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On the some subclasses of bi-univalent functions related to
the Faber polynomial expansions and the Fibonacci

numbers

Şahsene Altınkaya∗ and Sibel Yalçın

Abstract. In this investigation, by using the Tremblay fractional derivative operator, we in-

troduce the new class Iµ,ρΣ,γ

(
p̃
)

of bi-univalent functions based on the rule of subordination.

Moreover, we use the Faber polynomial expansions and Fibonacci numbers to derive bounds for

the general coefficient |an| of the bi-univalent function class.

1. Introduction, Definitions and Notations

Let C be the complex plane and U = {z : z ∈ C and |z| < 1} be the open unit disc
in C. Further, let A represent the class of functions analytic in U, satisfying the
condition

f(0) = f ′(0)− 1 = 0 .

Then each function f in A has the following Taylor series expansion

f(z) = z + a2z
2 + a3z

3 + · · · = z +

∞∑
n=2

anz
n. (1.1)

Let S represent the subclass of A consisting of functions univalent in U. With a
view to reminding the rule of subordination for analytic functions, let the functions
f, g be analytic in U. A function f is subordinate to g, indicated as f ≺ g, if there
exists a Schwarz function

$(z) =

∞∑
n=1

cnz
n ($ (0) = 0, |$ (z)| < 1) ,

analytic in U such that

f (z) = g ($ (z)) (z ∈ U) .

For the Schwarz function $ (z) we know that |cn| < 1 (see [9]).
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According to the Koebe-One Quarter Theorem, every univalent function f ∈ A
has an inverse f−1 satisfying f−1 (f (z)) = z (z ∈ U) and f

(
f−1 (w)

)
= w(

|w| < r0 (f) ; r0 (f) ≥ 1
4

)
, where

g(w) = f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3

−
(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

(1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1.1). For
a brief historical account and for several notable investigation of functions in the
class Σ, see the pioneering work on this subject by Srivastava et al. [19] (see also
[6, 7, 14, 15]). The interest on estimates for the first two coefficients |a2|, |a3| of the
bi-univalent functions keep on by many researchers (see, for example, [4, 12, 13, 20,
22, 23, 24]). However, in the literature, there are only a few works (by making use
of the Faber polynomial expansions) determining the general coefficient bounds
|an| for bi-univalent functions ([5, 10, 11, 16, 21]). The coefficient estimate problem
for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, . . .}) is still an open problem.

Now, we recall to a notion of q-operators that play a major role in Geometric
Function Theory. The application of the q-calculus in the context of Geomet-
ric Function Theory was actually provided and the basic (or q-) hypergeometric
functions were first used in Geometric Function Theory in a book chapter by
Srivastava [17]. For the convenience, we provide some basic notation details of
q-calculus which are used in this paper.

Definition 1.1. (See [18]) For a function f (analytic in a simply-connected region
of C), the fractional derivative of order ρ is stated by

Dρ
zf(z) =

1

Γ(1− ρ)

d

dz

z∫
0

f(ξ)

(z − ξ)ρ
dξ (0 ≤ ρ < 1)

and the fractional integral of order ρ is stated by

Iρz f(z) =
1

Γ(ρ)

z∫
0

f(ξ)(z − ξ)ρ−1dξ (ρ > 0).

Definition 1.2. (See [16]) The Tremblay fractional derivative operator of the
function f is defined as

Iµ,ρz f(z) =
Γ(ρ)

Γ(µ)
z1−ρDµ−ρ

z zµ−1f(z) (1.3)

(0 < µ ≤ 1, 0 < ρ ≤ 1, µ ≥ ρd, 0 < µ− ρ < 1).
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From (1.3), we deduce that

Iµ,ρz f(z) =
µ

ρ
z +

∞∑
n=2

Γ(ρ)Γ(n+ µ)

Γ(µ)Γ(n+ ρ)
anz

n.

In this paper, we study the new class Iµ,ρΣ,γ

(
p̃
)

of bi-univalent functions es-
tablished by using the Tremblay fractional derivative operator. Further, we use
the Faber polynomial expansions and Fibonacci numbers to derive bounds for the
general coefficient |an| of the bi-univalent function class.

2. Preliminaries

By utilizing the Faber polynomial expansions for functions f ∈ A of the form
(1.1), the coefficients of its inverse map g = f −1 may be stated by (see [2, 3])

g (w) = f−1 (w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, . . .)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

[2 (−n+ 1)]! (n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3

]
+

(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5) a3a4]

+
∑
j≥7

an−j2 Vj ,

such that Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3,. . . , an.
In the following, the first three terms of K−nn−1 are stated by

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3,

1

4
K−4

3 = −
(
5a3

2 − 5a2a3 + a4

)
.

In general, the expansion of Kp
n (p ∈ Z = {0,±1,±2, . . .}) is stated by

Kp
n = pan +

p (p− 1)

2
G2
n +

p!

(p− 3)!3!
G3
n + · · ·+ p!

(p− n)!n!
Gnn ,
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where Gpn = Gpn (a1, a2, . . .) and by [1],

Gmn (a1, a2, . . . , an) =

∞∑
n=1

m! (a1)
δ1 · · · (an)

δn

δ1! · · · δn!
,

while a1 = 1, the sum is taken over all nonnegative integers δ1, . . . , δn satisfying

δ1 + δ2 + · · ·+ δn = m,

δ1 + 2δ2 + · · ·+ nδn = n.

The first and the last polynomials are

G1
n = an Gnn = an1 .

For two analytic functions u (z), v (w) (u (0) = v (0) = 0, |u (z)| < 1, |v (w)| < 1) ,
suppose that

u (z) =
∑∞
n=1 tnz

n (|z| < 1, z ∈ U) ,

v (w) =
∑∞
n=1 snw

n (|w| < 1, w ∈ U) .

It is well known that

|t1| ≤ 1, |t2| ≤ 1− |t1|2 , |s1| ≤ 1, |s2| ≤ 1− |s1|2 . (2.1)

Definition 2.1. A function f ∈ Σ is said to be in the class

Iµ,ρΣ,γ

(
p̃
)

(γ ≥ 1, 0 < µ ≤ 1, 0 < ρ ≤ 1, z, w ∈ U)

if the following subordination relationships are satisfied:[
(1− γ)ρ

µ

Iµ,ρz f(z)

z
+
ργ

µ
(Iµ,ρz f(z))

′
]
≺ p̃ (z) =

1 + τ2z2

1− τz − τ2z2

and [
(1− γ)ρ

µ

Iµ,ρz g(w)

w
+
ργ

µ
(Iµ,ρz g(w))

′
]
≺ p̃ (w) =

1 + τ2w2

1− τw − τ2w2
,

where the function g is given by (1.2) and τ = 1−
√

5
2 ≈ −0.618.

Remark 2.2. The function p̃ (z) is not univalent in U, but it is univalent in the

disc |z| < 3−
√

5
2 ≈ 0.38. For example, p̃ (0) = p̃

(
− 1

2τ

)
and p̃

(
e±i arccos(1/4)

)
=
√

5
5 .

Also, it can be written as
1

|τ |
=

|τ |
1− |τ |

which indicates that the number |τ | divides [0, 1] such that it fulfills the golden
section (see for details Dziok et al. [8]).
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Additionally, Dziok et al. [8] indicate a useful connection between the function
p̃ (z) and the Fibonacci numbers. Let {Λn} be the sequence of Fibonacci numbers

Λ0 = 0, Λ1 = 1, Λn+2 = Λn + Λn+1 (n ∈ N0 = {0, 1, 2, . . .}),

then

Λn =
(1− τ)n − τn√

5
, τ =

1−
√

5

2
.

If we set

p̃ (z) = 1 +

∞∑
n=1

p̃nz
n = 1 + (Λ0 + Λ2)τz + (Λ1 + Λ3)τ2z2

+

∞∑
n=3

(Λn−3 + Λn−2 + Λn−1 + Λn)τnzn,

then the coefficients p̃n satisfy

p̃n =


τ (n = 1)

3τ2 (n = 2)

τ p̃n−1 + τ2p̃n−2 (n = 3, 4, . . .)

. (2.2)

Specializing the parameters γ, µ and ρ, we state the following definitions.

Definition 2.3. For µ = ρ = 1, a function f ∈ Σ is said to be in the class IΣ,γ

(
p̃
)

if it satisfies the following conditions respectively:[
(1− γ)

f(z)

z
+ γf ′(z)

]
≺ p̃ (z)

and [
(1− γ)

g(w)

w
+ γg′(w)

]
≺ p̃ (w) ,

where g = f−1.

Definition 2.4. For γ = µ = ρ = 1, a function f ∈ Σ is said to be in the class
IΣ

(
p̃
)

if it satisfies the following conditions respectively:

f ′(z) ≺ p̃ (z)

and

g′(w) ≺ p̃ (w) ,

where g = f−1.



110 Ş. Altınkaya and S. Yalçın

3. Main Result and its consequences

Theorem 3.1. For γ ≥ 1, 0 < µ ≤ 1 and 0 < ρ ≤ 1, let the function f given by
(1.1) be in the function class Iµ,ρΣ,γ

(
p̃
)
. If am = 0 (2 ≤ m ≤ n− 1), then

|an| ≤
|τ |Γ(µ+ 1)Γ(n+ ρ)

Γ(ρ+ 1)Γ(n+ µ) [(n− 1)γ + 1]
(n ≥ 3).

Proof. By the definition of subordination yields[
(1− γ)ρ

µ

Iµ,ρz f(z)

z
+
ργ

µ
(Iµ,ρz f(z))

′
]

= p̃(u(z)) (3.1)

and [
(1− γ)ρ

µ

Iµ,ρz g(w)

w
+
ργ

µ
(Iµ,ρz g(w))

′
]

= p̃(v(w)). (3.2)

Using Faber polynomial expansions, we have

(1− γ)ρ

µ

Iµ,ρz f(z)

z
+
ργ

µ
(Iµ,ρz f(z))

′
= 1+

∞∑
n=2

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] anz

n−1

and for its inverse map g = f−1, it is seen that

(1− γ)ρ

µ

Iµ,ρz g(w)

w
+
ργ

µ
(Iµ,ρz g(w))

′

= 1 +

∞∑
n=2

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1]

1

n
K−nn−1 (a2, a3, . . .)w

n−1

= 1 +

∞∑
n=2

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] bnw

n−1.

Next, the equations (3.1) and (3.2) lead to

p̃ (u (z)) = 1 + p̃1u(z) + p̃2(u(z))2z2 + · · ·

= 1 + p̃1t1z +
(
p̃1t2 + p̃2t

2
1

)
z2 + · · ·

= 1 +

∞∑
n=1

n∑
k=1

p̃kGkn (t1, t2, . . . , tn) zn,
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and

p̃ (v (w)) = 1 + p̃1v(w) + p̃2(v(w))2w2 + · · ·

= 1 + p̃1s1w +
(
p̃1s2 + p̃2s

2
1

)
w2 + · · ·

= 1 +

∞∑
n=1

n∑
k=1

p̃kGkn (s1, s2, . . . , sn)wn.

Comparing the corresponding coefficients of (3.1) and (3.2) yields

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] an = p̃1tn−1,

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] bn = p̃1sn−1.

For am = 0 (2 ≤ m ≤ n− 1) , we get bn = −an and so

Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] an = p̃1tn−1 (3.3)

and

− Γ(ρ+ 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ ρ)
[(n− 1)γ + 1] an = p̃1sn−1. (3.4)

Now taking the absolute values of either of the above two equations and from
(2.1), we obtain

|an| ≤
|τ |Γ(µ+ 1)Γ(n+ ρ)

Γ(ρ+ 1)Γ(n+ µ) [(n− 1)γ + 1]
.

Corollary 3.2. For γ ≥ 1, suppose that f ∈ IΣ,γ

(
p̃
)
. If am = 0 (2 ≤ m ≤ n− 1),

then

|an| ≤
|τ |

[(n− 1)γ + 1]
(n ≥ 3).

Corollary 3.3. Suppose that f ∈ IΣ

(
p̃
)
. If am = 0 (2 ≤ m ≤ n− 1), then

|an| ≤
|τ |
n

(n ≥ 3).

Theorem 3.4. Let f ∈ Iµ,ρΣ,γ

(
p̃
)
. Then

|a2| ≤ min


|τ |√∣∣∣ (µ+1)(µ+2)(2γ+1)

(ρ+1)(ρ+2) − 3(µ+1)2(γ+1)2

(ρ+1)2

∣∣∣ |τ |+ (µ+1)2(γ+1)2

(ρ+1)2

,

|τ |
√

3(ρ+1)(ρ+2)
(µ+1)(µ+2)(2γ+1)

}
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and

|a3| ≤ min

{
3τ2(ρ+ 1)(ρ+ 2)

(µ+ 1)(µ+ 2)(2γ + 1)
,

|τ |
(µ+1)(µ+2)(2γ+1)

(ρ+1)(ρ+2)

1 +

[
(µ+1)(µ+2)(2γ+1)|τ |

(ρ+1)(ρ+2) − (µ+1)2(γ+1)2

(ρ+1)2

]
∣∣∣ (µ+1)(µ+2)(2γ+1)

(ρ+1)(ρ+2) − 3(µ+1)2(γ+1)2

(ρ+1)2

∣∣∣ |τ |+ (µ+1)2(γ+1)2

(ρ+1)2

 .

Proof. Substituting n by 2 and 3 in (3.3) and (3.4), respectively, we find that

(µ+ 1)

(ρ+ 1)
(γ + 1)a2 = p̃1t1, (3.5)

(µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1)a3 = p̃1t2 + p̃2t

2
1, (3.6)

− (µ+ 1)

(ρ+ 1)
(γ + 1)a2 = p̃1s1, (3.7)

(µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1)(2a2

2 − a3) = p̃1s2 + p̃2s
2
1. (3.8)

Obviously, we obtain
t1 = −s1. (3.9)

If we add the equation (3.8) to (3.6) and use (3.9), we get

2(µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1)a2

2 = p̃1 (t2 + s2) + 2p̃2t
2
1. (3.10)

Using the value of t21 from (3.5), we get[
2(µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1)p̃2

1 −
2(µ+ 1)2

(ρ+ 1)2
(γ + 1)2p̃2

]
a2

2 = p̃3
1 (t2 + s2) . (3.11)

Combining (3.11) and (2.1), we obtain

2

∣∣∣∣ (µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1)p̃2

1 −
(µ+ 1)2

(ρ+ 1)2
(γ + 1)2p̃2

∣∣∣∣ |a2|2 ≤
∣∣p̃1

∣∣3 (|t2|+ |s2|)

≤ 2
∣∣p̃1

∣∣3 (1− |t1|2
)

= 2
∣∣p̃1

∣∣3 − 2
∣∣p̃1

∣∣3 |t1|2 .
It follows from (3.5) that

|a2| ≤
|τ |√∣∣∣∣ (µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
− 3(µ+ 1)2(γ + 1)2

(ρ+ 1)2

∣∣∣∣ |τ |+ (µ+ 1)2(γ + 1)2

(ρ+ 1)2

.

(3.12)
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Additionally, by (2.1) and (3.10)

2(µ+ 1)(µ+ 2)

(ρ+ 1)(ρ+ 2)
(2γ + 1) |a2|2 ≤

∣∣p̃1

∣∣ (|t2|+ |s2|) + 2
∣∣p̃2

∣∣ |t1|2
≤ 2

∣∣p̃1

∣∣ (1− |t1|2
)

+ 2
∣∣p̃2

∣∣ |t1|2
= 2

∣∣p̃1

∣∣+ 2 |t1|2 (
∣∣p̃2

∣∣− ∣∣p̃1

∣∣).
Since

∣∣p̃2

∣∣ > ∣∣p̃1

∣∣, we get

|a2| ≤ |τ |

√
3(ρ+ 1)(ρ+ 2)

(µ+ 1)(µ+ 2)(2γ + 1)
.

Next, in order to derive the bounds on |a3|, by subtracting (3.8) from (3.6), we
may obtain

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
a3 =

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
a2

2 + p̃1 (t2 − s2) . (3.13)

Evidently, from (3.10), we state that

a3 =
p̃1 (t2 + s2) + 2p̃2t

2
1

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

+
p̃1 (t2 − s2)

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

=
p̃1t2 + p̃2t

2
1

(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

and consequently

|a3| ≤
∣∣p̃1

∣∣ |t2|+ ∣∣p̃2

∣∣ |t1|2
(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

≤

∣∣p̃1

∣∣ (1− |t1|2
)

+
∣∣p̃2

∣∣ |t1|2
(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

=

∣∣p̃1

∣∣+ |t1|2 (
∣∣p̃2

∣∣− ∣∣p̃1

∣∣)
(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)

.

Since
∣∣p̃2

∣∣ > ∣∣p̃1

∣∣, we must write

|a3| ≤
3τ2(ρ+ 1)(ρ+ 2)

(µ+ 1)(µ+ 2)(2γ + 1)
.
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On the other hand, by (2.1) and (3.13), we have

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
|a3| ≤

2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
|a2|2 +

∣∣p̃1

∣∣ (|t2|+ |s2|)

≤ 2(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
|a2|2 + 2

∣∣p̃1

∣∣ (1− |t1|2
)
.

Then, with the help of (3.5), we have

(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
|a3|

≤

[
(µ+ 1)(µ+ 2)(2γ + 1)

(ρ+ 1)(ρ+ 2)
− (µ+ 1)2(γ + 1)2

(ρ+ 1)2
∣∣p̃1

∣∣
]
|a2|2 +

∣∣p̃1

∣∣ .
By considering (3.12), we deduce that

|a3| ≤
|τ |

(µ+1)(µ+2)(2γ+1)
(ρ+1)(ρ+2)

1 +

[
(µ+1)(µ+2)(2γ+1)|τ |

(ρ+1)(ρ+2) − (µ+1)2(γ+1)2

(ρ+1)2

]
∣∣∣ (µ+1)(µ+2)(2γ+1)

(ρ+1)(ρ+2) − 3(µ+1)2(γ+1)2

(ρ+1)2

∣∣∣ |τ |+ (µ+1)2(γ+1)2

(ρ+1)2

.

Corollary 3.5. Let f ∈ IΣ,γ

(
p̃
)

(γ ≥ 1). Then

|a2| ≤ min

{
|τ |√

(3γ2 + 4γ + 2) |τ |+ (γ + 1)2
, |τ |

√
3

2γ + 1

}

and

|a3| ≤ min

{
3τ2

2γ + 1
,
|τ |

2γ + 1

[
1 +

(2γ + 1) |τ | − (γ + 1)2

(3γ2 + 4γ + 2) |τ |+ (γ + 1)2

]}
.

Corollary 3.6. Let f ∈ IΣ

(
p̃
)
. Then

|a2| ≤
|τ |√

9 |τ |+ 4

and

|a3| ≤
4 |τ |2

9 |τ |+ 4
.
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[4] Altınkaya, Ş., Yalçın, S.: Estimate for initial MacLaurin of general subclasses of bi-univalent
functions of complex order involving subordination. Honam Math. J. 40, 391-400 (2018)
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