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An Application of the Index Theorem for Manifolds with
Fibered Boundaries

Andrés Larráın-Hubach

Abstract. We show how the index formula for manifolds with fibered boundaries can be used to

compute the index of the Dirac operator on Taub-NUT space twisted by an anti-self-dual generic

instanton connection.

1. Introduction

This note derives the L2-index theorem, first proved in [4], for a Dirac operator
twisted by an Anti-Self-Dual (ASD) generic instanton on Taub-NUT space from
the index formula on manifolds with fibered boundaries. The original motivation
for this index problem was to establish the completeness of the bow construction of
Sergey Cherkis [3]. This construction conjectured an isometry between the moduli
space of bow representations and the moduli space of generic ASD-instantons on
Taub-NUT space. In [4, 5] and [6] the isometry between these moduli spaces is
proved.

An important technical step in verifying this conjecture is the index theorem
mentioned above. The original proof used an adaptation of the powerful machinery
developed by Mark Stern [10] to obtain index formulas on open spaces. The main
advantages of this technique is that the argument is self-contained and avoids
the use of spectral theory by computing asymptotic information instead. It is
important to mention that the original proof of this index theorem applies not only
to Taub-NUT space but also to the family of multi-centered Taub-NUT spaces.
The statement is

Theorem ([4, Thm 43]). Let A be a generic instanton on the Taub-NUT space,
then the index of the Dirac operator coupled to A is given by

IndL2D+
g = − 1

8π2

∫
TN

trFA ∧ FA +
1

2πi

∫
S2
∞

trE({Λ} − 1

2
)FE

− 1

2
trE({Λ}2 − {Λ}).

(1.1)

where m = Rank(E) and Λ is a diagonal matrix whose constant entries are related
to the eigenvalues at infinity of the holonomy of A along the circle fibers. {Λ} is
the matrix Λ with its entries replaced by their corresponding fractional parts.
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Here we show a different derivation of the theorem above using one of the index
theorems for spaces with fibered boundaries (see theorem 2.3) proved in [8]. The
authors of [8] impose a spectral gap condition (2.5) on the vertical boundary family.
A direct proof of a more general index formula is given in [11] under the weaker
assumption that the vertical boundary family has null-spaces of fixed dimension.
The theorems in [8] and [11] express the index of a Dirac type operator as a sum
of two terms usually called bulk and asymptotic contribution. The bulk is the
usual Atiyah-Singer integrand [1], while the asymptotic contribution is generally
given in terms of η-invariants of Dirac-type operators restricted to the boundary.
In our case the index theorem for exact-d-metrics of [8] and [11] applies, and the
boundary contribution, given in terms of the Bismut-Cheeger η̂-form [2], can be
computed explicitly.

2. Index Theory on Spaces with Fibered Boundaries

We start reviewing the statement of the index theorem used in this paper.

2.1. The Bismut-Cheeger η̂-form.

Let π : M → B be a locally trivial fibration such that the vertical tangent bundle
TM/B is spin, with base an even dimensional manifold B, and fibers isomorphic
to a closed odd-dimensional manifold Z. We assume there is a connection on
the fibration that induces a splitting TM = THM ⊕ TM/B into horizontal and
vertical tangent vectors, such that π∗TB can be identified with THM . Let gM =
π∗gB ⊕ gM/B be a Riemannian submersion metric, where gB is a metric on TB
pulled back to THM , and gM/B denotes a metric on the vertical fibers.

Let E → M be a complex vector bundle with unitary connection ∇E and
curvature FE . The bundle E induces an infinite rank bundle π∗E → B with fibers
given by Γ(Mx, Ex), where Mx, Ex denote the fibers over x ∈ B. The connection
∇E induces a connection on π∗E denoted by ∇π∗E . See [1, Ch. 10].

We denote by (SM/B ,∇M/B) the vertical spinor bundle together with its in-
duced spin connection coming from the metric gM/B . We denote by c = cM/B the

Clifford product by elements of T ∗M/B. We use ∇SM/B⊗E = ∇M/B ⊗ 1 + 1⊗∇E
and the Clifford module structure on SM/B ⊗ E with respect to the Clifford
algebra of TM/B to construct a family of vertical Dirac operators denoted by

DM/B = cM/B ◦ ∇SM/B⊗E .

Definition 2.1. Let u be a positive parameter, the Bismut superconnection, act-
ing on Γ(M,SM/B ⊗ E) = Γ(B, π∗(SM/B ⊗ E)), is defined by

Au = ∇π∗(S
M/B⊗E) +

√
uDM/B − c(T )

4
√
u
, (2.1)

where T is the torsion form of the fibration M → B [1, Prop. 10.15].
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Definition 2.2. The Bismut-Cheeger Eta form of the vertical family of Dirac
operators DM/B is defined by

η̂(DM/B) =
1√
π

∫ ∞
0

Trev
(
(DM/B +

c(T )

4u
)e−A

2
u
) du

2
√
u
. (2.2)

See [2, Def. 4.93] for an explanation of the notation Trev.

2.2. The Index Formula

Consider a Riemannian manifold (M, gM) such that its boundary M = ∂M is
the total space of a fibration π : M → B like the one in Section 2.1.

We assume that, on a tubular neighborhood of the boundary (a,∞)y×M , the
metric takes the form

gM = dy2 + π∗gB + e−2ygM/B . (2.3)

In the terminology of [8], this is an exact d-metric with boundary defining
function x = e−y.

Let

D =

(
0 D−
D+ 0

)
(2.4)

be a Dirac type operator on S ⊗ E → M (here S = S+ ⊕ S− denotes the spin
bundle), such that its boundary family DM/B , acting on SM/B⊗E with E|M = E,
satisfies the spectral gap assumption

Spec(D
M/B
b ) ∩ (−δ, δ) = ∅, (2.5)

for some δ > 0 and for every b ∈ B.
The following index theorem is proved in [8] and [11] using different arguments.

Theorem 2.3. If DM/B satisfies assumption (2.5) then

IndL2(D+) =

∫
M
Â(M, gM) ∧ Ch(E)− 1

2πi

∫
∂M

Â(B, gB) ∧ η̂(DM/B), (2.6)

where Â denotes the A-hat genus of the corresponding space with metric gM. The
η̂-form is computed with respect to the submersion metric π∗gB + gM/B.

The 2πi factor does not appear in the original formula due to the different
normalizations used. See [7].

For our purposes, the manifold M is four-dimensional. For this reason, we
only need the four-form terms in Â ∧ Ch(E) (see [1, Chp. 1]) giving∫
M
Â(M, gM)∧Ch(E) =

∫
M

(
Rank(E)

192π2
trRgM ∧RgM −

1

8π2
trFA ∧ FA

)
(2.7)



166 A. Larráın-Hubach

2.3. Circle Fibrations

We only need to compute η̂ in the case where M → B is a S1-principal bundle
with a Riemannian submersion metric. Several formulas simplify in this context.

Let {fα} (resp. {fα}) denote an orthonormal frame (coframe) on B and
{e}, {e∗} similarly defined on the vertical fibers M/B. We use {f̃α} to denote

the horizontal lifts to THM . Set c(e∗) = −i and denote SM/B by SS1

.
The torsion form on a circle fibration are computed explicitly in [9, Sec. 5].

The result is
T (f̃α, f̃β) = de∗(f̃α, f̃β) = R(fα, fβ), (2.8)

where R is the curvature of the S1-connection inducing the splitting TM = THM⊕
TB.

Let z denote a Grassmann variable i.e. z2 = 0. A well-known trick by Bismut
and Cheeger rewrites A2

u as follows

−u
(
∇π∗(S

S1
⊗E)

e +
R

4u
− iz

2
√
u

)2
+
√
uFE(fα, e)f

α ∧ e∗ +
1

2
FE(fα, fβ)fα ∧ fβ

= A2
u − z(

√
uDM/B +

c(T )

4
√
u

)

(2.9)

This is just [2, 4.68–4.70] adapted to circle fibrations. An important simplification
of the original formula is that the scalar curvature of the circle fibers vanishes.

3. Taub-NUT Space

In this section we state the necessary definitions and results from [4].

3.1. Definition and Basic Properties

The single-centered Taub-NUT space, denoted by TN henceforth, is a hyperKähler
4-manifold that, outside a compact set, is a circle fibration over R3. It has coordi-
nates {x1, x2, x3, τ}, where the xj parameterize R3 and τ = τ + 2π parameterizes
the circle fiber. We use the orientation dx1∧dx2∧dx3∧dτ . Define the TN metric,
denoted by gTN, by1

gTN = V (dx2
1 + dx2

2 + dx2
3) +

1

V
(dτ + ω)2, (3.1)

where V = 1 + 1
2r , r =

√
x2

1 + x2
2 + x2

3 and ω is a one-form such that ?3dV = dω.
Here ?3 denotes the Hodge start in R3.

Using polar coordinates about the origin, we can rewrite the R3-metric as
dr2 + r2gS2 , where gS2 is the usual round metric on the two-sphere.

1Usually, V = l + 1
2r

for some fixed l > 0. We simplify the computations by setting l = 1.
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3.2. Modifications of the Metric

In order to use the index formula of [8] and [11], we first need to modify the
metric on TN using a special homotopy of metrics. The corresponding twisted
Dirac operators associated to the interpolating metrics in this homotopy remain
Fredholm so the index is preserved (see Lemma 3.2). The metric at the end of the
homotopy is of the type defined in Section 2.2.

First, we apply a conformal transformation to gTN with a conformal factor
that equals e2u = V −1r−2 for r large. We consider e2u to be equal to the identity
around the origin. The resulting metric, near infinity and using the change of
variables r = ey, equals

g′ = dy2 + gS2 +
1

V 2e2y
(dτ + ω)2. (3.2)

Now we use a smooth homotopy between g′ and a metric g. The homotopy replaces
V by Vt = 1 + t

2ey for y-large and it equals the identity near the origin. The
resulting metric at t = 0, for y large, has the form

g = dy2 + π∗gS2 +
1

e2y
(dτ + ω)2 (3.3)

and it is an exact d-metric [11]. The boundary fibration in this case is the Hopf
fibration π : S3

∞ → S2
∞.

Lemma 3.1. Let Rg be the Riemannian curvature of the metric g, then

1

192π2

∫
TN

trRg ∧Rg =
1

12
.

Proof. The space TN with metric g is contractible and therefore topologically
trivial. This implies that its tangent bundle has a global trivialization. Fixing a
trivialization, we can define the Chern-Simons form CS(g) such that dCS(g) =

1
192π2 trRg ∧Rg.

Let B be a ball around the origin such that the metrics gTN and g coincide in
on an open neighborhood of it. Then, as in [4, Lemma 32], we get

1

192π2

∫
trRg ∧Rg =

1

192π2

∫
B

trRg ∧Rg +
1

192π2

∫
TN\B

trRg ∧Rg

=
1

192π2

∫
B

trRgTN
∧RgTN

+
1

192π2

∫
TN\B

trRg ∧Rg

= − 1

192π

∫
S2
0

∇n
( |∇V |2
V 3

)
volS2

0
+

∫
S3
∞

CS(g),

where S2
0 is a small two-sphere around the origin with outward normal vector n.

The form CS(g) decays exponentially and the last boundary integral equals zero.
The first summand equals 1

12 .
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3.3. Generic ASD Instantons on TN

Let E → TN be a unitary bundle of rank m. A generic Anti-Self-Dual (ASD)
instanton on it, is a unitary connection A on E such that its L2-curvature form
satisfies FA = − ?TN FA. Here ?TN is the Hodge star of the original metric gTN.
The genericity is a technical condition explained in [4]. In [4, thm B] it is proved
that there is a frame of E such that an ASD generic instanton on TN has the
following asymptotic form outside a compact set

A = −iDiag

(
(λj +

mj

2r
)
dτ + ω

V
+ ηj

)
+O(r−2), (3.4)

where ηj is a connection one-form on a complex line bundle W (j) over S2. The
λj are related to the asymptotic eigenvalues of the holonomy of A along τ -circles
and they are pairwise distinct and constant. Notice that, near infinity, the bundle
E decomposes as a direct sum of eigenline-bundles of the holonomy of A.

We assume a stronger genericity assumption by imposing

e2πiλj 6= 1, (3.5)

for every j. This is required to guarantee the Fredholmness of the Dirac operator
twisted by A. See [4, Sec. 7].

3.4. The Twisted Dirac Operator

Let DA be the twisted Dirac operator with respect to the metric gTN. We write
Dg′ and Dg to denote the corresponding twisted Dirac operators with respect to
the other metrics2. Let {Dt}0≤t≤1 be the family of Dirac operators associated to
the metrics in the homotopy between g′ and g.

All of these operators admit a decomposition according to chirality as

Dt =

(
0 D−t
D+
t 0

)
, (3.6)

where D±t : Γ(S± ⊗ E)→ Γ(S∓ ⊗ E). Here we denote by S = S+ ⊕ S− the spinor
bundle of TN.

The L2-indices of these operators turn out to be the same

Lemma 3.2.
IndL2D+

A = IndL2D+
g′ = IndL2D+

g (3.7)

Proof. The first equality is proved in [4, Sec. 7]. For the second one, since the λj
are constant and satisfy assumption (3.5), the Dt satisfy the hypotheses of lemma
22 in [4] for every 0 ≤ t ≤ 1. This implies that {Dt} is a homotopy within the
space of Fredholm operators so the index is preserved.

2To simplify notation, we set Dg = DA
g etc...
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From now on, we only use the operator Dg and its chirality components D±g .
The corresponding vertical family of Dirac operators, parameterized by points

p ∈ S2
∞, is

DM/B = D∂
g = ⊕mj=1D

∂,λj = ⊕mj=1(−i)(∂τ − iλj). (3.8)

Remember that here we use the submersion metric gS3
∞

= gS2
∞

+ (dτ +ω)2 on S3
∞.

Our boundary family of operators satisfies the following spectral gap:

Lemma 3.3. Consider the family {D∂
g,p}p∈S2

∞
defined in (3.8), then there is a

δ > 0 such that, for every p ∈ S2
∞, we have Spec{D∂

g,p} ∩ (−δ, δ) = ∅.

Proof. Given p ∈ S2
∞, the boundary operator D∂

p is a multiple of a direct sum of

operators of the form −i(∂τ − iλj). Since e2πiλj 6= 1, the operator is invertible.
The λj are constant so we can take δ = 1

2minj |λj |.

4. The Index of D+
g

From the previous sections we see that Dg satisfies the assumptions of the index
formula in [8] and [11]. In our case, since TN is a four-dimensional manifold,
formulas (2.6) and (2.7) give

IndL2D+
g =

∫
TN

(
Rank(E)

192π2
trRg ∧Rg −

1

8π2
trFA ∧ FA

)
− 1

2πi

∫
S2
∞

η̂ , (4.1)

where η̂ ∈ Ωev(S2
∞) is an even form called the Bismut-Cheeger η̂-form, computed

with respect to the metric gS2 + (dτ + ω)2 on the boundary fibration S3
∞ → S2

∞.
It remains to compute η̂ in terms of the asymptotic form of the twisting con-

nection A|S3
∞

= A.

4.1. Explicit Computation

Again, the boundary fibration on TN equals the Hopf fibration S3 → S2 with
metric gS2 ⊕ (dτ + ω)2. Notice that dτ + ω is a connection one-form for the
fibration so the curvature equals

R = dω = −1

2
volS2

∞
, (4.2)

where volS2
∞

is the volume form on the two-sphere.
The corresponding bundle E|S3

∞
= E → S3

∞ is the restriction of the instanton
bundle E to the boundary fibration. The bundle E inherits a connection of the
form

A = −iDiag
(
λj(dτ + ω) + π∗(ηj)

)
. (4.3)

This splitting of A and the results of [4] imply that E → S3
∞ can be decomposed

as a direct sum
E = ⊕mj=1π

∗W (j), (4.4)
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where the W (j) are line bundles over the base S2
∞ with connection form ηj . Note

that we identify e∗ = (dτ + ω).
The Bismut superconnection in this case equals

Au = ⊕mj=1

(
∇π∗(S

S1
⊗W (j)) +

√
uD∂,λj

)
− c(T )

4
√
u

(4.5)

We simplify (2.9) further to

−u
(
∇e +

R

4u
− iz

2
√
u

)2
+FE(f1, f2)f1 ∧ f2 = A2

u− z
(√
uDM/B +

c(T )

4
√
u

)
, (4.6)

where {f1, f2} is an oriented orthonormal frame on S2
∞ = S2 and FE is the

curvature of A. Notice that FE(e, fα) = 0 for α = 1, 2.
The identities (2.9) and (4.6) imply the following lemma.

Lemma 4.1. Let Trz(a+ zb) = Tr b then

Trev

(
D∂ +

c(T )

4u

)
e−A

2
u = u−1/2Trz exp

(
u(∇e +

R

4u
− iz

2
√
u

)2 − FE
)
, (4.7)

where FE = F E(f1, f2)f1 ∧ f2.

Proof. Exponentiate both sides of (4.6) and notice that Trz(ea+bz) = Tr eab =
Tr bea.

Replacing (4.7) in the definition of η̂ gives

η̂(D∂
g ) =

1√
π

∫ ∞
0

Trz exp

(
u(∇e +

R

4u
− iz

2
√
u

)2

)
du

2u
e−F

E

(4.8)

Let Λ = Diag(λj). In order to compute Trz, we use a Fourier mode decomposition
in the circle variable τ of sections of E. The action of ∇e = ∂τ − iΛ on the
kth-mode equals ik − iΛ. Therefore,

η̂(D∂
g ) =

1√
π

∫ ∞
0

∑
k∈Z

Trz
(

exp(−u(k − Λ +
R

4ui
− z

2
√
u

)2)

)
du

2u
e−F

E

=
1√
π

∫ ∞
0

trE
∑
k∈Z

(k − Λ +
R

4ui
)e−u(k−Λ+ R

4ui )
2 du

2
√
u
e−F

E

We need the Poisson summation formula [4].∑
k∈Z

(k + a)e−4π2s(k+a)2 =
∑
p≥1

2p sin(2πpa)(4πs)−3/2e−
p2

4s .
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to obtain

η̂(D∂
g ) = π

∫ ∞
0

trE
∑
p≥1

p sin
(
2πp(−Λ +

R

4ui
)
)
e−

π2p2

u
du

u2
e−F

E

(4.9)

Solving the u−integral and simplifying gives

η̂(D∂
g ) = trE

∑
p≥1

− sin 2πpΛ

πp
+
R

2i

∑
p≥1

cos 2πpΛ

π2p2

 e−F
E

(4.10)

Recalling the Fourier series expansions of Bernoulli polynomials we rewrite (4.10)
as

η̂(D∂
g ) = trE

(
({Λ} − 1

2
) + ({Λ}2 − {Λ}+

1

6
)
R

2i

)
e−F

E

(4.11)

Finally, integrating over S2
∞ we get

1

2πi

∫
S2
∞

η̂ = − 1

2πi

∫
S2
∞

trE({Λ} − 1

2
)FE +

1

2
trE({Λ}2 − {Λ}+

1

6
). (4.12)

Notice that the last m/12 in (4.12) cancels the first summand in (4.1). Going back
to (4.1) we deduce the result of [4] stated in the introduction

Theorem 4.2 ([4, Thm 43]).

IndL2D+
g = − 1

8π2

∫
TN

trFA ∧ FA +
1

2πi

∫
S2
∞

trE({Λ} − 1

2
)FE

− 1

2
trE({Λ}2 − {Λ}).

(4.13)
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