Irreducibility of a specialization of the three dimensional Albeverio-Rabanovich representation of the pure braid group P_{3}

Hasan A. Haidar and Mohammad N. Abdulrahim*

Abstract

We consider the Albeverio-Rabanovich linear representation π of the braid group B_{3}. After specializing the indeterminates used in defining the representation to non-zero complex numbers, we prove that its restriction to the pure braid group P_{3} of dimension three is irreducible.

1. Introduction

Let B_{n} be the braid group on n strands. Consider the pure braid group P_{n}, the kernel of the obvious surjective group homomorphism $B_{n} \rightarrow S_{n}$. Burau constructed a representations of B_{n} of degrees n and $n-1$, known as Burau and reduced Burau representations respectively [4]. The reduced Burau representation of B_{n} was proved to be irreducible [5].

Using Burau unitarizable representation, Albeverio presented a class of non trivial unitary representations for the braid groups B_{3} and B_{4} in the case where the dimension of the space is a multiple of 3 . Researchers gave a great value for representations of the pure braid group P_{n}. M. Abdulrahim gave a necessary and sufficient condition for the irreducibility of the complex specialization of the reduced Gassner representation of the pure braid group $P_{n}[1]$.

In our work, we mainly consider the irreducibility criteria of Albeverio-Rabanovich representation of the pure braid group P_{3} with dimension three. In section 3, we write explicitly Albeverio-Rabanovich representation π of the braid group B_{3} of dimension $(2 n+m) \times(2 n+m)$ [2]. In section 4 , we let $m=n=1$ and we write the images of the generators S and J of B_{3} under a specialization of π, namely π_{3}. Then we deduce the images of σ_{1} and σ_{2}, the standard generators of B_{3}, under π_{3}. After that, we consider the representation ϕ, the restriction of π_{3} on the pure braid group P_{3}. In section 5 , we prove that ϕ is an irreducible representation of P_{3} of dimension three.

[^0]
2. Preliminaries

Defintion 2.1 ([3]). The braid group on n strings, B_{n}, is the abstract group with presentation

$$
B_{n}=\left\{\begin{array}{ll}
\sigma_{1}, \ldots, \sigma_{n-1} ; & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},
\end{array} \\
\text { for } i=1,2, \ldots, n-2, \\
\text { if }|i-j|>1
\end{array}\right\} .
$$

The generators $\sigma_{1}, \ldots, \sigma_{n-1}$ are called the standard generators of B_{n}.
Defintion 2.2 ([3]). The pure braid group, P_{n}, is defined as the kernel of the homomorphism $B_{n} \longrightarrow S_{n}$, defined by $\sigma_{i} \mapsto(i, i+1), 1 \leq i \leq n-1$. It has the following generators:

$$
A_{i j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}, 1 \leq i<j \leq n
$$

Defintion 2.3. A representation $\gamma: G \longrightarrow G L(V)$ is said to be irreducible if it has no non-trivial proper invariant subspaces.

3. Albeverio-Rabanovich representation of the braid group B_{3}

Consider the braid group B_{3} and its standard generators σ_{1} and $\sigma_{2} . B_{3}$ will be generated by J and S and has only one relation $S^{2}=J^{3}$, where $J=\sigma_{1} \sigma_{2}$ and $S=\sigma_{1} J$. Denote the representation of B_{3} by π, where $\pi(S)=U$ and $\pi(J)=V$. Here U and V are $(2 n+m) \times(2 n+m)$ block matrices given by

$$
U=2\left(\begin{array}{ccc}
A-I_{n} / 2 & B & C \\
B^{*} & B^{*} A^{-1} B-I_{n} / 2 & B^{*} A^{-1} C \\
C^{*} & C^{*} A^{-1} B & C^{*} A^{-1} C-I_{m} / 2
\end{array}\right)
$$

and

$$
V=\operatorname{diag}\left(I_{n}, \beta I_{n}, \beta^{2} I_{m}\right)
$$

We have $\beta=\sqrt[3]{1}$ is a primitive root of unity, $1 \leq m \leq n, A$ and B are $n \times n$ matrices and C is an $n \times m$ matrix. We also have $V^{3}=I_{2 n+m}$. If $A=A^{*}$ and $B B^{*}+C C^{*}=A-A^{2}$, we get $U=U^{*}$ and $U^{2}=I_{2 n+m}$. For more details, see [2].

Proposition 3.1 ([2]). If A and B are invertible, $\operatorname{rank}(C)=m, B^{*} B$ is a diagonal matrix with simple spectrum and every entry of A is non-zero then the Albeverio-Rabanovich representation is irreducible.

4. Restriction of Albeverio-Rabanovich representation on the pure braid group P_{3}

Consider the braid group B_{3} generated by S and V. Let π_{3} be the specialization of the three dimensional Albeverio-Rabanovich representation π on B_{3} by taking B and C non-zero real numbers and A is specialized to the value $\frac{1}{2}$. This implies that $B=B^{*}, C=C^{*}$ and $B^{2}+C^{2}=A-A^{2}$. For $A=\frac{1}{2}$, we have $B^{2}=\frac{1}{4}-C^{2}$, where $-\frac{1}{2}<C<\frac{1}{2}$. Take $n=m=1$ with $b=2 B$ and $c=2 C$. So b and c are non-zero real numbers with $b^{2}+c^{2}=1$. Here we have $-1<b, c<1$. We get

$$
\pi_{3}(S)=U=\left(\begin{array}{ccc}
0 & b & c \\
b & -c^{2} & b c \\
c & b c & c^{2}-1
\end{array}\right)
$$

and

$$
\pi_{3}(J)=V=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \beta^{2}
\end{array}\right)
$$

Here, β is a primitive 3 rd root of unity. That is, $\beta^{3}=1$.
Proposition 4.1. The images of the standard generators σ_{1} and σ_{2} of the braid group B_{3} under π_{3} are given by:

$$
\pi_{3}\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
0 & \beta^{2} b & \beta c \\
b & -\beta^{2} c^{2} & \beta b c \\
c & \beta^{2} b c & \beta\left(c^{2}-1\right)
\end{array}\right)
$$

and

$$
\pi_{3}\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
0 & \beta b & \beta^{2} c \\
\beta b & -\beta^{2} c^{2} & b c \\
\beta^{2} c & b c & \beta\left(c^{2}-1\right)
\end{array}\right)
$$

where b and c non are zero-real numbers with $b^{2}+c^{2}=1,-1<b, c<1, \beta \neq 1$, and $\beta^{3}=1$.

Now, we apply Albeverio-Rabanovich representation π_{3} on the pure braid group P_{3}. We get the following representation of dimension $d=3$

Proposition 4.2. Let ϕ be the restriction of Albeverio-Rabanovich representation π_{3} on the pure braid group P_{3}. Thus ϕ is defined as follows:

$$
\phi\left(A_{12}\right)=\left(\begin{array}{ccc}
I & c K & -\beta^{2} b K \\
\beta c K & I+b c K & \beta^{2} L K \\
-\beta b K & L K & I-\beta^{2} b c K
\end{array}\right)
$$

and

$$
\phi\left(A_{23}\right)=\left(\begin{array}{ccc}
I & \beta^{2} c K & -b K \\
\beta^{2} c K & I+b c K & \beta L K \\
-b K & \beta L K & I-\beta^{2} b c K
\end{array}\right)
$$

where $I=\beta c^{2}+\beta^{2} b^{2}, K=(1-\beta) b c, L=\beta^{2}+c^{2}$.
Also, b and c are non-zero real numbers with $b^{2}+c^{2}=1,-1<b, c<1, \beta \neq 1$, and $\beta^{3}=1$.

Since $\phi\left(A_{13}\right)=\phi\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1}\right)=\phi\left(A_{12}\right)^{-1}$, it follows that $\phi\left(A_{13}\right)$ and $\phi\left(A_{12}\right)$ have the same invariant subspaces.

5. Irreducibility of Albeverio-Rabanovich representation of the pure braid group P_{3} of dimension three

In this section, we prove that Albeverio-Rabanovich representation ϕ of the pure braid group P_{3} of dimension three is irreducible.

Theorem 5.1. Albeverio-Rabanovich representation $\phi: P_{3} \longrightarrow G L_{3}(\mathbb{C})$ is irreducible.

Proof. To get contradiction, suppose that this representation $\phi: P_{3} \longrightarrow G L_{3}(C)$ is reducible. That is, there exists a proper non-zero invariant subspace T, of dimension 1 or 2 . It is clear that ϕ is unitary [2]. For a unitary representation, the orthogonal complement of a proper invariant subspace is again a proper invariant subspace. We then assume that T is one dimensional subspace generated by a vector v. We use e_{1}, e_{2}, and e_{3} as the canonical basis of \mathbb{C}^{3}. It is easy to see that I, K, and L are different from zero. We consider five cases.

- Case 1: Let $v=e_{3}$, it follows that $\beta \phi\left(A_{12}\right) e_{3}-\phi\left(A_{23}\right) e_{3} \in T$. Then $L K(1-\beta) e_{2}+\left(I-\beta^{2} b c K\right)(\beta-1) e_{3} \in T$. Hence $e_{2} \in T$. Also, we have $\phi\left(A_{12}\right) e_{3}-$ $\beta \phi\left(A_{23}\right) e_{3} \in T$. Then

$$
-\beta b K(\beta-1) e_{1}+\left(I-\beta^{2} b c K\right)(1-\beta) e_{3} \in T
$$

Hence $e_{1} \in T$. Thus $T=\mathbb{C}^{3}$, a contradiction.

- Case 2: Let $v=e_{1}+\alpha e_{2}$ and $\alpha \in \mathbb{C}$. It follows that $\phi\left(A_{12}\right) v=a_{1} v$ for some $a_{1} \in \mathbb{C}^{*}$. Then

$$
(I+\alpha c K) e_{1}+(\beta c K+\alpha(I+b c K)) e_{2}+(-\beta b K+\alpha L K) e_{3}=a_{1}\left(e_{1}+\alpha e_{2}\right)
$$

Hence $-\beta b+\alpha L=0$. So $\alpha L=\beta b$. Also, there exists $a_{2} \in \mathbb{C}^{*}$ such that $\phi\left(A_{23}\right) v=$ $a_{2} v$. Then

$$
\left(I+\alpha \beta^{2} c K\right) e_{1}+\left(\beta^{2} c K+\alpha(I+b c K)\right) e_{2}+(-b K+\alpha \beta L K) e_{3}=a_{2}\left(e_{1}+\alpha e_{2}\right)
$$

Hence $-b+\alpha \beta L=0$. But, as we mention above, $\alpha L=\beta b$. Thus $b=0$, a contradiction.

- Case 3: Let $v=e_{1}+\alpha e_{3}$ and $\alpha \in \mathbb{C}$. It follows that $\phi\left(A_{12}\right) v=a_{1} v$ for some $a_{1} \in \mathbb{C}^{*}$. Then $c K+\alpha \beta L K=0$. So $\alpha \beta L=-c$. Also, there exists $a_{2} \in \mathbb{C}^{*}$ such that $\phi\left(A_{23}\right) v=a_{2} v$. Then $\beta^{2} c+\alpha \beta L=0$. But $\alpha \beta L=-c$. Thus $c=0$, a contradiction.
- Case 4: Let $v=e_{2}+\alpha e_{3}$ and $\alpha \in \mathbb{C}$. It follows that $\phi\left(A_{12}\right) v=a_{1} v$ for some $a_{1} \in \mathbb{C}^{*}$. Then $c K-\alpha \beta^{2} b K=0$. So $\alpha \beta^{2} b=c$. Also, there exists $a_{2} \in \mathbb{C}^{*}$ such that $\phi\left(A_{23}\right) v=a_{2} v$. Then $\beta^{2} c-\alpha b=0$. But $\alpha \beta^{2} b=c$. Thus $c=0$, a contradiction.
- Case 5: Let $v=e_{1}+\alpha_{1} e_{2}+\alpha_{2} e_{3}$ and $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{*}$. It follows that $\frac{1}{\beta-1}\left(\phi\left(A_{23}\right) v-\phi\left(A_{12}\right) v\right)=n_{1} v$ for some $n_{1} \in \mathbb{C}^{*}$. We have

$$
\frac{1}{\beta-1}\left(\phi\left(A_{23}\right)-\phi\left(A_{12}\right)\right)=\left(\begin{array}{ccc}
0 & -\beta^{2} c K & -\beta^{2} b K \\
\beta c K & 0 & -\beta L K \\
b K & L K & 0
\end{array}\right)
$$

Thus we obtain the following equations:

$$
\begin{gather*}
-\alpha_{1} \beta^{2} c K-\alpha_{2} \beta^{2} b K=n_{1} \tag{5.1}\\
\beta c K-\alpha_{2} \beta L K=n_{1} \alpha_{1} \tag{5.2}\\
b K+\alpha_{1} L K=n_{1} \alpha_{2} \tag{5.3}
\end{gather*}
$$

Now, using (5.1) and (5.2), we get $-\beta^{2} \alpha_{1}^{2} c K-\alpha_{1} \alpha_{2} \beta^{2} b K-\beta c K+\alpha_{2} \beta L K=0$. Hence,

$$
\begin{equation*}
\left(-\beta \alpha_{1} b+L\right) \alpha_{2}=\alpha_{1}^{2} c \beta+c \tag{5.4}
\end{equation*}
$$

Using (5.1) and (5.4) we get

$$
\begin{equation*}
\left(-\beta \alpha_{1} b+L\right) n_{1}=-\beta^{2} c K \alpha_{1}\left(-\beta \alpha_{1} b+L\right)-\beta^{2} b c K\left(\alpha_{1}^{2} \beta+1\right) \tag{5.5}
\end{equation*}
$$

After multiplying (5.3) by $\left(-\alpha_{1} \beta b K+L K\right)^{2}$ and using (5.4) and (5.5), we get
$L\left(\beta^{2} b^{2}+c^{2}\right) \alpha_{1}^{3}+b\left(\beta^{2} b^{2}-2 \beta L^{2}+c^{2}\right) \alpha_{1}^{2}+L\left(-2 \beta b^{2}+\beta^{2} c^{2}+L^{2}\right) \alpha_{1}+b\left(L^{2}+\beta^{2} c^{2}\right)=0$.

Similarly, there exists $n_{2} \in \mathbb{C}$ such that $\frac{1}{1-\beta^{2}}\left(\phi\left(A_{23}\right) v-\beta^{2} \phi\left(A_{12}\right) v\right)=n_{2} v$. We have

$$
\frac{1}{1-\beta^{2}}\left(\phi\left(A_{23}\right)-\beta^{2} \phi\left(A_{12}\right)\right)=\left(\begin{array}{ccc}
I & 0 & \beta b K \\
-c K & I+b c K & 0 \\
0 & -\beta^{2} K L & I-\beta^{2} b c K
\end{array}\right)
$$

Thus we obtain the following equations:

$$
\begin{gather*}
I+\beta \alpha_{2} b K=n_{2} \tag{5.7}\\
-c K+\alpha_{1}(I+b c K)=n_{2} \alpha_{1} \tag{5.8}\\
-\beta^{2} L K \alpha_{1}+\alpha_{2}\left(I-\beta^{2} b c K\right)_{=}=n_{2} \alpha_{2} \tag{5.9}
\end{gather*}
$$

The equations (5.7) and (5.8) give

$$
\begin{equation*}
-\alpha_{1} \alpha_{2} \beta b K=\alpha_{1} I+c K-\alpha_{1}(I+b c K) \tag{5.10}
\end{equation*}
$$

Now, using (5.8), (5.9), and (5.10), we get

$$
\begin{equation*}
b L \alpha_{1}^{3}-\beta b^{2} c^{2} \alpha_{1}^{2}+(\beta-1) b c^{2} \alpha_{1}+c^{2}=0 \tag{5.11}
\end{equation*}
$$

Likewise, there exists $n_{3} \in \mathbb{C}$ such that $\frac{1}{1-\beta}\left(\phi\left(A_{23}\right) v-\beta \phi\left(A_{12}\right) v\right)=n_{3} v$. Then

$$
\frac{1}{1-\beta}\left(\phi\left(A_{23}\right)-\beta \phi\left(A_{12}\right)\right)=\left(\begin{array}{ccc}
I & -\beta c K & 0 \\
0 & I+b c K & -L K \\
\beta^{2} b K & 0 & I-\beta^{2} b c K
\end{array}\right) .
$$

Consider the following equations:

$$
\begin{gather*}
I-\beta \alpha_{1} c K=n_{3} \tag{5.12}\\
\alpha_{1}(I+b c K)-\alpha_{2} L K=n_{3} \alpha_{1} \tag{5.13}\\
\beta^{2} b K+\alpha_{2}\left(I-\beta^{2} b c K\right)=n_{3} \alpha_{2} \tag{5.14}
\end{gather*}
$$

The equations (5.12) and (5.13) give

$$
\begin{equation*}
\alpha_{2} L=\beta c \alpha_{1}^{2}+b c \alpha_{1} \tag{5.15}
\end{equation*}
$$

Using (5.12), (5.14), and (5.15) we get

$$
\begin{equation*}
c^{2} \alpha_{1}^{3}+\beta(\beta-1) b c^{2} \alpha_{1}^{2}-b^{2} c^{2} \alpha_{1}+b L=0 \tag{5.16}
\end{equation*}
$$

Now, using (5.11) and (5.16) we get

$$
\begin{equation*}
a_{1} \alpha_{1}^{2}+b_{1} \alpha_{1}+c_{1}=0 \tag{5.17}
\end{equation*}
$$

Also, using (5.16) and (5.6) we get

$$
\begin{equation*}
a_{2} \alpha_{1}^{2}+b_{2} \alpha_{1}+c_{2}=0 \tag{5.18}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1} & =b^{2} c^{2}\left(\beta^{2} c^{2}+\beta-1\right) \\
b_{1} & =b c^{2}\left(c^{4}-(1+2 \beta) c^{2}-\beta^{2}\right), \\
c_{1} & =-c^{6}+2(\beta+1) c^{4}-(3 \beta+2) c^{2}+\beta .
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2} & =b c^{2}\left(-\beta c^{4}-2 c^{2}+1\right) \\
b_{2} & =L c^{2}\left(-\beta^{2} c^{4}-\beta c^{2}+2 \beta+1\right) \\
c_{2} & =b\left(-\beta^{2} c^{6}-2 \beta c^{4}+(2 \beta-1) c^{2}+1\right)
\end{aligned}
$$

The equations (5.17) and (5.18) give

$$
\alpha_{1}=\frac{-2 \beta c^{2}+2 \beta c^{4}-\beta c^{6}+c^{2}-c^{6}-1}{b c^{2}+b c^{4}-2 \beta b c^{2}+\beta b c^{4}} .
$$

Substituting the obtained value of α_{1} in (5.15), we get

$$
\alpha_{2}=\frac{4 \beta c^{2}-\beta+2 \beta c^{4}-12 \beta c^{6}+12 \beta c^{8}-4 \beta c^{10}+5 c^{2}-9 c^{4}+3 c^{6}+6 c^{8}-5 c^{10}+c^{12}}{17 \beta c^{5}-3 \beta c^{3}-16 \beta c^{7}+\beta c^{9}+\beta c^{11}+5 c^{3}+2 c^{5}-14 c^{7}+7 c^{9}} .
$$

Now, substituting the obtained values of α_{1} and α_{2} in (5.1) we obtain

$$
n_{1}=\frac{\left(1-\beta^{2}\right)\left(\beta\left(3-5 c^{2}+4 c^{4}+5 c^{6}-17 c^{8}+16 c^{10}-2 c^{12}-c^{14}\right)-9 c^{2}+12 c^{4}-16 c^{6}+2 c^{8}+10 c^{10}-7 c^{12}+2\right)}{c^{2}\left(\beta c^{2}-2 \beta+c^{2}+1\right)\left(3 \beta-14 \beta c^{2}+2 \beta c^{4}+\beta c^{6}-7 c^{2}+7 c^{4}-5\right)} .
$$

After substituting the obtained values of α_{1}, α_{2}, and n_{1} in (5.2), we obtain

$$
f \beta+g=0,
$$

where

$$
\begin{aligned}
& f=58 c^{4}-15 c^{2}-1-39 c^{6}-108 c^{8}+258 c^{10}-130 c^{12}-50 c^{14}+29 c^{16} \\
& g=7 c^{2}+48 c^{4}-128 c^{6}+115 c^{8}+96 c^{10}-204 c^{12}+55 c^{14}+20 c^{16}-3 c^{18}-3
\end{aligned}
$$

Here β is a third root of unity $(\beta \neq 1)$ and f, g are real-valued polynomials. Since β and 1 are linearly independent, we get $f=g=0$. We then use the computational software MATLAB to solve $f=g=0$.

Solving $f=0$, we get 14 rejected solutions and two accepted solutions, which are ± 0.69 (rounded to the nearest hundredth).

Solving $g=0$, so we get 16 rejected solutions and two accepted solutions, which are ± 0.48 (rounded to the nearest hundredth).

We observe that there is no common solution and we thus obtain a contradiction.

References

[1] Abdulrahim, M.: Complex specializations of the reduced Gassner representation of the pure braid group. Proc. Amer. Math. Soc. 125(6), 1617-1624 (1997)
[2] Albeverio, S., Rabanovich S.: On a class of unitary representations of the braid groups B_{3} and B_{4}. Preprint, Unterstützung von der Deutschen Forschungs-gemeinschaft getragenen Sonderforschungsbereiches 611 (no 327) an der Universität Bonn (2007)
[3] Birman, J.: Braids, Link and Mapping Class Groups. Ann. of Math. Studies 82, Princeton University Press, New Jersey (1975)
[4] Burau, W.: Uber Zopfgruppen und gleischsinning verdrillte Verkettungen. Abh. Math. Semin. Hambg. II, 171-178 (1936)
[5] Formanek, E.: Braid group representations of low degree. Proc. Lond. Math. Soc. 73(3), 279-322 (1996)

Received: 10 October 2019/Accepted: 25 March 2020/Published online: 27 March 2020

Hasan A. Haidar
Department of Mathematics and Computer Science, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
hah339@student.bau.edu.lb
Mohammad N. Abdulrahim
Department of Mathematics and Computer Science, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
mna@bau.edu.lb
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^0]: 2020 Mathematics Subject Classification: Primary: 20F36.
 Keywords: Braid group, pure braid group, irreducible.
 (C) The Author(s) 2020. This article is an open access publication.
 *Corresponding author.

