(∆x2) + O(|∆x2 − h2|), where
∆t is the macroscopic time interval, ∆x is the distance between patch midpoints,
and h is the size of a patch. The lifting and restriction operators also tend to be
developed on a problem-specific basis, and it may not be evident what functions
are appropriate; this can make it difficult to implement the algorithm. Finally,
the microscopic states generated by the lifting operator are not necessarily unique,
and, therefore, multiple realizations may be needed at each time step in order to
capture the system’s average behavior.

In an attempt to reduce errors resulting from the imposition of inconsistent
patch boundary conditions (step (0) of PD), some authors have introduced “buffer”
regions, which lie between the patch boundaries and a “core” region surrounding
the patch midpoint [64, 47, 48, 49, 51, 20]. The PD algorithm with buffers is
identical to the one outlined above except for two main changes. The first lies
within step (0): boundary conditions may be arbitrarily defined on each patch,
rather than calculated from local macroscopic data; for example no-flux boundary
conditions could be imposed. The other change corresponds to step (3) of the
algorithm: only agents that lie within the core region of a given patch are used to
develop macroscopic data at its midpoint xi. The buffer region’s size can be taken
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as the distance an agent is expected to travel from a patch boundary towards its
respective core within the time period kδt. Numerical artefacts associated with
inconsistent boundary conditions are thus less likely to influence the macroscopic
solution. A more detailed description of buffer regions is given in Samaey et al.
[64]. Their article includes a proof of the PD algorithm’s convergence to a model
diffusion problem in which buffers are used.

3. Multiscale Modeling of Fisher’s Equation

In broad terms, mathematical models can be formulated at macroscopic, meso-
scopic, and microscopic scales (or combinations thereof). Macroscopic models
typically describe systems where a mean-field approximation is assumed to be
valid, and thus they describe continuous quantities such as average concentrations
or population densities. Models at this scale can therefore be formulated as PDEs
or stochastic partial differential equations (SPDEs). Macroscopic models are ex-
tremely useful because they usually measure experimentally observable quantities,
have a large body of research dedicated to their simulation (see Section 2 for ex-
amples), and tend to be analytically tractable. For example, the minimum wave
speed of Equation (1.1) can be defined in terms of the model parameters r and
D. Macroscopic models do however have their disadvantages: as previously men-
tioned, the mean-field approximation may cease to be valid at low concentrations,
and thus the (S)PDE may not be accurate in regions with small solution values.
This can result in the model overestimating or even underestimating traveling
wave speeds [62]. In addition, macroscopic models cannot provide the locations
of specific agents, as they only describe the average behavior of a system. If a
deterministic PDE is used as a macroscopic model, then stochastic effects that
occur in nature are not taken into account (although they can be included in
SPDEs). Macroscopic models thus sacrifice potentially important biological detail
for computational and analytical tractability.

Microscopic models can be thought of as the opposite of macroscopic mod-
els: they provide very detailed descriptions of biological behavior at the cost of
analytic and computational tractability. Microscopic models track the locations
of individual agents: for “on-lattice” models, individuals occupy prescribed grid
sites, while for “off-lattice” models, position is represented as a continuous vari-
able (both types of models can be formulated in one or more spatial dimensions).
These systems are simulated using stochastic simulation algorithms (SSAs) such
as the Gillespie algorithm [34, 21, 33] or a discretized stochastic differential equa-
tion (SDE) [50]. Models at this scale are usually straightforward to construct and
implement, and can readily account for effects like volume exclusion [60]. However,
simulation times increase with the number of agents. Due to the presence of noise,
these models tend to be harder to analyze than PDEs: it may not be possible to
derive a continuous, closed-form macroscopic model. In situations where a contin-
uum description of the microscopic model can be derived (as for Equation (1.1)),
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multiple realizations of the microscopic model may be needed to converge to the
macroscopic solution, and the rate of this convergence can be slow [62].

Mesoscopic models can be regarded as a “halfway point” between macroscopic
and microscopic systems: they provide more detailed information than macro-
scopic models but are faster to simulate than microscopic ones. To model Equation
(1.1) in this manner, we will consider a homogeneous population of identical agents
that are moving in one spatial dimension and subject to birth and death processes
(extension to multiple spatial dimensions is straightforward). Such mesoscopic
systems are often termed compartment-based models because they track agent
numbers within specific regions; the dependent variable is thus discrete rather
than continuous. The Gillespie SSA or a version of it [34, 21, 33] is used to simu-
late these systems. Each compartment is treated as a chemical species in a reaction
network. For example, particles move between adjacent compartments at a rate
proportional to their diffusion coefficient. Within each compartment, they are
created at rate r, which is the same value as the one in Equation (1.1); similarly,
particles are destroyed at a rate such that the average carrying capacity behind
the wave front is equal to K from Equation (1.1). The average number of particles
in each compartment will evolve according to a chemical master equation, which
facilitates the analysis of these models. As the number of agents and realizations
of the SSA increase, the master equation converges to a mean-field macroscopic
model. Therefore, continuous systems can be derived from mesoscopic models and
vice versa. In certain cases however, stochastic effects may preclude derivation of
closed-form results. Another limitation of mesoscopic models is that they cannot
determine the precise location of an agent in space, although they can identify a
small spatial region in which the agent can be found. These models are therefore
less detailed than microscopic ones. In addition, the time for a SSA to compute
a realization of the system increases with the number of agents, thus mesoscopic
models are slower to simulate than macroscopic ones. For mesoscopic models of
Equation (1.1), it is known that the wave speed depends on the number of agents
in compartments near the wave front [62, 10, 73]. It may also be the case that
mesoscopic models will overestimate traveling wave speeds of other biological sys-
tems. As for microscopic models, the mesoscopic solution may converge slowly to
its chemical master equation, and many realizations of the SSA may be required.

Table 3 contains representative schematics of all three modeling scales dis-
cussed above. Table 4 contains summaries of each scale’s respective advantages
and disadvantages, which are further elaborated in the above discussion.

4. Hybrid Multiscale Modeling and Simulation

Given the difficulties of simulating mesoscopic and microscopic models with large
numbers of agents and the lack of detailed information in macroscopic ones, re-
cent efforts have focused on developing multiscale hybrid simulation algorithms,
which model and simulate a single dependent variable at two different scales of
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Table 3: Modeling Scales: Representative Schematics and Assumptions. u represents
average population density, while Nagents represents number of agents within a compart-
ment. All graphs depict the solution to the 1D Fisher Equation with the same initial
and boundary conditions as the figures in Table 1.

Scale and Representative
Schematic

Assumptions, Types of Algorithms
Used

Macroscopic
• Mean-field Approximation is assumed

to be valid

• Continuous variable (PDE or SPDE)

• Tracks average concentration/density

Mesoscopic
• Tracks number of agents within a given

spatial region

• Discrete variable (SSAs find solutions)

• Master equation approaches mean-field
model in limit

Microscopic
• Discrete variable, tracks positions of all

agents

• Each agent updated using discretized
stochastic differential equation
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Table 4: Modeling Scales: Advantages and Disadvantages
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representation [68]. Such algorithms seek to provide the same fine-grained results
as microscopic or mesoscopic models in certain parts of the domain, whilst pro-
viding computational tractability by having larger-scale models elsewhere. The
algorithms can be divided into three main categories, depending on which scales
are used: macroscopic-microscopic, mesoscopic-microscopic, and macroscopic- mi-
croscopic hybrid algorithms (see Tables 5 and 6). For a more detailed review of
these methods, we refer to the paper by Smith et al. [68].

4.1. Macroscopic-Mesoscopic Hybrid Algorithms

Macroscopic-mesoscopic algorithms decompose a spatial domain into two regions:
in one, a PDE or SPDE is used to model the system’s behavior, while in the other
a compartment-based model tracks individuals. In the schematic in Table 5, the
macroscopic and mesoscopic regions are denoted by ΩP and ΩC , respectively. The
algorithm depicted is the Pseudo-comparment Method (PCM) originally described
by Yates et al. [76]. The domains ΩP and ΩC are determined as follows: if the
concentration of individuals within a compartment is lower than some predefined
threshold value, then the mesoscopic description is used and solved with a SSA,
otherwise the macroscopic model is simulated using an established method for
solving (S)PDEs (see the previous sections). The threshold value is arbitrarily
defined and taken to be a value above which a mean-field approximation is likely
to hold. Macroscopic-mesoscopic algorithms provide more information about agent
locations than (S)PDEs, although they are not as detailed as microscopic ABMs.
They are able to account for stochastic effects at low concentrations near the wave
front due to the use of a mesoscopic model in that region. The use of a mean-
field model is better justified because the macroscopic model is only simulated in
regions of high agent density. These algorithms are also faster to simulate than
fully mesoscopic models, since the existence of a PDE region reduces the number
of agents that need to be simulated by the compartment-based model.

Macroscopic-mesoscopic models have weaknesses, the most obvious being that
the precise locations of individual agents are still indeterminate. The wave speed
found in ΩC may still depend on the number of agents per compartment in the
vicinity of the wave front, like for fully mesoscopic models. In addition, conver-
gence of the hybrid algorithm to the mean-field model may be slow and require
large numbers of agents and realizations. Since particles are transferred stochas-
tically between ΩC and ΩP , for each single realization of the algorithm there will
be some errors near the interface between the two regions [68].

Specific macroscopic-mesoscopic algorithms differ in how they couple ΩP and
ΩC to reduce miscalculations of the flux across their shared interface. In the
Pseudo-compartment Method [76], a fictitious compartment exists in the PDE
region ΩP , and particles are transferred between the two regions according to
the rules of the mesoscopic model. A different method by Harrison et al. [37]
imagines a region in which the PDE description and compartment model overlap.
More examples of coupling conditions are found in the review by Smith et al. [68].
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Table 5: Hybrid Multiscale Algorithms: Representative Schematics. All graphs model
the 1D Fisher Equation with the same initial and boundary conditions as the figures in
Table 1.

Algorithm

Schematic

Macroscopic-
Mesoscopic

Hybrid
Algorithm
[37, 68, 76]

Mesoscopic-
Microscopic

Hybrid
Algorithm

[62, 26, 27, 28,
68]

Macroscopic-
Microscopic

Hybrid
Algorithm

[67, 68]

4.2. Mesoscopic-Microscopic Hybrid Algorithms

In contrast to macroscop-ic-mesoscopic schemes, mesoscopic-microscopic hybrid
algorithms do not use a deterministic description anywhere in the domain. Instead,
the solution is divided into two regions ΩC and ΩB , in which the mesoscopic and
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Table 6: Hybrid Multiscale Algorithms: Advantages and Disadvantages
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microscopic models for behavior are respectively solved. As in the previous class
of algorithms, the microscopic model is used if the number of agents within a
compartment length from the shared interface is less than an arbitrary threshold
value, otherwise the mesoscopic compartment-based model is simulated. These
algorithms thus provide the same fine-level detail near the wave front as a complete
microscopic model. In addition, because compartment-based models are faster to
simulate than particle-based ones, these algorithms compute a solution faster than
a full microscopic model. Some mesoscopic-microscopic algorithms are adaptive
[62, 28] and thus are well-suited to simulate traveling waves; in addition, there are
schemes that can simulate systems in two or more spatial dimensions [28, 27].

All mesoscopic-microscopic algorithms follow the above description but differ
specifically on how ΩC and ΩB are coupled. For example, in the (adaptive) two-
regime method ((A)TRM) [62, 27, 26], particles leave ΩC at a rate that is designed
to make the flux across the shared interface I = ∂ΩC ∩ ∂ΩB consistent with a
purely diffusive flux (additional fluxes such as one generated by chemotaxis are
similarly implemented). Particles are transferred from ΩB in two ways: they are
absorbed if an agent enters ΩC within one time step, or they are absorbed with
a probability P that measures how likely a particle beginning in ΩB enters and
then leaves ΩC within one time step. An alternative coupling scheme is given
by the Ghost-Cell Method [28] (shown in the schematic in Table 5), in which a
fictitious compartment exists within the microscopic region ΩB , and particles are
transferred across I according to the mesoscopic model’s rules.

One of the main disadvantages of using mesoscopic-microscopic algorithms is
that the time to compute a solution is proportional to the number of agents [68].
In addition, convergence to a continuous mean-field model (if it exists) can be slow
and may require many realizations. It has been shown that for some algorithms,
this convergence only occurs if h ∼ ∆t and ∆t → 0, where h represents the
length of a compartment in the mesoscopic model and ∆t is the time step of
the microscopic model (this is the case for the (A)TRM, but not the Ghost Cell
Method, in which only ∆t→ 0 is required to ensure convergence) [28].

4.3. Macroscopic-Microscopic Hybrid Algorithms

The last multiscale hybrid algorithms that we consider are macroscopic-microscopic
methods. These are nearly identical to macroscopic-mesoscopic algorithms, but
instead of having a compartment-based model, a microscopic ABM is used in the
region ΩB . Algorithms are distinguished by how they couple the macroscopic do-
main (ΩP ) with the microscopic domain (ΩB). For example, the auxiliary region
method (ARM, pictured in the schematic in Table 5) [67] couples the regions in a
manner similar to the Ghost-Cell and Pseudo-compartment Methods, in that two
fictitious compartments are assumed to exist in ΩP and ΩB . The flux between
these two compartments is governed by the rules of a mathematically consistent
mesoscopic model. An alternate algorithm presented by Franz et al. [31] takes
particles that have crossed into ΩP within one time step ∆t to be equivalent to
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continuous Dirac δ-functions, while the PDE solution is allowed to “spill out” into
ΩB . The PDE solution’s integral within ΩB is, with the appropriate scaling, taken
to be equivalent to the probability of creating a new particle in ΩB [31].

Macroscopic-microscopic hybrid algorithms provide the same computational
advantages as macroscopic-mesoscopic methods, except that individual particles
near the wave front may now be tracked. Since mesoscopic models are not used
behind the wave front, the time that it takes to simulate this part of a traveling
wave will not depend on the number of agents being simulated. Some algorithms
of this type are adaptive, and therefore can reduce the number of agents that must
be simulated in ΩB even further [68, 67].

One major concern in using macroscopic-microscopic algorithms is how to cor-
rectly couple the continuum and discrete models being used: it is still an open
question how to best accomplish this task [68]. For example, the average solution
of Franz et al.’s algorithm converges to the mean-field macroscopic model, but it
has been discovered that an overlap region in which the PDE and particle-based
model co-exist is required to match the hybrid algorithm’s variance with that of
the microscopic model [31]. The existence of an overlap region creates technical
issues as it is not clear how to represent bimolecular reactions, since one agent
may be represented by the continuum model and another by the microscopic one.

5. Applications and Discussion

In this article, we have reviewed several methods for modeling and simulating sys-
tems that exhibit wave-like behavior. We began with a discussion of established
algorithms that can simulate behavior at the macroscopic level, ranging from fi-
nite difference methods to patch dynamics (although the PD algorithm directly
simulates a microscopic ABM, numerical solutions are represented at the macro-
scopic level). After comparing the three main scales at which multiscale hybrid
algorithms are constructed, we then presented several schemes that can utilize
detailed descriptions of biological behavior near the wave front whilst maintaining
computational tractability by using coarser models elsewhere. Such an approach
maximizes the benefits of modeling systems at a fine scale while simultaneously
minimizing the computational costs of doing so. In addition, many hybrid al-
gorithms have adaptive frameworks that facilitate tracking of traveling wave so-
lutions. Therefore, hybrid multiscale algorithms offer the possibility of efficient
detailed simulation of systems that exhibit wave-like behavior.

As a practical example of a system in which hybrid multiscale algorithms can
be applied, we now consider the phenomenon of angiogenesis, the process by which
new blood vessels are created from existing vascular networks [29, 36, 75]. An-
giogenesis is important in cancer biology, as tumors can stimulate angiogenesis
by releasing tumor angiogenic factors (TAFs) such as vascular endothelial growth
factor (VEGF), which activate endothelial tip cells lining the walls of existing
capillaries [75, 14]. Tip cells move towards the TAF source, creating trails of new
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Figure 1: Density of tip cells (left) and vessels (right) given by Equation (5.1) at times
t = {0.2, 0.4, ..., 1.8}. The tumor is located at x = 0, while the parent blood vessel is
located at x = 1. The parameter values are χ = 0.4, α0 = β = 50, D = 10−3, α1 = 10,
ν = 0.2, λ = 1, γ = 0.25. The initial condition are n(x, 0) = ρ(x, 0) = 0 for 0 ≤ x < 1,
n(1, 0) = ρ(1, 0) = 1, c(x, 0) = 0 for 0 < x ≤ 1, c(0, 0) = 1. The boundary conditions are
n(1, t) = e−1.5t, p(1, t) = 0.05 + 0.95e−1.5t, n(0, t) = ρ(0, t) = c(1, t) = 0, c(0, t) = 1.

endothelial cells in their wake [59, 40, 9]. The movement of tip cells (and by exten-
sion, endothelial cells) is thought to be dominated by directed chemotaxis rather
than random motility [9]. Tip and endothelial cells undergoing angiogenesis have
been observed to move in traveling wave-like patterns akin to those of bacterial
cells moving chemotactically [1, 44].

Early mathematical models of angiogenesis [5, 12] were phenomenological and
formulated at the macroscopic scale. They are generally called “snail-trail” models
because the rate of blood vessel formation is assumed to be proportional to the
flux of tip cells in the domain. One particular model of angiogenesis that relied
on the snail-trail approach was developed by Byrne and Chaplain [12, 13] for a
2D corneal assay. Letting n(x, t) be the density of tip cells at location x and time
t, ρ(x, t) the density of blood vessels, and c(x, t) the concentration of TAF, their
complete non-dimensionalized system in 1D is given by

∂n

∂t
= D

∂2n

∂x2
− χ ∂

∂x

(
n
∂c

∂x

)
+ α0ρc+ α1ncH(c− ν)− βnρ,

∂ρ

∂t
=

∣∣∣∣D∂n∂x − χn ∂c∂x
∣∣∣∣− γρ,

∂c

∂t
=
∂2c

∂x2
− λc− α1ncH(c− ν).

(5.1)

Here H(·) is the Heaviside step function, D the diffusion coefficient of cells, χ
their chemotactic sensitivity, α0 their rate of branching from other sprouts, α1

their branching rate from tip cells, β the rate of tip-elimination by collision with a
vessel, γ the rate of vessel pruning and λ the rate of TAF degradation. Results for
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both the tip cell and vessel densities are given in Figure 1, from which it is clear
that both quantities exhibit traveling wave behavior. Other macroscopic models
of angiogenesis did not use the same snail-trail approach as Equation (5.1), but
traveling wave solutions to these systems have been identified nevertheless [57].
For a review of other macroscopic models of angiogenesis, we refer to [66].

In contrast to early angiogenesis models, the last twenty years have seen a
shift in focus to modeling the cellular-level microscopic behavior of angiogenesis
[66, 2]. Two reasons for this shift include the desire to visualize the capillary
networks created by such models and to create models inspired by experimental
observation. Another important reason is that, as in the Fisher Equation, the
dependent variables exhibit low densities in certain regions, calling into question
the validity of the continuum (mean-field) model assumption. One of the earli-
est ABMs for angiogenesis was developed by Anderson and Chaplain [4], via a
continuum-to-discrete derivation. Other researchers have developed microscopic
models based on stochastic differential equations [71], the cellular Potts model
[6], or other considerations [66]. Some have even developed compartment-based
models of angiogenesis: Spill et al. created a model of this type that was designed
to be mathematically consistent with Equation (5.1) [70].

The insights from smaller-scale models of angiogenesis have been limited by the
high computational cost of simulating agent-based models. Multiscale approaches
are thus increasing in prevalence [2, 66, 38]; in this context, however, “multiscale”
refers to the process of modeling different dependent variables at a variety of scales.
For example, the concentration of VEGF is typically modeled by a macroscopic
PDE, while tip and endothelial cells are simulated via ABMs. This approach differs
from the algorithms presented in Section 4, where a single dependent variable was
modeled at multiple spatial scales. While the research on single species hybrid
algorithms is still in its infancy, the literature on this other type of multiscale
simulation is more extensive (for details, see Franz and Erban [30]).

In summary, high-level PDE models for macroscopic behavior have a long his-
tory of use in mathematical biology and have advanced our knowledge enormously.
In this review, we have raised issues over the validity of these models in the case
of their application to intrinsically multiscale processes. We have compared and
contrasted a range of modeling and numerical simulation methods that have been
developed to address such problems. As we have seen, these pose computational
and mathematical challenges when applied to complicated biological processes.
An open question that remains to be addressed in the context of traveling wave
phenomena is how to evaluate the error induced by the mean-field approximation,
and compare it to other modeling errors such as those for parameter estimation.
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