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Numerical simulations of different models describing
cerebrospinal fluid dynamics

Licia Romagnoli

Abstract. The aim of this paper is to present an extensive overview of numerical simulations

aimed at confirming and completing the theoretical results obtained in the analysis of some

cerebrospinal fluid dynamics models which are treated from a purely mathematical view point.

The present study is designed to support the first attempts in the approach to these physiological

models from a more theoretical standpoint since their investigation in literature only concerns

the modelization and the clinical feedback.

1. Introduction

The cerebrospinal fluid (CSF) perfuses the cerebral ventricles and the cranial and
spinal subarachnoid spaces (SAS). An anatomical overview of spaces filled with
cerebrospinal fluid is shown in Fig. 2. This physiological body fluid is not static,
but shows a pulsating movement within the ventricular system and between the
cranial vault and spinal compartments, overlapped by the bulk flow affected by
the fresh production and by final reabsorption in venous systems. In order to
guarantee the normal brain function, the pulsatile pattern is fundamental but
several diseases are able to destabilize the complex intracranial equilibrium by
affecting the CSF flow dynamics.

Recent efforts in scientific and clinical communities are aimed precisely at
quantifying the critical parameters relating to normal intracranial dynamics and
at identifying the deviations characterized by the diseases. The intracranial pres-
sure (ICP) is extremely relevant but the only ICP measurement technique avail-
able at the moment is in vivo. Furthermore, CSF flow velocities, the motion of
the brain and the deformations which take place inside the skull and the spinal
compartments can be achieved without applying invasive techniques.

In vivo medical imaging provides an impressive overview in the intracranial and
spinal dynamics. Image data are essential in order to accurately define anatomical
spaces of the patient, to determine blood and cerebrospinal flow, and to track the
biodistribution of pharmacological agents transported by the pulsatile CSF. Since
in vivo imaging often guarantees only measurements in a single localized point,
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Figure 1: Cerebrospinal fluid circulation.
c©Copyright (2018) http://thescienceinfo.com/cerebrospinal-fluid-its-formation-and-

circulation/ .

http://thescienceinfo.com/cerebrospinal-fluid-its-formation-and-circulation/
http://thescienceinfo.com/cerebrospinal-fluid-its-formation-and-circulation/


Numerical simulations for cerebrospinal fluid dynamics 291

researchers and clinical operators are forced to hypothesize about the physiological
and biomechanical interactions between the central nervous system (CNS) com-
partments. Nevertheless, speculations without quantitative proof have so far not
consolidated our knowledge about brain disease enough to improve the treatment
of subjects affected by diseases.

Quantitative models are fundamental to provide difficult predictions in order
to support new intuitions about the fluid dynamics of blood and cerebrospinal fluid
in the central nervous system. In this scenario, the important role of mathematical
models is evident since they are able to achieve a better interpretation about in
vivo data detected at multiple length scales and anatomical positions inside the
intracranial pattern.

The purpose of this paper is to present an overview of numerical simulations
aimed at confirming and completing the theoretical results obtained in [8] and
[9], where the cerebrospinal fluid (CSF) dynamics models analyzed are mainly
treated from a mathematical point of view. In the mentioned papers the authors
study CSF models introduced by Linninger et al. ([21]) and Marmarou et al. ([24,
26]), and prove first local existence and uniqueness of solutions for the systems
of equations which rule the analyzed dynamics, then they investigate the global
solutions by focusing on the nonlinear equation describing the CSF flow velocity.
In particular, it is proved that these solutions exist and are unique under proper
restriction conditions on the flow velocity and intracranial pressure initial data.
We point out that, although we will try to preserve the most of the real data
and structures for the CSF dynamics, it is clear that, by adopting the simplifies
assumptions employed in [8] and in [9] for the detailed mathematical analysis,
we will lose some underlying information and physiological behaviors, one among
them is the correct fluid-structure interaction at the interfaces of the different
compartments since zero boundary conditions have been assumed.

We will carry out the numerical simulations based on three major topics: a
good approximation of the equations, a numerical method which is not expensive
in terms of computational costs, boundary and initial conditions which fulfill the
mathematical analysis of the cerebrospinal fluid dynamics models treated in [8]
and in [9]. In order to assess the usefulness of the theoretical analysis developed
in the aforementioned papers, we discuss the numerical results from a qualitative
standpoint and when available, we compare them with quantitative information
derived from literature or experimental data, even though some assumptions are
a bit far from the real physiology of the cerebrospinal fluid.

Section 2 begins with a current view of the intracranial dynamics connecting
the cerebrospinal fluid to the vascular pulsation. In Section 3 we move from a
description of the parameters and the quantities that are involved in all models we
will treat numerically, and the range of values they are allowed to assume through-
out the particular CSF dynamics process described by the models. Moreover, we
will introduce the three compartmental CSF models (Model A, A1, A2) that
represent the core of the mathematical analysis of [8] and [9] for which we want
to perform proper numerical simulations. Every model will be supplemented by
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suitable initial and boundary conditions that, wherever possible, will comply with
the clinical data.

Then, in Section 3, we will point out the goal of the present paper.
Furthermore, in Section 4, we proceed by defining the numerical scheme for

the three models and we carry out the numerical simulations in two different cases:
first, we fix initial data which satisfy the conditions required by the global existence
theorems proved in [8] and in [9], then, we choose initial data that violate them.

Finally, we conclude with some fundamental considerations in Section 5.

2. Hints on physiological intracranial dynamics

2.1. Cerebrospinal fluid motion in the cranial vault

The cerebrospinal fluid is a clear fluid with density and viscosity similar to those
of water. It surrounds the brain and spinal cord and its protein content is lower
than that of blood plasma ([29]). CSF perfuses the ventricular system and the
cranial and spinal SAS. Moreover, within the central nervous system CSF is not
stagnant but it pulsates through the lateral ventricles. Thanks to the imaging
studies, researchers have confirmed that the cardiac cycle prescribes its pulsatile
behavior on the CSF ([11]). During the systole CSF flows from cranial to the spinal
SAS, with flow inversion from the spinal SAS towards the cranium in diastole. It
has been observed also a respiratory influence on CSF oscillations in the aqueduct
([1, 10, 15, 30, 33, 34]).

Furthermore, it has been detected a small volumetric bulk component as well
as marked fluctuations in the flow without a net flux. It is believed that the new
CSF is secreted through the epithelium of the choroid plexus (see Fig. 2). Figure 2
shows how the lateral ventricles communicate with the third ventricle, and a thin
tubular canal, the Sylvius aqueduct, links the third to the fourth ventricle. The
flow in the aqueduct performs a strong pulsatile behavior ([31]). The foramina
of Magendie and Luschka originate in the fourth ventricle and extend into the
cerebral SAS at the prepontine area. Since the human central nervous system
cannot claim a classical lymphatic system, the clearance of CSF is different from
the peripheral extracellular drainage of fluids. The most reasonable hypothesis
is that CSF is reabsorbed into the venous system through the arachnoid villi,
granulations of the arachnoid membrane in the superior sagittal sinus, which lies
at the top of the head (see Fig. 2) or alternatively through nerve pathways in the
extracranial lymphatic system.

Experiments performed on different animal species propose that lymphatic
drainage is significant in rodents ([2, 16]) and dogs ([19, 35]). The most recent
results indicate the existence of a meningeal lymphatic network in mice ([23]).
Nevertheless, the extension of lymphatic drainage in humans is still debated ([14,
32]). The alternative theories of CSF production and reabsorption cast doubt on
this traditional view ([4, 3, 18, 17, 27]). Klarica et al. [18], endorsed by dilution
experiments in cats, suggested the theory that the production and reabsorption of
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CSF takes place throughout the parenchyma without a clear bulk component by
means of choroidal production or clearance via the arachnoid villi.

2.2. Cerebrospinal fluid flow and cerebral vasculature

The bulk of the cerebrospinal fluid obtained by new production and reabsorption
is small compared to its pulsatile component. Researchers hypothesize that the
oscillations of the pulsatile CSF are driven by systolic vessels dilatation followed
by diastolic contraction.

2.2.1. Cerebral force interactions in intracranial pattern

In a normal cardiac cycle, approximately 750 ml of blood are pumped into the
head per minute. The increase in systolic blood pressure inflates arterial blood
vessels, therefore it is possible to detect an increase of the cerebral blood volume
during systole. Since the cranial vault is enclosed in a rigid bone ossification in
adults, the vascular expansion of the main arteries that pass through the spaces
filled with CSF enables the displacement of CSF. MR imaging shows that the total
volume of cerebral blood increases and decreases in every cardiac cycle of about
1 − 2 ml, the same volumetric quantity as there is the exchange of CSF between
the cranial and spinal SAS ([12]).

Thanks to an MRI technique developed by Zhu et al. ([36]), it has been quanti-
fied the ventricle movement of the wall, which drives the flow of the cerebrospinal
fluid into the ventricular system. Two case scenarios could be identified: dilatation
of the vascular volume could be transmitted from the cortical surface through brain
tissue, whose compression causes the contraction of the ventricular space; other-
wise, ventricular wall motion could derive from inside the ventricles by systolic
expansion of the choroidal arteries, due to the ventricular walls pulsation against
the periventricular ependymal layer. Ventricular dilatation due to the expansion
of the choroid plexi was hypothesized in the theoretical model of Linninger et al.
([21]) and measured with cine PC MRI ([36]).

As well as the arterial expansion, it has been hypothesized a compression of
the venous system under high pressure, which would affect the cross-sectional
area by deformation, by reduction of the venous blood lumen or even by collapse
of venous tree sections. Greitz et al. ([13]) proposed that the venous system is
compressible, especially in patients with high ICP. As a result, high intracranial
pressures compress the venous bed mainly in the superior sagittal sinuses. The
venous lumen decreases and generates feedback that reduces blood flow due to the
resistance increment.

3. Preliminary considerations

One of the biggest challenges in the numerical resolution of the lumped models
analyzed in [8] and [9] is setting up the many constants and parameters that charac-
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terize the problem and that affect the solution both quantitatively and, sometimes,
qualitatively. In fact, in the literature, the experimental or theoretically predicted
range for the values of many of these parameters is often quite large.

NOMENCLATURE

ρ fluid density
[
kg/m3

]
r radius of the foramina and aqueduct [m]
µ fluid viscosity [Pa s]

β = 8µ/r2 Poiseuille friction term
[
N/m3

]
δ tissue width [m]

h̃ height of the ventricular or subarachnoid section [m]

Qp CSF production rate in the choroid plexus
[
m3/s

]
R resistance to CSF absorption

[
Pa s/m3

]
α amplitude of choroid expansion [m]
ω heart rate frequency [rad/s]
K mathematical constant [ml]
κ tissue elasticity constant [N/m]

k̃ tissue compliance [N s/m]

P̃ pressure of brain parenchyma
[
N/m2

]
L length of a single CSF compartment [m]
z axial coordinate

A(t, z) cross section of the ventricular or SAS
[
m2
]

η(t, z) tissue displacement in a section [m]
Qa(t, z) CSF absorption rate [ml/min]
u(t, z) axial CSF flow velocity [m/s]

P (t, z) CSF pressure in ventricles and SAS (ICP)
[
N/m2

]
Table 1: Table of symbols and quantities involved in CSF models.

The description and the representation of the human brain anatomical struc-
ture need a detailed data set, even if the approach based on the first principle
of fluid mechanics requires only a small number of physical and physiological pa-
rameters. The physical constants and the quantities involved in the CSF models
we will treat numerically are defined in Table 1, while the values of constants
including the CSF viscosity (µ), density (ρ) as well as spring elasticity (κ) and

brain dampening (k̃) are listed in Table 2 ([22, 25]). In addition, a set of boundary
conditions needs to be specified.

The bulk production of CSF takes place in the choroid plexus and in the
neural tissue, in particular the parenchyma. The diffuse production of CSF flow
throughout the parenchyma is accounted for as a source term, Qp. The bulk CSF
production is implemented as input flux at the choroid plexus and has been chosen
to correspond to the daily physiological production rate of 0.5 liters.
Recently, it has been shown (see [36]) that the expansion of the vascular bed in
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Value
ρ 1004− 1007 kg/m3

δ ∼ 5× 10−4 m
µ 10−3 Pa s
κ 8 N/m

k̃ 0, 35× 10−3 N s/m

Table 2: Tissue and fluid properties.

the systole leads to compression of the lateral ventricle as well as enlargement of
the choroid plexus resulting in CSF flow out of the ventricles. For this study, the
action of the vascular expansion bed is accounted for via the boundary condition
for the choroid plexus as given by the following

a(t) = α

(
1.3 + sin

(
ωt− π

2

)
− 1

2
cos
(

2ωt− π

2

))
. (3.1)

Thus, the choroid boundary condition accounts for the constant CSF production
as well as the pulsatile flow of CSF due to expansion of the parenchyma as well as
choroid plexus in the systole (see [20, 21]). The frequency of the pulsatile motion
is set to 1 Hz approximating the normal cardiac cycle.

Most scientists believe that the majority of reabsorption of the CSF is into
the granulation of the sagittal sinuses. Accordingly, re-absorption of the fluid
takes place at the top of the brain geometry. The re-absorption is assumed to
be proportional to the pressure difference between the ICP in the SAS and the
venous pressure inside the sagittal sinus (see [24]). This relation is expressed
mathematically by

Qa(t, z) =
1

R

(
P (t, z)− P̃

)
, (3.2)

where the resistance R has physiological values of the order of 10 ml/(mmHg min).
In what follows, we will introduce the mathematical equations, the boundary

conditions as well as a section on the numerical validation of the theoretical results
obtained in [8] and in [9].

3.1. CSF models

In this section we introduce the lumped models for intracranial dynamics (see
[21, 24]) for which we are going to perform numerical simulations. They are based
on a mechanical description of the CSF flow and on the mechanical interaction
between the parenchyma and the CSF compartments. In particular we consider
the simplified formulations of the Linninger’s model [21] which have been analyzed
in [8] and in [9].

The model proposed by Linninger in [21] is a CSF compartmental model where
the CSF sections are described by a cylindrical discretization with axial symmetry



296 L. Romagnoli

and radial displacements. Since the CSF flow is basically laminar based on its very
low Reynolds numbers (Re < 100), the flow friction was expressed as a function
of the cross-sectional area.

The first model reads as follows

Model A 
∂tη + a′(t) + u− Q̃p = 0,

α̃∂ttη + k̃∂tη + κη −AP +AP̃ = 0,

ρ∂tu+ ρu∂zu+ ∂zP + βu = 0,

(3.3)

where Q̃p =
Qp
A

and α̃ = ρAδ, since the axial section, A, is considered constant in

this model.
Furthermore, we want to treat numerically the two models below, obtained

by improving Model A (see [9]). The first significant improvement on the model
developed in [8] is represented by the axial section, A(t, z), which is considered
as a function depending on time and space and not assumed to be constant as
in [8]. Moreover, to define properly the behaviour of the intracranial pressure,
authors in [9] consider the model proposed by Marmarou et. al in [26], described
by the following differential equation that rules the CSF hydrodynamic without
incorporating the interactions with brain vasculature and porous parenchyma,

∂tP −
K

R
P 2 −KP

(
Qp +

P̃

R

)
= 0.

Therefore, the first improved model is the following

Model A1 

∂tη = ζ,

α̂A∂tζ + k̃ζ + κη −AP +AP̃ = 0,(
h̃+ a(t) + η

)
∂tA+ (a′(t) + ζ + u)A−Qp = 0,

ρ∂tu+ ρu∂zu+ βu+ ∂zP = 0,

R∂tP −KP 2 −KP
(
RQp + P̃

)
= 0,

(3.4)

A further improvement with respect to Models A and A1 is represented by the
introduction of the quantity Qa which rules the absorption of CSF in the sub-
arachnoid space. We know that under normal physiological conditions, the rate of
CSF formation (Qp) is balanced by an equal rate of absorption (Qa). As previ-
ously mentioned, the rate of outflow, defined in (3.2), is given by the gradient of
pressure between CSF space and the venous system of the dural sinus (we assume

equal to P̃ ) divided by the resistance to absorption (R) (see [26]). This last issue
allows us to introduce the second improved model.
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Model A2



∂tη = ζ,

α̂A∂tζ + k̃ζ + κη −AP +AP̃ = 0,(
h̃+ a(t) + η

)
∂tA+

(
a′(t) + ζ

)
A−Qp +

1

R

(
P − P̃

)
= 0,

ρ∂tu+ ρu∂zu+ βu+ ∂zP = 0,

R∂tP −KP 2 −KP
(
RQp + P̃

)
= 0,

(3.5)

where α̂ = ρδ, the cross sectional area, as mentioned before, is not a constant and
in order to simplify the models, we reduced the order of the equation (3.3)2 by
introducing the function ζ.

Figure 2: Cerebral discretized domain of CSF models A, A1 and A2.

In all the previous models z ∈ [0, L], a discretized domain which models the
CSF compartments involved in the analyzed dynamics (see Fig. 2), and the time
t is such that t ∈ [0, T0]. In particular, since the equation (3.4)5 shows a blow up
at the finite time

T̃0 =
1

C
ln

(
RC
Kb(z)

+ 1

)
, (3.6)

where C = K
(
Qp + P̃

R

)
, for the systems (3.4) and (3.6), we consider T0 < T̃0.

Models A, A1 and A2 are lumped parameter models based on averaging
axially the Euler equations with the addition of some simplifying assumptions, so
they are essentially a physically based description. The overriding consideration
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in this context, is the complexity of the CSF fluid-structure interaction and the
heterogeneity of the compartments perfused by the CSF, therefore they need to
be studied by patching together several elementary tracts. This approach is based
on classical continuity arguments and may be used for an accurate description of
several segments of the CSF circulatory network.

In the aforementioned models the equations (3.3)1, (3.4)3 and (3.5)3 describe
the continuity of the CSF flow in the ventricles, while (3.3)3 is the axial momen-
tum equation along a streamline in the flow direction and with its nonlinearity
represents the core of the theoretical analysis of the systems (3.3), (3.4) and (3.5).
The equations for the acceleration of the elastic tissue are (3.3)2 and (3.4)2 and
the evolution of the intracranial pressure is characterized by (3.4)5.

It is important to point out that the three models represent a first attempt of
a pure mathematical analysis concerning system of equations which describe CSF
fluid dynamics, therefore they are derived by assuming simplified properties and
by neglecting particular interactions with the vascular system (for more details see
[8] and [9]).

The following discussion of the numerical approach will establish the boundary
conditions we will assume in order to perform proper simulations as well as the
numerical feedback of the theoretical results obtained for Models A, A1 and A2.

3.1.1. Initial and boundary conditions

In order to be consistent with the notation adopted for the analysis of Models
A, A1 and A2 in [8] and [9], we recall the following initial data, fixed for the
theoretical analysis, which are also required for the numerical simulations. For
Model A they read as follows

u(0, z) = u0(z) = f(z) ∈ Hs([0, L]),

η(0, z) = η0(z) = g(z) ∈ Hs([0, L]),

P (0, z) = P0(z) = b(z), (3.7)

s >
7

2
, where

b(z) =

∫ z

0

e
Aρ
α̃ (z−ζ)h(ζ) dζ + b(0)e

Aρ
α̃ z, (3.8)

with

h(z)=ραω2−ρf(z)∂zf(z)−βf(z)− ρ
α̃

[
αk̃ω+k̃Q̃p−k̃f(z)+κg(z)+AP̃

]
. (3.9)

The initial condition (3.8) is not arbitrary but it has been obtained as a sort of
compatibility condition by plugging the other initial data, f(z) and g(z), into the
system of equations (3.3). Therefore, it inherits a physiological meaning for Model
A if the other initial conditions will be assumed in order to fulfill the real CSF
dynamics.
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For Models A1 and A2,

u(0, z) = u0(z), η(0, z) = η0(z), ζ(0, z) = ζ0(z),

P (0, z) = P0(z), A(0, z) = A0(z),
(3.10)

in Hs([0, L]) with s >
5

2
.

The prescription of the data we need as boundary conditions for our 1D mod-
els is a very delicate task in the treatment of the physiological fluid flow problems.
The measurement in vivo is the technique which is applied in order to collect clini-
cal data. In general, measures may refer to pointwise velocities on a small portion
of inflow/outflow boundaries of a fluid district or indirectly to average quantities
like the flow rate over a cross section; for the pressure, data that are retrieved
by means of noninvasive measures are almost invariably an average information
over a section of interest. The most of the practical difficulties in the detection
of the data occurs at the boundaries which characterize the outlet of the sections
considered and unfortunately no information is available. These practical prob-
lems clearly add specific issues to the boundary treatment of mathematical and
numerical models.

Models like Models A, A1 and A2 seem to be less difficult to treat even in
absence of boundary data, indeed the mean value in space of a quantity in every
point of the boundary makes the continuous problem well-posed. Nevertheless,
the hyperbolic nature of the 1D model still raises issues of prescribing conditions
at the outlets in a way consistent with the propagation dynamics. Moreover, the
numerical discretization usually requires extra conditions which are not accounted
in the continuous problem and that need to be assumed in a consistent fashion
with the original model.

In Model A it has been assumed that the cross sectional area, A, is affected
only negligibly by the pressure variation and represents for us a constant that we
choose in the range of ∼ 3− 4 mm2 according to the clinical data and the section
of the analyzed compartment. Furthermore, the boundary conditions involved in
numerical simulations are selected by taking into account the following conditions
(see Theorem 2.1.1 in [8])


u(t, 0) = u(t, L) = 0,

η(t, 0) = g(0)− a(t) + 0, 3α+ Q̃pt,

η(t, L) = g(L)− a(t) + 0, 3α+ Q̃pt,

(3.11)
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and

P (t, 0) =
αα̃ω2 − κα

A
sin
(
ωt− π

2

)
+
κα− 4αα̃ω2

2A
cos
(

2ωt− π

2

)
− αk̃ω

A

[
cos
(
ωt− π

2

)
+ sin

(
2ωt− π

2

)]
+
κ

A
g(0) +

k̃ + κt

A
Q̃p

− κα

A
+ P̃ ,

P (t, L) =
αα̃ω2 − κα

A
sin
(
ωt− π

2

)
+
κα− 4αα̃ω2

2A
cos
(

2ωt− π

2

)
− αk̃ω

A

[
cos
(
ωt− π

2

)
+ sin

(
2ωt− π

2

)]
+
κ

A
g(L) +

k̃ + κt

A
Q̃p

− κα

A
+ P̃ .

For Models A1 and A2, we prescribe the boundary conditions

u(t, 0) = u(t, L) = 0, η(t, 0) = η(t, L) = 0, ζ(t, 0) = ζ(t, L) = 0,

while, the boundary conditions for the pressure and the axial section are the
following

P (t, 0) =
b(0)eCt

1 +
K

RC
b(0)

(
1− eCt

) , P (t, L) =
b(L)eCt

1 +
K

RC
b(L)

(
1− eCt

) , (3.12)

and

A(t, 0) = h(0)eG(t,0)t + e−G(t,0)t

∫ t

0

H(s, 0)eG(s,0)s ds,

A(t, L) = h(L)eG(t,L)t + e−G(t,L)t

∫ t

0

H(s, L)eG(s,L)s ds,

where

G(t, 0) =
a′(t)

h̃+ a(t)
, H(t, 0) =

Qp

h̃+ a(t)
,

in Model A1 and

G(t, 0) =
a′(t)

h̃+ a(t)
, H(t, 0) =

RQp − P (t, 0)− P̃
R(h̃+ a(t))

,

in Model A2.
The introduction of the no-slip conditions in the three models is clearly consis-

tent with observations of macroscopic quantities such as the CSF flow rate through
a circular capillary under a given pressure drop.
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4. Goal of the numerical simulations

The aim of the present paper is to perform proper numerical simulations in order to
complete and confirm the analysis provided in [8] and in [9], which represent a first
attempt of studying cerebrospinal fluid models from a mathematical point of view.
The theoretical results, whose reliability we want to prove by performing suitable
numerical simulations, concern the existence and uniqueness of the solutions for
Models A, A1 and A2 that describe the dynamics of the CSF in the intracranial
pattern by assuming suitable simplified assumptions that do not reflect totally the
real physiology of the process examined. In detail, it has been proved that

• Model A admits a unique solution global in time if and only if

‖f(z)‖Hsz ≤
β

ρ
,

where f(z) = u(0, z) (for more details see [8]);

• there exists respectively a unique global solution to Models A1 and A2
provided that

f ′(z) ≥ −β
ρ
, (4.1)

and

‖b(z)‖Hsz ≤
β

4Ĉ1ρ
, (4.2)

if b(z) < 0 with b(z) = P (0, z), and

‖b(z)‖Hsz ≤ ε
β

4Ĉ1ρ
, (4.3)

if b(z) > 0, where Ĉ1 = Ĉ1
(
‖f(z)‖Hsz

)
and ε = ε(T̃0) are constants (see [9]).

Therefore, for all the models considered, we need proper smallness of the initial
data in order to obtain global existence and uniqueness of solutions and this is
the main result we want to prove also numerically in order to guarantee a more
comprehensive overview since, as far as we know, there are no other outcomes in
this direction in literature.

It is important to point out that, in order to perform the numerical simulations,
by employing real parameters to Models A, A1 and A2, the previous relations will
be clearly fulfilled by assuming smooth simplified initial data which must satisfy
the global existence conditions in a first step and which violate it in a second step.
The initial conditions purpose is to fulfill the mathematical analysis and, as far
as possible, to reflect the real dynamics by taking into account the experimental
data available in literature (see [1] and [3]).
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5. Numerical results

This section is focused on presenting the numerical results obtained by the models
previously described. The first part of the section shows in detail the implemen-
tation of the problem in Matlab. The second part presents a variety of results
dealing with the theoretical results obtained in [8] and [9]. Particular attention
was devoted to analyzing pressures and flow patterns in the CSF compartments.

We outline that discontinuities, which would normally appear when treating a
non-linear hyperbolic system as Models A, A1 and A2, do not have the time to
form in a physiological context because of the pulsatility of the boundary condi-
tions. In our case the physiological framework has been already weakened by the
assumptions of simplified boundary data and we will show what happens when we
violate the global existence conditions that leads to a complete breakdown of the
real intracranial dynamics.

5.1. Numerical scheme for Model A

Figure 3: Discretization of the domain.

Let D = [0, 1] be the computational domain, a and b constants such that
0 < a < b < 1, and Ω = [a, b]. Let N ≥ 1 be a fixed integer and h = 1/N the
spatial step, let Dh = {0 = x0 < x1 < ... < xN = 1} be the set of equally spaced
grid points, and Ωh = Dh ∩ Ω the set of inside grid points.

Let l and r be such that xl ≤ a < xl+1, xr−1 < b ≤ xr. We use a ghost-cell
method to discretize the problem.

Let us begin to discretize (3.3) in Ωh = {xl+1, ..., xr−1}. We use a central
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difference scheme in space and forward Euler method in time for (3.3) obtaining:

u
(m+1)
i = u

(m)
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2ρh
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ρu

(m)
i

(
u
(m)
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(m)
i−1

)
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(
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(m)
i+1 − P

(m)
i−1

)]
− β

ρ
∆t u

(m)
i ;

η
(m+1)
i = η

(m)
i + ∆t

(
Q̃p − a′(t)− u(m)

i

)
;

P
(m+1)
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1

A

[
−α̃u(m+1)

i + k̃
(
−a′(t)− u(m)

i + Q̃p

)
+ κη

(m)
i +AP̃

]
,

(5.1)

where i = l + 1, ..., r − 1 and all the non discretized terms are known values, in
particular a′(t), since it represents a datum available in literature (see [21]), could
be assumed as a constant (as in our numerical scheme) but it could be discretized,
as well, in case more precise and pulsatile boundary conditions are employed in
the models.
The discretization performed for the pressure in (5.1) is the result of the iterative
scheme adopted in [8], obtained by replacing which allows us to obtain an explicit
expression for the pressure.
Taking the maximum time step consented by CFL condition (see [5]), i.e. ∆t =
h/2, we obtain in particular

u
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i = u

(m)
i − 1

4ρ

[
ρu

(m)
i

(
u
(m)
i+1 − u

(m)
i−1

)
+
(
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(m)
i+1 − P

(m)
i−1

)
+ 2βhu

(m)
i

]
. (5.2)

Furthermore, we choose a time step size of 5× 10−3.

Remark 5.1. Explicit methods, like the forward Euler method, are very easy to
implement, however, the drawback arises from the limitations on the time step
size to ensure numerical stability ([28]).

Conditional stability concerning the existence of a critical time step dimension
able to induce the occurrence of numerical instabilities, represents a typical prop-
erty of explicit methods such as the forward Euler scheme. When explicit methods
stability requires conditions too restrictive on the size of the time step, it is rec-
ommended to adopt implicit methods. Nevertheless, in order to treat nonlinear

problems implicit methods require an expensive computational cost since u
(m+1)
i

is defined only in terms of an implicit equation.

The model discretized numerically in (5.1) and (5.2) is characterized by a
system of linear and nonlinear equations for which a more stable numerical method
than the Euler’s one is recommended. But in this case we noticed that the latter
method works perfectly such as the Matlab solver ode45 since the intracranial
pressure is able to dampen the behavior of the CSF flow velocity and plays the
same purpose as a small time step size for the Euler method that guarantees the
solutions remain inside the stability region.
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5.1.1. Numerical simulations

Based on the discretization set up in the previous section, in what follows we want
to carry out the simulations for Model A.

For the initial data we proceed in the following way:

i) for the tissue displacement, η, we fix

η0(z) =
1

5
z;

ii) the pressure at the initial time, P0(z), is implemented exactly as required by
the conditions (3.8) and (3.9);

iii) for the axial CSF flow, u, we choose

u0(z) = −4 sin(πz),

a negative initial datum which is in the “ safe zone” required by the global

Figure 4: The evolution of P, η and u.

existence condition for Model A and that will show a different behavior with
respect to the one performed in [8].

Therefore, the previous initial conditions on pressure and flow velocity satisfy the
global existence theorem stated in [8]. As claimed before, the initial data do not
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perfectly fit the real dynamics since this does not represent the first purpose of
the numerical simulations, indeed this aspect will be treated in detail in a future
work.

In Figure 4 we can observe, in a section of length L = 1, the profiles of the
pressure, the tissue displacement and the flow velocity up to the final time t = 0.5.

First of all, it is very interesting to observe the behavior of the CSF flow velocity
which shows an inverse fluid flow motion in the plot: this scenario is validated by
the physiology of the CSF which is a pulsatile fluid affected by the heart beat and
by the anatomy of the cerebral compartments that interact dynamically, therefore,
in CSF circulation a small quantity of fluid is allowed to flow backwards inside the
compartments (see [6, 7]). The tissue displacement evolves in a realistic fashion
by means of the stress and the strains related to the fluid motion performed. The
intracranial pressure, which is completely defined by the evolutions of the other
quantities, such as expressed in the system of equations (3.3), is represented by a
profile very similar to the common signals detected in the in vivo measurements.

The second step consists in investigating the same framework described by
Model A when the global existence condition is violated.
Therefore we fix the following initial datum

u0(z) = −
(
z +

β

ρ

)
,

in order to observe what happens if we violate the global existence condition with
a datum that is very close to it.
In Figure 5 the plots of the three quantities show a simultaneous blow up, a
behavior that is in perfect agreement with respect to the study performed in [8].

Therefore, both simulations 4 and 5 support the conclusions achieved with the
global existence theorem proved in [8].

5.2. Numerical approach for Models A1 and A2

This section is devoted to the numerical approximation of Models A1 and A2.
There exists, in this regard, a wide range of approaches and, among the many
numerical methods useful to our aim, we decide to adopt the Runge-Kutta MAT-
LAB solver ode45. This choice is due to the fact that we need to follow a different
strategy with respect to the numerical schemes employed for Model A. The lat-
ter model, as explained in Section 5.1, does not require more stability in methods
than the ones adopted in order to carry out the corresponding simulations, while in
Models A1 and A2 we are considering a more comprehensive intracranial pattern,
then more quantities as well as a further equation for the evolution of the intracra-
nial pressure come into play in both models, which should be treated numerically
by adopting suitable stable schemes as the solver ode45.

The function ode45 implements 4th and 5th order Runge-Kutta formulas with
a variable time step for efficient computation and is designed to handle the follow-
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Figure 5: The blow up of the CSF flow velocity which occurs by violating the global
existence condition.

ing general problem:
dx

dt
= f(t,x), x(t0) = x0, (5.3)

where t is the independent variable, x is a vector of dependent variables to be
found and x(t0) is a function of t and x. The mathematical problem is specified
when the vector of functions on the right-hand side of the equation (5.3), is set
and the initial conditions, x = x0 at time t0 are given.
To this aim we define for both models a vector X as follows

X = [u, η, P,A, ζ] ,

with

X|t=0 = [u(0, z), η(0, z), P (0, z), A(0, z), ζ(0, z)] , (5.4)

where u, η, P,A, ζ are defined themselves as vectors, as well. There is no preference
for placing the variables, in fact, any arbitrary order is perfectly valid.

We adopt the same space and time discretization defined in the previous section
and we create two extra ghost cells, one just at the left of 0 and one just at the right
of 1. This procedure is used for convenience, since it simplifies the implementation
of boundary conditions a lot.
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At this point, the systems (3.4) and (3.5) can be easily written as systems of
first-order differential equations in the following way
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(5.5)

for Model A1 and
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(5.6)

for Model A2, where i = l+ 1, ...r−1 and all the non discretized terms are known
values.

Of course, the notation X(j) with j = 1, ...5, denotes an entire vector, not only
a single value, in particular length(X(j)) is equal to the length of every variable
vector (u, η, P,A, ζ) respectively, in other words each column of X is a different
dependent variable.

The routine ode45 integrates the systems of ordinary differential equations
(5.5) and (5.6) over the interval T0 = 0 to Tfinal = 1, with initial conditions (5.4),
it uses a default tolerance and displays status while the integration proceeds.

In our simulations the initial mesh size is determined by dz = L/nz, where,
for the sake of simplicity, L is fixed equal to 1 and nz is the total number of
meshes that we take equal to 200. Finally we set the time discretization with
∆t = 5× 10−3.
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5.2.1. Numerical simulations

In order to run numerical simulations for Models A1 and A2, we assume

u0(z) = 4 sin(πz) + 1, P0(z) = −1

6
cos(πz), (5.7)

which are not so far from a good real approximation of the CSF flow velocity in a
small compartment perfused by the fluid. In particular, we adopt a negative initial
datum for the intracranial pressure in order to distinguish the present simulations
to the ones already carried out in [9].

As a byproduct of our numerical results, we obtain interesting information
about the behaviors of the quantities involved in these models.

As a second task, we implement again the models numerically but we fix initial
data u0(z) and P0(z) which violate simultaneously the conditions of the global
existence theorem ([9]). Furthermore, we analyze the behavior of the models when
the condition of the pressure solely, (4.2), is not satisfied while the constraint on the
flow velocity, (4.1), is fulfilled and vice versa. The aim of the performed numerical
simulations is to assess the reliability of the theoretical results stated in [9].

First case: the initial data fulfill the global existence conditions (4.1) and (4.3).

We perform the simulation by assuming the initial condition (5.7) and arbitrary
data for the others quantities for which we choose

η0(z) =
1

5
z, ζ0(z) =

1

2
z + 1, A0(z) = 2 cos(πz). (5.8)

In Figures 6 and 7 we can observe the parabolic profile of the CSF flow velocity
of both models due to the no-slip boundary conditions assumed. This quantity
shows a slow variation in relation to the fluid motion.

The plot of the tissue displacement, η, highlights small contractions and dilata-
tions of the tissue (see Fig. 6) in Model A1, while in Model A2 the displacement
displays a remarkable increase in the real physiological values of tissue displace-
ments (see Fig. 7). We can observe a drastic reduction in the cross sectional area
in Model A2, while in Model A1 the axial section increases rapidly in the first
part of the section until a first maximum point, then there is a drop and a small
increase towards the boundary. This behavior is a consequence of the negative
intracranial pressure we fixed as initial datum. In Fig. 7 it is clear that the range
of values achieved by the intracranial pressure is significantly smaller than the one
displayed in Fig. 6. Nevertheless, in both cases the pressure acts a compression
in the cerebral pattern and the other quantities involved in the models show a
physiological reaction with respect to the activity of P .

Therefore the parameters behave as predicted by the analysis performed in [9]
even if the assumptions on the boundary conditions affected the simulations that
appear clearly different from the real physiology of the CSF flow.
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Figure 6: Evolution of P, η, u, and A for Model A1.

Figure 7: Evolution of P, η, u and A for Model A2.
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Second case: the initial data violate the global existence conditions (4.1) and
(4.3).

I ) Violation of both global existence conditions.

Figure 8: Blow-up which occurs in Model A1 with initial conditions (5.9), (5.8).

We assume

u0(z) = −β
ρ

(z + 1), P0(z) =
β

4Ĉ1ρ
exp(−z), (5.9)

where Ĉ1 = Ĉ1‖u0(z)‖Hsz is the constant that appear in the global existence
theorem proved in [9] (see Theorem 2.5). The previous initial conditions are
assumed in order to show which are the behaviors of the quantities involved
in both models when we fix the data at time t = 0 exactly equal to the global
existence conditions required by the mentioned theorem.
We have no constraint on the initial data of η and A. Therefore, henceforth,
we adopt the conditions (5.8) for the other variables of the models since
they are close to the experimental data and describe properly the initial
framework of the CSF dynamics in a single compartment.

In Figure 8 we can observe that the blow up has been achieved after several
time steps but the blow-up appears simultaneously with significant numerical
values. While, Figure 9 shows that in Model A2 the different quantities blow
up after only five time steps and this means that the initial conditions (5.9)
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Figure 9: Blow-up which occurs in Model A2 with initial conditions (5.9), (5.8).

affect more strongly the behavior of the model since the intracranial pressure
interact also in the form of the reabsorption term.

II ) Violation of the global existence pressure condition.

As initial conditions we fix

u0(z) = 4 sin(πz) + 1, P0(z) = exp(z), (5.10)

for the flow velocity and the pressure.

In Fig. 10 it is possible to observe that the pressure blow-up leads to a si-
multaneous blow-up of the other quantities involved in the simulation: this
means that such pressure is able to amplify the motion of the cerebrospinal
fluid throughout the small compartments and thus to affect significantly the
entire intracranial fluid dynamics.

Fig. 11 shows a drastic pressure drop in Model A2: even though the input
pressure refers to a recumbent position, it blows up by taking negative values.
We can notice that

TBU1
> TBU2

,

where TBU1 is the blow-up time of Model A1 and TBU2 is the blow-up time of
Model A2; this is due to the fact that the reabsorption rate, Qa, is affected
by the pressure and accelerates the blow-up process in Model A2.
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Figure 10: Blow-up which occurs in Model A1 by violating the pressure condition (4.2).

Figure 11: Blow-up which occurs in Model A2 by violating the pressure condition (4.2).
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Figure 12: Blow-up which occurs in Model A1 by violating the flow velocity condition
(4.1).

Figure 13: Blow-up which occurs in Model A2 by violating the flow velocity condition
(4.1).
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III ) Violation of the global existence flow velocity condition.

For the last simulations we assume

u0(z) = −(exp(z) + 1), P0(z) =
1

2
sin
(π

2
z
)
. (5.11)

Figs. 12 and 13 show that the blow-up is achieved after almost the same
number of time steps, but in Model A2 it is possible to observe that the
pressure is more affected by the violation of the global condition of the flow
velocity. The reason can be found, even then, in the particular physiology
described by Model A2: the CSF reabsorption requires the employment of
a comprehensive set of cerebral mechanisms in which the pressure plays a
fundamental role. Even though we are not violating directly the condition
on the ICP, the reaction of the pressure is immediate since it is strictly
connected to the flow velocity, and its behavior in these simulations is a
consequence of the relation between the global condition (4.2) and the flow

velocity condition (4.1) due to the constant Ĉ1 that appears in the former
condition.

6. Final conclusions on numerical simulations

This paper has been designed to provide a first comparison of the CSF dynamic
Models A, A1 and A2, and a comprehensive overview of numerical simulations in
order to prove the reliability of the mathematical analysis related to these models
developed in [8] and [9]. The simulations have been carried out by adopting
simplified assumptions on the boundary conditions and initial data consistent, as
far as possible, with the experimental ones.

Two different numerical approaches for Models A, A1 and A2 are presented in
order to realize accurate simulations and to avoid expensive computational costs.

In conclusion, we can say that the performed numerical simulations support
the theoretical results achieved in [8] and [9], and represent a first important step
towards a new line of research in which fluid dynamics and mechanical models for
the brain and its many components can be deeply investigated, not only from a
purely empirical view point but also from a mathematical standpoint, in order to
close the gap among different scientific fields and to guarantee an improvement on
the research outcomes.
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