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On necessary conditions for the weak lower semicontinuity
of integral functionals in Musielak-Orlicz-Sobolev spaces

Elhoussine Azroul, Mohamed Badr Benboubker∗,

Houssam Chrayteh and Khaled Kouhaila

Abstract. In the present work, we prove an approximation result in Musielak-Orlicz-Sobolev

spaces and we give an application of this approximation result to a necessary condition in the

calculus of variations.

1. Introduction

There are many application problems involving variational integrals of the form

min J(u),

for open Ω ⊂ RN , where J(u) =

∫
Ω

f(x, u,∇u) and u is a vector valued function

and f(x, u,∇u) is convex in ∇u. For example, such minimization problems are
used in image denoising and edge detection, modeling the deformation of a thin
plate and determining a surface of minimal area with prescribed boundary condi-

tions. In fact, Hilbert’s 19th and 20th problems deal with these regular problems
in the calculus of variations. In 1912, Bernstein [3] used the calculus of varia-
tions method to establish existence and regularity results for the 2-dimensional
real-valued Dirichlet problem. Serrin [13] applied similar methods to extend these
results to n-dimensions. The major problem in the calculs of variations is to find
the elements u checking in the boundary conditions required by the nature of the
problem and minimizing the functional J .

It will turn out that in the Lp case the search of sufficient conditions to secure
those functionals attain an extreme value has a long history (see [10]). The most
important problem is to verify the weak lower semi-continuity of those functionals
with respect to the space involved. This usually involves hypothesis that the
integrand f is convex with respect to the gradient.

In 1992 Landes [10] studied the reverse problem at a fixed level set and have
been showed that if J is weakly lower semi-continuous at one fixed (nonvoid) level
set then this partical level set is an extreme value of f or the defining function f
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is convex in the gradient. The above statement for f as function of u (or of x and
u) is not hard to prove (see [10]) but when f = f(x,∇u) or f = f(x, u,∇u) this
is due to an approximation result in Sobolev-spaces.

Note that Azroul and Benkirane [2] proved the same results as Landes in the
case of Orlicz-Sobolev spaces W 1LM (Ω). Kouhaila, Azroul and Benkirane extend
in [8, 9] this result in the case of Weighted Sobolev spaces W 1,p(Ω, ω) and Weighted
Orlicz-Sobolev spaces W 1LM (Ω, ρ) respectively.

In the present work, our first main goal is to prove an approximation theorem
in the more general setting of the Musielak-Orlicz-Sobolev spaces ( for almost all
x0 ∈ Ω, it is possible to alter any function u ∈ W 1Lϕ(Ω) in such a way that u is
constant in small ball with center x0 and the altered function remain within an
ε− neighborhood of the original function.) and the second main goal is to give an
application of this approximation result to a necessary condition in the calculus
of variations in the same functional framework of W 1Lϕ(Ω). However we prove
when f = f(x,∇u) that if J is weakly lower semi-continuous at one fixed level set
Hµ in the space W 1Lϕ(Ω) then Hµ is an extreme value of J or the function f is
convex with respect to the gradient.

2. Preliminaries

This section presents, some definitions and well-known about Musielak-Orlicz func-
tions, Musielak-Orlicz-Sobolev spaces.

2.1. Musielak-Orlicz functions.

Let Ω be an open subset of RN , and let ϕ : Ω×R+ → R and satisfying the following
conditions:
a) ϕ(x, ·) is an N-function, i.e, continuous, convex, increasing with ϕ(x, 0) = 0,

ϕ(x, t) � 0 for t � 0, ϕ(x, t)/t→ 0 as t→ 0 and ϕ(x,t)
t →∞ as t→∞.

b) ϕ(·, t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-

Orlicz function.
We define the functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx. (2.1)

2.2. Musielak-Orlicz-Sobolev space.

Let Ω be an open subset of RN , and let ϕ a Musilak-Orlicz fonction. The Musilak-
Orlicz classe Kϕ(Ω) ( resp. the Musilak-Orlicz spaces Lϕ(Ω) is the set of all
real-valued measurable functions u defined in Ω and satisfying,

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx ≺ ∞ (resp. %ϕ,Ω(uλ ) =

∫
Ω

ϕ(x,
|u(x)|
λ

)dx ≺ ∞ for

some λ � 0).
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Let

ϕ(x, s) = sup
t≥0
{st− ϕ(x, t)} ,

that ϕ is the Musielak-Orlicz function complementary to ϕ (or conjugate to ϕ))
in the sense of Young with respect to the variable s. In the space Lϕ(Ω) we define
two norms:

‖u‖ϕ,Ω = inf

{
λ � 0 :

∫
Ω

ϕ(x,
|u(x)|
λ

)dx ≤ 1

}
. (2.2)

which is called Luxemburg norm and the so called Orlicz norm by;

|‖u|‖ϕ,Ω = sup
‖v‖ϕ≤1

∫
Ω

|u(x)v(x)| dx. (2.3)

For two complementary Musielak-Orlicz functions ϕ and ϕ we have the Young
inequality [11]:

s.t ≤ ϕ(x, t) + ϕ(x, s) for t, s ≥ 0 and x ∈ Ω.

We recall that the Musielac function ϕ is said to satisfy the ∆2-condition (or
doubling) if there exists k > 0 and a non-negative function C, integrable on Ω, we
have

ϕ(x, 2t) ≤ kϕ(x, t) + C(x) for all x ∈ Ω and for all t ≥ 0

For any fixed nonnegative integer m we define the closure in Lϕ(Ω) of the set of
bounded measurable function with compact support in Ω denoted by Eϕ(Ω) (we
have usual Eϕ(Ω) ⊂ Kϕ(Ω) ⊂ Lϕ(Ω)). The equality Lϕ(Ω) = Eϕ(Ω) hold if and
only if ϕ satisfies the ∆2-condition, for all t or for t large according to whether Ω
has a infinite measure or note. The dual of Eϕ(Ω)∗ can be identified with Lϕ(Ω)

by means of the pairing

∫
Ω

u(x)v(x)dx where u ∈ Lϕ(Ω) and v ∈ Lϕ(Ω).

We return now to the Orlicz-Sobolev spaces W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)) is the
space of all function u such that u and its distibutional derivatives up to order 1
lie in ∈ Lϕ(Ω) (resp. ∈ Eϕ(Ω)). For u ∈W 1Lϕ(Ω), we define

%ϕ,Ω(u) =
∑
|α|≤1

%ϕ,Ω(Dαu)

and,

‖u‖ϕ,1 = ‖u‖ϕ,Ω,1 = inf
{
λ � 0 : %ϕ,Ω(

u

λ
) ≤ 1

}
.

These functionals are a convex modular, and a norm on W 1Lϕ(Ω) respectively,
and (W 1Lϕ(Ω), ‖u‖ϕ,1) is a Banach space if ϕ satisfies the following condition:
there exists a constant c such that

inf
x∈Ω

ϕ(x, 1) ≥ c .
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Thus W 1Lϕ(Ω) and W 1Eϕ(Ω) can be identified with subspaces of
∏
Lϕ, we have

the weak topology σ(
∏
Lϕ,

∏
Eϕ). The space W 1

0Eϕ(Ω) ( resp. W 1
0Lϕ(Ω)) is

defined by the closure of D(Ω) in W 1Lϕ(Ω) for the norm ( resp. for the topology)
σ(
∏
Lϕ,

∏
Eϕ).

Definition 2.1. The sequence un converges to u in Lϕ(Ω) for the modular con-
vergence (denoted by un → u (mod) Lϕ(Ω)) if %ϕ,Ω(un−uλ ) → 0 as n → ∞ for
some λ � 0.

Definition 2.2. The sequence un converges to u in W 1Lϕ(Ω) for the modular
convergence (denoted by un → u (mod) W 1Lϕ(Ω)) if %ϕ,Ω(un−uλ )→ 0 as n→∞,
for some λ � 0.

Lemma 2.3 (see [12, Lemma 4.1]). Let ϕ be an Musielak-Orlicz function. If
un ∈ Lϕ(Ω) converges a.e. to u and un bounded in Lϕ(Ω), then u ∈ Lϕ(Ω) and
un → u for the topology σ(Lϕ(Ω), Eϕ(Ω)).

3. Approximation result

The next lemma is preparatory for the proof of the Theorem 3.2.

Lemma 3.1. For almost all x0 ∈ Ω, there exists a sequence αk � 0 with αk → 0

as k → ∞ such that

∫
B(x0,2α)

ϕ

(
x,
λ |u(x)− u(x0)|

αk

)
ρ(x)dx → 0 as k → ∞ for

some λ � 0.

Proof. Let x0 ∈ Ω. For each t � 0, we define the set Ωt = {x ∈ Ω : dist(x, ∂Ω) � t}.
Let α0 � 0. For α ≺ α0, we consider the function φα : Ω2α0

→ R defined by

φα(y) =

∫
B(y,2α)

ϕ

(
x,
λ |u(x)− u(y)|

α

)
dx. (3.1)

Since

φα(y)=

∫
Ω

ϕ

(
x,
λ |u(x)− u(y)|

α

)
χB(y,2α)dx ,

then the function φα : Ω2α0→R is measurable; χE , as usual denotes the charater-
istic function of the set E. For all α0 � 0 , we shall show that:

|φα(y)| → 0 in L1(Ω2α0) as α→ 0, α ≺ α0 . (3.2)

This obviously implies the statement of Lemma 3.1, (because if (3.2) is satisfied,
then there is a subsequence αk converges at 0 as k →∞ and such that φαk(y)→ 0
a.e. y in Ω2α0). Since α0 is arbitrary, then the previous convergence is true for
a.e. x0 in Ω.
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To verify (3.2), we denotes by uδ = u ∗ ϕδ the mollification of u, where ϕδ ∈

D(RN ), ϕδ = 1 for |x| ≥ δ, ϕδ ≥ 0 and

∫
RN

ϕδ(x)dx = 1. Hence, ϕδ is well defined

in Ω2α0
for δ ≺ α ≺ α0 and we have∫

Ω2α0

|φα(y)| dy =

∫
Ω2α0

∫
B(y,2α)

ϕ

(
x,
λ |u(x)− u(x0)|

α

)
dx dy

≤ lim
δ→0

∫
Ω2α0

∫
B(0,2α)

ϕ

(
x,
λ |uδ(y − x)− uδ(y)|

α

)
dx dy .

Since uδ is continuously differentiable, we may estimate

Iα =

∫
Ω2α0

∫
B(0,2α)

ϕ

(
x,
λ |uδ(y − x)− uδ(y)|

α

)
dx dy.

Indeed, we have

Iα ≤
∫

Ω2α0

∫
B(0,2α)

ϕ

(
x,
λ
∫ 1

0
|∇uδ(y − tx)| |x| dt

α

)
dx dy

≤
∫

Ω2α0

∫
B(0,2α)

ϕ

(
x, 2λ

∫ 1

0

|∇uδ(y − tx)| dt
)
dx dy .

Then, it follows by Jensen’s inequality that

Iα ≤
∫

Ω2α0

∫
B(0,2α)

∫ 1

0

ϕ(x, 2λ |∇uδ(y − tx)|)dt dx dy

(∗)
=

∫ 1

0

∫
Ω2α0

∫
B(0,2α)

ϕ(x, 2λ

∣∣∣∣∣
∫
B(0,δ)

∇u(y − tx− z)ϕδ(z)dz

∣∣∣∣∣)dt dx dy
≤ k2

∫ 1

0

∫
Ω2α0

∫
B(0,2α)

∫
B(0,δ)

ϕ(x, 2k1λ |∇u(y − tx− z)|)dt dx dy dz

= k2

∫ 1

0

∫
B(0,δ)

∫
Ω2α0

(

∫
B(0,2α)

ϕ(x, 2k1λ |∇u(y − tx− z)|)dx)dy dt dz

≤ k2

∫ 1

0

∫
B(0,δ)

∫
Ω2α0

(
1

N

∑
1≤i≤N

∫
B(0,2α)

ϕ(x, 2k1λ

∣∣∣∣∂u(y − tx− z)
∂xi

∣∣∣∣)dx)dy dt dz

≤ k3

N

∫ 1

0

∫
B(0,δ)

∫
Ω2α0

dy dt dz

≤ k4(
σN
N

)δN

≤ k4(
σN
N

)αN (because α � δ)

for some positive constants k1, k2, k3, and k4, (σN denotes the measure of the unit
sphere in RN ). So we obtain Iα → 0 as α → 0. Then it follows for α0 � 0 that∫

Ω2α0
|φα(y)| dy → 0 as α → 0 α ≺ α0, which allows us to conclude for almost

every x0 ∈ Ω, that we have φαk(x0) → 0as k → ∞. To justify (∗), we recall that
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in Ω2α0 the differentiation and the mollification commutant for δ ≺ α ≺ α0, which
proves the statement of Lemma 3.1.

Theorem 3.2. Let Ω be a bounded domain in RN , let ϕ be a Musielak-Orlicz
function and u ∈ W 1Lϕ(Ω), then for almost all x0 ∈ Ω, there is ball B(x0, α)
(α > 0) and a function uα ∈W 1Lϕ(Ω), such that:
i) uα → u(mod) in W 1Lϕ(Ω) as α→ 0,
ii) uα ≡ c(x0, α) in B(x0, α), where c(x0, α) = u(x0).

Proof. Let Ψα be a C∞0 cut-off function with support in B(0, 2α) such that Ψα ≡ 1
in B(0, α) and |∇Ψα| ≤ 2

α . Let x0 be a Lebesgue point of the function u in Ω ,
hence we can take c(x0, α) = u(x0). We define in Ω the function uα by

uα(x) = u(x)(1−Ψα(x− x0)) + u(x0)Ψα(x− x0). (3.3)

First we observe that uα ∈ W 1Lϕ(Ω). In fact since u ∈ W 1Lϕ(Ω), then there
exist real numbers λi � 0, 0 ≤ i ≤ N , such that∫

Ω

ϕ

(
x,
|u(x)|
λ0

)
dx <∞

and ∫
Ω

ϕ

(
x,

1

λi

∣∣∣∣∂u(x)

∂xi

∣∣∣∣) dx ≺ ∞ for 1 ≤ i ≤ N

Let λ � 0, since ϕ(x, ·) is a convex function, then∫
Ω

ϕ(x,
|uα(x)|
λ

)dx ≤ 1

2

∫
Ω

ϕ(x,
2

λ
|u(x)(1−Ψα(x− x0))|)dx

+
1

2

∫
Ω

ϕ(x,
2

λ
|u(x0)Ψα(x− x0)|)dx

≤ 1

2

∫
Ω

ϕ(x, 2k1
|u(x)|
λ

)dx+
1

2

∫
B(0,2α)

ϕ(x,
2k
′

λ
|u(x0|)dx

≺ ∞

where

k1 = sup
B(0,2α)

|1−Ψα(x− x0)| , λ = 2k1λ0 and k
′

= sup
B(0,2α)

|Ψα(x− x0)| .

Remains to show that

∂uα
∂xi

∈ Lϕ(Ω), 1 ≤ i ≤ N.

By a simple calculation we find that

∂uα
∂xi

=
∂u(x)

∂xi
(1−Ψα(x− x0)) + (u(x0)− u(x))

∂Ψα(x− x0)

∂xi
.
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Then∫
Ω

ϕ(x,
1

λ

∣∣∣∣∂uα∂xi

∣∣∣∣)dx ≤ 1

2

∫
Ω

ϕ(x,
2

λ

∣∣∣∣(1−Ψα(x− x0)
∂u(x)

∂xi

∣∣∣∣)dx
+

1

2

∫
Ω

ϕ(x,
2

λ

∣∣∣∣(u(x)− u(x0))
∂Ψα(x− x0)

∂xi

∣∣∣∣)dx
≤ 1

2

∫
Ω

ϕ(x,
2

λ
k1

∣∣∣∣∂u(x)

∂xi

∣∣∣∣)dx
+

1

2

∫
Ω

ϕ(x,
2

λ

∣∣∣∣(u(x)− u(x0))
∂Ψα(x− x0)

∂xi

∣∣∣∣)dx.
Since u ∈W 1Lϕ(Ω), then the first term on the right side of the inequality is finite.
In addition we will show in Lemma 3.1, that

I
′

α =

∫
Ω2α0

∫
B(y,2α)

ϕ

(
x,
λ |u(x)− u(y)|

α

)
dx dy ≺ ∞,

then ∫
B(y,2α)

ϕ

(
x,
λ |u(x)− u(y)|

α

)
dx ≺ ∞ a.e,

which implies that the second term is finite. Thus uα ∈ W 1Lϕ(Ω). It is clear by
using the Lebesgue theorem that

uα → u (mod) Lϕ(Ω) as α→ 0. (3.4)

therefore, it remains to show that

∂uαk
∂xi

→ ∂u

∂xi
(mod) Lϕ(Ω), 1 ≤ i ≤ N, (3.5)

for the sequence αk with αk → 0 as k →∞. By a simple calculation we find that:

∂(u− uα)(x)

∂xi
=
∂u(x)

∂xi
Ψα(x− x0) +

∂Ψα(x− x0)

∂xi
(u(x)− u(x0))

and the convexity of ϕ(x, .) we can write∫
Ω

ϕ(x, λ

∣∣∣∣∂(u− uα)(x)

∂xi

∣∣∣∣)dx ≤ 1

2

∫
Ω

ϕ(x, 2λ

∣∣∣∣∂u(x)

∂xi
Ψα(x− x0)

∣∣∣∣)dx
+

1

2

∫
Ω

ϕ(x, 2λ

∣∣∣∣(u(x)− u(x0))
∂Ψα(x− x0)

∂xi

∣∣∣∣ dx.
By virtue of Lebesgue theorem, the first term in the expression right of the above
inequality converges to zero as α→ 0, so it remains to show that:∫

Ω

ϕ(x, 2λ

∣∣∣∣(u(x)− u(x0))
∂Ψα(x− x0)

∂xi

∣∣∣∣)dx→ 0 as α→ 0 (3.6)
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Using the above Lemma 3.1 we conclude directly, which completes the proof of
Theorem 3.2.

Remark 3.3.

1. In the particular case when ϕ(x, t) = M(t)ρ(x), M an N-function and ρ the
weight function, we recover the statement of [9, Theorem 4.1].

2. In the particular case when ϕ(x, t) = M(t), M an N-function , we recover
the statement of [2, Lemma 2].

3. In the particular case when ϕ(x, t) =
|t|p

p
, 1 ≤ p ≺ ∞ we recover the

statement of [10, Lemma 2-1].

4. Functional depending on x and ∇u

Let Ω be a bounded domain in RN , let ϕ be an Musielak-Orlicz function. We
consider the functional J : W 1Lϕ(Ω)→ R defined as the following

J =

∫
Ω

f(x,∇u)dx. (4.1)

Where f : Ω× RN → R is a Carathéodory function satisfying

|f(x, ξ)| ≤ T (x)G(|ξ|). (4.2)

for some nondecreasing function G : R → R and some T (x) ∈ L1(Ω). For each µ,
we write Hµ for the level set of the functional J , i.e.,

Hµ =
{
u ∈W 1Lϕ(Ω) : J(u) = µ

}
,

and H
w

µ is the closure of Hµ in W 1Lϕ(Ω) with respect to the weak topology
σ(
∏
Lϕ(Ω),

∏
Eϕ(Ω)).

Definition 4.1. A functional J : W 1Lϕ(Ω) → R is called weakly lower semicon-

tinuous at a level set Hµ. If J(u) ≤ µ for all u ∈ Hw

µ .

Remark 4.2. Note that this definition does not imply that J/Hwµ
is weakly lower

semicontinuous .
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Definition 4.3. A function f : Ω× RN → R is called a Carathéodory-function if

• f(·, ξ) : Ω→ R is mesurable for all ξ ∈ RN ,

• f(x, ·) : RN → R is continuous for almost all x ∈ Ω.

We have the following result:

Theorem 4.4 (see [2, Theorem 6]). Let Ω be a bounded domain in RN .
Let J : W 1Lϕ(Ω)→ R be a functional defined as in (4.1), with a Carathéodory

function f : Ω× RN → R satisfying (4.2).
If J is weakly lower semicontinuous at nonvoid level set Hµ, then we have two

alternatives: either µ is an extreme value of J or for almost all x ∈ Ω the function
f(x, ·) is convex.

Proposition 4.5. The sequence of function ĉn defined by

ĉn(x) =< ξ∗, x > +

∫ <ξ−ξ∗,x>

0

gλ(nt)dt

satisfying the following propreties:
i) ĉn(x)→ ĉ0(x) for almost all x ∈ Ω where ĉ0(x) =< λξ + (1− λ)ξ∗, x >,
ii) ĉn is bounded in W 1Lϕ(Ω).

It is clear to check the two conditions of proposition (see [10] and [2]).

Remark 4.6. By Definition 4.3 the functional J : W 1Lϕ(Ω)→ R defined in (4.1)
is continuous.

Proof of Theorem 4.4. Let assume that µ is not an extreme value of J , then we
show that

f(x, λξ + (1− λ)ξ∗) ≤ λf(x, ξ) + (1− λ)f(x, ξ∗)

for all λ ∈ [0, 1], for all ξ, ξ∗ ∈ RN and for a.e. x ∈ Ω. We can assume that µ = 0
and that there exist two functions â1 and â2 in W 1Lϕ(Ω) such that J(â1) ≺ −ε0
and J(â2) � ε0 for some ε0 � 0.

Let x0 be a Lebesgue point for f(x, ξ) for every ξ ∈ QN . We can assume that
x0 = 0. By the continuity of the functional J and by Theorem 3.2, there exists a
ball B(0, R0) ⊂ Ω and there exist b̄, b̄1 and b̄2 (see [10]) such that

∇b̄ = ∇b̄1 = ∇b̄2 = 0 on B(0, R0). (4.3)

J(b̄1) ≺ 7

8
ε0, J(b̄2) � 7

8
ε0 and

∣∣J(b̄)
∣∣ ≺ 1

8
ε0. (4.4)

Moreover, for all function ā satisfying |J(ā)| ≺ 7
8ε0 there is ti ∈ [0, 1] with i =

i(ā) ∈ {1, 2} such that the function c̄ = ā+ ti(b̄i − ā) lies in the level set N0 , i.e.
J(c̄) = 0.

Let us now fix λ ∈ [0, 1]
⋂
Q and ξ, ξ∗ ∈ QN . We define the sequence of

functions
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ĉn(x) =< ξ∗, x > +

∫ <ξ−ξ∗,x>

0

gλ(nt)dt,

where <,> denotes the usual inner product in RN and

gλ(x) =

{
1 if 0 ≺ t ≺ λ
0 if λ ≺ t ≺ 1

We recall that

gn(x) ⇀∗ λ in L∞(Ω)

and

(1− gn(x)) ⇀∗ (1− λ) in L∞(Ω).

(see [10]). Moreover, ĉn is bounded in W 1Lϕ(Ω), and converges almost everywhere
ĉn(x)→ ĉ0(x) where ĉ0(x) =< λξ + (1− λ)ξ∗, x > (see [2, 10]). Hence,

ĉn → ĉ0 in W 1Lϕ(Ω) for σ(
∏

Lϕ(Ω),
∏

Eϕ̄(Ω)) .

Let ψ : R → R be a C∞-function with support in the interval (−1, 1) and

ψ(t) = 1 for all |t| ≺ 1
2 . Defining c̄R(x) = ψ

(
|x|
R

)
ĉ0(x) for all R � 0, we have

∇c̄R(x) = ψ
′
(
|x|
R

)
|x|
R
ĉ0(x) + ψ

(
|x|
R

)
∇ĉ0(x) .

Moreover, the function c̄R(x) = ψ( |x|R )ĉ0(x) satisfying the following properties (see
[10, Proposition 3.1]):

|∇c̄R(x)| ≤ c in Ω. (4.5)∫
B(0,R)

f(x,∇c̄R(x))dx→ 0 as R→ 0. (4.6)

Note that (4.2) is used for to prove (4.6). Next we consider the sequence ĉn(x) in
a ball B(0, r), say. We will show that is possible alter each element of the sequence
ĉn(x) in such a manner that it coincides with limit ĉ0(x) in the boundary.

The following lemma is a generalization of [10, Proposition 3.2] to the Musielak-
Orlicz-Sobolev spaces.

Lemma 4.7. There exists a sequence an(x) ∈W 1Lϕ(Ω) such that:
i) an(x) = ĉ0(x) =< λξ + (1− λ)ξ∗, x > 0 in ∂B(0, r),

ii) an − ĉn → 0 (mod) in W 1Lϕ(Ω) as n→∞,

iii) an → ĉ0 in W 1Lϕ(Ω) for σ(
∏
Lϕ(Ω),

∏
Eϕ(Ω)),

iv) ‖∇an‖∞ + ‖∇ĉn‖∞ ≤ c,

v)

∣∣∣∣∣
∫
B(0,r)

f(x,∇ĉn)dx−
∫
B(0,r)

f(x,∇an)dx

∣∣∣∣∣→ 0 as n→∞,

vi)

∫
B(0,r)

f(x,∇an)dx→ 0 as r → 0 uniformly in n.
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Now, we are in the position to complete the proof of Theorem 4.4. For R ≤ R0

and r = R
2 , we define the sequence:

b̂n(x) =


b(x) if x ∈ Ω\B(0, R),

b(x) + cR(x) if x ∈ B(0, R)\B(0, r),

b(x) + an(x) if x ∈ B(0, r);

which converges in W 1Lϕ(Ω) for the weak topology σ(
∏
Lϕ(Ω),

∏
Eϕ(Ω)) to

b̂0(x) =

{
b(x) for x ∈ Ω\B(0, R),

b(x) + c
R

(x) for x ∈ B(0, R).

Combining (4.5), (4.6) and Lemma 4.7, (as in [10] and [2]), we have for R > 0
small enough

∣∣J(bn)
∣∣ < 7

8ε0 for all n. Hence for any n, we find numbers tn ∈ [0, 1]

and in ∈ {1, 2}, such that for bn = b̂n + tn(bin − b̂n) we have J(bn) = 0. Now
choosing a subsequence tn such that tn → t0 and in = i; i ∈ {1, 2}, we have

bn → b0 in W 1Lϕ(Ω) for σ(
∏
Lϕ(Ω),

∏
Eϕ(Ω)).

Because of the continuity of J with respect to the strong topology of W 1Lϕ(Ω),
we have

limn→∞ J(b+ tn(bin − b)) = J(b+ t0(bi − b)),

and by construction

f(x,∇(b+ tn(bi − b)) = f(x, 0) in B(0, R).

Since

∇b = ∇b1 = ∇b2 = 0 in B(0, R)

which yields

lim
n→∞

∫
B(0,R)

f(x,∇bn(x))dx ≥
∫
B(0,R)

f(x,∇b0(x))dx.

Since bn = b0 in B(0, R)\B(0, r), r = R
2 , we finally get∫

B(0,r)

f(x, λξ + (1− λ)ξ∗)dx =

∫
B(0,r)

f(x,∇b0(x))dx

≤ lim
n→∞

∫
B(0,r)

f(x,∇bn)(x))dx

= lim
n→∞

∫
B(0,R)

f(x,∇an(x))dx

= λ

∫
B(0,r)

f(x, ξ)dx+ (1− λ)

∫
B(0,r)

f(x, ξ∗)dx.

Since the above inequality can be obtained for all B(0, r) with radius r < R
2 , we

conclude that f(x0, λξ+(1−λ)ξ∗) ≤ λf(x0, ξ)+(1−λ)f(x0, ξ
∗) for all λ ∈ [0, 1]∩Q
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and all ξ, ξ∗ ∈ QN . It then follows by the continuity of f(x, ξ) with respect to ξ,
that the above inequality holds for all λ ∈ [0, 1] and all ξ, ξ∗ ∈ RN .

We now prove Lemma 4.7.

Proof of Lemma 4.7. Let ω̃δ be a C∞ -function with support in [−1, 1] such that

ω̃δ = 1 for all |t| ≺ 1− δ and
∣∣∣ω̃′δ∣∣∣ ≺ 2

δ for all t.

Defining the function ωδ(x) = ω̃δ(
|x|
r ) and an,δ(x) = ĉ0(x) + ωδ(x)(ĉn(x) −

ĉ0(x)) by Proposition 3.2 in [10] we have that

|∇(ĉn(x)− ĉ0(x))| (1− ωδ(x)) ≤ c′r(|ξ∗|+ |ξ|)(1− ωδ(x)), (4.7)

|∇ωδ(x)| |ĉn(x)− ĉ0(x)| ≤ O(n−1)
1

δ
χsupp(∇ωδ). (4.8)

for some positive constants c and c′. Assume that the following formula is true∫
Ω

ϕ(x, |an,δ − ĉn|)dx+

∫
Ω

ϕ(x, |∇(an,δ − ĉn)|)dx

≤ O(δ) + c

∫
B(0,r)

ϕ(x, |∇(ĉn(x)− ĉ0(x))(1− ωδ(x))|)dx
(4.9)

hence we get

ωδ(x) =


0 in Ω\B(0, r)

1 in B(0, (1− δ)r)
ω̃δ(
|x|
r ) in B(0, r)\B(0, (1− δ)r)

which implies that

an,δ(x)− ĉn(x) =


ĉ0(x)− ĉn(x) in Ω\B(0, r)

0 in B(0, (1− δ)r)
(1− ω̃δ( |x|r ))(ĉ0(x)− ĉn(x)) in B(0, r)\B(0, (1− δ)r)

and

∇(an,δ(x)−ĉn(x)) =


∇(ĉ0(x)− ĉn(x)) in Ω\B(0, r)

0 in B(0, (1− δ)r)
∇(ω̃δ(

|x|
r ))(ĉn(x)− ĉ0(x))+

(1− ω̃δ( |x|r ))∇((ĉ0(x)− ĉn(x))) in B(0, r)\B(0, (1− δ)r)
Hence, we get the following estimate∫

Ω

ϕ(x, |an,δ − ĉn|)dx+

∫
Ω

ϕ(x, |∇(an,δ − ĉn)|)dx

≤ O(δ) + c

∫
B(0,r)\B(0,(1−δ)r)

ϕ(x, |∇(ĉn(x)− ĉ0(x))(1− ωδ(x))|)dx

≤ O(δ) + c

∫
B(0,r)\B(0,(1−δ)r)

ϕ(x, c1O(n−1)
1

δ
)dx.
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Selecting numbers δn such that O(n−1) 1
δn

= 1, this implies that O(δn) =

O(n−1) and δn → 0 as n→∞. Then, we conclude that∫
Ω

ϕ(x, |an,δ − ĉn|)dx+

∫
Ω

ϕ(x, |∇(an,δ − ĉn)|)dx

≤ O(n−1) + c

∫
B(0,r)\B(0,(1−δ)r)

ϕ(x, c1O(n−1)
1

δ
)dx

which converge to 0 as n → ∞. We define the functions an = an,δ and we have
an,δ − ĉn → 0 (mod)W 1Lϕ(Ω) as n→ 0. Which gives (ii) in Lemma 4.7 and

an − ĉ0 = (an − ĉn) + (ĉn − ĉ0)→ 0 in W 1Lϕ(Ω)

with respect to σ(
∏
Lϕ(Ω, ),

∏
Eϕ(Ω)) (because (ĉn − ĉ0) → 0 in W 1Lϕ(Ω) for

σ(
∏
Lϕ(Ω),

∏
Eϕ(Ω)).

The properties i), iv) and vi) are satisfied by the definition of an. Now, it
remains to prove the inequality (4.9). Indeed we can write∫

Ω

ϕ(x, |an,δ − ĉn|)dx+

∫
Ω

ϕ(x, |∇(an,δ − ĉn)|)dx

=

∫
B(0,r)

ϕ(x, |ĉn − ĉ0| (1− ωδ))dx+

∫
Ω\B(0,r)

ϕ(x, |ĉn − ĉ0|)dx

+

∫
Ω\B(0,r)

ϕ(x, |∇(ĉn − ĉ0)|)dx+

∫
B(0,r)

ϕ(x, |∇(ĉn − ĉ0)(1− ωδ)|)dx.

Since

(1− ωδ(x))→ 0 a.e. in B(0, r) as δ → 0

and∫
Ω\B(0,r)

ϕ(x, |ĉn − ĉ0|)dx+

∫
Ω\B(0,r)

ϕ(x, |∇(ĉn − ĉ0)|)dx→ 0 as n→∞,

then we conclude that∫
Ω

ϕ(x, |an,δ − ĉn|)dx+

∫
Ω

ϕ(x, |∇(an,δ − ĉn)|)dx

≤ O(δ) + c

∫
B(0,r)

ϕ(x, |∇(ĉn(x)− ĉ0(x))(1− ωδ(x))|)dx.

Which implies the inequality (4.9).

Corollary 4.8. Under the same assumptions as in theorem suppose that there is
a nonvoid weakly closed level set Hµ. If µ is not an extreme value of J , then the
function f(x,∇u(x)) is affine in the gradient.
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Remark 4.9. 1) In the particular case when ϕ(x, t) = M(t), M is an N-function,
we recover the statement of [2, Theorem 6].

2)In the particular case when ϕ(x, t) =
|t|p

p
,1 ≤ p ≺ ∞, we recover the statement

of [10, Theorem 3-1].
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