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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Sobolev solutions of parabolic equation in a complete
Riemannian manifold

Eric Amar

Abstract. We study Sobolev estimates for the solutions of parabolic equations acting on a vector
bundle, in a complete Riemannian manifold M. The idea is to introduce geometric weights on
M. We get global Sobolev estimates with these weights. As applications, we find and improve
“classical results”, i.e. results without weights. As an example we get Sobolev estimates for the
solutions of the heat equation on p-forms when the manifold has “weak bounded geometry” of
order 1.
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1. Introduction

The study of Lr estimates for the solutions of parabolic equations in a complete
Riemannian manifold started long time ago. For the case of the heat equation, a
basic work was done by R.S. Strichartz [17]. In particular he proved that the heat
kernel is a contraction on the space of functions in Lr(M) for 1 ≤ r ≤ ∞.

Let (M, g) be a complete Riemannian manifold and let G := (H,π,M) be a
complex Cm vector bundle over M of rank N with fiber H. Let A be an elliptic
operator of order m acting on sections of G to themselves. Our aim here is to get
Sobolev estimates on the solutions of the parabolic equation Du := ∂tu−Au = ω,
where u, ω are sections of G over M.

Opposite to the usual way to do, see for instance the book by Grigor’yan [10]
and the references therein or the paper by [15], we do not use estimates on the
kernel associated to the semi group of the differential operator on the manifold.

We shall follow another natural path to proceed: first we use known result in
Rn to get precise local estimates on M, then we globalise them. The advantage
of this way is that, for instance when dealing with the heat equation, we need no
assumptions on the heat kernel.

To present the ideas in a simple way, we first restrict ourselves to the basic
case of the heat equation Du := ∂tu+∆u = ω, where ∆ := dd∗+d∗d is the Hodge
laplacian and u, ω belong to the vector bundle of differential p-forms.

We introduce (m, ε)-admissible balls Bm,ε(x) in (M, g). These balls are the ones
defined in the work of Hebey and Herzlich [13] but without asking for the har-
monicity of the local coordinates. Then we use a Theorem by Haller-Dintelmann,
Heck and Hieber [11, Corollary 3.2, p. 5] done in Rn, to get precise local results
on these (m, ε)-admissible balls.

For x in M, the radius Rm,ε(x) of the admissible ball Bm,ε(x) tells us how far
from the Euclidean geometry of Rn the manifold (M, g) is near the point x, and so
it not surprising that our geometric weights are functions of these radius. Finally
we use an adapted Vitali covering to globalise the local results we got.

Let W k,r
p (M,w) be the space of p-forms on M belonging in the Sobolev space

W k,r(M,w) with the weight w. The same way Lrp(M,w) is the space of p-forms
on M belonging in the Lebesgue space Lr(M,w) with the weight w. This gives us
the following theorem, written here in the case of the heat equation:

Theorem 1.1. Let M be a connected complete n-dimensional C2 Riemannian
manifold without boundary. Let Du := ∂tu + ∆u be the heat operator acting on
the bundle Λp(M) of p-forms on M . Let:

R(x) = R2,ε(x), w1(x) := R(x)rδ, w2(x) := R(x)rγ , w3(x) := R(x)rβ ,

where β, γ, δ are explicit constants. Then, for any α > 0, r ≥ 2, we have:

∀ω ∈ Lr([0, T + α], Lrp(M,w3)) ∩ Lr([0, T + α], L2
p(M)),

∃u ∈ Lr([0, T ],W 2,r
p (M,w2)) :: Du = ω,
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with

‖∂tu‖Lr([0,T ],Lrp(M,w1)) + ‖u‖Lr([0,T ],W 2,r
p (M,w2))

≤ c1‖ω‖Lr([0,T+α],Lrp(M,w3)) + c2‖ω‖Lr([0,T+α],L2
p(M)).

In the case of functions instead of p-forms we have the same estimates but with
R(x) = R1,ε(x) and the weights:

w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

Because our admissible radius Rm,ε(x) is smaller than one, to forget the
weights, i.e. to get “classical estimates”, it suffices to have ∀x ∈ M, Rm,ε(x) ≥
δ > 0. In order to get this, we shall use a nice theorem by Hebey and Herzlich [13,
Corollary, p. 7] which warranties us that the radius of our admissible balls is
uniformly bounded below.

We introduce a weakened notion of bounded geometry: in the classical defini-
tion we replace the curvature tensor by the Ricci one:

Definition 1.2. A Riemannian manifold M has k-order weak bounded geom-
etry if:
• the injectivity radius rinj(x) at x ∈ M is bounded below by some constant

δ > 0 for any x ∈M ;
• for 0 ≤ j ≤ k, the covariant derivatives ∇jRc of the Ricci curvature tensor

are bounded in L∞(M) norm.

Using this notion we get the following theorem, written here in the case of the
heat equation:

Theorem 1.3. Let M be a connected complete n-dimensional C2 Riemannian
manifold without boundary. Let Du := ∂tu+∆u be the heat operator acting on the
bundle Λp(M) of p-forms on M. Suppose moreover that (M, g) has 1 order weak
bounded geometry. Then

∀ ω ∈ Lr([0, T + α], Lrp(M)) ∩ Lr([0, T + α], L2
p(M)),

∃ u ∈ Lr([0, T ],W 2,r
p (M)) :: Du = ω,

with:

‖∂tu‖Lr([0,T ],Lrp(M)) + ‖u‖Lr([0,T ],W 2,r
p (M))

≤ c1‖ω‖Lr([0,T+α],Lrp(M)) + c2‖ω‖Lr([0,T+α],L2
p(M)).

In the case of functions instead of p-forms we have the same estimates just sup-
posing that (M, g) has 0 order weak bounded geometry.

Our method extends to the study of general parabolic equation of order m
acting on metric vector bundles. But even in the special case of the heat equation
acting on p-forms, it gives some new insights. Let us compare with 3 papers using
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the heat kernel method. These papers give estimates on the solutions of the heat
equation Du = ω for u(t, x) with t ∈ [0, T ] fixed. On the other hand the solutions
I get are in Lr([0, T ], Wm,r

p (M)).
• Comparing with the result of Strichartz [17] on functions, he has no condition

at all to get u(t, ·) ∈ Lr(M) for ω(t, ·) ∈ Lr(M)∩L2(M) for any r ∈ [1,∞]. Here we
get u ∈ Lr([0, T ], Wm,r(M)) for ω ∈ Lr([0, T+α], Lr(M))∩Lr([0, T+α], L2(M)),
at the price that (M, g) has 0 order weak bounded geometry.

Moreover, by Theorem 8.7 in [2], the Sobolev embeddings are true in that case,
hence u ∈ W 2,r(M) ⇒ u ∈ Ls(M) with 1

s = 1
r −

2
n , and the result is improved

also in the Lebesgue scale.
• The work by [15], also using the kernel associated to the semi group of the

differential operator acting on metric vector bundles, contains a wide range of
precise results, among them Sobolev estimates for the solutions of the parabolic
equation. This is done under geometrical hypotheses on the manifold, essentially:
bounded geometry of any order.

Here we allow the order m of the parabolic equation to be greater than 2 and
we need only that (M, g) has m− 1 order weak bounded geometry to get Sobolev
estimates, but the price is that we have our solutions in Lr([0, T ], Wm,r

p (M)), not
in Wm,r

p (M), for any t ∈ [0, T ].
• Comparing to the result in [14, Theorem 1.2], the hypotheses they have are

directly on the kernel and on the manifold: the heat kernel must satisfy a Gaussian
upper bound, M must satisfy a volume doubling condition, plus another condition
on the negative part of the Ricci curvature. They get Lebesgue estimates on p-
forms u(t, ·) ∈ Lrp(M) for ω(t, ·) ∈ Lrp(M). Here again we need that (M, g) has
1 order weak bounded geometry to get Sobolev estimates, which are better than
Lebesgue estimates, but in Lr([0, T ], Wm,r

p (M)).
The proofs here are, of course, completely different than the proofs using ker-

nels.
I thank the referee for his incisive question leading to Remark 5.5.

2. Notation, definitions and main results

2.1. Admissible balls

Definition 2.1. Let (M, g) be a Riemannian manifold and x ∈ M. We shall say
that the geodesic ball B(x,R) is (m, ε)-admissible if there is a chart (B(x,R), ϕ)
such that, with ε ∈ (0, 1):

1. (1− ε)δij ≤ gij ≤ (1 + ε)δij in B(x,R) as bilinear forms,

2.
∑

1≤|β|≤m

R|β| sup i,j=1,...,n, y∈Bx(R)

∣∣∂βgij(y)
∣∣ ≤ ε.

We shall denote Am(ε) the set of (m, ε)-admissible balls.

Definition 2.2. Let x ∈M, we set R′(x) = sup {R > 0 :: B(x,R) ∈ Am(ε)}. We
shall say that Rε(x) := min (1, R′(x)/2) is the (m, ε)-admissible radius at x.
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Remark 2.3. Let x, y ∈ M. Suppose that R′(x) > dg(x, y), where dg(x, y) is
the Riemannian distance between x and y. Consider the ball B(y, ρ) of center y
and radius ρ := R′(x) − dg(x, y). This ball is contained in B(x,R′(x)) hence, by
definition of R′(x), we have that all the points in B(y, ρ) verify the conditions
1) and 2) so, by definition of R′(y), we have that R′(y) ≥ R′(x) − dg(x, y). If
R′(x) ≤ dg(x, y) this is also true because R′(y) > 0. Exchanging x and y we get
that |R′(y)−R′(x)| ≤ dg(x, y).

Hence R′(x) is 1-lipschitzian so it is continuous. So the ε-admissible radius
Rε(x) is continuous.

Remark 2.4. Because an admissible ball B(x,Rε(x)) is geodesic, we get that
the injectivity radius rinj(x) always verifies rinj(x) ≥ Rε(x).

Lemma 2.5 (Slow variation of the admissible radius). Let (M, g) be a Riemannian
manifold. With R(x) = Rε(x) = the ε-admissible radius at x ∈ M , for every
y ∈ B(x,R(x)) we have R(x)/2 ≤ R(y) ≤ 2R(x).

Proof. Let x, y ∈ M and d(x, y) the Riemannian distance on (M, g). Let y ∈
B(x,R(x)) then d(x, y) ≤ R(x) and suppose first that R(x) ≥ R(y). Then, be-
cause R(x) = R′(x)/2, we get y ∈ B(x,R′(x)/2) hence we have B(y,R′(x)/2) ⊂
B(x,R′(x)). But by the definition of R′(x), the ball B(x,R′(x)) is admissible and
this implies that the ball B(y,R′(x)/2) is also admissible for exactly the same con-
stants and the same chart; this implies that R′(y) ≥ R′(x)/2 hence R(y) ≥ R(x)/2,
so R(x) ≥ R(y) ≥ R(x)/2. If R(x) ≤ R(y) then

d(x, y) ≤ R(x)⇒ d(x, y) ≤ R(y)⇒ x ∈ B(y,R′(y)/2)

⇒ B(x,R′(y)/2) ⊂ B(y,R′(y)) .

Hence the same way as above we get R(y) ≥ R(x) ≥ R(y)/2⇒ R(y) ≤ 2R(x). So
in any case we proved that

∀ y ∈ B(x,R(x)), R(x)/2 ≤ R(y) ≤ 2R(x).

2.2. Vector bundle

Let (M, g) be a complete Riemannian manifold and let G := (H,π,M) be a
complex Cm vector bundle over M of rank N with fiber H. Suppose moreover that
G has a smooth scalar product ( , ) and a metric connection ∇G : C∞(M,G) →
C∞(M,G ⊗ T ∗M), i.e. verifying d(u, v) = (∇Gu, v) + (u,∇Gv), where d is the
exterior derivative on M acting on the scalar product (u, v). See [18, Section 13].

Lemma 2.6. The ε-admissible balls B(x,Rε(x)) trivialise the bundle G.

Proof. Because if B(x,R) is a ε-admissible ball, we have by Remark 2.4 that
R ≤ rinj(x). Then, one can choose a local frame field for G on B(x,R) by radial
parallel translation, as done in [18, Section 13, p.86-87], see also [15, p. 4, eq.
(1.3)]. This means that the ε-admissible ball also trivialises the bundle G.



122 E. Amar

If ∂j := ∂/∂xj in a coordinate system on, say B(x0, R), and with a local frame
{eα}α=1,...,N , we have, for a smooth sections of G, u = uαeα with the Einstein
summation convention. We set:

∇∂ju = (∂ju
α + uβΓG,αβj )eα,

the Christoffel coefficients ΓG,αβj being defined by ∇∂jeβ = ΓG,αβj eα. We shall make
the following hypothesis on the connection on G, for B(x0, R) ∈ Am(ε):

(CMT) ∀x ∈ B(x0, R), ∀ k ≤ m,∣∣∣∂k−1ΓG,αβj (x)
∣∣∣ ≤ C(n,G, ε)

∑
|β|≤k

sup i,j=1,...,n,

∣∣∂βgij(x)
∣∣,

the constant C depending only on n, ε and G but not on B(x0, R) ∈ Am(ε).

This hypothesis is natural:

Lemma 2.7. The hypothesis (CMT) is true for the Levi-Civita connection on
M.

Proof. Let Γklj be the Christoffel coefficients of the Levi-Civita connection on the
tangent bundle TM. We have

Γikj =
1

2
gil
(
∂gkl
∂xj

+
∂glj
∂xk

− ∂gjk
∂xl

)
. (2.1)

Now on B(x0, R) ∈ Am(ε), we have (1 − ε)δij ≤ gij ≤ (1 + ε)δij as bilinear
forms. Hence

∀x ∈ B(x0, R),
∣∣Γikj(x)

∣∣ ≤ 3

2
(1− ε)−1

∑
|β|=1

sup i,j=1,...,n,

∣∣∂βgij(x)
∣∣,

in a coordinates chart on B(x0, R). We have the same with (2.1) for the derivatives
of Γikj .

Remark 2.8. If the hypothesis (CMT) is true for two vector bundles on M, then
an easy computation gives that it is true for the tensor product of the two bundles
over M. In particular (CMT) is true for tensor bundles over M. It is also true for
the sub-bundle of p-forms on M.

2.3. Sobolev spaces for sections of G with weight

We have seen that ∇G : C∞(M,G)→ C∞(M,G⊗T ∗M). On the tensor product of
two Hilbert spaces we put the canonical scalar product (u⊗ω, v⊗µ) := (u, v)(ω, µ),
with u ⊗ ω ∈ G ⊗ T ∗M, and completed by linearity to all elements of the tensor
product. On T ∗M we have the Levi-Civita connection ∇M , which is of course a
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metric one, and on G we have the metric connection ∇G so we define a connection
on the tensor product G⊗ T ∗M :

∇G⊗T
∗M (u⊗ ω) = (∇Gu)⊗ ω + u⊗ (∇T

∗Mω)

by asking that this connection be a derivation. We get easily that

∇G⊗T
∗M : C∞(M,G⊗ T ∗M)→ C∞(M,G⊗ (T ∗M)⊗2)

is still a metric connection , i.e.

d(u⊗ ω, v ⊗ µ) = (∇G⊗T
∗M (u⊗ ω), v ⊗ µ) + (u⊗ ω, ∇G⊗T

∗M (v ⊗ µ)).

We define by iteration ∇ju := ∇(∇j−1u) on the section u of G and the associ-
ated pointwise scalar product (∇ju(x),∇jv(x)) which is defined on G⊗ (T ∗M)⊗j ,
with again the metric connection

d(∇ju,∇jv)(x) = (∇j+1u,∇jv)(x) + (∇ju,∇j+1v)(x).

Let w be a weight on M, i.e. a positive measurable function on M. If k ∈ N
and r ≥ 1 are given, we denote by Ck,rG (M,w) the space of smooth sections of
G ω ∈ C∞(M) such that

∣∣∇jω∣∣ ∈ Lr(M,w) for j = 0, . . . , k with the pointwise
modulus associated to the pointwise scalar product. Hence

Ck,rG (M,w) :=

{
ω ∈ C∞G (M), ∀j = 0, . . . , k,

∫
M

∣∣∇jω∣∣r (x)w(x)dv(x) <∞
}
,

with dv the volume measure on (M, g).
Now we have, see M. Cantor [3, Definition 1 & 2, p. 240] for the case without

weight:

Definition 2.9. The Sobolev space W k,r
G (M,w) is the completion of Ck,rG (M,w)

with respect to the norm:

‖ω‖Wk,r
G (M,w) =

k∑
j=0

(∫
M

∣∣∇jω(x)
∣∣r w(x)dv(x)

)1/r

.

The usual case is when w ≡ 1. Then we write simply W k,r
G (M).

A vector bundle G verifying the following two hypotheses will be called adapted:
• the vector bundle G is equipped with a metric connection;
• the Christoffel symbols ΓG,αβj of the connection are controlled by the metric

tensor (CMT) g:

(CMT) ∀x ∈ B(x0, R), ∀ k ≤ m,∣∣∣∂k−1ΓG,αβj (x)
∣∣∣ ≤ C(n,G, ε)

∑
|β|≤k

sup i,j=1,...,n,

∣∣∂βgij(x)
∣∣,

the constant C depending only on n, ε and G but not on the admissible ball
B(x0, R) ∈ Am(ε).
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2.4. Parabolic operator

We suppose that Du := ∂tu−Au is parabolic in Rn in the sense of [11]:
• A is a system of differential operators of the form A =

∑
|α|≤m aα∂

α, where

∂ = −i(∂1, . . . , ∂n) and aα ∈ L∞(Rn,CN×N ).
• A is (C, θ)-elliptic; this means that there exist constants θ ∈ [0, π) and C > 0,

such that the principal part A#(x, ξ) :=
∑
|α|=m aαξ

α of the symbol of A satisfies
the following conditions:

σ(A#(x, ξ)) ⊂ S̄θ and
∥∥A#(x, ξ)−1

∥∥ ≤M for all ξ ∈ Rn, |ξ| = 1,

for almost all x ∈ Rn. Here Sθ denotes the sector in the complex plane defined
by Sθ := {λ ∈ C\{0} :: |argλ| < θ} and the spectrum of an N×N -matrix M is
denoted by σ(M).
• Because we work only with the usual Lebesgue spaces, we take for the domain

of A, D(A) := Wm,r(Rn)N .
We shall use the following [11, Corollary 3.2, p. 5]:

Theorem 2.10. Let n ≥ 2, 1 < r, s < ∞, θ ∈ (0, π) and C > 0. Assume that
A :=

∑
|α|≤m aα(x)∂α is a (C, θ)-elliptic operator in Lrw(Rn)N with coefficients aα

satisfying:
a) aα ∈ L∞(Rn;CN×N ) ∩ VMO(Rn;CN×N ) for |α| = m,
b) aα ∈ L∞(Rn;CN×N ) for |α| < m.

Suppose that Du := ∂tu − Au = ω, u(x, 0) ≡ 0, and assume now that θ < π
2 ,

then there exist constants M,µ ≥ 0 such that, with J := [0,∞[,

‖∂tu‖Ls(J,Lr(Rn)N ) + ‖(µ+A)u‖Ls(J,Lr(Rn)N ) ≤M‖ω‖Ls(J,Lr(Rn)N ).

Moreover the solution u is unique verifying this estimate.

2.5. Global assumptions

We shall made the following global assumption on the operator A in the Rieman-
nian manifold M in all the sequel of this work.

Definition 2.11. We say that the operator A is (C, θ)-elliptic of order m acting
on sections of G in the Riemannian manifold (M, g), if for any chart (U,ϕ) on
(M, g) which trivializes G, i.e. Gϕ, the image of G, is the trivial bundle ϕ(U)×RN
in ϕ(U), we have, with Aϕ the image of the operator A:
• Aϕ is a system of differential operators of the form Aϕ =

∑
|α|≤m aα∂

α,

where ∂ = −i(∂1, . . . , ∂n) and aα ∈ L∞(ϕ(U),CN×N ), with:
a) aα ∈ L∞(ϕ(U);CN×N ) ∩ VMO(ϕ(U);CN×N ) for |α| = m,
b) aα ∈ L∞(ϕ(U);CN×N ) for |α| < m.
• Aϕ is (C, θ)-elliptic; this means that there exist constants θ ∈ [0, π) and

C > 0, such that the principal part A#(x, ξ) :=
∑
|α|=m aαξ

α of the symbol of A
satisfies the following conditions:

σ(A#(x, ξ)) ⊂ S̄θ and
∥∥A#(x, ξ)−1

∥∥ ≤M for all ξ ∈ Rn, |ξ| = 1,
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for almost all x ∈ ϕ(U)n. And all the bounds being independent of the chart
(U,ϕ).

We shall also need the following “threshold hypothesis”.

(THL2) For any ω ∈ Ls([0, T ], L2
G(M)) there is a u ∈ Ls([0, T ], L2

G(M)) such
that Du = ω with the estimate:

‖u‖Ls([0,T ],L2
G(M)) . ‖ω‖Ls([0,T ],L2

G(M)).

This hypothesis is natural in the sense that it is true for the heat equation.

2.6. Main results

We shall use the following notation.

Definition 2.12. For r ≥ 2, m ∈ N, m ≥ 1, let k :=
⌈
n(r−2)

2mr

⌉
and define:

• if k = 0, β(r,m) := m+
n

2
− n

r
;

• if k ≥ 1, β = β(r,m) := min
(
m+

n

2
− n

r
, 5m

)
; γ = γ(r,m) = (4k + 2)m;

δ = δ(r,m) = (4k + 1)m.

Define also:

• if k = 0, β′ = β′(r,m) := m+
n

2
− n

r
;

• if k ≥ 1, β′ = β′(r,m) := min
(
m+

n

2
− n

r
, 4m

)
; γ′ = γ′(r,m) = (4m −

1)k + 2m; δ′ = δ′(r,m) = (4m− 1)k +m.

We are in position to state the first main result of this work.

Theorem 2.13. Let M be a connected complete n-dimensional Cm Riemannian
manifold without boundary. Let G := (H,π,M) be a complex Cm adapted vector
bundle over M. Suppose Du := ∂tu − Au, where A is (C, θ)-elliptic of order m
acting on sections of G with θ < π/2 in (M, g). Moreover suppose we have (THL2).
Let r ≥ 2 and:

R(x) = Rm,ε(x), w1(x) := R(x)rδ, w2(x) := R(x)rγ , w3(x) := R(x)rβ ,

with β, γ, δ as in Definition 2.12. Then, for any α > 0, r ≥ 2, we have:

∀ω ∈ Lr([0, T + α], LrG(M,w3)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ],Wm,r
G (M)) :: Du = ω,

with
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‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1‖ω‖Lr([0,T+α],LrG(M,w3)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates
but with R(x) = Rm−1,ε(x) and the weights:

w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

To find and improve “classical results”, i.e. results without weights, we use a
Theorem by Hebey and Herzlich [13, Corollary, p. 7] which warranties us that the
radius of our “admissible balls” is uniformly bounded below.

This gives the second main result of this work.

Theorem 2.14. Suppose that A is a (C, θ)-elliptic operator of order m acting on
sections of the adapted vector bundle G := (H,π,M) in the complete Riemannian
manifold (M, g), with θ < π/2. Consider the parabolic equation Du = ∂tu − Au
also acting on sections of G. Suppose moreover that (M, g) has (m−1) order weak
bounded geometry and (THL2) is true. Let r ≥ 2 then

∀ω ∈ Lr([0, T + α], LrG(M)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ],Wm,r
G (M)) :: Du = ω,

with:

‖∂tu‖Lr([0,T ],LrG(M)) + ‖u‖Lr([0,T ],Wm,r
G (M))

≤ c1‖ω‖Lr([0,T+α],LrG(M)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates just
supposing that (M, g) has (m− 2) order weak bounded geometry.

3. Local results

3.1. Local results in Rn

The following result follows the lines of [1, Theorem 3.5]:

Theorem 3.1. Let A be an operator of order m on G in the complete Riemannian
manifold M. Suppose that A is elliptic and with C1(M) smooth coefficients. Then,
for any x ∈ M and any ball B := B(x,R) such that B(x,R) is a basis of a chart
of M around x and trivialises the bundle G, with the ball B1 := B(x,R/2), we
have:

‖u‖Wm,r
G (B1) ≤ c1‖Au‖LrG(B) + c2R

−m‖u‖LrG(B).

Moreover the constants are independent of the radius R of the ball B.
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We shall use Theorem 3.1 in the proof of the following precise interior regu-
larity theorem in the case of Rn. The point here is that we need to have a clear
dependence in the radius R.

Theorem 3.2. Suppose that A is a system of differential operators (C, θ)-elliptic
with θ < π/2, operating in Rn, and suppose u is any solution of the parabolic
equation Du = ∂tu − Au = ω in a ball B(0, R) with ω ∈ Ls([0, T + α], Lr(B)N )
and u ∈ Ls([0, T + α], Lr(B)N ).

Consider the ball B1 := B(0, R/2). We have, with α > 0, T > 0 and r, s in
(1,∞):

‖∂t(u)‖Ls([0,T ],Lr(B1)N ) + ‖u‖Ls([0,T ],Wm,r(B1)N )

≤ c1‖D(u)‖Ls([0,T+α],Lr(B)N ) + c2R
−m‖u‖Ls([0,T+α],Lr(B)N ).

the constants cj being independent of R.

Proof. Let χ ∈ D(B) such that χ(x) = 1 for x ∈ B1. To ease the notation, let us set
L(s, r) := Ls(J, Lr(Rn)N ). Because A is (C, θ)-elliptic we can use the uniqueness
in Theorem 2.10 to get that v := χu is the unique solution of D(v) = D(χu)
verifying, with c1 independent of B,

‖∂t(χu)‖L(s,r) + ‖(µ+A)(χu)‖L(s,r) ≤ c1‖D(χu)‖L(s,r) .

Because

‖(µ+A)(χu)‖L(s,r) ≥ ‖A(χu)‖L(s,r) − µ‖(χu)‖L(s,r)

we have:

‖∂t(χu)‖L(s,r) + ‖A(χu)‖L(s,r) ≤ c1‖D(χu)‖L(s,r) + µ‖(χu)‖L(s,r). (3.1)

We shall now use the estimates given by the ellipticity of A. For t fixed, we
have, by Theorem 3.1:

‖χu‖Wm,r(Rn)N ≤ c2‖A(χu)‖Lr(Rn)N + c3R
−m‖χu‖Lr(Rn)N

where c2, c3 are independent of R.
So we get, integrating in t and setting W (s, r) := Ls(J,Wm,r(Rn)N ),

‖χu‖W (s,r) ≤ c2‖A(χu)‖L(s,r) + c3R
−m‖χu‖L(s,r).

Hence

‖∂t(χu)‖L(s,r)+‖χu‖W (s,r) ≤ ‖∂t(χu)‖L(s,r)+c2‖A(χu)‖L(s,r)+c3R
−m‖χu‖L(s,r).

Putting this in (3.1) we get with c4 := max(1, c2):

‖∂t(χu)‖L(s,r)+‖χu‖W (s,r)≤c4c1‖D(χu)‖L(s,r)+c4µ‖(χu)‖L(s,r)+c3R
−m‖χu‖L(s,r).
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So with new constants depending on c1, c2, c3 and µ only and with R ≤ 1, we get

‖∂t(χu)‖L(s,r) + ‖χu‖W (s,r) ≤ c
′
1‖D(χu)‖L(s,r) + c′2R

−m‖χu‖L(s,r). (3.2)

Now we want to control ‖D(χu)‖L(s,r) by ‖D(u)‖L(s,r). We have, because χ
does not depend on t:

D(χu) = χ∂tu− χAu+ E = χDu+ E (3.3)

with E := χAu− A(χu). The point is that E contains only derivatives of the jth

component of u of order strictly less than in the jth component of u in Du. So we
have, fixing t,

‖E‖Lr(Rn)N ≤ ‖∂χ‖∞‖χu‖Wm−1,r(Rn)N ≤ R
−1‖χu‖Wm−1,r(Rn)N ,

because ‖∂χ‖∞ ≤ R−1.
We can use the “Peter-Paul” inequality [9, Theorem 7.28, p. 173] (see also [19,

Theorem 6.18, (g) p. 232] for the case r = 2).

∃C > 0, ∀ε > 0 :: ‖χu‖Wm−1,r(Rn)N ≤ ε‖χu‖Wm,r(Rn)N + Cε−m+1‖χu‖Lr(Rn)N ,

with C independent of R of course. We choose ε = R/2 and we get

‖E‖Lr(Rn)N ≤ R
−1‖χu‖Wm−1,r(Rn)N ≤

1

2
‖χu‖Wm,r(Rn)N + cR−m+1‖χu‖Lr(Rn)N .

Integrating the s power for t in J we get

‖E‖L(s,r) ≤ R
−1‖χu‖Ls(J,Wm−1,r(Rn)N ) ≤

1

2
‖χu‖W (s,r) + cR−m+1‖χu‖L(s,r).

Hence putting it in (3.3), we get:

‖D(χu)‖L(s,r) ≤ ‖χD(u)‖L(s,r) +
1

2
‖χu‖W (s,r) + cR−m+1‖χu‖L(s,r).

Now using (3.2) we have, because R ≤ 1⇒ R−m+1 ≤ R−m,

‖∂t(χu)‖L(s,r) +
1

2
‖χu‖W (s,r) ≤ c1‖χDu‖L(s,r) + c2R

−m‖χu‖L(s,r).

Because χ = 1 in B1 and χ ≥ 0 we get

‖∂t(u)‖Ls(J,Lr(B1)N ) + ‖u‖Ls(J,Wm,r(B1)N ) ≤ ‖∂t(χu)‖L(s,r) + ‖χu‖W (s,r).

And, because χ ≤ 1 with compact support in B, we deduce

c1‖χDu‖L(s,r)+c2R
−m‖χu‖L(s,r) ≤ c1‖Du‖Ls(J,Lr(B)N )+c2R

−m‖χu‖Ls(J,Lr(B)N ).
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So finally:

‖∂t(u)‖Ls(J,Lr(B1)N ) + ‖u‖Ls(J,Wm,r(B1)N )

≤ c1‖Du‖Ls(J,Lr(B)N ) + c2R
−m‖χu‖Ls(J,Lr(B)N ),

with new constants still not depending on B hence nor on R.
Up to now we have J = [0,∞); to get a finite interval we just multiply u by a

function ψ(t) with compact support in [0, T + α) such that 0 ≤ ψ ≤ 1, ψ(t) = 1
for t ∈ [0, T ] and, using that ∂t(ψu) = ψ′u+ ψ∂tu implies

‖∂t(ψu)‖Ls(J,Lr(B1)N ) ≥ ‖ψ∂tu‖Ls(J,Lr(B1)N ) − ‖ψ
′u‖Ls(J,Lr(B1)N )

we get:

‖ψ∂tu‖Ls(J,Lr(B1)N ) − ‖ψ
′u‖Ls(J,Lr(B1)N ) + ‖ψu‖Ls(J,Wm,r(B1)N )

≤ c1‖D(ψu)‖Ls(J,Lr(B)N ) + c2R
−m‖ψu‖Ls(J,Lr(B)N ).

But, because ψ depends only on t, D(ψu) = ψ′u+ ψDu we have

‖D(ψu)‖Ls(J,Lr(B)N ) = ‖ψDu‖Ls(J,Lr(B)N ) + ‖ψ′u‖Ls(J,Lr(B)N ).

So we deduce

‖ψ∂tu‖Ls(J,Lr(B1)N ) + ‖ψu‖Ls(J,Wm,r(B1)N )

≤ c1‖ψDu‖Ls(J,Lr(B)N ) + (1 + c1)‖ψ′u‖Ls(J,Lr(B)N ) + c2R
−m‖ψu‖Ls(J,Lr(B)N ).

Now we have that |ψ′| ≤ C and R ≤ 1 so we end with:

‖∂tu‖Ls([0,T ],Lr(B1)N ) + ‖u‖Ls([0,T ],Wm,r(B1)N )

≤ c1‖Du‖Ls([0,T+α],Lr(B)N ) + c2R
−m‖u‖Ls([0,T+α],Lr(B)N ),

the new constants now depend on α (and µ) but still not on B hence not on R.
The proof is complete.

3.2. Sobolev comparison estimates

The following two lemmas are quite well known, hence I omit the proofs.

Lemma 3.3. Let B(x,R) be a (m, ε)-admissible ball in M and ϕ : B(x,R)→ Rn
be the admissible chart relative to B(x,R). Set v := ϕ∗u, then, for m ≥ 1:

∀u ∈Wm,r
G (B(x,R)), ‖u‖Wm,r

G (B(x,R)) ≤ cR
−m‖v‖Wm,r(ϕ(B(x,R))),

and, with Be(0, t) the Euclidean ball in Rn centered at 0 and of radius t,

‖v‖Wm,r(Be(0,(1−ε)R)) ≤ cR
−m‖u‖Wm,r

G (B(x,R)).
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We also have, for m = 0:

∀u ∈ LrG(B(x,R)), ‖u‖LrG(B(x,R)) ≤ (1 + Cε)‖v‖Lr(ϕ(B(x,R))),

and
‖v‖Lr(Be(0,(1−ε)R)) ≤ (1 + Cε)‖u‖LrG(B(x,R)).

The constants c, C being independent of B.
In the case of a function u on M, we have better results. Let B(x,R) be a

(m − 1, ε)-admissible ball in M and ϕ : B(x,R) → Rn be the admissible chart
relative to B(x,R). Set v := u ◦ ϕ. then, for m ≥ 1:

∀u ∈Wm,r(B(x,R)), ‖u‖Wm,r(B(x,R)) ≤ cR
1−m‖v‖Wm,r(ϕ(B(x,R))),

and
‖v‖Wm,r(Be(0,(1−ε)R)) ≤ cR

1−m‖u‖Wm,r(B(x,R)).

We also have, for m = 0:

∀u ∈ Lr(B(x,R)), ‖u‖LrG(B(x,R)) ≤ (1 + Cε)‖v‖Lr(ϕ(B(x,R))),

and
‖v‖Lr(Be(0,(1−ε)R)) ≤ (1 + Cε)‖u‖Lr(B(x,R)).

The constants c, C being independent of B.

Lemma 3.4 (Sobolev embedding). Let B(x,R) is a (m, ε)-admissible ball in M
and ϕ : B(x,R) → Rn be the admissible chart relative to B(x,R). We have the
Sobolev inequality, for m ≥ 1:

∀u ∈Wm,ρ
G (B(x,R)), ‖u‖LτG(B(x,R/2)) ≤ cR

−2m‖u‖Wm,ρ
G (B(x,R)) with

1

τ
=

1

ρ
−m
n
.

In the special case of functions, with B(x,R) a (m−1, ε)-admissible ball in M,
we have, for m ≥ 1:

∀u ∈Wm,ρ(B(x,R)), ‖u‖Lτ (B(x,R/2)) ≤ cR
1−2m‖u‖Wm,ρ(B(x,R)).

The constant c being independent of u and of the ball B(x,R).

3.3. The main local estimates

We shall use the following notation to ease the writing:

Definition 3.5. For r, s > 1, α > 0 fixed and m, k ∈ N, m ≥ 2, we set:

L(r, k) := Ls([0, T +α/2k], LrG(Bk)) and W (r, k) := Ls([0, T +α/2k],Wm,r
G (Bk)),

whereB := B(x,R) is a ball in the Riemann manifold (M, g) andBk := B(x,R/2k).
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The following theorem follows by standard techniques but is needed for the
sequel.

Theorem 3.6. Suppose that A is a (C, θ)-elliptic operator of order m acting on
sections of the vector bundle G := (H,π,M) in the complete Riemannian manifold
(M, g), with θ < π/2, and consider the parabolic equation Du = ∂tu − Au also
acting on sections of G and verifying Du ∈ Ls([0, T+α], LrG(B)) and u ∈ Ls([0, T+
α], LrG(B)).

Let B := B(x,R) be a (m, ε)-admissible ball and set B1 := B(x,R/2). Then,
with r, s in (1,∞), we have:

‖∂tu‖Ls([0,T+α/2],LrG(B1)) +Rm‖u‖Ls([0,T+α/2],Wm,r
G (B1))

≤ c3‖Du‖Ls([0,T+α],LrG(B)) + c4R
−m‖u‖Ls([0,T+α],LrG(B)).

In the case of functions we get, with this time B ∈ Am−1(ε),

‖∂tu‖Ls([0,T+α/2],LrG(B1)) +Rm−1‖u‖Ls([0,T+α/2],Wm,r
G (B1))

≤ c3‖Du‖Ls([0,T+α],LrG(B)) + c4R
−m‖u‖Ls([0,T+α],LrG(B)).

The constants c3, c4 are independent of u and of B.

Proof. The ball B being admissible, there is a diffeomorphism ϕ : B → Rn such
that G trivialises on B. I.e. we have, for any section u over B:

π−1(B)→ B×H, u→ (π(u), χϕ(u)) .

So the local representation of the section u is: uϕ := χϕ ◦ u ◦ ϕ−1.
We shall apply Theorem 3.2 with a slight change in T and α to the images of

A,G, u,

(∗) ‖∂tuϕ‖L(r,1) + ‖uϕ‖W (r1) ≤ c1‖(Du)ϕ‖L(r,0) + c2R
−m
ϕ ‖uϕ‖L(r,0),

where Aϕ, Bϕ, Rϕ, uϕ are the images by ϕ of A,B,R, u and the image of G is the
trivial bundle ϕ(B)×RN in Rn. The constants c1, c2 being independent of Bϕ.

First, because of the condition (1− ε)δij ≤ gij ≤ (1 + ε)δij in the definition of
the ε-admissible ball, we have that Rϕ ' R.

Now we use the Sobolev comparison estimates given by Lemma 3.3 to get:

‖∂tu‖LrG(B1) ≤ (1 + Cε)‖∂tuϕ‖Lr(ϕ(B1)),

because (∂tu)ϕ = ∂tuϕ. We also have:

Rm‖u‖Wm,r
G (B1) ≤ c‖uϕ‖Wm,r(ϕ(B1)).

The constants c, C being independent of B. Integrating the s-power with respect
to t, we get for the left hand side of (∗)

‖∂tu‖L(r,1) +Rm‖u‖W (r,1) ≤ C(‖∂tuϕ‖L(r,1) + ‖uϕ‖W (r,1)).
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Now, still by Lemma 3.3

‖(Du)ϕ‖Lr(Bϕ)N ≤ (1 + Cε)‖Du‖LrG(B)

and
‖uϕ‖Lr(Bϕ)N ≤ (1 + Cε)‖u‖LrG(B).

Again integrating the s-power with respect to t, we get for the right hand side of
(∗)

c1‖(Du)ϕ‖L(r,0) + c2R
−m
ϕ ‖uϕ‖L(r,0) ≤ c3‖Du‖L(r,0) + c4R

−m‖u‖L(r,0).

Hence replacing in (∗) we get, with new constants:

‖∂tu‖L(r,1) +Rm‖u‖W (r,1) ≤ c3‖Du‖L(r,0) + c4R
−m‖u‖L(r,0).

The constants c3, c4 are still independent of u and of B but depend on T and α.
In the case of functions, using Lemma 3.3, we get with this time B ∈ Am−1(ε),

‖∂tu‖L(r,1) +Rm−1‖u‖W (r,1) ≤ c3‖Du‖L(r,0) + c4R
−m‖u‖L(r,0).

The proof is complete.

The following corollary, the LIR inequality, is at the heart of the method we
use. The induction step works because of the gain in regularity we get by this
corollary.

Corollary 3.7 (The LIR inequality). Suppose that A is a (C, θ)-elliptic operator
of order m acting on sections of the adapted vector bundle G := (H,π,M) in the
complete Riemannian manifold (M, g), with θ < π/2, and consider the parabolic
equation Du = ∂tu−Au also acting on sections of G.

Let B := B(x,R) be a (m, ε)-admissible ball and set Bk := B(x,R/2k). Then,
with r, s in (1,∞), and α > 0, we have:

Rm‖∂tu‖Ls([0,T+α/2k+1],LrG(Bk+1)) +R2m‖u‖Ls([0,T+α/2k+1],Wm,r
G (Bk+1))

≤ c3Rm‖Du‖Ls([0,T+α/2k],LrG(Bk)) + c4‖u‖Ls([0,T+α/2k],LrG(Bk)).

With the notation of Definition 3.5 this gives:

Rm‖∂tu‖L(r,k+1) +R2m‖u‖W (r,k+1) ≤ c3R
m‖Du‖L(r,k) + c4‖u‖L(r,k).

In the case of functions instead of sections of G, we have, with B(x,R) ∈
Am−1(ε),

Rm‖∂tu‖Ls([0,T+α/2k+1],Lr(Bk+1)) +R2m−1‖u‖Ls([0,T+α/2],Wm,r(Bk+1))

≤ c3Rm‖Du‖Ls([0,T+α/2k],Lr(Bk)) + c4‖u‖Ls([0,T+α/2k],Lr(Bk)).

The constants c3, c4 being independent of u and B, but depend on T and α, hence
on k.

Proof. We apply Theorem 3.6 to Bk+1 ⊂ Bk instead of B1 ⊂ B and with α/2k

instead of α.
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3.4. The induction

Remark 3.8. The idea under this method is the following one.
If we have a u ∈ Ls([0, T ], LρG(B)) :: Du = ω then the LIR, Corollary 3.7, gives

essentially that u ∈ Ls([0, T ],Wm,ρ
G (B)). By applying the Sobolev embedding,

Lemma 3.4, we get u ∈ Ls([0, T ], LτG(B)) :: Du = ω, with
1

τ
=

1

ρ
− m

n
.

But if ω ∈ Ls([0, T ], LτG(B)) then a new application of the LIR gives u ∈
Ls([0, T ],Wm,τ

G (B)). So we have a strict increase of the regularity of u. We can
repeat the process up to reach the best regularity of the data ω.

The following lemma is essentially computational.

Lemma 3.9 (Induction). Provided that:

IH(k) Rdk‖∂tu‖L(rk,k)+R
bk‖u‖W (rk,k) ≤ c1(k)Rak‖ω‖L(r,0)+c2(k)‖u‖L(2,0).

We get

IH(k+1)
Rdk+1‖∂tu‖L(τ,k+2) +Rbk+1‖u‖W (τ,k+2)

≤ c1(k + 1)Rak+1‖ω‖L(r,0) + c2(k + 1)‖u‖L(2,0).

with
1

rk+1
=

1

rk
− m

n
=

1

2
− (k + 1)

m

n
, τ := min(rk+1, r), and for sections of G

with B ∈ Am(ε),

dk+1 = 3m+ bk; bk+1 = 4m+ bk; ak+1 = min(ak, 3m+ bk),

and
c1(k + 1) = c3(k) + cc4(k)c1(k); c2(k + 1) = cc4(k)c2(k).

And for functions with B ∈ Am−1(ε),

dk+1 = 3m− 1 + bk; bk+1 = 4m− 1 + bk; ak+1 = min(ak, 3m− 1 + bk),

and
c1(k + 1) = c3(k) + cc4(k)c1(k); c2(k + 1) = cc4(k)c2(k).

Proof. We have, by the Sobolev embedding, Lemma 3.4, with τ := rk+1, ρ := rk

and
1

rk+1
=

1

rk
− m

n
,

‖u(t, ·)‖
L
rk+1
G (Bk+1)

≤ cR−2m‖u(t, ·)‖Wm,rk
G (Bk)

hence, integrating,

‖u‖
Ls([0,T+α/2k+1],L

rk+1
p (Bk+1))

≤ cR−2m‖u‖Ls([0,T+α/2k],W
m,rk
p (Bk)).
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With the notation of Definition 3.5 this gives:

‖u‖L(rk+1,k+1) ≤ cR
−2m‖u‖W (rk,k). (3.4)

But by IH(k)

Rbk‖u‖W (rk,k) ≤ c1(k)Rak‖ω‖L(r,0) + c2(k)‖u‖L(2,0).

so

‖u‖L(rk+1,k+1) ≤ cR
−2m‖u‖W (rk,k)

≤ cc1(k)R−2m+ak−bk‖ω‖L(r,0) + cc2(k)R−2m−bk‖u‖L(2,0).

Now the LIR inequality, Corollary 3.7, with τ = min(r, rk+1), gives:

Rm‖∂tu‖L(τ,k+2) +R2m‖u‖W (τ,k+2) ≤ c3R
m‖Du‖L(τ,k+1) + c4‖u‖L(τ,k+1).

hence

Rm‖∂tu‖L(τ,k+2) +R2m‖u‖W (τ,k+2) ≤ c3R
m‖Du‖L(τ,k+1)

+ c4cc1(k)R−2m+ak−bk‖ω‖L(r,0) + c4cc2(k)R−2m−bk‖u‖L(2,0)

because ‖u‖L(τ,k+1) ≤ ‖u‖L(rk+1,k+1).

But τ ≤ r, [0, T + α/2k+1] ⊂ [0, T + α], Bk+2 ⊂ B, so we get

‖Du‖L(τ,k+1) ≤ ‖Du‖L(r,0) = ‖ω‖L(r,0).

Hence

Rm‖∂tu‖L(τ,k+2) +R2m‖u‖W (τ,k+2)

≤ (c3R
m + c4cc1(k))R−2m+ak−bk‖ω‖L(r,0) + c4cc2(k)R−2m−bk‖u‖L(2,0).

So, multiplying by R2m+bk , we get:

R3m+bk‖∂tu‖L(τ,k+2) +R4m+bk‖u‖W (τ,k+2)

≤ (c3R
3m+bk + c4cc1(k)Rak)‖ω‖L(r,0) + c4cc2(k)‖u‖L(2,0).

Hence with

dk+1 = 3m+ bk; bk+1 = 4m+ bk; ak+1 = min(ak, 3m+ bk),

and
c1(k + 1) = c3( k) + cc4(k)c1(k); c2(k + 1) = cc4(k)c2(k),

we get

IH(k+1)
Rdk+1‖∂tu‖L(τ,k+2) +Rbk+1‖u‖W (τ,k+2)

≤ c1(k + 1)Rak+1‖ω‖L(r,0) + c2(k + 1)‖u‖L(2,0).
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In the case of functions, applying again Corollary 3.7, with

dk+1 = 2m− 1 + bk; bk+1 = 3m− 2 + bk; ak+1 = min(ak, 2m− 1 + bk),

and
c1(k + 1) = c3(k) + cc4(k)c1(k); c2(k + 1) = cc4(k)c2(k),

we get

IH(k+1)
Rdk+1‖∂tu‖L(τ,k+2) +Rbk+1‖u‖W (τ,k+2)

≤ c1(k + 1)Rak+1‖ω‖L(r,0) + c2(k + 1)‖u‖L(2,0).

The proof is complete.

Lemma 3.10. Let B = B(x,R) be a ε-admissible ball in M. We have, for ω ∈
Ls([0, T + α], LrG(B)) with r ≥ 2:

‖ω‖LsG([0,T+α],L2(B)) ≤ c(n, ε)R
n
2−

n
r ‖ω‖LsG([0,T+α],Lr(B)),

with c depending only on n and ε.

Proof. Let ω ∈ Ls([0, T + α], LrG(B)). Because r ≥ 2 and B is relatively compact,
we have ω ∈ Ls([0, T + α], L2

G(B)). Because dv
|B| is a probability measure on B,

where |B| is the volume of the ball B, we get(∫
B

|ω(t, y)|2 dv(y)

|B|

)1/2

≤
(∫

B

|ω(t, y)|r dv(y)

|B|

)1/r

,

hence
‖ω(t, ·)‖L2(B) ≤ |B|

1
2−

1
r ‖ω(t, ·)‖Lr(B).

Integrating on t, we get

‖ω‖Ls([0,T+α],L2(B)) ≤ |B|
1
2−

1
r ‖ω‖Ls([0,T+α],Lr(B)).

Now on the manifold M, for Bx := B(x,R) a ε-admissible ball, we get

∀y ∈ Bx, (1− ε)n ≤ |detg(y)| ≤ (1 + ε)n,

hence we have, comparing the Lebesgue measure in Rn with the volume measure
in M ,

∀x ∈M, (1− ε)n/2νnRn ≤ Vol(B(x, Rε(x))) ≤ (1 + ε)n/2νnR
n,

so, on the manifold M , we have

‖ω‖Ls([0,T+α],L2(B)) ≤ c(n, ε)R
n
2−

n
r ‖ω‖Ls([0,T+α],Lr(B))

with c depending only on n and ε.
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For t ≥ 0 define k := dte ∈ N the integral part by excess, i.e.: t ≤ k < t + 1.

Now set k :=
⌈
n(r−2)

2mr

⌉
then k is the smallest integer such that, with 1

rk
= 1

2 −
mk
n ,

we have rk ≥ r.

Proposition 3.11. Let r ≥ 2. Let B := B(x,R) be a (m, ε)-admissible ball and set
Bk+1 := B(x, 2−k−1R). Then for any α > 0 we have the estimates, using β, γ, δ
from Definition 2.12:

Rδ‖∂tu‖Ls([0,T ],L
rk
G (Bk+1)) +Rγ‖u‖Ls([0,T ],W

m,rk
G (Bk+1))

≤ c1(k)Rβ‖ω‖Ls([0,T+α],LrG(B)) + c2(k)‖u‖Ls([0,T+α],L2
G(B)),

and the constants c1(k), c2(k) being independent of B ∈ Am(ε).
In the case of functions instead of sections of G we have the same estimates

but with B ∈ Am−1(ε) and using β′, γ′, δ′ from Definition 2.12 instead of β, γ, δ.

Proof. Take B := B(x,R), Bk := B(x, 2−kR). By the LIR inequality, Corol-
lary 3.7, we get, with τ = 2:

Rm‖∂tu‖L(2,1) +R2m‖u‖W (2,1) ≤ c3(0)Rm‖Du‖L(2,0) + c4(0)‖u‖L(2,0).

Now using Lemma 3.10, we get ‖ω‖L(2,0) ≤ c(n, ε)R
n
2−

n
r ‖ω‖L(r,0). Putting it

above with Du = ω, we get:

Rm‖∂tu‖L(2,1) +R2m‖u‖W (2,1) ≤ c3(0)c(n, ε)RmR
n
2−

n
r ‖ω‖L(r,0) + c4(0)‖u‖L(2,0).

Hence we have the induction hypothesis at level k = 0,

IH(0) Rd0‖∂tu‖L(2,1) +Rb0‖u‖W (2,1) ≤ c1(0)Ra0‖ω‖L(r,0) + c2(0)‖u‖L(2,0),

with d0 = m, b0 = 2m, a0 = m+
n

2
− n

r
and c1(0) = c(n, ε)c3(0), c2(0) = c4(0).

So applying the induction Lemma 3.9, we get

Rd1‖∂tu‖L(τ,2) +Rbk+1‖u‖W (τ,2) ≤ c1(1)Ra1‖ω‖L(r,0) + c2(1)‖u‖L(2,0).

with 1
r1

= 1
2 −

m
n , τ := min(r1, r), and

d1 = 3m+ b0; b1 = 4m+ b0; a1 = min(a0, 3m+ b0),

hence
d1 = 5m; b1 = 6m; a1 = min(m+

n

2
− n

r
, 5m),

and
c1(k + 1) = c3(k) + cc4(k)c1(k); c2(k + 1) = cc4(k)c2(k).

By induction, we get

bk = 4mk + 2m; dk = 4mk +m,
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and

a0 = m+
n

2
− n

r
, ∀k ≥ 1, ak = min(m+

n

2
− n

r
, 5m).

• if r1 ≥ r ⇒ τ = r and we get:

Rd1‖∂tu‖L(r,2) +Rb1‖u‖W (r,2) ≤ c1(1)Ra1‖ω‖L(r,0) + c2(1)‖u‖L(2,0).

And we are done.
• if τ = r1 < r, by the induction Lemma 3.9, after k steps, we get with

1
rk

= 1
2 −

mk
n , τ := min(rk, r):

ak = min
(
m+

n

2
− n

r
, 5m

)
, bk = (4k + 2)m; dk = (4k + 1)m.

Then

IH(k) Rdk‖∂tu‖L(τ,k+1) +Rbk‖u‖W (τ,k+1) ≤ c1(k)Rak‖ω‖L(r,0) +c2(k)‖u‖L(2,0).

Hence if rk ≥ r we are done as above, if not we repeat the process. Because
1
rk

= 1
2 −

mk
n after a finite number k =

⌈
n(r−2)

2mr )
⌉

of steps we have rk ≥ r and we

get, with Bk := B(x,R/2k):

Rdk‖∂tu‖L(rk,k+1) +Rbk‖u‖W (rk,k+1) ≤ c1(k)Rak‖ω‖L(r,0) + c2(k)‖u‖L(2,0).

Replacing the values of L(r, k) and W (r, k):

Rdk‖∂tu‖Ls([0,T+α/2k+1],L
rk
G (Bk+1)) +Rbk‖u‖Ls([0,T+α/2k+1],W

m,rk
G (Bk+1))

≤ c1(k)Rak‖ω‖Ls([0,T+α],LrG(B)) + c2(k)‖u‖Ls([0,T+α],L2
G(B)).

With cj(k) depending on ε, n,m, α, k and not on B. Because:

‖∂tu‖Ls([0,T ],L
rk
G (Bk+1)) ≤ ‖∂tu‖Ls([0,T+α/2k+1],L

rk
G (Bk+1))

and

‖u‖Ls([0,T ],W
m,rk
G (Bk+1)) ≤ ‖u‖Ls([0,T+α/2k+1],W

m,rk
G (Bk+1)),

this proves the proposition for sections of G.
In the case of functions instead of sections of G we have the same estimates but

with B ∈ Am−1(ε) and: ∀k ≥ 1, ak = min(m+ n
2−

n
r , 4m−1), bk = k(4m−1)+2m,

dk = m + k(4m − 1), and the constants c1(k), c2(k) being independent of B ∈
Am−1(ε). This justifies the notation in Definition 2.12. The proof is complete.

4. Vitali covering

The following is a well known lemma, see for instance [8, section 1.5.1].
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Lemma 4.1. Let F be a collection of balls {B(x, r(x))} in a metric space, with
∀B(x, r(x)) ∈ F , 0 < r(x) ≤ R. There exists a disjoint subcollection G of F with
the following properties: every ball B in F intersects a ball C in G and B ⊂ 5C.

Fix ε > 0 and let ∀x ∈ M, r(x) := Rε(x)/5, where Rε(x) is the admissible
radius at x, we built a Vitali covering with the collection F := {B(x, r(x))}x∈M .
The previous lemma gives a disjoint subcollection G such that every ball B in F
intersects a ball C in G and we have B ⊂ 5C. We set

D(ε) := {x ∈M :: B(x, r(x)) ∈ G} and Cε := {B(x, 5r(x)), x ∈ D(ε)} :

we shall call Cε a ε-admissible covering of (M, g).
More generally let k ∈ N and consider the collection Fk(ε) := {B(x, rk(x))}x∈M

where, for x ∈ M, rk(x) := 2−kRε(x)/5η, still where Rε(x) is the admissible ε-
radius at x. The integer η ≥ 1 will be chosen later. The previous lemma gives
a disjoint subcollection Gk(ε) such that every ball B in Fk(ε) intersects a ball C
in Gk(ε) and we have B ⊂ 5C. We set Dk(ε) := {x ∈ M :: B(x, rk(x)) ∈ Gk(ε)}
and Ck(ε) := {B(x, 5rk(x)), x ∈ Dk(ε)}: we shall call Ck(ε) a (k, ε)-admissible
covering of (M, g). We have the lemma:

Lemma 4.2. Let B(x, 5rk(x)) ∈ Ck(ε) then B0(x, R̃(x)) with R̃(x) := 2k×5rk(x)
is still a ε-admissible ball.

Moreover we have that all the balls Bj(x) := B0(x, 2−jR̃(x)), j = 0, 1, . . . , k
are also ε-admissible balls and {Bj(x), x ∈ Dk(ε)}, for j = 0, . . . , k, is a covering
of M.

Proof. Take x ∈Dk(ε) then we have that the geodesic ballB0(x, R̃(x))=B(x,Rε/η)
is ε-admissible and because 2−kRε/η < Rε, for η ≥ 1, we get that B(x,R(x)) is
also ε-admissible. The same for Bj(x) = B0(x, 2−jR̃(x)) because 2−jR̃(x) <
2−jRε(x)/η.

The fact that {Bk(x), x ∈ Dk(ε)} is a covering of M is just the Vitali lemma
and, because j ≤ k ⇒ Bj(x) ⊃ Bk(x), we get that {Bj(x), x ∈ Dk(ε)} is also a
covering of M.

Then we have:

Proposition 4.3. Let (M, g) be a Riemannian manifold, then the overlap of a

(k, ε)-admissible covering Ck(ε) is less than T = (1+ε)n/2

(1−ε)n/2 (100)n, i.e., ∀x ∈ M ,

x ∈ B(y, 5rk(y)) where B(y, rk(y)) ∈ Gk(ε) for at most T such balls.
Moreover we have

∀f ∈ L1(M),
∑
j∈N

∫
B(xj ,rk(xj))

|f(x)| dvg(x) ≤ T‖f‖L1(M).

Proof. Let Bj := B(xj , rk(xj)) ∈ Gk(ε) and suppose that x ∈
⋂l
j=1B(xj , 5rk(xj)).

Then we have ∀j = 1, . . . , l, d(x, xj) ≤ 5rk(xj). Hence

d(xj , xm) ≤ d(xj , x) + d(x, xm) ≤ 5(rk(xj) + rk(xm)) ≤ 2−k(Rε(xj) +Rε(xm))/η.
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Suppose that rk(xj) ≥ rk(xm) then xm ∈ B(xj , 10rk(xj)) ⊂ B(xj , Rε(xj)) because
10rk(xj) = 10×2−kRε(xj)/η ≤ Rε(xj) because now on we choose η = 10. Then,
by the slow variation of the ε-radius Lemma 2.5, we have Rε(xj) ≤ 2Rε(xm). If
rk(xj) ≤ rk(xm) then, the same way, 2Rε(xj) ≥ Rε(xm). Hence in any case we

have
1

2
Rε(xm) ≤ Rε(xj) ≤ 2Rε(xm).

So d(xj , xm) ≤ 2−k×3Rε(xj)/10 hence ∀m = 1, . . . , l,

B(xm, rk(xm)) ⊂ B(xj , 2−k×3Rε(xj)/10 + 2−kRε(xm)/10)

⊂ B(xj , 2−k×5Rε(xj)/10)

because Rε(xm) ≤ 2Rε(xj). The balls in Gk(ε) being disjoint, we get, setting
Bm := B(xm, rk(xm)),

l∑
m=1

Vol(Bm) ≤ Vol(B(xj , 2
−k×5Rε(xj)/η) = Vol(B(xj , 5rk(xj)).

The Lebesgue measure read in the chart ϕ and the canonical measure dvg on
B(x,Rε(x)) are equivalent; precisely because of condition 1) in the admissible ball
definition, we get that (1 − ε)n ≤ |detg| ≤ (1 + ε)n, and the measure dvg read

in the chart ϕ is dvg =
√
|detgij |dξ, where dξ is the Lebesgue measure in Rn. In

particular:
∀x ∈M, Vol(B(x, Rε(x))) ≤ (1 + ε)n/2νnR

n,

where νn is the Euclidean volume of the unit ball in Rn. Now because Rε(xj) is
the admissible radius and 5rk(xj) = 2−k×5Rε(xj)/10 < Rε(xj), because η = 10,

Vol(B(xj , 5rk(xj))) ≤ 5n(1 + ε)n/2vnrk(xj)
n.

On the other hand we have also

Vol(Bm) ≥ vn(1− ε)n/2rk(xm)n ≥ vn(1− ε)n/22−nrk(xj)
n,

hence
l∑

j=1

(1− ε)n/22−nr(xj)
n ≤ 5n(1 + ε)n/2rk(xj)

n,

so finally

l ≤ (5×2)n
(1 + ε)n/2

(1− ε)n/2
,

which means that T ≤ (1+ε)n/2

(1−ε)n/2 (100)n. Saying that any x ∈M belongs to at most

T balls of the covering {Bj} means that
∑
j∈N1Bj (x) ≤ T, and this implies easily

that:

∀f ∈ L1(M),
∑
j∈N

∫
Bj

|f(x)| dvg(x) ≤ T‖f‖L1(M).

The proof is complete.
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Corollary 4.4. Let (M, g) be a Riemannian manifold. Consider the (k, ε)-
admissible covering Ck(ε). Then the overlap of the associated covering by the balls

{B0(x,Rε(x)/η)}x∈Dk(ε) verifies Tk ≤
(1 + ε)n/2

(1− ε)n/2
(100)n×2nk.

Proof. We start the proof exactly the same way as above. LetBj :=B(xj , Rε(xj)/η),

xj ∈ Dk(ε) and suppose that x ∈
⋂l
j=1B(xj , Rε(xj)/η). Then we have, as above:

∀m =1, . . . , l, B(xm, Rε(xm)) ⊂ B(xj , 3Rε(xj)/η+Rε(xm)/η)⊂ B(xj , 5Rε(xj)/η).

The balls in Gk(ε) being disjoint, we get, setting Bm := B(xm, rk(xm)),

l∑
m=1

Vol(Bm) ≤ Vol(B(xj , 5Rε(xj)/η) = Vol(B(xj , 5×2krk(xj)).

Exactly as above, we get because of the factor 2k,

l ≤ (5×2×2k)n
(1 + ε)n/2

(1− ε)n/2
,

hence the result.

5. The threshold

We shall need the following “threshold hypothesis”.

(THL2) For any ω ∈ Ls([0, T ], L2
G(M)) there is a u ∈ Ls([0, T ], L2

G(M)) such
that Du = ω with the estimate:

‖u‖Ls([0,T ],L2
G(M)) . ‖ω‖Ls([0,T ],L2

G(M)) .

5.1. The case of the heat equation

We have, see for instance [16]:

Theorem 5.1 (Hodge decomposition). For M a compact C∞ smooth Riemannian
manifold, there exists a complete orthonormal basis {ϕ0, ϕ1, ϕ2, . . .} of p-forms
in L2(M) consisting of eigenforms of ∆ with ϕj having eigenvalue λj satisfying
0 ≤ λ0 ≤ λ1 ≤ · · · → ∞. For every j we have varphij ∈ C∞p (M) and

Φp(x, y, t) =

∞∑
j=0

e−λjtϕj(x)⊗ ϕj(y)

is the heat kernel for p-forms on M .

As an easy corollary we get the threshold hypothesis (THL2) because:
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Corollary 5.2. Let M be a compact C∞ smooth Riemannian manifold. Let, for
t ≥ 0, ω(t, x) ∈ L2

p(M) then we have that the kernel Φp(x, y, t) gives a solution u
of the heat equation Du := ∂tu−∆u = ω, u(0, x) ≡ 0, such that ∀t ≥ 0, u(t, x) ∈
L2
p(M) and we have the estimate:

∀ t ≥ 0, ‖u(t, ·)‖2L2
p(M) ≤ t

∫ t

0

‖ω(τ, ·)‖2L2
p(M)dτ.

Proof. We have the solution:

u(t, x) =

∫ t

0

∫
M

Φp(x, y, t− τ)ω(τ, y)dydτ .

Because ω ∈ L2
p(M), we have

ω(x, t) =
∑
j∈N

ωj(t)ϕj(x) with
∑
j∈N
|ωj(t)|2 = ‖ω(t, ·)‖2L2

p(M).

So we get

u(t, x) =

∫ t

0

∑
j∈N

e−λj(t−τ)ωj(τ)ϕj(x)dτ,

hence, by Cauchy-Schwarz inequality,

‖u(t, ·)‖2L2
p(M) =

∑
j∈N

∣∣∣∣∫ t

0

e−λjτωj(τ)dτ

∣∣∣∣2 ≤ ∑
λj>0

(1− e−2λjt)

2λj

∫ t

0

|ωj(τ)|2 dτ.

Let λ1 be the first non zero eigenvalue for the laplacian, we get for every

j ≥ 1, ψ(2λjt) := (1−e−2λjt)
2λj

≤ t because ψ(s) := 1 − e−s − s ≤ 0; take the

derivative ψ′(s) := e−s−1 ≤ 0 because s ≥ 0 and ψ(0) = 0 imply ∀s ≥ 0, ψ(s) ≤ 0.
With s = 2λjt we get the result. So

∀t ∈ [0, T ], ‖u(t, ·)‖2L2
p(M) ≤ t

∑
λj>0

∫ t

0

|ωj(τ)|2 dτ ≤ t
∫ t

0

‖ω(τ, ·)‖2L2
p(M)dτ, (5.1)

which ends the proof of the corollary.

For M complete non compact, we can use a sequence Nk of increasing compact
sub manifolds with smooth boundary. To each of them we associate its boundary-
less double to get the estimate (5.1) which gives the result for M because the
constant, t, is independent of k. So we get

Theorem 5.3. Let M be a connected complete C∞ Riemannian manifold. Let,
for t ≥ 0, ω(t, x) ∈ L2

p(M). Then we have a solution u of the heat equation

Du := ∂tu − ∆u = ω, u(x, 0) ≡ 0, such that ∀t ≥ 0, u(t, x) ∈ L2
p(M) with the

estimate:

∀ t ≥ 0, ‖u(t, ·)‖2L2(M) ≤ t
∫ t

0

‖ω(τ, ·)‖2L2(M)dτ.

Clearly this result implies the hypothesis (THL2).
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5.2. A more general case

Let G be an adapted vector bundle on M. If A is an essentially positive operator
on the sections of G, then we have that the semi-group e−tA is a contraction on
the L2 sections of G. This means

∀ω(t, ·) ∈ L2
G(M), v(t, x; s) := e−sAω(t, ·) ∈ L2

G(M)

with ‖v(t, ·; s)‖L2
G(M) ≤ ‖ω(t, ·)‖L2

G(M). We shall make the extra hypothesis that

the kernel ΦG(t, x, y) of the semi-group e−tA is smooth i.e. ΦG(t, x, y) is C∞ in all
variables for t > 0 and

v(t, x; s) =

∫
M

ΦG(s, x, y)ω(t, y)dσ(y).

If all these assumptions are fulfilled, we shall say that (A,G) is a well adapted
couple.

Theorem 5.4. Let (A,G) be a well adapted couple. Then we have, for any
ω(t, ·) ∈ L2

G(M), that there is a global solution u(t, ·) ∈ L2
G(M) of the parabolic

equation ∂tu−Au = ω, u(x, 0) ≡ 0, with:

‖u(t, ·)‖L2 ≤
∫ t

0

‖ω(s, ·)‖L2ds.

Proof. Let, for the semi-group e−tA, v(t, x; s) be the canonical solution of the
homogeneous parabolic equation with ω in C∞(M) with compact support, starting
at time s:

∀ t > s, ∀x ∈M, v(t, x; s) =

∫
M

ΦG(s, x, y)ω(t, y)dσ(y).

This means
∀ t > s, ∀x ∈M, ∂tv(t, x; s)−Av(t, x; s) = 0;

and
∀x ∈M, v(s, x; s) = ω(s, x).

Now, as for instance in [7, Theorem 2] for the Laplacian in Rn, we set:

u(t, x) :=

∫ t

0

v(t, x; s)ds.

The hypothesis of regularity of the semi-group we made and the fact that ω is
C∞(M) with compact support, allows us to differentiate under the integral sign.
We get:

∂tu = v(t, x; t) +

∫ t

0

∂tv(t, x; s)ds and Au =

∫ t

0

Av(t, x; s)ds.
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So:

∂tu−Au = v(t, x; t) +

∫ t

0

[∂tv −Av]ds = v(t, x; t) = ω(t, x).

Hence u(t, x) is a solution of the inhomogeneous equation ∂tu−Au = ω(t, x).
Now suppose that ∀t ≥ 0, ‖ω(t, ·)‖L2

G(M) < +∞, and ω(t, ·) is in C∞(M) with

compact support. Because the semi-group e−tA is bounded on L2, we get

‖v(t, ·; s)‖L2 ≤ C‖ω(s, ·)‖L2

hence

‖u(t, ·)‖L2 ≤
∫ t

0

‖ω(s, ·)‖L2ds.

It remains to use the density of elements in C∞G (M) with compact support in
L2
G(M) to end the proof of the theorem.

Clearly this result implies the hypothesis (THL2).

Remark 5.5. If G = Λp(M), the bundle of p-forms on M, and A = ∆ the Hodge
Laplacian on M, then we know that the heat semi-group (e−t∆)t≥0 on the manifold
is a contraction on L2

G(M), because ∆ is essentially positive on p-forms, see [17,
Theorem 2.4] and [14, p. 2]. In the case of functions, i.e. p = 0, we know that the
kernel Φ(t, x, y) exists and has the right properties, see [4, Theorem 4, p. 188].
I suspect that this is also true in the case of p-forms with p ≥ 1, but I find no
reference for it, so I give the Theorem 5.3.

6. Global results

We want to globalise Theorem 3.6 by use of our Vitali coverings.

Lemma 6.1. We have for any section f : M → G and τ ∈ (1,∞), with w(x) :=
Rε(x)γτ and B(x) := B(x,Rx(x)/10), Bk(x) := B(x, 2−kRε(x)/10), that:

∀τ ≥ 1, ‖f‖τW l,τ
G (M, w) '

∑
x∈Dk(ε)

Rε(x)γτ‖f‖τW l,τ
G (Bk(x));

and:

∀τ ≥ 1, ‖f‖τW l,τ
G (M,w) '

∑
x∈Dk(ε)

Rε(x)γτ‖f‖τW l,τ
G (B(x)).

Proof. Let x ∈ Dk(ε), this implies that Bk(x) := B(x, 2−kRε(x)/10) ∈ Ck(ε).
• First we start with l = 0. We shall deal with the function |f |. We have,

because Ck(ε) is a covering of M and with ∀y ∈ B(x), R(y) := Rε (y)

‖f‖τLτ (M,w) :=

∫
M

|f(x)|τ w(x)dv(x) ≤
∑

x∈Dk(ε)

∫
Bk(x)

|f(y)|τ R(y)γτdv(y).
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We have, by Lemma 2.5, ∀y ∈ B, R(y) ≤ 2R(x), then∑
x∈Dk(ε)

∫
Bk(x)

|f(y)|τ R(y)γτdv(y) ≤
∑

x∈Dk(ε)

2γτR(x)γτ
∫
Bk(x)

|f(y)|τdv(y)

≤ 2γτ
∑

x∈Dk(ε)

R(x)γτ‖f‖τLτ (Bk(x)).

Hence
‖f‖τLτG(M,w) ≤ 2γτ

∑
x∈Dk(ε)

R(x)γτ‖f‖τLτG(Bk).

To get the converse inequality we still use Lemma 2.5: ∀y ∈ B, R(x) ≤ 2R(y)
so we get:∑

x∈Dk(ε)

R(x)γτ
∫
Bk(x)

|f(y)|τdv(y) ≤ 2γτ
∑

x∈Dk(ε)

∫
Bk(x)

R(y)γτ |f(y)|τdv(y).

Now we use the fact that the overlap of Ck(ε) is bounded by T ,∑
x∈Dk(ε)

∫
Bk(x)

R(y)γτ |f(y)|τdv(y) ≤ 2γτT

∫
M

R(y)γτ |f(y)|τdv(y) = 2γτT‖f‖τLτ (M,w).

So ∑
x∈Dk(ε)

Rγτ‖f‖Lτ (Bk)
τ ≤ 2γτT‖f‖τLτ (M,w).

We already know that {B :: Bk ∈ Ck(ε)} is a covering of M with a bounded
overlap by Corollary 4.4, so we follow exactly the same lines to prove:

∀τ ≥ 1, ‖f‖τLτG(M,w) '
∑

x∈Dk(ε)

R(x)γτ‖f‖τLτG(B(x)).

• Now let l ≥ 1. We apply the case l = 0 to the covariant derivatives of f .

∀τ ≥ 1,
∥∥∇lf∥∥τ

LτG(M,w)
'

∑
x∈Dk(ε)

R(x)γτ
∥∥∇lf∥∥τ

LτG(B(x))
.

Because ‖f‖W l,τ = ‖f‖Lτ + · · ·+
∥∥∇lf∥∥

Lτ
we get

∀τ ≥ 1,
∥∥∇lf∥∥τ

W l,τ
G (M,w)

'
∑

x∈Dk(ε)

R(x)γτ
∥∥∇lf∥∥τ

W l,τ
G (B(x))

.

The proof is complete.

Theorem 6.2. Suppose that A is a (C, θ)-elliptic operator of order m acting on
sections of the adapted vector bundle G := (H,π,M) in the complete Riemannian
manifold (M, g), with θ < π/2, and consider the parabolic equation Du = ∂tu−Au
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also acting on sections of G. Let R(x) = Rm,ε(x) be the (m, ε) radius at the point
x ∈ M. Set w1(x) := R(x)δ, w2(x) := R(x)γ , w3(x) := R(x)β, with the notation
in Definition 2.12. We have:

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1‖Du‖Lr([0,T+α],LrG(M,w3)) + c2‖u‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates but
with R(x) = Rm−1,ε(x) and:

w1(x) := R(x)δ
′
, w2(x) := R(x)γ

′
, w3(x) := R(x)β

′
.

Proof. Once again we shall use the notation, for k ≥ 1,

L(s, r, k) := Ls([0, T ], LrG(Bk)); W (s, r, k) := Ls([0, T ],Wm,r
G (Bk))

and for k = 0,

L(s, r, 0) := Ls([0, T + α], LrG(B)); W (s, r, 0) := Ls([0, T + α],Wm,r
G (B)).

With this notation, the Proposition 3.11 gives, for r ≥ 2 and k :=

⌈
n(r − 2)

2mr

⌉
:

Rδ‖∂tu‖L(s,rk,k+1) +Rγ‖u‖W (s,rk,k+1) ≤ c1R
β‖ω‖L(s,r,0) + c2‖u‖L(s,2,0).

Because rk ≥ r we get

Rδ‖∂tu‖L(s,r,k+1) +Rγ‖u‖W (s,r,k+1) ≤ c1R
β‖ω‖L(s,r,0) + c2‖u‖L(s,2,0).

So for s = r we get

Rδ‖∂tu‖L(r,r,k+1) +Rγ‖u‖W (r,r,k+1) ≤ c1R
β‖ω‖L(r,r,0) + c2‖u‖L(r,2,0). (6.1)

Because
a+ b ≤ c+ d⇒ ar + br ≤ Acr +Bdr

with constants A,B depending on r only, the inequality (6.1) can be read with a
slight change of the constants:

Rrδ‖∂tu‖rL(r,r,k+1) +Rrγ‖u‖rW (r,r,k+1) ≤ c1(k)Rrβ‖ω‖rL(r,r,0) + c2‖u‖rL(r,2,0).

By use of Lemma 6.1 with l = 0, τ = r, w1(x) := R(x)rδ,

‖∂tu‖rLrG(M, w1) '
∑

x∈Dk+1(ε)

R(x)δr‖∂tu‖rLrG(Bk+1(x));

hence integrating in t ∈ [0, T ] we get:

‖∂tu‖rLr([0,T ],LrG(M,w1)) '
∑

x∈Dk+1(ε)

R(x)δr‖∂tu‖rLr([0,T ],LrG(Bk+1(x)).
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The same way, with l = m, τ = r, w2(x) := R(x)rγ ,

‖u‖rLr([0,T ],Wm,r
G (M,w2)) '

∑
x∈Dk+1

R(x)γr‖u‖rLr([0,T ],Wm,r
G (Bk+1(x)))

with l = 0, τ = r, w3(x) := R(x)rβ ,

‖ω‖rLr([0,T+α],LrG(M,w3)) '
∑

x∈Dk+1

R(x)βr‖ω‖rLr([0,T+α],LrG(B(x)))

and with l = 0, τ = r,

‖u‖rLr([0,T+α],L2
G(M)) '

∑
x∈Dk+1

‖u‖rLr([0,T+α],L2
G(B(x))).

So, putting this in Theorem 3.6, we get, with w1(x) := R(x)rδ, w2(x) :=
R(x)rγ , w3(x) := R(x)rβ ,

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1(k)‖Du‖Lr([0,T+α],LrG(M,w3)) + c2(k)‖u‖Lr([0,T+α],L2
G(M)).

The results, for functions instead of sections of G, follow the same lines and we
have the same estimates but with R(x) = Rm−1,ε(x) and the weights:

w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

The proof is complete.

Remark 6.3. The weights wj(x) depend on r but also on m and n via β, γ and
δ given by the Definition 2.12.

Corollary 6.4. Let M be a connected complete n-dimensional Cm Riemannian
manifold without boundary. Let G := (H,π,M) be a complex Cm adapted vector
bundle over M. Suppose Du := ∂tu − Au, where A is (C, θ)-elliptic of order m
acting on sections of G with θ < π/2. Moreover suppose we have (THL2). Let
r ≥ 2 and:

R(x) = Rm,ε(x), w1(x) := R(x)rδ, w2(x) := R(x)rγ , w3(x) := R(x)rβ ,

with the notation in Definition 2.12. Then, for any α > 0, r ≥ 2, we have:

∀ω ∈ Lr([0, T + α], LrG(M,w3)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ],Wm,r
G (M)) :: Du = ω,

with

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1‖ω‖Lr([0,T+α],LrG(M,w3)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates
but with R(x) = Rm−1,ε(x) and the weights:
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w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

Proof. By the threshold hypothesis (THL2), because ω ∈ Lr([0, T + α], L2
G(M))

there is a u ∈ Lr([0, T ], L2
G(M)) such that Du = ω and:

‖u‖Lr([0,T+α],L2
G(M)) . ‖ω‖Lr([0,T+α],L2

G(M)). (6.2)

Hence, using Theorem 6.2, we get that the same u verifies:

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1(k)‖Du‖Lr([0,T+α],LrG(M,w3)) + c2(k)‖u‖Lr([0,T+α],L2
G(M)).

So replacing Du by ω and using (6.2) we get

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],Wm,r
G (M,w2))

≤ c1‖ω‖Lr([0,T+α],LrG(M,w3)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

The results for functions instead of sections of G, follow the same lines and we
have the same estimates but with R(x) = Rm−1,ε(x) and the weights:

w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

The proof is complete.

If we are more interested in Lr−Ls estimates, we can use the Sobolev embed-
ding Theorem with weights [2], valid here, which gives:

Theorem 6.5. Let (M, g) be a complete Riemannian manifold. Let w(x) :=
R(x)α and w′ := R(x)ν with ν := s(2 + α/r). Then Wm,r

G (M,w) is embedded in

W k,s
G (M,w′), with

1

s
=

1

r
− (m− k)

n
> 0 and:

∀u ∈Wm,r
G (M,w), ‖u‖Wk,s

G (M,w′) ≤ C‖u‖Wm,r
G (M,w).

So, with
1

s
=

1

r
− (m− k)

n
> 0 and k = 0 we get

1

s
=

1

r
− m

n
> 0 i.e.

s =
nr

n− rm
. So w(x) := R(x)b ⇒ w′ := R(x)ν with:

ν

s
= 2 +

b

r
⇒ ν

r
−mν

n
= 2 +

b

r
⇒ ν

(
1

r
− m

n

)
=

2r + b

r
⇒ ν(n−m) = n(2r + b)

and finally ν =
n(2r + b)

n−m
. So we get:
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Corollary 6.6. Let M be a complete Riemannian manifold of class Cm without
boundary. Moreover suppose we have (THL2). Then, on an adapted vector bundle

G, with ν =
n(2r + γ)

n−m
and w4(x) := R(x)rν and also s =

nr

n− rm
:

∀ω ∈ Lr([0, T + α], LrG(M,w3)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ], LsG(M)) :: Du = ω,

such that:

‖∂tu‖Lr([0,T ],LrG(M,w1)) + ‖u‖Lr([0,T ],LsG(M,w4))

≤ c1‖ω‖Lr([0,T+α],LrG(M,w3)) + c2‖ω‖Lr([0,T+α],L2
G(M)),

with w1(x) := R(x)rδ, w3(x) := R(x)rβ, w4(x) := R(x)rν .
In the case of functions instead of sections of G we have the same estimates

but with R(x) = Rm−1,ε(x) and

w1(x) := R(x)rδ
′
, w3(x) := R(x)rβ

′
, w4(x) := R(x)rν .

6.1. The heat equation

We shall consider the heat equation, Du := ∂tu + ∆u = ω, with ∆ := dd∗ + d∗d
the Hodge laplacian. Here we change the sign to use the standard notation with
∆ essentially positive.

In this section we shall only consider the vector bundle of p-forms on the
Riemannian manifold M. We denote Lrp(M) the space of p-forms in Lr(M). The

same for W k,r
p (M), the Sobolev spaces of p-forms on M .

We get that ∆, the Hodge laplacian, is a (C, θ)-elliptic operator on the p-
forms in a complete Riemannian manifold, for any θ > 0, because its spectrum is
contained in R+ and

∀x ∈M, ∀ξx ∈ T ∗x (M), |ξx| = 1,
∥∥∆(x, ξx)−1

∥∥ ≤ C.
By Theorem 5.3 we also have that the (THL2) hypothesis is true in this case,

so we can apply Corollary 6.4 to get:

Theorem 6.7. Let M be a connected complete n-dimensional C2 Riemannian
manifold without boundary. Let Du := ∂tu + ∆u be the heat operator acting on
the bundle Λp(M) of p-forms on M. Let:

R(x) = R2,ε(x), w1(x) := R(x)rδ, w2(x) := R(x)rγ , w3(x) := R(x)rβ ,

with the notation in Definition 2.12 with m = 2. Then, for any α > 0, r ≥ 2, we
have:

∀ω ∈ Lr([0, T + α], Lrp(M,w3)) ∩ Lr([0, T + α], L2
p(M)),

∃u ∈ Lr([0, T ],W 2,r
p (M)) :: Du = ω,
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with

‖∂tu‖Lr([0,T ],Lrp(M,w1)) + ‖u‖Lr([0,T ],W 2,r
p (M,w2))

≤ c1‖ω‖Lr([0,T+α],Lrp(M,w3)) + c2‖ω‖Lr([0,T+α],L2
p(M)).

In the case of functions i.e. p = 0, we have the same estimates but with
R(x) = R1,ε(x) and

w1(x) := R(x)rδ
′
, w2(x) := R(x)rγ

′
, w3(x) := R(x)rβ

′
.

7. Classical estimates

We shall give some examples where we have classical estimates using that ∀x ∈
M, Rε(x) ≥ δ, via [13, Corollary, p. 7] (see also Theorem 1.3 in the book by
Hebey [12]):

Corollary 7.1. Let (M, g) be a complete Riemannian manifold. Let m ≥ 1; if
we have the injectivity radius rinj(x) ≥ i > 0 and ∀j ≤ m−1,

∣∣∇jRc(M,g)(x)
∣∣ ≤ c

for all x ∈M, then there exists a constant δ >, 0, depending only on n, ε, i,m and
c, such that: ∀x ∈M, Rm,ε(x) ≥ δ.

Proof. The Theorem of Hebey and Herzlich gives that, under these hypotheses,
for any α ∈ (0, 1) there exists a constant δ > 0, depending only on n, ε, i,m, α and
c, such that:

∀x ∈M, rH(1 + ε,m, α)(x) ≥ δ > 0.

So even taking our definition with a harmonic coordinates patch, we have that:

Rm,ε(x) ≥ rH(1 + ε,m, α)(x)

so a fortiori when we take the sup for Rm,ε(x) on any smooth coordinates patch,
not necessarily harmonic patch. The proof is complete.

7.1. Bounded geometry

Definition 7.2. A Riemannian manifold M has k-order bounded geometry if:
• the injectivity radius rinj(x) at x ∈ M is bounded below by some constant

δ > 0 for any x ∈M ;
• and if for 0 ≤ j ≤ k, the covariant derivatives ∇jR of the curvature tensor

are bounded in L∞(M) norm.

We shall weakened this definition to suit our purpose.

Definition 7.3. A Riemannian manifold M has k-order weak bounded geom-
etry if:
• the injectivity radius rinj(x) at x ∈ M is bounded below by some constant

δ > 0 for any x ∈M ;
• and if for 0 ≤ j ≤ k, the covariant derivatives ∇jRc of the Ricci curvature

tensor are bounded in L∞(M) norm.
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Using this notion, we get our main Theorem 6.2 without weights:

Theorem 7.4. Suppose that A is a (C, θ)-elliptic operator of order m acting on
sections of the adapted vector bundle G := (H,π,M) in the complete Riemannian
manifold (M, g), with θ < π/2, and consider the parabolic equation Du = ∂tu−Au
also acting on sections of G. Suppose moreover that (M, g) has (m−1) order weak
bounded geometry and (THL2) is true. Then

∀ω ∈ Lr([0, T + α], LrG(M)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ],Wm,r
G (M)) :: Du = ω,

with:

‖∂tu‖Lr([0,T ],LrG(M)) + ‖u‖Lr([0,T ],Wm,r
G (M))

≤ c1‖ω‖Lr([0,T+α],LrG(M)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates
just supposing that (M, g) has (m− 2) order weak bounded geometry.

7.1.1. Examples of manifolds of bounded geometry

• Euclidean space with the standard metric has bounded geometry.
• A smooth, compact Riemannian manifold M has bounded geometry as well;

both the injectivity radius and the curvature including derivatives are continuous
functions, so these attain their finite minima and maxima, respectively on M . If
M ∈ Cm+2, then it has bounded geometry of order m.
• Non compact, smooth Riemannian manifolds that possess a transitive group

of isomorphisms (such as the hyperbolic spaces Hn) have m-order bounded geom-
etry since the finite injectivity radius and curvature estimates at any single point
translate to a uniform estimate for all points under isomorphisms.

Of course these examples have a fortiori weak bounded geometry.

7.2. Hyperbolic manifolds

These are manifolds such that the sectional curvature KM is constantly −1. For
them we have first that the Ricci curvature is bounded.

Lemma 7.5. Let (M, g) be a complete Riemannian manifold such that H ≤
KM ≤ K for constants H,K ∈ R. Then we have that ‖Rc‖∞ ≤ max(|H| , |K|).

This lemma is so well known than we can omit its proof.
To get that the injectivity radius rinj(x) is bounded below we shall use a

Theorem by Cheeger, Gromov and Taylor [5]:

Theorem 7.6. Let (M, g) be a complete Riemannian manifold such that KM ≤ K
for constants K ∈ R. Let 0 < r < π

4
√
K

if K > 0 and r ∈ (0,∞) if K ≤ 0. Then
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the injectivity radius rinj(x) at x satisfies

rinj(x) ≥ r Vol(BM (x, r))

Vol(BM (x, r)) + Vol(BTxM (0, 2r))
,

where BTxM (0, 2r)) denotes the volume of the ball of radius 2r in TxM, where both
the volume and the distance function are defined using the metric g∗ := exp∗p g i.e.
the pull-back of the metric g to TxM via the exponential map.

This Theorem leads to the definition:

Definition 7.7. Let (M, g) be a Riemannian manifold. We shall say that it has
the lifted doubling property if we have:

(LDP) ∃α, β > 0 :: ∀x ∈M, ∃r ≥ β, Vol(BTxM (0, 2r)) ≤ αVol(BM (x, r)),

where BTxM (0, 2r)) denotes the volume of the ball of radius 2r in TxM, and
both the volume and the distance function are defined on TxM using the metric
g∗ := exp∗p g i.e. the pull-back of the metric g to TxM via the exponential map.

Hence we get:

Corollary 7.8. Let (M, g) be a complete Riemannian manifold such that KM ≤
K for a constant K ∈ R. For instance an hyperbolic manifold. Suppose moreover

that (M, g), has the lifted doubling property. Then ∀x ∈M, rinj(x) ≥ β

1 + α
.

Proof. By the (LDP) we get, for a r ≥ β,

Vol(BTxM (0, 2r)) ≤ αVol(BM (x, r)).

We apply Theorem 7.6 of Cheeger, Gromov and Taylor to get

rinj(x) ≥ r Vol(BM (x, r))

Vol(BM (x, r)) + Vol(BTxM (0, 2r))
.

So
Vol(BM (x, r))

Vol(BM (x, r)) + Vol(BTxM (0, 2r))
≥ 1

1 + α

hence, because r ≥ β, we get the result.

As an example of application we get

Proposition 7.9. Let (M, g) be a complete Riemannian manifold such that H ≤
KM ≤ K for constants H,K ∈ R, where KM is the sectional curvature of M.
Suppose moreover that (M, g) has the lifted doubling property and that, for 0 ≤
j ≤ k, the covariant derivatives ∇jRc of the Ricci curvature tensor are bounded
in L∞(M) norm. Then (M, g) has weak bounded geometry of order k.
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Theorem 7.10. Let (M, g) be a complete Riemannian manifold such that H ≤
KM ≤ K for constants H,K ∈ R, where KM is the sectional curvature of M.
Suppose moreover that (M, g) has the lifted doubling property. Suppose that A is a
(C, θ)-elliptic operator of order m acting on sections of the adapted vector bundle
G := (H,π,M) in (M, g), with θ < π/2, and consider the parabolic equation
Du = ∂tu− Au also acting on sections of G. Moreover suppose we have (THL2).
Provided that, for 0 ≤ j ≤ m − 1, the covariant derivatives ∇jRc of the Ricci
curvature tensor are bounded in L∞(M) norm:

∀ω ∈ Lr([0, T + α], LrG(M)) ∩ Lr([0, T + α], L2
G(M)),

∃u ∈ Lr([0, T ],Wm,r
G (M)) :: Du = ω,

with:

‖∂tu‖Lr([0,T ],LrG(M)) + ‖u‖Lr([0,T ],Wm,r
G (M))

≤ c1‖ω‖Lr([0,T+α],LrG(M)) + c2‖ω‖Lr([0,T+α],L2
G(M)).

In the case of functions instead of sections of G we have the same estimates,
just supposing that for 0 ≤ j ≤ m− 2, the covariant derivatives ∇jRc of the Ricci
curvature tensor are bounded in L∞(M) norm.

Proof. By the Proposition 7.9, we have that (M, g) has weak bounded geometry
of order k. So we can apply Theorem 7.4.

And in the case of the heat equation:

Corollary 7.11. Let (M, g) be a complete Riemannian manifold such that H ≤
KM ≤ K for constants H,K ∈ R, where KM is the sectional curvature of M.
Suppose moreover that (M, g) has the lifted doubling property. Then ∃δ > 0,
∀x ∈ M , R1,ε(x) ≥ δ. This implies that we get “classical solutions” for the heat
equation for functions in this case. I.e.

∀ω ∈ Lr([0, T + α], Lr(M)) ∩ Lr([0, T + α], L2(M)),

∃u ∈ Lr([0, T ],W 2,r(M)) :: Du = ω,

with:

‖∂tu‖Lr([0,T ],Lr(M)) + ‖u‖Lr([0,T ],W 2,r(M))

≤ c1‖ω‖Lr([0,T+α],Lr(M)) + c2‖ω‖Lr([0,T+α],L2(M)).

To get that ∃δ > 0, ∀x ∈ M, R2,ε(x) ≥ δ, we need to ask that moreover the
covariant derivatives ∇Rc of the Ricci curvature tensor are bounded in L∞(M)
norm. This is the case in particular if (M, g) is hyperbolic. This implies that we
get “classical solutions” for the heat equation for p-forms in this case. I.e.

∀ω ∈ Lr([0, T + α], Lrp(M)) ∩ Lr([0, T + α], L2
p(M)),

∃u ∈ Lr([0, T ],W 2,r
p (M)) :: Du = ω,
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with:

‖∂tu‖Lr([0,T ],Lrp(M)) + ‖u‖Lr([0,T ],W 2,r
p (M))

≤ c1‖ω‖Lr([0,T+α],Lrp(M)) + c2‖ω‖Lr([0,T+α],L2
p(M)).

Proof. By Lemma 7.5 we get that ‖Rc‖∞ <∞. Then we apply Corollary 7.8. For
forms we have to use the extra hypothesis on the covariant derivatives.

Remark 7.12. In the case the hyperbolic manifold (M, g) is simply connected,
then by the Hadamard Theorem [6, Theorem 3.1, p. 149], we get that the injec-
tivity radius is ∞, so we have also the classical estimates in this case.
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